WO2013047583A1 - 画像解析装置、画像解析方法及び画像解析プログラム - Google Patents
画像解析装置、画像解析方法及び画像解析プログラム Download PDFInfo
- Publication number
- WO2013047583A1 WO2013047583A1 PCT/JP2012/074701 JP2012074701W WO2013047583A1 WO 2013047583 A1 WO2013047583 A1 WO 2013047583A1 JP 2012074701 W JP2012074701 W JP 2012074701W WO 2013047583 A1 WO2013047583 A1 WO 2013047583A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase difference
- image
- distribution
- image analysis
- difference distribution
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
- A61B5/4088—Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/5608—Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/24—Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
Definitions
- the present invention relates to an image analysis apparatus, an image analysis method, and an image analysis program, and more particularly, to an image analysis apparatus, an image analysis method, and an image analysis program for analyzing a nuclear magnetic resonance image obtained from a living body.
- Alzheimer's disease one of the dementias, is currently a major problem, and research is progressing all over the world.
- One of the main causes of Alzheimer's disease is known to be a protein called amyloid ⁇ that accumulates in the brain.
- the diameter of amyloid ⁇ is about 0.1 mm or less, and it is considered that direct depiction is impossible even with any current insurance medical image detection device.
- ultra-high magnetic field MRI for example, 7 Tesla MRI
- diagnostic imaging methods that require expensive equipment that is out of the scope of insurance medical treatment are not solutions to the current medical problem, but are realistic within the scope of current insurance medical treatment.
- a method for detecting tissues and lesions that cannot be rendered by medical imaging equipment including
- the MR system described in Patent Document 1 captures a high-resolution MR image at a magnetic field strength of 3 Tesla or more using a three-dimensional (3D) gradient double echo pulse sequence, and 3D MR image data is acquired at two different echo times so that a phase image is acquired.
- the local variation of the magnetic field in the region of interest is obtained by subtracting the smoothed spherical harmonics from the measured values collected during MRI to estimate the constant and linear components related to the magnetic field inhomogeneity. Since the ability to measure magnetic field fluctuations in the brain by MRI increases according to the square of B0, according to the technique according to Patent Document 1, the measurement of brain magnetism and iron becomes more sensitive.
- Patent Document 1 is intended to improve the overall sensitivity in MRI, and is intended only for direct rendering of MR images.
- MRI that does not employ the technique described in Patent Document 1 described above cannot receive the benefit of improved sensitivity.
- the present invention has been made in view of the above-described problems, and is an image that can realistically detect tissues and lesions that could not be rendered by a medical imaging device including MRI within the scope of current insurance medical treatment.
- An object is to provide an analysis apparatus, an image analysis method, and an image analysis program.
- One aspect of the image analysis device is an image analysis device for analyzing a nuclear magnetic resonance image obtained from a living body, and includes a phase difference of a nuclear magnetic resonance signal obtained from a predetermined region of the living body or A phase difference distribution creating unit that creates a distribution of phases (hereinafter collectively referred to as a phase difference), a fitting unit that fits a plurality of functions to the phase difference distribution, and a phase difference distribution A verification unit that verifies the normality of the living body included in the predetermined region based on the magnetic susceptibility of the tissue included in the predetermined region specified by the parameters of the plurality of fitted function groups. .
- the above-described image analysis device includes various modes such as being implemented in another device or implemented together with another method.
- the present technology provides an image analysis system including the image analysis device, an image analysis method having a process corresponding to the configuration of the above-described device, an image analysis program for causing a computer to realize a function corresponding to the configuration of the above-described device, and the image It can also be realized as a computer-readable recording medium on which an analysis program is recorded.
- minute tissue changes can be detected. That is, by capturing a phase change derived from a partial volume effect of a tissue (partial volume effect) as a phase difference distribution change of a predetermined region of interest (region of interest in an embodiment described later), the imaging time is short, Even if MRI with a low magnetic field strength is used, the presence of the target tissue can be confirmed stably.
- This method which can be detected using short-time imaging and low magnetic field devices, is not used for direct and highly accurate pixel-by-pixel image creation that takes a long imaging time and is created by an unrealistic method. It is thought that it is easy to be accepted in the medical field. Furthermore, since this method is processing by software, it can be used without modifying conventional devices or introducing additional devices.
- FIG. 1 is a diagram showing a schematic configuration of an MRI apparatus 1 (magnetic resonance imaging apparatus) according to the present embodiment.
- the MRI apparatus 1 is an apparatus that images internal information in the subject 2 using an NMR phenomenon.
- the MRI apparatus 1 visualizes the rotation angle of the magnetization vector in addition to the intensity image obtained by imaging the intensity component of the nuclear magnetic resonance signal (MR signal) as the nuclear magnetic resonance image (MR image).
- MR signal nuclear magnetic resonance signal
- MR image nuclear magnetic resonance image
- This is a new type of MRI apparatus that draws a morphological image using a phase image.
- the MRI apparatus 1 and any one of the control system 20 and the information processing apparatus 26 described later constitute an image analysis apparatus.
- the MRI apparatus 1 shown in FIG. 1 includes a coil system 10 and a control system 20.
- the coil system 10 includes, for example, a static magnetic field coil unit 11, a gradient magnetic field coil unit 12, and an RF (Radio Frequency) coil unit 13. These have, for example, a substantially cylindrical shape, and are arranged so that their central axes (not shown) are coaxial with each other.
- a bed portion 30 that supports the subject 2 is provided in a plane including the central axis.
- the couch 30 is installed in the bore 10A (internal space) of the coil system 10.
- the subject 2 on the bed unit 30 is carried into or out of the bore 10A by the movement of the bed unit 30 by a conveying means (not shown).
- a conveying means not shown.
- the direction parallel to the central axis is taken as the Z axis
- the two directions perpendicular to the Z axis and perpendicular to each other are taken as the X axis and the Y axis.
- the static magnetic field coil unit 11 forms a static magnetic field in the bore 10A.
- the static magnetic field coil unit 11 is constituted by, for example, a superconducting coil or a normal conducting coil.
- the direction of the static magnetic field formed by the static magnetic field coil unit 11 is substantially parallel to the Z-axis direction. 1 illustrates the case where the body axis direction of the subject 2 is parallel to the direction of the static magnetic field, but may be a direction orthogonal to the direction of the static magnetic field.
- the gradient magnetic field coil unit 12 forms, for example, gradient magnetic fields (gradient magnetic fields) in directions of three axes perpendicular to each other, that is, a slice axis, a phase axis, and a frequency axis.
- the gradient magnetic field coil unit 12 includes, for example, three types of coils: a slice axis direction coil, a phase axis direction coil, and a frequency axis direction coil.
- any of the X, Y, and Z axes can be a slice axis.
- the Z axis is a slice axis
- the X axis can be a phase axis
- the Y axis can be a frequency axis.
- MR signals can be collected in coordinate systems other than the Cartesian coordinate system assumed above (for example, a polar coordinate system).
