WO2013051148A1 - 質量分析データ解析方法及び装置 - Google Patents
質量分析データ解析方法及び装置 Download PDFInfo
- Publication number
- WO2013051148A1 WO2013051148A1 PCT/JP2011/073196 JP2011073196W WO2013051148A1 WO 2013051148 A1 WO2013051148 A1 WO 2013051148A1 JP 2011073196 W JP2011073196 W JP 2011073196W WO 2013051148 A1 WO2013051148 A1 WO 2013051148A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- structural formula
- substance
- unknown
- mass
- structural
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/0027—Methods for using particle spectrometers
- H01J49/0036—Step by step routines describing the handling of the data generated during a measurement
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/20—Identification of molecular entities, parts thereof or of chemical compositions
Definitions
- the present invention relates to a data analysis method and apparatus for analyzing a chemical structure of a substance, and more specifically, a substance whose structure is changed by some factor from a substance whose structure is known, or a substance whose structure is known.
- the present invention relates to a mass spectrometric data analysis method and apparatus for estimating the structure of an unknown substance whose most of the structure is common and only a part of the structure is different.
- mass spectrometers capable of MS n analysis have been actively used for structural analysis of various polymer compounds including proteins.
- CID collision-induced dissociation
- molecular bonds are broken at specific sites depending on the binding energy and various product ions and neutral losses are generated.
- an ion having a specific mass-to-charge ratio m / z corresponding to the target substance is selected from various ions generated from the sample, the selected ion is cleaved by CID, and various product ions generated by the cleavage ( Fragment ions) are mass analyzed to obtain an MS 2 spectrum.
- the chemical structure of the target substance can be estimated by analyzing the MS 2 spectrum data.
- structural analysis of the target substance is performed using an MS n spectrum in which n is 3 or more obtained by repeating the CID operation multiple times. May be performed.
- the most common method for estimating the structure of an unknown substance using an MS n spectrum is a database search using MS n spectral pattern matching. That is, for various known compounds, compound names, molecular weights, composition formulas, structural formulas, MS n spectral patterns, etc. are registered in an identification database (sometimes called a library), and measured MS n spectra for unknown substances are obtained. If it is determined, an unknown substance is identified and its structural formula is derived by searching the database for a compound whose peak pattern matches or is similar to the measured MS n spectrum under a predetermined search condition.
- an identification database in addition to a database created by the user himself, various existing databases released by public institutions and the like are also used.
- the amount of data stored in the identification database as described above is enormous, but not all compounds to be analyzed are recorded without omission.
- the basic skeleton of the compound is common and some structures are substituted (for example, methyl groups as ethyl groups, chlorine
- methyl groups as ethyl groups, chlorine There are a number of similar compounds only in which It is practically impossible to record all these compounds in the identification database. Therefore, even if a database search is performed for such a compound, the substance is often not identified and the structural formula cannot be determined.
- the mass spectrometry data analysis method described in Patent Document 1 is known when analyzing the structure of an unknown substance whose structure is known to be similar to a known substance having a known structure.
- the structure of the unknown substance is estimated by combining the fragment prediction result for the peak having a mass-to-charge ratio m / z common to the MS n spectra of the substance and the unknown substance and the known structural change pattern.
- the structural change pattern is information relating to substitution of a substituent, addition of a certain component, or elimination of a certain component. Thereby, it is possible to identify a compound and obtain a structural formula for a compound that is not recorded in the identification database.
- the structure of an unknown substance that has undergone a structural change that is not registered as a structural change pattern cannot be estimated.
- the structure of a drug metabolite is thought to be that a partial structure in a substance before metabolism is detached and then another partial structure is added to the detachment site or a completely different site.
- the separated partial structures vary widely depending on the substance before metabolism, and it is difficult to register all of them as a structural change pattern in advance. Therefore, in the structure analysis of such a substance, a case where the structure of the unknown substance cannot be specified easily occurs.
- the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to know the structure even when the structure change pattern accompanying metabolism or the like is not prepared in advance as a database or the like.
- a mass spectrometry data analysis method and apparatus capable of efficiently and reliably estimating the structure of an unknown substance similar to a substance or partially changed in structure from the substance based on MS n spectrum data Is to provide.
- the first invention made to solve the above problems is produced by cleaving a precursor ion derived from an unknown substance having a partial structural change from a known substance having a known structure in one or more stages.
- a post-desorption structure estimation step for estimating a post-desorption structural formula after an unknown desorption partial structure is desorbed from the known substance with the structural change based on mass information of the precursor ion derived from When, b) Regarding the post-desorption structure formula candidates listed in the post-desorption structure estimation step, the mass when the basic partial structure extracted from the structure represented by the structural formula and the additional partial structure are combined, and A product
- the second invention made to solve the above problems is an apparatus for carrying out the mass spectrometry data analysis method according to the first invention, and a partial structural change has occurred from a known substance having a known structure.