- Cartesian coordinate system assumed above
- An axis suitable for the coordinate system for example, radial direction, angular direction
- the RF coil unit 13 forms an RF magnetic field that excites spins in the subject 2 in the space of the static magnetic field, and receives MR signals generated with the spins excited by the RF magnetic field.
- the coil that receives the MR signal may be used also as a coil that forms the RF magnetic field, or may be provided separately from the coil that forms the RF magnetic field.
- the RF coil unit 13 may be composed of a single coil, or may be composed of a plurality of coils 13-1 to 13-8 (multi-channel) as shown in FIG. Good.
- an MR signal is obtained for each channel.
- the MR signal is obtained by, for example, a GE (gradient echo) pulse sequence, and becomes a sampling signal in the frequency domain, that is, Fourier space (k-space). Yes.
- the GE system includes, for example, a steady state in addition to the GE.
- the pulse sequence may be, for example, BalancedBSSFP (Steady State Free Precession), TrueFISP (True Fast Imaging with Steady-state Precession), and other than GE such as SE (Spin Echo). Also good.
- control system 20 includes a static magnetic field power source 21, a gradient magnetic field power source 22, a transmission unit 23, a reception unit 24, and a sequence control unit 25.
- the static magnetic field power source 21 supplies power to the static magnetic field coil unit 11 to drive the coil system 10. When this electric power is supplied to the static magnetic field coil unit 11, a static magnetic field is formed in the bore 10A.
- the gradient magnetic field power supply 22 supplies power to the gradient magnetic field coil unit 12 based on a control signal input from the sequence control unit 25. By supplying power to the gradient coil unit 12, desired gradient magnetic fields (gradient magnetic fields) are formed in the respective directions of the slice axis, the phase axis, and the frequency axis.
- the transmission unit 23 applies the RF signal to the RF coil unit 13 based on the control signal input from the sequence control unit 25, for example.
- the receiving unit 24 receives MR signals generated by driving the coil system 10. For example, MR signals received by the RF coil unit 13 are detected, and necessary signal processing is performed, and A / D (Analog-to-Digital) conversion is performed, thereby digitizing complex data (raw data). Is generated. Of course, the receiving unit 24 may directly perform A / D conversion on the detected MR signal to generate raw data. The raw data generated by the receiving unit 24 is output to the sequence control unit 25, for example.
- the sequence control unit 25 drives the gradient magnetic field power source 22, the transmission unit 23, and the reception unit 24 for driving the MRI apparatus 1.
- the sequence control unit 25 drives the gradient magnetic field power source 22, the transmission unit 23, and the reception unit 24 by applying control signals to the gradient magnetic field power source 22, the transmission unit 23, and the reception unit 24.
- the control signal is generated in accordance with a pulse sequence that defines the magnitude of the pulse current applied to the gradient magnetic field power source 22, the transmitter 23, and the receiver 24, the application time, the application timing, and the like.
- Information about this pulse sequence is input to the sequence control unit 25 from an information processing device 26 described later.
- the sequence control unit 25 outputs the raw data input from the reception unit 24 to the information processing device 26, for example.
- the control system 20 further includes an information processing device 26 as shown in FIG. 1, for example.
- the information processing device 26 includes, for example, a calculation unit 26A, an input unit 26B, a display unit 26C, and a storage unit 26D.
- the input unit 26B is, for example, a device that captures information from the user as digital data into the information processing device 26, and includes, for example, a keyboard, a mouse, and a scanner.
- the display unit 26C is for displaying a result (for example, morphological image) processed by the computing unit 26A, a dialog for data input such as an imaging condition, and the like, and is configured by a display device such as a liquid crystal display device. ing.
- Various programs for controlling the MRI apparatus 1 are stored in the storage unit 26D.
- a program 27 used for determination processing described later, a phase difference enhanced imaging program used for creating morphological images described later, Etc. are stored.
- the computing unit 26A is, for example, for interpreting and executing instructions of various programs, and is configured by, for example, a CPU (Central Processing Unit).
- a program 27 stored in the storage unit 26D is loaded on the calculation unit 26A in conjunction with the activation of the MRI apparatus 1, so that the calculation unit 26A, for example, in response to an instruction from the user, the program 27 The command is interpreted and executed.
- the computing unit 26A may be configured by hardware corresponding to the functions of various programs (for example, the program 27).
- various programs for example, the program 27.
- a phase image is created by executing various instructions of the program 27 in the arithmetic unit 26A.
- phase difference image creation of a phase difference image performed by the MRI apparatus 1 will be described.
- an intensity image and a phase image are required.
- another pulse sequence included in the GE system or a pulse sequence other than the GE system may be used.
- the phase image obtained by the GE pulse sequence is the product of the amount of change ⁇ B of the local magnetic field (local magnetic field compared to the external magnetic field) created by the tissue included in each pixel and the echo time (TE) required for imaging. It is proportional to ( ⁇ B ⁇ TE). Therefore, in order to extract large phase (difference) information from the phase image, TE is increased or a function for enhancing ⁇ B (so-called enhancement function) is changed to a stronger one.
- imaging is performed using a predetermined pulse sequence.
- the number of times of imaging may be one or may be a plurality of times so that it can be statistically handled.
- the RF coil unit 13 is composed of multiple channels and MR signals are obtained for each channel, the arithmetic average of the MR signals obtained for each channel is calculated, and the arithmetically averaged MR signal is used.
- sensitivity correction may be performed on individual MR signals in advance.
- FIG. 3 is a diagram showing a flow of data processing until a phase difference image is created.
- the data processing shown in the figure is executed in the control system 20 under the control of the arithmetic unit 26A.
- the calculation unit 26A starts calculation of data processing shown in FIG.
- the computing unit 26A first outputs a control signal for requesting the sequence control unit 25 to acquire raw data using a predetermined pulse sequence. Then, a control signal according to a predetermined pulse sequence is output from the sequence control unit 25 to the gradient magnetic field power source 22, the transmission unit 23, and the reception unit 24.
- the RF coil unit 13 detects the MR signal.
- the MR signal detected here is converted into raw data R by predetermined signal processing in the receiving unit 24.
- the receiving unit 24 inputs the raw data R to the sequence control unit 25, and the sequence control unit 25 transfers (inputs) the raw data R to the arithmetic unit 26A. In this way, the calculation unit 26A acquires data (raw data R) corresponding to the MR signal.
- the calculation unit 26A arranges the raw data R input from the sequence control unit 25 in the k space set in an internal memory (not shown).
- data arranged in the k space is referred to as k space data S (k).
- the computing unit 26A performs inverse Fourier transform on the k-space data S (k) to reconstruct a complex image ⁇ (x).
- the complex image ⁇ (x) is an image having a real image in the real part and an imaginary image in the imaginary part as shown by the following formula (1).
- the computing unit 26A obtains an intensity image M (x) and a phase image P (x) from the complex image ⁇ (x).
- phase wrapping occurs in the phase image P (x), and the phase exceeding 2 ⁇ takes a phase value obtained by subtracting 2 ⁇ n (n is an integer) from the actual phase. Therefore, the phase image P (x) becomes a striped pattern image and does not show the original phase value. Therefore, the arithmetic unit 26A performs processing for removing the phase wrapping and extracting the phase difference.
- the computing unit 26A first performs a Fourier transform on the complex image ⁇ (x) to return the complex image ⁇ (x) once to the k-space data S (k). Alternatively, the k-space data S (k) arranged in the k-space is read out. Next, the computing unit 26A applies LPF (Low Pass Filter) to the k-space data S (k), and performs inverse Fourier on the data L (k) ⁇ S (k) obtained thereby. The transformation is performed to obtain a complex image ⁇ ′ (x). Note that L (k) is a function of LPF.
- the computing unit 26A creates a phase difference image PD (x) using the complex images ⁇ (x) and ⁇ ′ (x). Specifically, the calculation unit 26A divides the complex image ⁇ (x) by the complex image ⁇ ′ (x), and performs a complex quotient calculation to create a phase difference image PD (x). This eliminates phase wrapping in the phase portion.
- the phase difference included in the phase difference image PD (x) has a width of 2 ⁇ .
- the phase difference included in the phase difference image PD (x) is ⁇ ⁇ PD ( x) Assuming ⁇ .
- the sign of the phase difference included in the phase difference image PD (x) is determined by ⁇ ⁇ ⁇ B ⁇ TE.
- phase difference image PD (x) is included even if the magnitude of the phase difference does not change.
- the sign of the phase difference may change. Therefore, in order to cope with this, the above definition is made so that the sign is negative particularly for venous blood.
- said (gamma) is a positive proportionality constant, for example, corresponds to the gyromagnetic ratio of hydrogen.
- a region in which the user of the MRI apparatus 1 is interested (hereinafter referred to as a region of interest) is set for the phase difference image, and a predetermined calculation is performed on the phase difference image included in the region of interest. Process. By this calculation process, the normality (or non-normality) of the tissue included in the region of interest can be determined.
- the data processing shown in the figure is executed in the control system 20 under the control of the arithmetic unit 26A.
- the calculation unit 26A starts the data processing calculation shown in FIG.
- Display area specification interface When the process is started, an interface for designating a section or a part of the space imaged by the MRI apparatus 1 is displayed on the screen of the display unit 26C (S1).
- this interface for example, an intensity image or a phase image created based on the MR signal is displayed, and a predetermined area on the image can be designated by area designation means such as a closed curve (frame line, etc.) or coordinate values. It is like that.
- the operator of the MRI apparatus 1 designates a region of a cross section or a part of the space imaged by the MRI apparatus 1 via the interface displayed on the display unit 26C (S2).
- the region designated by the operator is the region of interest.
- the operator designates, as a region of interest, a region that is considered to contain an abnormal tissue.
- the region of interest may be a two-dimensional region or a three-dimensional region.
- the calculation unit 26A acquires all phase data of the MR signal acquired from the tissue included in the region of interest, statistically analyzes these phase data, for example, uses the horizontal axis as the phase value, A phase difference distribution with the axis as the number of data is created (S3).
- a function group used for fitting the phase difference distribution is selected (S4).
- the operator selects an appropriate function group according to the target tissue, lesion, disease state, imaging method, and the like.
- step S4 may be skipped and a predetermined function group corresponding to the purpose may be automatically applied.
- a predetermined function group corresponding to the target tissue, lesion, disease state, imaging method, etc. is prepared, and an appropriate function group corresponding to the purpose is selected by selecting the purpose from the selection screen. It may be.
- a single phase difference distribution created for one region of interest is simultaneously fitted by a plurality of functions (S5). That is, one phase difference distribution is approximated by a curve obtained by superposing a plurality of functions.
- Various functions can be adopted as the plurality of functions, and examples include a Gaussian distribution, a Lorentz distribution, and a binomial distribution.
- the plurality of functions need not be limited to distribution functions, and need not be orthogonal to each other.
- the plurality of functions may be configured by combining different types of functions. Note that when performing fitting by computer computation, the plurality of functions must be finite.
- At least one of the plurality of functions used for fitting uses a Gaussian distribution. This is because the signal distribution obtained by random organization is a random variable expressed as the sum of many independent factors, and is guaranteed to follow a Gaussian distribution by the central limit theorem.
- each function used for fitting has one or more parameters for changing the function shape, when performing fitting using a plurality of functions, at least parameters equal to or more than the number of functions used for fitting are adjusted. There is a need.
- a parameter set in which the phase difference distribution and the superposition of a plurality of functions are closest is searched while appropriately changing a plurality of parameters.
- the fitting function is a Gaussian distribution
- the number of parameters is as small as three, and the adjustment of the parameters is easy.
- the degree of approximation between the plurality of functions and the phase difference distribution can be evaluated by, for example, the least square method.
- a double Gaussian distribution model using two Gaussian distributions as a plurality of functions is adopted. Since the Gaussian distribution has three parameters: height, center position (average), and standard deviation ⁇ (or variance ⁇ ⁇ 2), in the double Gaussian distribution model, fitting is performed while adjusting the six parameters. become.
- Equation (2) is a function used for fitting in the double Gaussian distribution model.
- A1 corresponds to the height of the first Gaussian distribution
- B1 corresponds to the reciprocal of the variance of the first Gaussian distribution
- C1 corresponds to the center position of the first Gaussian distribution.
- A2 corresponds to the height of the second Gaussian distribution
- B2 corresponds to the reciprocal of the variance of the second Gaussian distribution
- C2 corresponds to the center position of the second Gaussian distribution.
- the parameter set obtained by the fitting described above is a combination of values characterizing the magnetic susceptibility of the tissue included in the region of interest. That is, the parameter set when the region of interest contains a non-normal tissue having a different magnetic susceptibility from the normal tissue is different from the parameter set when the region of interest contains only normal tissue.
- the parameter set obtained by the fitting is displayed on the display unit 26C (S6), or based on the parameter set, the divergence degree of the tissue included in the region of interest from the normal tissue (the normality of the tissue (or non-normal) Normality)) is calculated, and this degree is displayed on the display unit 26C (S7).
- the operator can obtain a reference for determining whether the tissue included in the region of interest is normal or abnormal, and can obtain a measure of the degree of deviation from the normal tissue.
- imaging was performed using 3D-FLASH with a 7T-MRI apparatus, and an intensity image and a phase image were simultaneously acquired.
- the main imaging conditions are TR / TE: 50 / 12.8 ms, Flip Angle: 20 °, Matrix Size: 194 ⁇ 128 ⁇ 82 (0.08 mm isovoxel), addition: 24 times.
- intensity images and phase images obtained from the cortex, hippocampus and thalamus are used in the brain.
- the cortex, hippocampus, and thalamus accumulate particularly large amounts of senile plaques, which is one of Alzheimer's pathological changes.
- iron deposits in the senile plaque and it is considered that this change in magnetic susceptibility due to iron can be captured as a phase signal.
- the region of interest is set so as to include the part considered to have senile plaques, and the phase difference distribution of each magnetic resonance signal collected from these brain parenchyma is converted into a double Gaussian distribution model. And fitting.