- MS n spectrum (n is an integer of 1 or more) obtained by mass spectrometry of product ions generated by cleaving precursor ions derived from unknown substances in one or more stages, the structure of the unknown substances is determined.
- An apparatus for analyzing mass spectrometry data a) Structural information on the known substance given in advance, information on an additional partial structure that can be added to the known substance along with the structural change given in advance, and the unknown substance obtained from the mass spectrum for the unknown substance
- post-desorption structure estimation means for estimating a post-desorption structural formula after an unknown desorption partial structure is desorbed from the known substance with the structural change based on mass information of the precursor ion derived from When, b) For the post-desorption structural formula candidate listed by the post-desorption structure estimation means, the mass when the basic partial structure extracted from the structure represented by the structural formula and the additional partial structure are combined, and A product ion structure estimation means that estimates the structural formula of each product ion and lists product ion structural formula candidates by judging the coincidence with the mass of the product ion obtained from the MS n spectrum for the unknown substance; c) Based on the product ion structural formula candidates for a plurality of product ions estimated by the product ion structural estimation means, the
- the “unknown substance” that is the object of structural analysis is a substance that is generated from a certain substance having a known structure by a chemical change such as metabolism.
- the “unknown substance” may be a by-product generated when a known substance is generated by synthesis or the like, in which a part of the structure is replaced or missing, or another component is added.
- the MS n spectrum when n is 1, that is, the MS 1 spectrum (mass spectrum) is the result of mass analysis of product ions generated by fragmenting (cleaving) the target substance-derived ions by in-source decomposition.
- the MS n spectrum in the case where n is 2 or more is a result of mass analysis of product ions generated by performing one or a plurality of cleavage operations using CID or the like.
- the substitution pattern of the partial structure that changes with metabolism or the like is used as the structural change pattern
- the partial structure This substitution is divided into two stages, ie, elimination and addition of partial structures.
- the partial structure to be desorbed depends on the structure of the original substance (before desorption), reaction conditions, and the like, and it is difficult to predict.
- the substructure to be added almost depends on the type of metabolism and the like, so it is considerably narrowed down and is easy to predict. Therefore, for example, the user estimates the partial structure to be added in advance, and inputs the information (or selects from among a number of options prepared in advance) to give information on the additional partial structure.
- the post-desorption structure estimation means includes the mass of the additional partial structure obtained from the information (for example, composition formula) of the additional partial structure and the mass information of the precursor ion derived from the unknown substance.
- Calculate the mass of the post-desorption structural formula after the desorption of the unknown desorbed partial structure from the known substance from the mass of the unknown substance obtained from, and after desorption from the mass and the structural formula information of the known substance Estimate the structural formula.
- a plurality of post-desorption structural formula candidates may be listed.
- the structural formula after desorption is not always obtained, if no structural formula after desorption is obtained, another MS n spectrum obtained by changing the analysis conditions as described later, for example, The method of using etc. can be considered.
- the product ion structure estimation means calculates the mass obtained by trying a combination of the basic partial structure that can be estimated from the structural formula and the additional partial structure for each of the post-desorption structural formula candidates on the MS n spectrum of the unknown substance.
- the structural formula of each product ion derived from an unknown substance is estimated by comparing with the mass of the product ion corresponding to the peak.
- a plurality of product ion structural formula candidates may be listed.
- the unknown substance structure estimation means Since each product ion obtained from the MS n spectrum of an unknown substance is generated by the cleavage of the unknown substance, the unknown substance structure estimation means performs cleavage so that the structure can be generated from a plurality of product ion structural formula candidates. It is possible to estimate the structural formula of the unknown substance by estimating the mode.
- MS n spectra of known substances if provided as additional information, for example, the product ions from an unknown substance that seen from MS n spectra of product ions and the unknown material from the known materials which stand from the MS n spectra Can be estimated to which part of the known substance the additional partial structure has been added, and narrowing down when estimating the structural formula of the unknown substance.
- composition formula of the unknown substance is given as additional information
- the composition of the additional partial structure is already known, so the composition of the desorbed partial structure can also be determined from the difference between the two.
- the composition formula or structural formula of at least one product ion derived from an unknown substance is given as additional information, it is not necessary to estimate the structural formula of some product ions, or the structural formula can be narrowed down. . It is also conceivable to narrow down the result by selecting intermediate data (a combination of the estimated desorption partial structure and the post-desorption partial structure corresponding to the product ion and the additional partial structure) by the user.
- the mass spectrometry data analysis method when there are a plurality of post-desorption structural formula candidates estimated by the post-desorption structure estimation step, the plurality of post-desorption structural formula candidates For each of them, it is preferable to estimate a structural formula of an unknown substance by the product ion structure estimation step and the unknown substance structure estimation step to obtain a plurality of structural formula candidates. Thereby, the estimation omission of the structural formula candidate of the unknown substance can be reduced.
- the mass spectrometry data analysis method it was obtained by MS n + 1 analysis performed by using ions having a specific mass-to-charge ratio in the MS n spectrum of unknown substances as precursor ions.
- the estimated structural formula obtained by executing the above steps is used as a structural formula candidate of one product ion of the unknown substance, and the structural formula of the unknown substance is estimated. Good.
- MS 2 spectrum data even when the structure of an unknown substance cannot be identified based on MS 2 spectrum data, the structure of the unknown substance can be identified with high reliability based on MS 3 and MS 4 spectrum data obtained by repeatedly performing a cleavage operation. It becomes possible to do.
- the candidate for the structural formula of the unknown substance is obtained by each step using a plurality of MS n spectra obtained under different analysis conditions for the unknown substance, It is also possible to extract a structural formula having a high probability with the result and output it as a structural formula estimation result of an unknown substance.
- the analysis conditions here include cleavage conditions. Since the mode of cleavage changes when analysis conditions are changed, different MS n spectra are obtained from the same unknown sample. In this way, when the structural formula candidates of unknown substances obtained using a plurality of MS n spectra different from each other are the same, there is a high probability that the candidate is a correct structural formula. Therefore, according to the above method, even if the structure of the unknown substance is complicated, the structural formula of the unknown substance can be specified with high reliability.
- the mass spectrometric data analysis method and apparatus According to the mass spectrometric data analysis method and apparatus according to the present invention, even if an unknown substance whose part of the structure of the known substance has changed due to a chemical change such as metabolism is not recorded in the identification database.
- the structural formula of the unknown substance can be estimated efficiently and with high reliability.
- the structural change pattern accompanying structural change such as metabolism is unknown, as long as the partial structure to be added accompanying the structural change is known or can be estimated with high accuracy, the structural formula of the unknown substance can be calculated. It can be estimated with high reliability.
- FIG. 1 is a schematic configuration diagram of an embodiment of a mass spectrometry system including a mass spectrometry data analysis apparatus according to the present invention.
- the flowchart which shows an example of the procedure of the unknown substance structure estimation process in the mass spectrometry system of a present Example.
- the conceptual diagram explaining the structural change model of the known substance in the mass spectrometry system of a present Example, and the estimation method of the post-desorption structural formula after partial structure desorption.
- FIG. 1 is a schematic configuration diagram of the mass spectrometry system of the present embodiment.
- the MS n analyzer main body 1 includes an ion source, an ion trap, a time-of-flight mass analyzer (TOFMS), an ion detector, etc., and has a specific mass-to-charge ratio among various ions generated from a sample.
- MS n analysis is performed using ions having m / z as precursor ions, and MS n spectrum data over a predetermined mass-to-charge ratio range is acquired.
- n 2
- n may be 3 or more.
- the ion source when the ion source is EI, it tends to cause in-source decomposition of molecular ions generated by ionization.
- EI a relatively large number of product ions can be generated by an ion source such as matrix-assisted laser desorption ionization or fast atom bombardment ionization.
- a so-called triple quadrupole mass spectrometer can be used instead of a combination of an ion trap and TOFMS.
- the data processing unit 2 that processes the MS n spectrum data obtained by the MS n analysis unit main body 1 includes an unknown substance structure estimation processing unit 21, a spectrum data storage unit 22, a known substance structural formula storage unit 23, and an additional partial structure storage unit. 24 are provided as functional blocks.
- the known substance structural formula storage unit 23 stores structural formulas of various substances (compounds), and this can use the above-described identification database.
- the additional partial structure storage unit 24 stores information on partial structures added to substances in accordance with various structural changes such as in vivo metabolism, that is, information on additional partial structures. For example, since many of the structures of components added to substances in various metabolisms that occur in the human body are known, for example, the types of metabolism and additional substructures are stored in association with each other based on such known information. I can keep it.
- the data processing unit 2 is connected to an input unit 3 operated by the user and a display unit 4 for displaying analysis results.
- the data processing unit 2 can be configured such that each functional block described above is realized by executing a dedicated processing / control program installed in the personal computer as a hardware resource. .
- the mass spectrometry system of the present embodiment has a structure such as a metabolite, a by-product, a decomposition product, etc. whose structure has been changed due to some factor such as metabolism from a substance having a known structural formula (hereinafter referred to as “raw material”). Is characterized by data analysis processing for estimating the structure of an unknown substance.
- raw material a substance having a known structural formula
- metabolites generated from the original substance by metabolism will be described as an example, but the structural change of the substance is not limited to metabolism, and it corresponds to various structural changes that change part of the structure of the original substance Is possible.
- FIG. 2 is a flowchart illustrating an example of a metabolite structure estimation process performed by the data processing unit 2.
- FIG. 3 illustrates a structure change model of a known substance and a post-desorption structure estimation method after a partial structure is desorbed.
- FIG. 4 is a conceptual diagram of metabolite structure estimation processing. The details of the metabolite structure estimation process in the mass spectrometry system of the present embodiment will be described with reference to FIGS.