- FIG. 5 is a graph plotting the phase acquired from the region of interest set in the control mouse
- FIGS. 6 and 7 are graphs plotting the phase acquired from the region of interest set in the genetically modified mouse.
- the horizontal axis indicates the phase (radian)
- the vertical axis indicates the number of detections (for example, the number of pixels).
- the phase value is adjusted to the range of ⁇ to ⁇ after removing the phase wrapping, but FIGS. 5 to 7 enlarge the vicinity of the center of the phase difference distribution (phase 0). It is shown.
- the first Gaussian distribution is 7 to 8 times as high as the second Gaussian distribution.
- the first Gaussian distribution and the second Gaussian distribution have substantially the same height.
- the first Gaussian distribution is 8 to 9 times as high as the second Gaussian distribution. That is, it can be seen that the contribution rate (height) of each Gaussian distribution is different in each case even for the same lesion, and cannot be adopted as a criterion for the presence or absence of an abnormal tissue.
- both the first Gaussian distribution and the second Gaussian distribution show sharp distributions, and in particular, the first Gaussian distribution compared to the first Gaussian distribution.
- the Gaussian distribution of 2 has a narrow width (for example, half width), and any Gaussian distribution has a narrow width (for example, half width) compared to the phase difference distribution.
- the width of the second Gaussian distribution (for example, the half-value width) is wider than the first Gaussian distribution, and the second Gaussian distribution is wider than the phase difference distribution. (For example, half width) is wide.
- the standard deviation (width) of the Gaussian distribution shows a clear difference between the normal tissue of the control mouse and the tissue containing senile plaques of the genetically modified mouse, and can be a criterion for the presence or absence of an abnormal tissue. I understand.
- the first Gaussian distribution constituting the fitting curves shown in FIGS. 5 to 7 is caused by noise components.
- the MRI apparatus 1 it is naturally predicted that an error occurs in the phase difference due to electrical thermal noise, digitalized noise caused by cutoff, and the like. This is because these noises are known to follow a Gaussian distribution, and it is considered that a relatively high Gaussian distribution is generated. Therefore, when fitting the phase difference distribution with a plurality of functions, it is considered that a good fitting result can be obtained if a Gaussian distribution is adopted for at least one of the plurality of functions.
- the second Gaussian distribution appearing in the fitting curves shown in FIGS. 6 and 7 is considered to be related to a tissue containing some magnetic substance.
- the phase difference distribution shown in FIGS. 6 and 7 is acquired from a region of interest set to include senile plaques. This is because senile plaque is a tissue containing iron having magnetism as described above, and has a relatively large standard deviation when the phase difference distribution of the tissue containing a magnetic substance is fitted with a Gaussian distribution.
- the phase difference distribution shown in FIG. 5 has a sharp rise relatively close to the Gaussian distribution, but the phase difference shown in FIGS.
- the distribution is wider than the Gaussian distribution of the same height, suggesting that some kind of broad phase difference distribution is mixed. That is, when the bottom of the phase difference distribution is wider than the Gaussian distribution having the same height, it indicates that the region of interest includes a tissue containing some magnetic substance.
- the center shift between the phase difference distribution and the second Gaussian distribution is larger in FIGS. 6 and 7 than in FIG.
- the reason for this is that when normal tissue is considered to have a phase difference of 0, a Gaussian distribution having a center close to this phase difference of 0 is considered to be a Gaussian distribution indicated by normal tissue, and has a center away from this phase difference of 0.
- the Gaussian distribution is considered to be a tissue that has a high possibility of containing many tissues that are not normal tissues. That is, the distance between the center of the Gaussian distribution corresponding to the normal tissue and the center of the Gaussian distribution corresponding to the abnormal tissue is considered to be a standard indicating the normality (or non-normality) of the tissue included in the region of interest. It is done.
- phase difference enhancement imaging method for enhancing a specific phase difference, which is performed using a fitting function obtained using a double Gaussian distribution model, will be described.
- the phase difference enhancement imaging method is selected by selecting a part of the obtained phase difference image PD (x), selecting a part or all of the phase difference image PD (x), and emphasizing by the enhancement function w ( ⁇ ).
- This is a method of expressing a part of an image corresponding to the phase information on the intensity image M (x).
- an image created by the enhancement function w ( ⁇ ) can be provided.
- FIG. 8 shows the relationship between the fitting function obtained by the double Gaussian distribution model and the phase difference to be emphasized.
- FIG. 8 shows the phase range to be emphasized by taking the experimental result of FIG. 6 as an example.
- the phase where the second Gaussian distribution intersects the first Gaussian distribution is defined as ⁇ 1
- the phase range in which the second Gaussian distribution is larger than the first Gaussian distribution ( ⁇ > ⁇ 1) is represented as the enhancement range. It is as.
- the second Gaussian distribution has a larger standard deviation than the first Gaussian distribution, and has a wide base. Have. Therefore, the visibility of the non-normal tissue is improved by emphasizing the tissue in which the second Gaussian distribution indicating the distribution of the non-normal tissue has a phase exceeding the first Gaussian distribution indicating the distribution of the normal tissue. It is considered that morphological images can be provided.
- FIG. 10 is a diagram showing a flow of data processing until a morphological image is created.
- the computing unit 26A selects a phase where the phase ⁇ of the phase difference image PD (x) is larger than ⁇ 1, and emphasizes the selected phase ⁇ .
- the phase difference distribution changes, for example, as in the models shown in FIGS. 9A to 9C by changing the LPF size. That is, as the LPF size increases, the width of the substantially symmetrical phase difference distribution centering on the phase difference zero decreases. For this reason, the phase difference image mainly has a phase difference of zero and values in the vicinity thereof, and it is difficult to add tissue contrast as the phase difference image. On the other hand, in a tissue having a fine structure, there is an aspect that it is easier to add contrast when using a large LPF than when using a small LPF.
- an enhancement function that can be flexibly dealt with is selected as described later, and the same as shown in FIGS. 9A to 9C.
- a device is devised so that the same contrast can be given to those showing different frequency distributions with respect to the phase difference.
- the calculation unit 26A selects the width of the phase difference and the center value thereof so that the target tissue contrast has a desired magnitude. Note that the selection of the width of the phase difference and its center value may be left to the user of the MRI apparatus 1 instead of relying on the calculation unit 26A. In this case, the calculation unit 26A selects the target tissue phase ⁇ in consideration of the change in the phase difference distribution due to the filter processing.
- the computing unit 26A obtains an enhanced image w (PD (x)) by enhancing the selected phase ⁇ with the enhancement function w ( ⁇ ).
- an exponential function is used as the enhancement function w ( ⁇ ).
- a ⁇ function is used as an example of an exponential function. This ⁇ function is expressed by the following two expressions.
- the parameters a, b, and ⁇ all take real values.
- the parameters a and b adjust the degree of phase difference enhancement, and are determined by the LPF filter size.
- the parameters a and b are also determined so as to maximize the contrast C or contrast-to-noise ratio CNR between the target tissue and its background.