- MS 2 spectrum data which is a result of performing MS 2 analysis using ions derived from unknown substances in a sample to be analyzed as a precursor ion, is stored in the spectrum data storage unit 22 at the start of processing.
- the unknown substance structure estimation processing unit 21 sends the MS 2 spectrum data of the unknown substance to be processed from the spectrum data storage unit 22 of the original substance.
- the structural formula data is read from the known substance structural formula storage unit 23, and the additional partial structure data added when the structure is changed from the original substance to the unknown substance is read from the additional partial structure storage unit 24 (step S1).
- the user designates the compound as the raw material by the input unit 3 so that the structural formula data of the raw material is read out.
- Various types of additional partial structure data are also stored in the additional partial structure storage unit 24, and can be added corresponding to the metabolism or the like when the user gives information such as the type of metabolism from the input unit 3. Additional partial structure data can be read.
- the user inputs the structural formula and the additional partial structure of the raw material directly from the input unit 3 without using the data stored in the known substance structural formula storage unit 23 or the additional partial structure storage 24. It may be.
- an unknown substance B is generated from a source substance A having a known structural formula by a structural change such as metabolism, as shown in FIG. 3, some partial structure C is desorbed from the source substance; It is considered that a two-stage operation occurs, the second stage in which the additional partial structure D is added to the structure A ′ after the partial structure is detached.
- the additional partial structure D is not necessarily added to the location where the partial structure C is eliminated (that is, replaced with a structurally eliminated group or the like). In some cases, the additional partial structure D is added to a completely different site.
- the structural formula of the original substance A, the additional partial structure D, and the MS 2 spectrum of the unknown substance B, which are surrounded by a broken line, are known, that is, already given information.
- the unknown substance structure estimation processing unit 21 first determines the structural formula after the desorbed partial structure C is desorbed from the raw material A (post-desorption structural formula) based on the known information as described above.
- a candidate for A ′ is calculated (step S2). That is, the mass of the unknown substance B is obtained from the mass-to-charge ratio m / z of the precursor ion when obtaining the MS 2 spectrum of the unknown substance B, and the mass of the additional partial structure D contained in the unknown substance B is also known.
- the mass of the structural formula A ′ after desorption is calculated from the difference.
- the post-desorption structural formula A ′ can be estimated from the mass of the post-desorption structural formula A ′ and the known structural formula of the raw material A.
- a plurality of post-desorption structural formula A ′ candidates that can be estimated are listed.
- composition formula of the unknown substance B is given as additional information
- the composition of the additional partial structure D since the composition of the additional partial structure D is known, the unknown partial substance B is added to the additional partial structure.
- the composition corresponding to the structural formula A ′ after desorption after removing D is found. Therefore, it is possible to narrow down the post-desorption structural formula A ′ candidates using this composition information, and the number of candidates can be reduced to simplify subsequent processing. Moreover, you may make it perform selection of the structural formula after detachment
- steps S4 to S5 for the selected post-desorption structural formula A ′ candidate perform the process.
- post-desorption structural formula A ′ is considered to contain the basic skeleton of the original material, it is unknown by combining a partial structure extracted from one post-desorption structural formula A ′ candidate with a known additional partial structure.
- the candidates of structural formulas of product ions generated by the cleavage of the substance B are comprehensively calculated (step S4).
- the mass-to-charge ratios of the peaks P1 and P2 appearing in the MS 2 spectrum of the unknown substance B are M1 and M2, respectively.
- the mass when the partial structure of the structural formula A ′ after elimination and the additional partial structure D (in this example, two types of —OH and —CH 3 ) are combined is calculated, and the mass of the product ion Determine consistency.
- the product ion of peak P1 the two types of mass of [A'a] + [-CH 3 , -OH] and [A'b] + [-OH] match, and the product of peak P2
- step S4 the structural formula candidates of each product ion derived from the unknown substance B are listed in step S4, the structural formula candidates of the product ions are combined, a combination that can be generated by cleavage of the unknown substance B is found, and the unknown substance B is found. Selected as the structural formula of B (step S5). If an appropriate combination cannot be found, it may be concluded that there is no solution because, for example, the candidate for the post-desorption structural formula A ′ selected in step S3 is not appropriate. Moreover, when the structural formula of the unknown substance B cannot be narrowed down to one, a plurality of structural formulas may be cited as candidates.
- step S6 it is determined whether or not the processes of steps S4 and S5 have been performed for all the post-desorption structural formula A ′ candidates obtained in step S2 (step S6), and the unprocessed post-desorption structural formula A ′. If there is a candidate, the process returns to step S3, an unprocessed post-desorption structural formula A ′ candidate is selected, and steps S4 and S5 described above are performed. When it determines with Yes at step S6, it progresses to step S7 and outputs the structural formula (or its candidate) of the unknown substance mentioned so far from the display part 4 as an analysis result.
- the information of the additional partial structure D that is known in the structural change is used.
- the structural change pattern used in the above-described prior art includes not only the additional partial structure but also information such as the detached partial structure C, the site from which the detached partial structure is detached, and the site to which the additional partial structure D is added. Therefore, it is very diverse and it is difficult to predict all possible structural change patterns.
- the additional partial structure D if only the additional partial structure D is used, it can be easily predicted from the type of metabolism or the like, and the type can be considerably narrowed down. Therefore, it is possible to reliably provide information on the additional partial structure D that can be added in accordance with the structural change, and to perform highly reliable and efficient structure estimation of the unknown substance based on the information.
- MS 2 analysis which analyzes the n involving two or more steps of dissociation operation is based on the MS n spectrum data obtained in three or more MS n analysis It may be.
- MS n + 1 obtained by the MS n + 1 analysis performed ions having a specific mass-to-charge ratio in MS n spectra of an unknown substance as a precursor ion
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
a)予め与えられる前記既知物質の構造式情報と、同じく予め与えられる前記構造変化に伴って前記既知物質に付加され得る付加部分構造の情報と、前記未知物質に対するマススペクトルから得られる該未知物質に由来するプリカーサイオンの質量情報と、に基づいて、前記構造変化に伴って前記既知物質から未知の脱離部分構造が脱離した後の脱離後構造式を推定する脱離後構造推定ステップと、
b)該脱離後構造推定ステップで挙げられた脱離後構造式候補について、その構造式で示される構造から抽出される基幹部分構造と前記付加部分構造とを組み合わせたときの質量と、前記未知物質に対するMSnスペクトルから得られるプロダクトイオンの質量との一致性を判断することにより、各プロダクトイオンの構造式を推定してプロダクトイオン構造式候補を挙げるプロダクトイオン構造推定ステップと、
c)該プロダクトイオン構造推定ステップにより推定された複数のプロダクトイオンに対するプロダクトイオン構造式候補に基づき、それら構造式候補を開裂によって生成し得る構造式を探索することにより未知物質の構造式を推定する未知物質構造推定ステップと、
を有することを特徴としている。
a)予め与えられる前記既知物質の構造式情報と、同じく予め与えられる前記構造変化に伴って前記既知物質に付加され得る付加部分構造の情報と、前記未知物質に対するマススペクトルから得られる該未知物質に由来するプリカーサイオンの質量情報と、に基づいて、前記構造変化に伴って前記既知物質から未知の脱離部分構造が脱離した後の脱離後構造式を推定する脱離後構造推定手段と、
b)該脱離後構造推定手段により挙げられた脱離後構造式候補について、その構造式で示される構造から抽出される基幹部分構造と前記付加部分構造とを組み合わせたときの質量と、前記未知物質に対するMSnスペクトルから得られるプロダクトイオンの質量との一致性を判断することにより、各プロダクトイオンの構造式を推定してプロダクトイオン構造式候補を挙げるプロダクトイオン構造推定手段と、
c)該プロダクトイオン構造推定手段により推定された複数のプロダクトイオンに対するプロダクトイオン構造式候補に基づき、それら構造式候補を開裂によって生成し得る構造式を探索することにより未知物質の構造式を推定する未知物質構造推定手段と、
を備えることを特徴としている。
入力部3からのユーザの指示等に基づいて処理が開始されると、未知物質構造推定処理部21は、処理対象である未知物質のMS2スペクトルデータをスペクトルデータ記憶部22から、原物質の構造式データを既知物質構造式記憶部23から、また原物質から未知物質への構造変化の際に付加される付加部分構造データを付加部分構造記憶部24から、それぞれ読み込む(ステップS1)。
即ち、未知物質BのMS2スペクトルを求める際のプリカーサイオンの質量電荷比m/zから未知物質Bの質量が求まり、また未知物質Bに含まれる付加部分構造Dの質量も既知であるその構造から求まるから、その差から脱離後構造式A’の質量が計算される。そして、この脱離後構造式A’の質量と既知である原物質Aの構造式とから、脱離後構造式A’を推定することができる。もちろん、一般的には、唯一の構造式を確定的に求めることはできないので、推定し得る複数の脱離後構造式A’の候補をリストアップする。
まず、脱離後構造式A’は原物質の基本骨格を含むと考えられるから、1つの脱離後構造式A’候補から抽出した部分構造と既知の付加部分構造とを組み合わせることにより、未知物質Bの開裂により生じる各プロダクトイオンの構造式の候補を網羅的に算出する(ステップS4)。即ち、脱離後構造式A’の中でCIDにより結合が切れる部位は不明であるから、1つの脱離後構造式A’候補からCIDによって発生し得る部分構造には様々なパターンが考えられる。図4では、脱離後構造式A’候補からA’a、A’b、A’cで示す3つの部分構造を推定している。一方、付加部分構造Dも1つであるとは限らず複数である場合もある。そこで、脱離後構造式A’から求まる部分構造と付加部分構造Dの1つとを組み合わせたときの質量を網羅的に計算し、その各質量と未知物質のMS2スペクトルに現れているピークの質量電荷比から判明する各プロダクトイオンの質量との一致性を判断する。