- the parameter ⁇ reduces noise on the phase difference image PD (x), and is determined by, for example, the standard deviation of the tissue in which the phase average value on the phase difference image PD (x) takes a value near 0 (zero).
- the parameter ⁇ can be obtained based on data obtained from many experiments.
- the parameter ⁇ is determined by, for example, the contrast C or the contrast / noise ratio CNR.
- the contrast C described above is obtained by emphasizing the signal w (PD (x1)) ⁇ M (x1) of the target tissue at the position x1 on the image and the image on the image, as shown in the following equation. It is determined by the absolute value of the difference from the background signal w (PD (x2)) ⁇ M (x2) of the emphasized tissue at position x2.
- contrast / noise ratio CNR is expressed by C / ⁇ ′ as shown by the following equation.
- ⁇ ′ is determined by the standard deviation on the emphasized image of the target tissue or the standard deviation on the emphasized image of the target tissue background.
- any of the standard deviations described above may not be adopted.
- the standard deviation of the external signal of the subject 2 or the standard deviation by the difference method is adopted.
- Abs ( ⁇ ) represents the absolute value of ⁇ .
- the ⁇ function is a function that does not emphasize PD (x) in the range of Abs ( ⁇ ) ⁇ ⁇ and emphasizes the phase difference image PD (x) in other ranges. Since this ⁇ function can approximate an arbitrary power function with arbitrary accuracy, more flexible emphasis can be performed as compared with the case where a polynomial is used as the emphasis function.
- the filter size of the LPF when the filter size of the LPF is changed in accordance with the size of the imaging region, the distribution of the phase difference slightly changes accordingly.
- the filter size of the LPF is changed in a state where the size of the imaging area is fixed, the distribution of the phase difference greatly changes accordingly.
- the parameters a, b, and ⁇ of the enhancement function take real values, and these can be flexibly changed according to the imaging conditions and the like. Thereby, even when the imaging conditions are changed, it is possible to maintain the same or the same contrast.
- the computing unit 26A masks the intensity image M (x) with the enhanced image w (PD (x)), for example, according to a predetermined mode (rule), thereby obtaining the morphological image I (x).
- a predetermined mode for masking the intensity image M (x) with the emphasized image w (PD (x))
- Specific conditions for masking the intensity image M (x) with the emphasized image w (PD (x)) can be set according to the object to be emphasized, and are basically exemplified below.
- the four types of enhancement modes are set.
- the total enhancement does not depend on the parameter ⁇ and the sign of the phase difference image PD (x), but in the case of structure enhancement, for example, the phase difference ⁇ (hereinafter simply referred to as the phase difference ⁇ ) generated by the intracortical structure.
- the phase difference ⁇ (hereinafter simply referred to as the phase difference ⁇ ) generated by the intracortical structure.
- a value is obtained in advance by an experiment, and a conditional expression is set according to the magnitude relationship between the phase difference ⁇ and the phase difference image PD (x).
- Enhancement mode B blood vessel enhancement
- I (x) w (PD (x)) ⁇ M (x) (PD (x) ⁇ 0)
- I (x) M (x) (PD (x)> 0)
- the calculation unit 26A extracts a portion where the phase difference image PD (x) is 0 (zero) or more, and creates a morphological image I (x) by performing enhancement only on that portion. At this time, no emphasis is performed on a portion where the phase difference image PD (x) is negative.
- the morphological image I (x) is a tissue-emphasized image.
- the computing unit 26A extracts a portion where the phase difference image PD (x) is 0 (zero) or less, and performs enhancement only on that portion, thereby creating a morphological image I (x). At this time, no emphasis is performed on a portion where the phase difference image PD (x) is positive.
- the morphological image I (x) is a blood vessel enhanced image.
- the calculation unit 26A creates the morphological image I (x) by enhancing the entire phase difference image PD (x).
- the morphological image I (x) is an image in which the whole including tissues and blood vessels is enhanced.
- the calculation unit 26A enhances a portion that satisfies ⁇
- a morphological image I (x) is created. At this time, the portion satisfying PD (x) ⁇
- the morphological image I (x) is a structure-enhanced image. Since the phase difference ⁇ is generated by the intracortical structure, the morphological image I (x) is actually an image in which the cortical structure is emphasized.
- each morphological image I it is possible to specify a more accurate anatomical position of the brain function against the background of the tissue contrast indicated by x).
- an MR signal phase difference distribution obtained from a region of interest is created, and this phase difference distribution is simultaneously fitted with a plurality of function groups.
- the normality of the living body included in the region of interest is verified based on the magnetic susceptibility of the tissue included in the region of interest specified by the parameters of the plurality of function groups fitted to the phase difference distribution. Therefore, it becomes possible to realistically detect tissues and lesions that could not be drawn with medical imaging equipment including MRI within the scope of current insurance medical treatment.
- This technology can be used for various diagnoses using MRI. In particular, it can greatly contribute to the detection of minute lesion tissues such as amyloid ⁇ .
- This method can be applied in the same way to detect diffusely present in tissues, for example, quantitatively measuring the proportion of fat in the liver that is always examined in health examinations, etc. It is considered possible.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Medical Informatics (AREA)
- Neurology (AREA)
- General Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Signal Processing (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Hospice & Palliative Care (AREA)
- Artificial Intelligence (AREA)
- Psychiatry (AREA)
- Psychology (AREA)
- Neurosurgery (AREA)
- Physiology (AREA)
- Quality & Reliability (AREA)
- Theoretical Computer Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
(1)本実施形態の構成:
(2)位相差画像の作成:
(3)判断処理:
(4)形態画像の作成:
(5)まとめ:
図1は、本実施形態に係るMRI装置1(磁気共鳴画像化装置)の概略構成を表した図である。MRI装置1は、NMR現象を利用して被検体2内の内部情報を画像化する装置である。MRI装置1は、後述するように、核磁気共鳴画像(MR画像)として、核磁気共鳴信号(MR信号)の強度成分を画像化した強度画像の他に、磁化ベクトルの回転角を画像化した位相画像を利用して形態画像を描画する、新しいタイプのMRI装置である。なお、本実施形態においては、MRI装置1と後述の制御システム20や情報処理装置26のいずれかが、画像解析装置を構成する。
[コイルシステム10]
コイルシステム10は、例えば、静磁場コイル部11、傾斜磁場コイル部12、RF(Radio Frequency)コイル部13を含んで構成されている。これらは、例えば、概ね円筒状の形状となっており、それぞれの中心軸(図示せず)が互いに同軸となるように配置されている。その中心軸を含む面内に、被検体2を支持する寝台部30が設けられている。
制御システム20は、例えば、図1に示したように、静磁場電源21、傾斜磁場電源22、送信部23と、受信部24と、シーケンス制御部25とを備えている。
次に、MRI装置1にて行われる位相差画像の作成について説明する。
位相差画像を得るためには、強度画像と位相画像が必要である。これら画像を得る際は、GEのパルスシーケンスを用いることが好ましいが、例えば、GE系に含まれる他のパルスシーケンスや、GE系以外のパルスシーケンスを用いてもよい。
図3は、位相差画像を作成するまでのデータ処理の流れを示した図である。同図に示すデータ処理は、演算部26Aの制御の下、制御システム20において実行されるものである。演算部26Aは、ユーザからの指示を受けて、同図に示すデータ処理の演算を開始する。
次に、演算部26Aは、シーケンス制御部25から入力された生データRを、不図示の内部メモリに設定したk空間に配置する。以下では、k空間に配置したデータをk空間データS(k)と呼ぶことにする。
本実施の形態では、MR信号の取得に際して、長いTEを用いている。そのため、位相画像P(x)にフェーズラッピング(phase wrapping)が発生し、位相が2πを超えるものが、実際の位相から2πn(nは整数)を差し引いた位相値を取る。そのため、位相画像P(x)が縞模様の画像となり、本来の位相値を示さなくなる。そこで、演算部26Aは、このフェーズラッピングを取り除くと共に、位相差を取り出す処理を行う。
次に、この位相差画像に対し、MRI装置1の利用者が関心を持つ領域(以下、関心領域と記載する。)を設定し、当該関心領域に含まれる位相差画像に対して所定の演算処理を行う。この演算処理により、関心領域に含まれる組織の正常性(又は、非正常性)を判断することができる。
処理が開始されると、表示部26Cの画面に、MRI装置1にて撮像した断面もしくは空間の一部を指定するためのインターフェースを表示する(S1)。このインターフェースには、例えば、MR信号に基づいて作成された強度画像や位相画像等を表示し、画像上の所定領域を、閉曲線(枠線等)や座標値等の領域指定手段によって、指定できるようになっている。
次に、MRI装置1の操作者は、表示部26Cに表示されたインターフェースを介して、MRI装置1にて撮像した断面もしくは空間の一部を、領域指定する(S2)。ここで操作者によって指定される領域が関心領域である。操作者は、例えば、表示部26Cに表示された画像を観察したときに、非正常組織を含む可能性があると考えた領域を、関心領域に指定する。なお、関心領域は、二次元領域であっても良いし、三次元領域であってもよい。
関心領域が設定されると、演算部26Aは、関心領域に含まれる組織から取得されたMR信号の全位相データを取得し、これら位相データを統計し、例えば、横軸を位相値とし、縦軸をデータ数とした位相差分布を作成する(S3)。
次に、1つの関心領域に対して作成された1つの位相差分布に対し、複数の関数によって同時にフィッティングを行う(S5)。即ち、複数の関数を重ね合わせた曲線にて、1つの位相差分布を近似する。複数の関数には様々な関数を採用可能であり、ガウス分布、ローレンツ分布、二項分布等が例示される。
以上説明したフィッティングによって求められるパラメータセットは、関心領域に含まれる組織の磁化率を特徴付ける値の組み合わせとなる。即ち、関心領域が正常組織とは磁化率の異なる非正常組織を含有している場合のパラメータセットと、関心領域が正常組織のみを含有している場合のパラメータセットとは異なるものとなる。
ここで、マウスの脳実質から得られた位相差分布に対し、二重ガウス分布モデルでフィッティングを行った実験の結果について説明する。本実験では、ヒトでアルツハイマーを起こすアミノ酸の置換を持つ変異型APP(Amyloid precursor protein)の遺伝子改変マウスと、いろいろな性質が一定であるように遺伝的にコントロールされたコントロールマウスと、で、脳内位相差分布の検討を行った。
まず、図5~7に示すフィッティングカーブを構成する第1のガウス分布は、ノイズ成分に起因すると考えられる。MRI装置1では、電気的な熱雑音やカットオフにより生じるデジタライズノイズ等により位相差に誤差が発生することが当然に予測される。これらノイズはガウス分布に従うことが知られており、比較的高いガウス分布が発生すると考えられるためである。従って、複数の関数で位相差分布をフィッティングする場合、複数の関数の少なくとも1つに、ガウス分布を採用すると良好なフィッティング結果が得られると考えられる。
次に、二重ガウス分布モデルを用いて得られるフィッティング関数を利用して行う、特定の位相差を強調する位相差強調画像化法について説明する。なお、位相差強調画像化法とは、得られた位相差画像PD(x)の一部を選択し、その一部もしくは全部を取捨選択し、強調関数w(θ)によって強調することによって選択された位相情報に対応する画像の部分を強度画像M(x)上に表現する方法である。位相差強調画像化法によれば、強調関数w(θ)によって作成された画像を提供することができる。
図10は、形態画像を作成するまでのデータ処理の流れを示した図である。まず、演算部26Aは、位相差画像PD(x)の位相θがθ1より大きくなる位相を選択し、その選択した位相θを強調する。
w(θ)=exp(-a×(Abs(θ)-σ)b)…(θが前記の範囲以外のとき)
パラメータa、b、σはいずれも、実数の値をとる。パラメータa、bは、位相差強調の度合いを調整するものであり、LPFのフィルタサイズによって決定される。パラメータa、bは、また、目的とする組織と、そのバックグラウンドとのコントラストCもしくはコントラスト・ノイズ比CNRを最大にするように決定される。パラメータσは、位相差画像PD(x)上のノイズを低減するものであり、例えば、位相差画像PD(x)上の位相平均値が0(ゼロ)付近をとる組織の標準偏差によって決定される。パラメータσは、多くの実験から得られるデータに基づいて求めることが可能である。ただし、位相平均値が0(ゼロ)付近をとる組織が一度に撮像された全ての位相差画像PD(x)上に存在しない場合もある。その場合には、パラメータσは、例えば、コントラストCまたはコントラスト・ノイズ比CNRによって決定される。
CNR=C/σ’
次に、演算部26Aは、例えば、所定のモード(ルール)に従って、強調画像w(PD(x))で強度画像M(x)をマスクし、それにより形態画像I(x)を得る。強調画像w(PD(x))で強度画像M(x)をマスクする際の具体的な条件は、強調したい対象に応じて設定することが可能なものであり、基本的には以下に例示した4種類(組織強調、血管強調、全強調、構造強調)の強調モードに対応して設定される。
I(x)=w(PD(x))×M(x)…(PD(x)≧0)
I(x)=M(x)…(PD(x)<0)
I(x)=w(PD(x))×M(x)…(PD(x)≦0)
I(x)=M(x)…(PD(x)>0)
I(x)=w(PD(x))×M(x)
|α|≦σ
PD(x)≦0のとき
I(x)=w(PD(x))×M(x)…(-|α|≦PD(x)≦-σ)
I(x)=M(x)…(PD(x)<-|α|)
PD(x)>0のとき
I(x)=w(PD(x))×M(x)
以上説明した実施形態によれば、生体から得られたMR画像を解析するにあたり、関心領域から得たMR信号の位相差分布を作成し、この位相差分布を複数の関数群で同時にフィッティングし、位相差分布に対してフィッティングされた前記複数の関数群のパラメータによって特定される、関心領域に含まれる組織の磁化率に基づいて、関心領域に含まれる生体の正常性を検証する。よって、MRIを含む医療用画像機器で描出できなかった組織や病変を、現在の保険診療の範囲内で現実的に検知することが可能となる。
Claims (5)
- 生体から得られた核磁気共鳴画像を解析するための画像解析装置であって、
生体の所定領域から得た核磁気共鳴信号の位相差分布を作成する位相差分布作成部と、
位相差分布作成部により作成された前記位相差分布に対し、複数の関数群でフィッティングするフィッティング部と、
前記フィッティング部により前記位相差分布に対してフィッティングされた前記複数の関数群のパラメータによって特定される前記所定領域に含まれる組織の磁化率に基づいて、前記所定領域に含まれる生体の正常性を検証する検証部と、
を備えることを特徴とする、画像解析装置。 - 前記複数の関数群は、少なくとも1つのガウス分布を含む請求項1に記載の画像解析装置。
- 前記複数の関数群は、2つのガウス分布で構成され、
前記2つのガウス分布のうち、標準偏差の大きいガウス分布が他方のガウス分布に比べて大きい位相を有する画素を強調した核磁気共鳴画像を作成する画像生成部を、更に備える請求項1又は請求項2に記載の画像解析装置。 - 生体から得られた核磁気共鳴画像を解析するための画像解析方法であって、
生体の所定領域から得た核磁気共鳴信号の位相差分布を作成する位相差分布作成工程と、
前記位相差分布に対し、複数の関数群でフィッティングするフィッティング工程と、
前記位相差分布に対してフィッティングされた前記複数の関数群のパラメータによって特定される前記所定領域に含まれる組織の磁化率に基づいて、前記所定領域に含まれる生体の正常性を検証する検証工程と、
を備えることを特徴とする、画像解析方法。 - 生体から得られた核磁気共鳴画像を解析する機能をコンピュータに実現させるための画像解析プログラムであって、
生体の所定領域から得た核磁気共鳴信号の位相差分布を作成する位相差分布作成機能と、
前記位相差分布に対し、複数の関数群でフィッティングするフィッティング機能と、
前記位相差分布に対してフィッティングされた前記複数の関数群のパラメータによって特定される前記所定領域に含まれる組織の磁化率に基づいて、前記所定領域に含まれる生体の正常性を検証する検証機能と、
を備えることを特徴とする、画像解析プログラム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147011275A KR101685377B1 (ko) | 2011-09-28 | 2012-09-26 | 화상해석장치, 화상해석방법 및 화상해석프로그램을 기록한 기록매체 |
JP2013536329A JP6041356B2 (ja) | 2011-09-28 | 2012-09-26 | 画像解析装置、画像解析装置の作動方法及び画像解析プログラム |
CN201280046660.2A CN103826535B (zh) | 2011-09-28 | 2012-09-26 | 图像分析装置、图像分析方法 |
AU2012317518A AU2012317518B2 (en) | 2011-09-28 | 2012-09-26 | Image analysis device, image analysis method, and image analysis programme |
US14/347,703 US9330457B2 (en) | 2011-09-28 | 2012-09-26 | Device, method, and program for analyzing a magnetic resonance image using phase difference distribution |
EP12836937.8A EP2762071B1 (en) | 2011-09-28 | 2012-09-26 | Image analysis device, image analysis method, and image analysis programme |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011213535 | 2011-09-28 | ||
JP2011-213535 | 2011-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013047583A1 true WO2013047583A1 (ja) | 2013-04-04 |
Family
ID=47995613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/074701 WO2013047583A1 (ja) | 2011-09-28 | 2012-09-26 | 画像解析装置、画像解析方法及び画像解析プログラム |
Country Status (7)
Country | Link |
---|---|
US (1) | US9330457B2 (ja) |
EP (1) | EP2762071B1 (ja) |
JP (1) | JP6041356B2 (ja) |
KR (1) | KR101685377B1 (ja) |
CN (1) | CN103826535B (ja) |
AU (1) | AU2012317518B2 (ja) |
WO (1) | WO2013047583A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021177353A1 (ja) * | 2020-03-04 | 2021-09-10 | 国立大学法人熊本大学 | 画像処理方法、画像処理装置、プログラム及び記録媒体 |
WO2022034691A1 (ja) * | 2020-08-14 | 2022-02-17 | 株式会社Splink | コンピュータプログラム、情報処理装置、情報処理方法、学習済みモデル生成方法及び相関画像出力装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150134261A1 (en) * | 2013-11-14 | 2015-05-14 | J. Michael O'Connor | Synchronization of patient motion detection equipment with medical imaging systems |
JP6595393B2 (ja) * | 2016-04-04 | 2019-10-23 | 株式会社日立製作所 | 磁気共鳴イメージング装置、及び、画像処理方法 |
EP3550318A1 (de) * | 2018-04-06 | 2019-10-09 | Siemens Healthcare GmbH | Verfahren zur erzeugung einer b0-karte mittels eines magnetresonanz-fingerabdruckverfahrens |
JP7177621B2 (ja) * | 2018-08-02 | 2022-11-24 | キヤノンメディカルシステムズ株式会社 | 磁気共鳴イメージング装置 |
JP7455508B2 (ja) * | 2018-12-26 | 2024-03-26 | キヤノンメディカルシステムズ株式会社 | 磁気共鳴イメージング装置および医用複素数画像処理装置 |
ES2773333B2 (es) * | 2019-01-10 | 2021-07-27 | Univ Valencia Politecnica | Metodo y sistema de generacion de senales de resonancia magnetica por rotacion rapida con angulo magico de campos con codificacion espacial |
CN114224298B (zh) * | 2022-01-17 | 2023-12-01 | 中国科学院电工研究所 | 一种核磁共振下的磁声电成像系统及方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005028151A (ja) | 2003-07-10 | 2005-02-03 | General Electric Co <Ge> | 磁気共鳴イメージングを用いて脳内鉄を検出するためのシステム及び方法 |
JP2009125582A (ja) * | 2007-11-21 | 2009-06-11 | Toshiba Corp | 磁気共鳴イメージング装置 |
WO2010073923A1 (ja) * | 2008-12-26 | 2010-07-01 | 国立大学法人 熊本大学 | 位相差強調画像化法(Phase Difference Enhanced Imaging;PADRE)、機能画像作成法、位相差強調画像化プログラム、位相差強調画像化装置、機能画像作成装置および磁気共鳴画像化(Magnetic Resonance Imaging;MRI)装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5909119A (en) * | 1995-08-18 | 1999-06-01 | Toshiba America Mri, Inc. | Method and apparatus for providing separate fat and water MRI images in a single acquisition scan |
JP4262518B2 (ja) | 2003-05-21 | 2009-05-13 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 磁気共鳴撮影装置 |
US10098563B2 (en) | 2006-11-22 | 2018-10-16 | Toshiba Medical Systems Corporation | Magnetic resonance imaging apparatus |
JP4936864B2 (ja) * | 2006-11-22 | 2012-05-23 | 株式会社東芝 | 磁気共鳴イメージング装置 |
JP4945225B2 (ja) | 2006-11-30 | 2012-06-06 | 株式会社東芝 | 画像処理装置及びプログラム |
JP5624273B2 (ja) | 2007-11-22 | 2014-11-12 | 株式会社東芝 | 磁気共鳴イメージング装置 |
JP5336731B2 (ja) | 2007-12-17 | 2013-11-06 | 株式会社日立メディコ | 磁気共鳴イメージング装置 |
-
2012
- 2012-09-26 WO PCT/JP2012/074701 patent/WO2013047583A1/ja active Application Filing
- 2012-09-26 JP JP2013536329A patent/JP6041356B2/ja active Active
- 2012-09-26 US US14/347,703 patent/US9330457B2/en active Active
- 2012-09-26 EP EP12836937.8A patent/EP2762071B1/en active Active
- 2012-09-26 CN CN201280046660.2A patent/CN103826535B/zh not_active Expired - Fee Related
- 2012-09-26 KR KR1020147011275A patent/KR101685377B1/ko active IP Right Grant
- 2012-09-26 AU AU2012317518A patent/AU2012317518B2/en not_active Ceased
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005028151A (ja) | 2003-07-10 | 2005-02-03 | General Electric Co <Ge> | 磁気共鳴イメージングを用いて脳内鉄を検出するためのシステム及び方法 |
JP2009125582A (ja) * | 2007-11-21 | 2009-06-11 | Toshiba Corp | 磁気共鳴イメージング装置 |
WO2010073923A1 (ja) * | 2008-12-26 | 2010-07-01 | 国立大学法人 熊本大学 | 位相差強調画像化法(Phase Difference Enhanced Imaging;PADRE)、機能画像作成法、位相差強調画像化プログラム、位相差強調画像化装置、機能画像作成装置および磁気共鳴画像化(Magnetic Resonance Imaging;MRI)装置 |
Non-Patent Citations (2)
Title |
---|
SHINGO KAKEDA ET AL.: "A novel tract imaging technique of the brainstem using phase difference enhanced imaging: normal anatomy and initial experience in multiple system atrophy", EUROPEAN RADIOLOGY, vol. 21, no. 10, 1 October 2011 (2011-10-01), pages 2202 - 2210, XP019946953 * |
T.YONEDA ET AL.: "Triple-layer Appearance of Human Cerebral Cortices on Phase-Difference Enhanced Imaging using 3D Principle of Echo Shifting with a Train of Observations (PRESTO) Sequence", PROCEEDINGS OF INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE, 18 April 2009 (2009-04-18), XP055064621 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021177353A1 (ja) * | 2020-03-04 | 2021-09-10 | 国立大学法人熊本大学 | 画像処理方法、画像処理装置、プログラム及び記録媒体 |
JP7504340B2 (ja) | 2020-03-04 | 2024-06-24 | 国立大学法人 熊本大学 | 画像処理方法、画像処理装置、プログラム及び記録媒体 |
WO2022034691A1 (ja) * | 2020-08-14 | 2022-02-17 | 株式会社Splink | コンピュータプログラム、情報処理装置、情報処理方法、学習済みモデル生成方法及び相関画像出力装置 |
US11972564B2 (en) | 2020-08-14 | 2024-04-30 | Splink, Inc. | Recording medium, information processing device, information processing method, trained model generation method, and correlation image output device |
Also Published As
Publication number | Publication date |
---|---|
EP2762071A1 (en) | 2014-08-06 |
KR20140084081A (ko) | 2014-07-04 |
CN103826535A (zh) | 2014-05-28 |
AU2012317518B2 (en) | 2015-10-08 |
CN103826535B (zh) | 2016-07-06 |
EP2762071A4 (en) | 2015-04-29 |
EP2762071B1 (en) | 2021-03-24 |
KR101685377B1 (ko) | 2016-12-12 |
JPWO2013047583A1 (ja) | 2015-03-26 |
AU2012317518A1 (en) | 2014-05-15 |
US20140233825A1 (en) | 2014-08-21 |
US9330457B2 (en) | 2016-05-03 |
JP6041356B2 (ja) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6041356B2 (ja) | 画像解析装置、画像解析装置の作動方法及び画像解析プログラム | |
JP4982881B2 (ja) | 位相差強調画像化法(PhaseDifferenceEnhancedImaging;PADRE)、機能画像作成法、位相差強調画像化プログラム、位相差強調画像化装置、機能画像作成装置および磁気共鳴画像化(MagneticResonanceImaging;MRI)装置 | |
JP6434030B2 (ja) | Dixonタイプ水/脂肪分離する磁気共鳴イメージング | |
US9928596B2 (en) | Motion corrected imaging system | |
JP5982494B2 (ja) | 磁気共鳴イメージング装置 | |
WO2013054718A1 (ja) | 磁気共鳴イメージング装置および磁化率強調画像生成方法 | |
WO2012174177A2 (en) | Systems and methods for imaging and quantifying tissue magnetism with magnetic resonance imaging | |
Koolstra et al. | Cartesian MR fingerprinting in the eye at 7T using compressed sensing and matrix completion‐based reconstructions | |
US11796617B2 (en) | System and method for reconstruction of magnetic resonance images acquired with partial Fourier acquisition | |
WO2013098060A1 (en) | Mri with dixon-type water/fat separation and prior knowledge about inhomogeneity of the main magnetic field | |
WO2011139745A2 (en) | Systems and methods for susceptibility tensor imaging | |
Hutton et al. | Phase informed model for motion and susceptibility | |
WO2014038441A1 (ja) | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 | |
JP2019122623A (ja) | 磁気共鳴イメージング装置および医用画像処理装置 | |
Tan et al. | Denoising and Multiple Tissue Compartment Visualization of Multi‐b‐Valued Breast Diffusion MRI | |
US20160146918A1 (en) | Corrected magnetic resonance imaging using coil sensitivities | |
JP5650724B2 (ja) | 磁気共鳴イメージング装置 | |
US8493067B2 (en) | Magnetic resonance system and method to create a magnetic resonance image data set by radial scanning of a magnetic resonance system | |
WO2013147281A1 (ja) | 発熱分布情報を生成する装置と方法、磁気共鳴画像装置及びプログラム | |
US10955510B2 (en) | Magnetic resonance imaging apparatus | |
JP6855239B2 (ja) | 磁気共鳴イメージング装置 | |
Olsson et al. | Bias field correction of MPRAGE by an external reference--The poor man's MP2RAGE | |
US20240331225A1 (en) | Methods, apparatuses, systems, and computer-readable mediums for biomarker quantification using free-breathing stack-of-radial imaging | |
JP2013034661A (ja) | 磁気共鳴イメージング装置および磁気共鳴スペクトロスコピー撮像方法 | |
Lira | Chemical Species Separation in MRI with Simultaneous Estimation of Field Map and T2* Using a k-Space Formulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12836937 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013536329 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14347703 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012836937 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147011275 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2012317518 Country of ref document: AU Date of ref document: 20120926 Kind code of ref document: A |