さらにまた、上記のような既知情報のほかに、未知物質由来のプロダクトイオンの少なくとも一部の組成式や構造式が追加的情報として与えられている場合には、これによりプロダクトイオンの構造式候補の絞り込みを行うことも可能となり、該候補の数を減らして以降の処理を簡単化することができる。
2…データ処理部
21…未知物質構造推定処理部
22…スペクトルデータ記憶部
23…既知物質構造式記憶部
24…付加部分構造記憶部
3…入力部
4…表示部
Claims (9)
- 構造が既知である既知物質から部分的な構造変化が生じた未知物質に由来するプリカーサイオンを1又は複数段階に開裂させることで生成されたプロダクトイオンを質量分析して得られるMSnスペクトル(nは1以上の整数)に基づいて、前記未知物質の構造を推定する質量分析データ解析方法であって、
a)予め与えられる前記既知物質の構造式情報と、同じく予め与えられる前記構造変化に伴って前記既知物質に付加され得る付加部分構造の情報と、前記未知物質に対するマススペクトルから得られる該未知物質に由来するプリカーサイオンの質量情報と、に基づいて、前記構造変化に伴って前記既知物質から未知の脱離部分構造が脱離した後の脱離後構造式を推定する脱離後構造推定ステップと、
b)該脱離後構造推定ステップで挙げられた脱離後構造式候補について、その構造式で示される構造から抽出される基幹部分構造と前記付加部分構造とを組み合わせたときの質量と、前記未知物質に対するMSnスペクトルから得られるプロダクトイオンの質量との一致性を判断することにより、各プロダクトイオンの構造式を推定してプロダクトイオン構造式候補を挙げるプロダクトイオン構造推定ステップと、
c)該プロダクトイオン構造推定ステップにより推定された複数のプロダクトイオンに対するプロダクトイオン構造式候補に基づき、それら構造式候補を開裂によって生成し得る構造式を探索することにより未知物質の構造式を推定する未知物質構造推定ステップと、
を有することを特徴とする質量分析データ解析方法。 - 請求項1に記載の質量分析データ解析方法であって、
既知物質のMSnスペクトルが追加情報として与えられている場合に、前記プロダクトイオン構造推定ステップは、該既知物質のMSnスペクトルから判明する既知物質由来のプロダクトイオンと未知物質のMSnスペクトルから判明する未知物質由来のプロダクトイオンとを比較することで、既知物質のいずれの部位に付加部分構造が付加したのかを推定し、プロダクトイオン構造式の絞り込みを行うことを特徴とする質量分析データ解析方法。 - 請求項1に記載の質量分析データ解析方法であって、
未知物質の組成式が追加情報として与えられている場合に、前記脱離後構造推定ステップは、未知物質の組成と前記付加部分構造の差から求まる脱離部分構造の組成を利用して、脱離後構造式候補の絞り込みを行うことを特徴とする質量分析データ解析方法。 - 請求項1に記載の質量分析データ解析方法であって、
未知物質由来の少なくとも1つのプロダクトイオンの組成式又は構造式が追加情報として与えられている場合に、前記プロダクトイオン構造推定ステップは、その追加情報を利用して一部のプロダクトイオンの構造式推定を省略する又はプロダクトイオン構造式候補の絞り込みを行うことを特徴とする質量分析データ解析方法。 - 請求項1に記載の質量分析データ解析方法であって、
前記脱離後構造推定ステップにより推定された脱離後構造式候補が複数ある場合に、その複数の脱離後構造式候補のそれぞれについて、前記プロダクトイオン構造推定ステップ及び前記未知物質構造推定ステップにより未知物質の構造式を推定し、複数の構造式候補を求めることを特徴とする質量分析データ解析方法。 - 請求項1に記載の質量分析データ解析方法であって、
未知物質の複数の構造式候補について蓋然性の高い順に順位付けして該順位とともに構造式候補を出力することを特徴とする質量分析データ解析方法。 - 請求項1に記載の質量分析データ解析方法であって、
未知物質のMSnスペクトル中の特定の質量電荷比を有するイオンをプリカーサイオンとして実行されたMSn+1分析で得られたMSn+1スペクトルに対し、前記各ステップを実行することで得られた推定構造式を未知物質の1つのプロダクトイオンの構造式候補とした上で未知物質の構造式を推定することを特徴とする質量分析データ解析方法。 - 請求項1に記載の質量分析データ解析方法であって、
未知物質に対し異なる分析条件の下で取得された複数のMSnスペクトルを用いて前記各ステップにより未知物質の構造式の候補をそれぞれ求め、その結果の積を未知物質の構造式推定結果として出力することを特徴とする質量分析データ解析方法。 - 構造が既知である既知物質から部分的な構造変化が生じた未知物質に由来するプリカーサイオンを1又は複数段階に開裂させることで生成されたプロダクトイオンを質量分析して得られるMSnスペクトル(nは1以上の整数)に基づいて、前記未知物質の構造を推定する質量分析データ解析装置であって、
a)予め与えられる前記既知物質の構造式情報と、同じく予め与えられる前記構造変化に伴って前記既知物質に付加され得る付加部分構造の情報と、前記未知物質に対するマススペクトルから得られる該未知物質に由来するプリカーサイオンの質量情報と、に基づいて、前記構造変化に伴って前記既知物質から未知の脱離部分構造が脱離した後の脱離後構造式を推定する脱離後構造推定手段と、
b)該脱離後構造推定手段により挙げられた脱離後構造式候補について、その構造式で示される構造から抽出される基幹部分構造と前記付加部分構造とを組み合わせたときの質量と、前記未知物質に対するMSnスペクトルから得られるプロダクトイオンの質量との一致性を判断することにより、各プロダクトイオンの構造式を推定してプロダクトイオン構造式候補を挙げるプロダクトイオン構造推定手段と、
c)該プロダクトイオン構造推定手段により推定された複数のプロダクトイオンに対するプロダクトイオン構造式候補に基づき、それら構造式候補を開裂によって生成し得る構造式を探索することにより未知物質の構造式を推定する未知物質構造推定手段と、
を備えることを特徴とする質量分析データ解析装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/349,425 US9595426B2 (en) | 2011-10-07 | 2011-10-07 | Method and system for mass spectrometry data analysis |
PCT/JP2011/073196 WO2013051148A1 (ja) | 2011-10-07 | 2011-10-07 | 質量分析データ解析方法及び装置 |
CN201180074026.5A CN103842809B (zh) | 2011-10-07 | 2011-10-07 | 质量分析数据解析方法以及装置 |
JP2013537365A JP5733412B2 (ja) | 2011-10-07 | 2011-10-07 | 質量分析データ解析方法及び装置 |
EP11873617.2A EP2749876B1 (en) | 2011-10-07 | 2011-10-07 | Method and device for analyzing mass analysis data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/073196 WO2013051148A1 (ja) | 2011-10-07 | 2011-10-07 | 質量分析データ解析方法及び装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013051148A1 true WO2013051148A1 (ja) | 2013-04-11 |
Family
ID=48043339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/073196 WO2013051148A1 (ja) | 2011-10-07 | 2011-10-07 | 質量分析データ解析方法及び装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9595426B2 (ja) |
EP (1) | EP2749876B1 (ja) |
JP (1) | JP5733412B2 (ja) |
CN (1) | CN103842809B (ja) |
WO (1) | WO2013051148A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016003865A (ja) * | 2014-06-13 | 2016-01-12 | 株式会社島津製作所 | 代謝物解析システム及び代謝物解析方法 |
WO2017179147A1 (ja) * | 2016-04-13 | 2017-10-19 | 株式会社島津製作所 | 質量分析を用いた異性体分析方法及びタンデム型質量分析装置 |
JPWO2018190013A1 (ja) * | 2017-04-10 | 2020-02-06 | 株式会社島津製作所 | イオン分析装置及びイオン解離方法 |
JP2020085822A (ja) * | 2018-11-30 | 2020-06-04 | 日本電子株式会社 | 化学構造推定装置及び方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6229529B2 (ja) * | 2014-02-19 | 2017-11-15 | 株式会社島津製作所 | イオントラップ質量分析装置及びイオントラップ質量分析方法 |
CN105095448A (zh) * | 2015-07-24 | 2015-11-25 | 浙江大远智慧制药工程技术有限公司 | 一种适用于天然产物质谱数据解析的数据库构建方法 |
CN107817309B (zh) * | 2016-09-13 | 2020-11-03 | 中国科学院大连化学物理研究所 | 一种规模化代谢组定性方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1164285A (ja) * | 1997-08-21 | 1999-03-05 | Shimadzu Corp | 質量分析装置のデータ処理装置 |
JP2005201835A (ja) * | 2004-01-19 | 2005-07-28 | Hitachi High-Technologies Corp | 質量分析装置用データ処理装置 |
JP2006017570A (ja) * | 2004-07-01 | 2006-01-19 | Sumitomo Chemical Co Ltd | 薬物代謝酵素反応により生じる代謝物の構造提案方法及びその利用 |
JP2007287531A (ja) | 2006-04-18 | 2007-11-01 | Shimadzu Corp | 質量分析データ解析方法 |
WO2008059568A1 (fr) * | 2006-11-15 | 2008-05-22 | Shimadzu Corporation | Procédé d'analyse de données de spectrométrie de masse et dispositif associé |
WO2008065704A1 (fr) * | 2006-11-27 | 2008-06-05 | Shimadzu Corporation | Appareil servant à analyser des données spectrométriques de masse |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08124519A (ja) * | 1994-10-21 | 1996-05-17 | Shimadzu Corp | Ms/ms質量分析装置用データ処理装置 |
US7473892B2 (en) * | 2003-08-13 | 2009-01-06 | Hitachi High-Technologies Corporation | Mass spectrometer system |
CA2577995A1 (en) * | 2004-08-20 | 2006-02-23 | Phylogica Limited | Peptide inhibitors of c-jun dimerization and uses thereof |
US20090026360A1 (en) * | 2005-05-13 | 2009-01-29 | Shimadzu Corporation | Mass analysis data analyzing apparatus and program thereof |
US8417466B2 (en) * | 2007-10-22 | 2013-04-09 | Shimadzu Corporation | Mass analysis data processing apparatus |
-
2011
- 2011-10-07 EP EP11873617.2A patent/EP2749876B1/en not_active Not-in-force
- 2011-10-07 WO PCT/JP2011/073196 patent/WO2013051148A1/ja active Application Filing
- 2011-10-07 JP JP2013537365A patent/JP5733412B2/ja active Active
- 2011-10-07 US US14/349,425 patent/US9595426B2/en active Active
- 2011-10-07 CN CN201180074026.5A patent/CN103842809B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1164285A (ja) * | 1997-08-21 | 1999-03-05 | Shimadzu Corp | 質量分析装置のデータ処理装置 |
JP2005201835A (ja) * | 2004-01-19 | 2005-07-28 | Hitachi High-Technologies Corp | 質量分析装置用データ処理装置 |
JP2006017570A (ja) * | 2004-07-01 | 2006-01-19 | Sumitomo Chemical Co Ltd | 薬物代謝酵素反応により生じる代謝物の構造提案方法及びその利用 |
JP2007287531A (ja) | 2006-04-18 | 2007-11-01 | Shimadzu Corp | 質量分析データ解析方法 |
WO2008059568A1 (fr) * | 2006-11-15 | 2008-05-22 | Shimadzu Corporation | Procédé d'analyse de données de spectrométrie de masse et dispositif associé |
WO2008065704A1 (fr) * | 2006-11-27 | 2008-06-05 | Shimadzu Corporation | Appareil servant à analyser des données spectrométriques de masse |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016003865A (ja) * | 2014-06-13 | 2016-01-12 | 株式会社島津製作所 | 代謝物解析システム及び代謝物解析方法 |
WO2017179147A1 (ja) * | 2016-04-13 | 2017-10-19 | 株式会社島津製作所 | 質量分析を用いた異性体分析方法及びタンデム型質量分析装置 |
JPWO2018190013A1 (ja) * | 2017-04-10 | 2020-02-06 | 株式会社島津製作所 | イオン分析装置及びイオン解離方法 |
US11075067B2 (en) | 2017-04-10 | 2021-07-27 | Shimadzu Corporation | Ion analysis device and ion dissociation method |
JP2020085822A (ja) * | 2018-11-30 | 2020-06-04 | 日本電子株式会社 | 化学構造推定装置及び方法 |
JP7266997B2 (ja) | 2018-11-30 | 2023-05-01 | 日本電子株式会社 | 化学構造推定装置及び方法 |
Also Published As
Publication number | Publication date |
---|---|
US9595426B2 (en) | 2017-03-14 |
EP2749876A4 (en) | 2015-05-13 |
US20140249766A1 (en) | 2014-09-04 |
CN103842809B (zh) | 2016-01-13 |
JP5733412B2 (ja) | 2015-06-10 |
EP2749876A1 (en) | 2014-07-02 |
JPWO2013051148A1 (ja) | 2015-03-30 |
EP2749876B1 (en) | 2018-01-24 |
CN103842809A (zh) | 2014-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5733412B2 (ja) | 質量分析データ解析方法及び装置 | |
JP6494588B2 (ja) | 滞留時間の決定または確認のための窓処理質量分析データの使用 | |
JP5590156B2 (ja) | 質量分析方法及び装置 | |
US10755905B2 (en) | Qualitative and quantitative mass spectral analysis | |
JP2007287531A (ja) | 質量分析データ解析方法 | |
JP4596010B2 (ja) | 質量分析装置 | |
JP4849128B2 (ja) | 質量分析方法 | |
JP6065652B2 (ja) | 糖鎖構造解析方法及び装置 | |
JP4984617B2 (ja) | 質量分析データ解析方法 | |
JP5664667B2 (ja) | 質量分析データ解析方法、質量分析データ解析装置、及び質量分析データ解析用プログラム | |
JP4678438B2 (ja) | 質量分析装置用データ処理装置 | |
JP6027436B2 (ja) | 質量分析データ解析方法 | |
JP5660218B2 (ja) | 質量分析データ解析方法及び装置 | |
JP4857872B2 (ja) | 質量分析を利用したアミノ酸配列解析システム | |
JP2020115117A (ja) | マススペクトル処理装置及び方法 | |
JP6295910B2 (ja) | 質量分析データ処理装置 | |
JP2007278712A5 (ja) | ||
JP2015040771A (ja) | 質量分析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11873617 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013537365 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011873617 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14349425 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |