JP4262518B2 - 磁気共鳴撮影装置 - Google Patents

磁気共鳴撮影装置 Download PDF

Info

Publication number
JP4262518B2
JP4262518B2 JP2003143742A JP2003143742A JP4262518B2 JP 4262518 B2 JP4262518 B2 JP 4262518B2 JP 2003143742 A JP2003143742 A JP 2003143742A JP 2003143742 A JP2003143742 A JP 2003143742A JP 4262518 B2 JP4262518 B2 JP 4262518B2
Authority
JP
Japan
Prior art keywords
data
coil
phase
magnetic resonance
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003143742A
Other languages
English (en)
Other versions
JP2004344327A (ja
Inventor
吉和 池崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Priority to JP2003143742A priority Critical patent/JP4262518B2/ja
Publication of JP2004344327A publication Critical patent/JP2004344327A/ja
Application granted granted Critical
Publication of JP4262518B2 publication Critical patent/JP4262518B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コイルによって検出した被検体の被検部位からの磁気共鳴信号に基づいて被検部位の画像を生成する磁気共鳴撮影に関する。特定的には、本発明は磁気共鳴信号を間引いて検出して生成した折返し偽像の存在する画像から折返し偽像を取り除くために用いるコイルの感度分布の作成方法、この作成方法により作成した感度分布を用いた磁気共鳴撮影方法および磁気共鳴撮影装置に関する。
【0002】
【従来の技術】
磁気共鳴撮影(Magnetic Resonance Imaging:MRI)において、パラレルイメージング(Parallel Imaging)と呼ばれる撮影方法が知られている(たとえば、非特許文献1参照)。
パラレルイメージング法においては、位相方向のエンコードステップを間引いて被検体からの磁気共鳴信号を検出することにより撮影時間を短縮して撮影を行ない、撮影視野が狭まり折返り偽像(アーチファクト)が存在する画像を生成する。そして、複数のコイルの感度分布差に基づいて折返り偽像を取り除き、撮影視野が広がった画像を最終的に得る。
また、パラレルイメージング法を用いた磁気共鳴撮影装置も知られている(たとえば、特許文献1参照)。
【0003】
【特許文献1】
特開2002−248089号公報
【非特許文献1】
ケー・ピー・プリュースマン(K.P.Pruessmann), エム・ヴァイガー(M.Weiger), エム・ビー・シャイデガー(M.B.Scheidegger), ピー・ベージガー(P.Boesiger), マグネティック・レゾナンス・イン・メディシン(Magnetic Resonance in Medicine),1999年,42, 952
【0004】
【発明が解決しようとする課題】
パラレルイメージング法においては磁気共鳴信号を検出する複数のコイルの検出感度分布の差を用いて折返り偽像を除去する。検出感度分布を単に感度分布と言うこともあり、感度分布の差を単に感度分布差と言うこともある。しかしながら、コイルの感度分布を正確に、またコイルの感度領域において全体的に得ることは困難であった。このため、折返し偽像を取り除いて最終的に得られる画像の画質は、理論上得られる画質よりも低かった。
【0005】
本発明の目的は、パラレルイメージングに用いるコイルの感度分布の精度を向上可能なコイルの感度分布作成方法を提供することにある。
また、コイルの感度分布の精度向上に伴い、画質を向上させることが可能な磁気共鳴撮影方法および磁気共鳴撮影装置を提供することも本発明の目的である。
【0006】
【課題を解決するための手段】
本発明に係るコイルの感度分布作成方法は、感度領域内の被検体からの磁気共鳴信号を検出するコイルの感度分布を作成するコイルの感度分布作成方法であって、複数のコイルのそれぞれについて、各コイルが検出した前記磁気共鳴信号を分析して位相のデータを入手するステップと、前記複数のコイルのそれぞれについて、当該コイルから得られる前記位相のデータと所定の一つのコイルから得られる前記位相のデータとの差分である位相差分データをそれぞれ算出するステップと、前記位相差分データに基づいてフィッティング処理を施し、それぞれの前記コイルについて、前記被検体の領域と当該被検体の領域以外の領域とを含んで前記感度領域の位相データ分布を算出するステップとを含む。
【0007】
本発明に係る磁気共鳴撮影方法は、コイルの感度領域内の被検体からの磁気共鳴信号の位相方向のエンコードステップを間引いて得られる折返し偽像が存在する画像から、複数のコイルの前記感度領域における感度分布の差に基づいて前記折返し偽像を除去する磁気共鳴撮影方法であって、前記感度分布を、前記複数のコイルのそれぞれについて、各コイルが検出した前記磁気共鳴信号を分析して位相のデータを入手するステップと、前記複数のコイルのそれぞれについて、当該コイルから得られる前記位相のデータと所定の一つのコイルから得られる前記位相のデータとの差分である位相差分データをそれぞれ算出するステップと、前記位相差分データに基づいてフィッティング処理を施し、それぞれの前記コイルについて、前記被検体の領域と当該被検体の領域以外の領域とを含んで前記感度領域の位相データ分布を算出するステップとを含んで生成する。
【0008】
本発明に係る磁気共鳴撮影装置は、コイルの感度領域内の被検体からの磁気共鳴信号を位相方向のエンコードステップを間引いて検出して生成した折返し偽像が存在する画像から、複数のコイルの前記感度領域における感度分布の差に基づいて前記折返し偽像を除去する磁気共鳴撮影装置であって、前記複数のコイルのそれぞれについて、各コイルが検出した前記磁気共鳴信号を分析して位相のデータを算出して出力する分析部と、前記複数のコイルのそれぞれについて、当該コイルから得られる前記位相のデータと所定の一つのコイルから得られる前記位相のデータとの差分を計算し位相差分データを出力する位相差分計算部と、前記位相差分データに基づいてフィッティング処理を施し、それぞれの前記コイルについて、前記被検体の領域と当該被検体の領域以外の領域とを含んで前記感度領域の位相データ分布を算出して出力するフィッティング処理部とを有する。
【0009】
本発明においては、折返し偽像の除去に用いるコイルの感度分布を算出するために、コイルが被検体から検出した磁気共鳴信号を分析部により分析する。分析部は、複数のコイルのそれぞれについて、各コイルが検出した磁気共鳴信号を分析して磁気共鳴信号に関する位相のデータを算出する。位相差分計算部は、分析部が算出した各コイルに関する位相のデータと所定の一つのコイルに関する位相のデータとの差分を計算し、位相差分データを出力する。フィッティング処理部は、各コイルに関する位相差分データに基づいてフィッティング処理を施し、各コイルについて位相データ分布を算出する。フィッティング処理部は、各コイルの感度領域における被検体の領域と被検体の領域以外の領域とを含んで、各コイルの位相データ分布を計算する。
以上のようにして求められた位相データ分布を利用して、各コイルの感度分布が最終的に生成される。複数のコイルの感度領域における感度分布の差に基づいて、折返し偽像が除去される。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について、添付図面を参照しながら述べる。
【0011】
図1は本発明の一実施の形態に係る磁気共鳴撮影(MRI)装置の概略構成を示すブロック図であり、図2は図1に示すMRI装置に用いるマグネットアセンブリの一例の外観を示す斜視図である。
【0012】
図1に示すように、本実施の形態に係るMRI装置100は、マグネットアセンブリ1、主磁場電源2、勾配磁場駆動回路3、RF電力増幅器4、前置増幅器5、計算機7、シーケンス記憶回路8、ゲート変調回路9、RF発振回路10、A/D変換器11、位相検波器12、操作コンソール13、表示装置14および記憶部30を有する。
【0013】
マグネットアセンブリ1とMRI装置100のその他の構成要素とは、適宜離して配置される。
本実施の形態に係るマグネットアセンブリ1はいわゆるシリンドリカルタイプと呼ばれるものである。シリンドリカルタイプのマグネットアセンブリ1は、図2に示すように内部にボア(Bore)131aを有しており、このボア131aを取巻くように図示しない主磁場発生部、勾配磁場発生部および送信コイルを配置した構成を有している。
【0014】
本実施の形態においては、図2に示すようにボア131aの形状を円筒形にしている。ボア131aは、その内部に撮影のために被検体4を収容し、ボア131aの内部が撮影空間となる。
被検体4は、テーブル133によって支持されたクレードル132上に載置される。クレードル132がテーブル133上においてボア131aの長手方向に沿ってボア131a側へ移動することによって、被検体4がボア131aの内部に収容される。
以下では、円筒形のボア131aの長手方向に沿う方向をZ方向とする。また、Z方向に直交する水平方向をX方向、鉛直方向をY方向とする。
【0015】
主磁場発生部は、たとえば、常電導磁石を用いて構成する。主磁場発生部は主磁場電源2に接続され、主磁場電源2からの供給電流に応じた磁界強度の均一な主磁場をボア131a内に形成する。
主磁場発生部が形成する主磁場は、被検体4の撮影中常に磁界強度が一定でボア131内において均一となるように保たれるため、静磁場とも呼ばれる。なお、マグネットアセンブリ1における静磁場の方向はZ方向に沿う方向である。
【0016】
主磁場発生部は、常電導磁石の他に超伝導磁石や永久磁石等の他の磁石を用いて構成することもできる。永久磁石を用いる場合には主磁場電源2は必要ない。
【0017】
勾配磁場発生部は、後述する受信コイルC1,C2が検出する磁気共鳴信号に3次元の位置情報を持たせるために3系統のコイルを有する。
勾配磁場発生部は勾配磁場駆動回路3に接続され、勾配磁場駆動回路3からの駆動信号に応じた勾配磁場を発生する。
【0018】
送信コイルは、静磁場および勾配磁場が印加される被検体4の被検部位に対して回転磁場を印加するためのものである。回転磁場は、被検部位の原子核のスピンをその中心軸を傾けて回転させるためのRF(Radio Frequency)帯の磁場である。送信コイルはRF電力増幅器4に接続され、RF電力増幅器4から供給される電力に応じた回転磁場を被検部位に印加する。
【0019】
また、MRI装置100は、静磁場および勾配磁場中の被検部位への回転磁場の印加によるエコーとして発生する被検部位からの磁気共鳴信号を検出するための受信コイルを有する。受信コイルとしては、たとえば、被検体4の頭部や腹部や肩等の被検部位を部分的に覆うような専用のコイルを用いる。
図2においては、受信コイルの一例として、XZ平面に平行に対向配置してフェーズドアレイ化した矩形状のコイルC1,C2を挙げている。コイルC1とコイルC2との間に被検体4が挟まれる。
受信コイルC1,C2はそれぞれ前置増幅器5に接続され、受信コイルC1,C2が検出した磁気共鳴信号が、前置増幅器5によって増幅される。
【0020】
シーケンス記憶回路8は、勾配磁場駆動回路3と、ゲート変調回路9と、A/D変換器11と、計算機7の後述する制御部21とに接続されている。
ゲート変調回路9は、RF電力増幅器4とRF発振回路10とにさらに接続されている。RF発振回路10は、前記増幅器5およびA/D変換器11に接続される位相検波器12にさらに接続される。
【0021】
シーケンス記憶回路8は、制御部21が生成した磁気共鳴画像取得のためのパルスシーケンスを記憶し、制御部21から撮影指令信号が入力されたときには記憶したパルスシーケンスに応じて勾配磁場駆動回路3、ゲート変調回路9およびA/D変換器11を駆動制御する。
【0022】
勾配磁場駆動回路3は、シーケンス記憶回路8からの制御に応じて、所定のパルス波形で勾配磁場発生部を駆動する駆動信号を勾配磁場発生部に出力する。
RF発振回路10は、所定周波数のRF信号を生成してゲート変調回路9および位相検波器12に出力する。ゲート変調回路9は、シーケンス記憶回路8からの制御に基づいて所定のタイミングでRF発振回路10からのRF信号を変調し、所定の波形のRF励起パルス信号を、RF電力増幅器4を介して送信コイルに印加する。
【0023】
位相検波器12は、RF発振回路10から出力されるRF信号を参照信号とし、前置増幅器5からの出力信号(受信コイルC1,C2によって検出され、前置増幅器5により増幅された磁気共鳴信号)を位相検波したのちにA/D変換器11に出力する。A/D変換器11は、シーケンス記憶回路8からの制御に基づいて、位相検波器12による位相検波後のアナログ信号をデジタル信号に変換し、計算機7の画像処理部23に出力する。A/D変換器11から画像処理部23に出力されるデジタル信号のデータを、ローデータ(Raw Data)と呼ぶ。
【0024】
計算機7は、図1に示すように構成要素として制御部21と画像処理部23と記憶部30とを有する。制御部21および画像処理部23はそれぞれ異なるハードウェアを用いて実現してもよいし、1つのハードウェアを兼用させてもよい。
A/D変換器11に接続される画像処理部23が制御部21に接続される。
また、制御部21および画像処理部23は、たとえばRAM(Random Access Memory)やハードディスクドライブによって実現される記憶部30に適宜アクセス可能になっている。
さらに、制御部21には、たとえばキーボードやマウスによって実現され、オペレータの操作に応じた信号を制御部21に出力するための操作コンソール13と、テレビモニター等の表示装置14とが接続される。
【0025】
画像処理部23は、A/D変換器11から送信されたデジタルデータに対して以下に詳述するパラレルイメージング法のアンフォールディング(Unfolding)処理を施し、折返し偽像(アーチファクト)の無い磁気共鳴画像を生成する。画像処理部23が生成した磁気共鳴画像は記憶部30に記憶することが可能である。
【0026】
制御部21は、操作コンソール13を介してオペレータから指令が入力されたときには、パラレルイメージング法によって磁気共鳴画像を取得するように勾配磁場駆動回路3、ゲート変調回路9およびA/D変換器11の駆動状態を規定するパルスシーケンスを生成し、シーケンス記憶回路8に送信する。
なお、パルスシーケンスは、勾配磁場駆動回路3、ゲート変調回路9およびA/D変換器11に対する駆動パルス信号の波形のデータを意味する。
また、制御部21は、画像処理部23が生成した画像および記憶部30に記憶させていた画像を適宜表示装置14に表示させる。
【0027】
ここで、パラレルイメージング法について、図3を参照しながら簡単に述べる。なお、パラレルイメージング法はSENSE(Sensitivity Encoding)法とも呼ばれ、その詳細は、たとえば、前出の非特許文献1に記載されている。
図3には、フェーズドアレイ化した2個のコイルC1,C2をそれぞれ用いて2枚の断層像を撮影し、この2枚の断層像とコイルC1,C2のそれぞれの感度分布を用いて1枚の最終的な断層像を生成する例を挙げている。
【0028】
1)パラレルイメージング法を適用した撮影においては、まず、最終的に得たい画像DVの撮影視野(Field of View:FOV)の大きさを決める。このとき定めた大きさのFOVをFull FOVと呼ぶ。図3においては、Y方向においてFOVの大きさを決めた例を挙げている。図3に示す矩形状の画像DVはY方向におけるFull FOV画像となる。FOVの大きさは操作コンソール13を介して制御部21に入力する。
なお、図3に示すX,Y,Zの各方向は、図2におけるX,Y,Z方向に対応しており、以下ではXY平面に平行な断層像の撮影を例として挙げる。また、X方向が磁気共鳴信号の位置情報を規定する方向のうちの周波数エンコーディング方向、Y方向が位相エンコーディング方向、Z方向がスライス方向とする。これらの3方向は、前述の勾配磁場発生部の3系統のコイルの各コイルが発生する勾配磁場の方向に対応している。
【0029】
2)FOVを規定した後には、2個の受信コイルC1,C2をそれぞれ用いて、各コイルC1,C2の感度分布を入手するための撮影を行なう。受信コイルの感度分布を得るための撮影を、キャリブレーションスキャンと言う。
キャリブレーションスキャンにおいては、位相エンコーディング方向においてエンコードステップを間引かずにスキャンを行なう。
制御部は、キャリブレーションスキャンのためのパルスシーケンスを生成してシーケンス記憶回路8に送信し、キャリブレーションスキャンを実行させる。
【0030】
図3に示す画像DS1およびDS2は、コイルC1,C2の感度分布を示すために、XY平面に平行な断面において楕円形のファントムを撮影したときの画像である。キャリブレーションスキャンにおいてはエンコードステップを間引かずに撮影するため、画像DS1およびDS2はFull FOV画像となる。画像DS1およびDS2において、白く表示されている領域ほどコイルC1,C2の感度が高く、検出した磁気共鳴信号の強度が高いことを示している。
矩形状のコイルC1,C2はXZ平面に平行に配置される。図3に示すY1側に配置されるコイルC1を用いて撮影された画像DS1においてはY1側の信号強度が高く、Y2側に配置されるコイルC2を用いて撮影された画像DS2においてはY2側の信号強度が高いことが分かる。
このように、2個のコイルC1,C2の感度分布には差が存在する。
【0031】
3)キャリブレーションスキャンの終了後に、コイルC1,C2を用いて位相エンコーディング方向においてエンコードステップを間引きながら、1)のステップの断面と同じ断面において撮影を行なう。この撮影を本スキャンという。
本スキャンのためのパルスシーケンスとしては、たとえば、エコープラナーイメージング(Echo Planar Imaging:EPI)法やスピンエコー法等の各種パルスシーケンスを適宜用いることができる。制御部21は、オペレータから指定された本スキャンのためのパルスシーケンスを生成してシーケンス記憶回路8に送信し、実行させる。
図3に示す画像DA1がコイルC1を用いて得られた本スキャンの画像であり、画像DA2がコイルC2を用いて得られた本スキャンの画像である。本スキャンにおいて得られる画像DA1,DA2のFOVは、エンコードステップを間引くことに起因して位相エンコーディング方向に小さくなっている。このFOVを、Small FOVと呼ぶ。
【0032】
図3においては、一例として位相エンコードステップを1/2に間引く例を挙げる。位相エンコードステップ数を1/2にしたときには、Small FOVの大きさはFull FOVの大きさの1/2になる。また、本スキャンのスキャン時間は、エンコードステップを間引かない時の1/2になる。
Small FOVの画像には、エンコードステップを間引くことに起因する折返し偽像が存在する。たとえば、画像DA1,DA2に示すように、被検体の領域のうちSmall FOVの領域をはみ出た部分が、折返された偽像Afとなり被検体の画像IB上に重なって表示される。
【0033】
4)Small FOVの画像DA1,DA2に対して2)のステップにおいて得られたコイルC1,C2のそれぞれの感度分布を用いてアンフォールディング処理を施し、折返し偽像の無いFull FOVの画像DVを得る。これにより、エンコードステップを1/2に間引いたときには、半分のスキャン時間(撮影)でFull FOV画像DVを得ることができる。
画像処理部23によって実行されるアンフォールディング処理の内容については後述する。
【0034】
上述のように、パラレルイメージング法においてはコイルC1,C2の感度分布差を利用してSmall FOV画像から折返し偽像を取り除く。
図4は、Small FOV画像DA1,DA2とFull FOV画像DVとを用いて、コイルの感度分布について述べるための図であり、(a)がSmall FOV画像DA1,DA2を、(b)がFull FOV画像DVをそれぞれ示している。
【0035】
たとえば、図4(a)の画像DA1,DA2におけるピクセルPX1をアンフォールディング処理することを考える。画像DA1,DA2にはSmall FOVの領域外の被検体の画像が折返されて存在しているため、ピクセルPX1をアンフォールディング処理するためには、Full FOV画像におけるピクセルPX2とピクセルPX3の情報が必要となる。
コイルC1,C2が画像を生成可能な感度領域VSのうち、被検体が存在する領域に相当する画像IB内のピクセルPX3については、被検体4から磁気共鳴信号を入手することが可能なためコイルC1,C2の感度を特定することができる。しかしながら、画像IBの領域以外の領域VT、すなわちキャリブレーションスキャンにおいて被検体4が存在していなかった領域のピクセルPX2については、被検体4が存在していなかったためピクセルPX2に対応する位置からの磁気共鳴信号を検出できなかったことになる。このため、ピクセルPX2におけるコイルC1,C2の感度を直接的に特定することはできず、ノイズを用いてコイルC1,C2の感度分布を作成することになる。
【0036】
したがって、本実施の形態においては、コイルC1,C2の検出信号に基づいてフィッティング(fitting)処理を行ない、感度領域VS全体における感度分布を作成する。
図5は、本実施の形態における感度分布作成、および作成した感度分布を用いた磁気共鳴撮影における処理の流れを示すブロック図である。
また、図6は、図1に示すMRI装置100における計算機7の画像処理部23の機能ブロック図である。
【0037】
図6に示すように、画像処理部23は、フーリエ変換部24と、規格化部25と、位相差分計算部26と、フィッティング処理部27と、合成部28と、アンフォールド処理部29とを有する。
本発明における分析部の一実施態様がフーリエ変換部24に相当する。
【0038】
本実施の形態においては、受信コイルC1,C2によるキャリブレーションスキャンの検出信号に基づくローデータを分析して、ローデータから検出信号の位相のデータと大きさ(magnitude)のデータとを取出す。ローデータの分析の一手法として、フーリエ変換部24はA/D変換器11から入力されたローデータをフーリエ変換し、位相のデータと大きさのデータを算出する。
フーリエ変換部24は、算出した位相のデータは位相差分計算部26に出力し、大きさのデータは規格化部25に出力する。
また、フーリエ変換部24は、本スキャンによるローデータにフーリエ変換を施し、図3に示すようなSmall FOVの画像DA1,DA2の画像データを生成し、アンフォールド処理部29に出力する。
【0039】
位相差分計算部26は、フーリエ変換部24から入力された、受信コイル毎の位相のデータに対し、所定の一つの受信コイルから得られた位相データとの差分を計算する。
たとえば、コイルC1,C2のそれぞれの位相のデータに対して、コイルC1の位相のデータとの差分を計算する。
位相差分計算部26は、計算により得られた位相差分データをフィッティング処理部27に出力する。
【0040】
規格化部25は、フーリエ変換部24から入力された受信コイル毎の検出信号の大きさのデータに対し、コイル毎の特性の差を解消するための規格化(normalizing)を施す。規格化部25は、規格化後の規格化データをフィッティング処理部27に出力する。
本発明における大きさ処理データの一実施態様が規格化データである。
【0041】
フィッティング処理部27は、位相差分計算部26および規格化部25からそれぞれ入力された受信コイル毎の位相差分データおよび規格化データにそれぞれフィッティング処理を施し、各受信コイルの感度領域全体における位相差分データ分布および規格化データ分布を算出する。
フィッティング処理部27は、算出した位相差分データ分布および規格化データ分布の情報を合成部28に出力する。
【0042】
合成部28は、フィッティング処理部27から入力された位相差分データ分布および規格化データ分布の情報を合成し、コイルC1,C2ごとに図4(b)に示すような感度領域VS全域における感度分布を作成する。
合成部28は、作成した各コイルの感度分布の情報を、アンフォールド処理部29に出力する。
【0043】
アンフォールド処理部29は、フーリエ変換部24から送信されたSmall FOV画像DA1,DA2の画像データに対して合成部28から送信されたコイルC1,C2の感度分布の情報を用いてアンフォールディング処理を施し、Full FOVの画像DVを生成する。
【0044】
以下に、図5に沿ってさらに詳細に述べる。
まず、フーリエ変換部24には、ブロック51,53に示すようなSmall FOV画像DA1,DA2の元となるローデータRA1,RA2が入力される。また、フーリエ変換部24にはブロック55,57に示すようなコイルC1,C2のそれぞれに対応したキャリブレーションスキャンによるローデータRC1,RC2も入力される。
【0045】
ブロック60に示すように、フーリエ変換部24は、入力されたローデータRA1,RA2,RC1,RC2に対してそれぞれ2次元フーリエ変換(2DFT)を施す。
ブロック61,62に示すように、ローデータRA1,RA2からはSmall FOV画像DA1,DA2の画像データA1,A2がそれぞれ生成される。また、ブロック65,67に示すように、ローデータRC1,RC2からはコイルC1,C2に対応したフィッティングを施す前の感度分布を表わす画像IC1,IC2の画像データがそれぞれ生成される。
前述のように、フーリエ変換部24はフーリエ変換によりローデータから位相のデータおよび大きさのデータを取出す。したがって、ブロック61,62,65,67における画像DA1,DA2,IC1,IC2を生成するデータは、それぞれ位相のデータと大きさのデータを有する複素数のデータとなる。
【0046】
ブロック71,75にそれぞれ示すように、画像IC1の複素数のデータのうち、大きさのデータをMC1、位相のデータをθC1とする。
また、ブロック73,77にそれぞれ示すように、画像IC2の複素数のデータのうち、大きさのデータをMC2、位相のデータをθC2とする。
【0047】
図7は、位相のデータθC1およびθC2に対するフィッティング処理の概念をイメージとして捉えるための図である。
図7(a),(d)は、位相データθC1,θC2をそれぞれ用いて生成した、図3,4と同じXY平面に平行な断面における画像IθC1,IθC2をそれぞれ示している。
画像IθC1,IθC2におけるパターンDPC1,DPC2はそれぞれ、位相データθC1,θC2の分布をイメージとして表わすためのものである。
前述のように磁気共鳴信号は被検体4が存在する領域からのみ検出されるため、パターンDPC1,DPC2は被検体の画像IBに相当する領域にのみ現われる。
【0048】
また、コイルC1,C2による検出信号には、MRI装置100全体としての位相情報やボア131aにおける磁場の不均一等の外乱成分が混入する。画像IθC1,IθC2において、この外乱成分のイメージを、外乱成分パターンUMGとして描いている。外乱成分はコイルC1,C2の両方にほぼ等しく混入するため、外乱成分パターンUMGは画像IθC1,IθC2においてほぼ同じ位置に現われる。
【0049】
本実施の形態においては、ブロック83に示すように、コイルC1,C2の位相データθC1,θC2に対し、所定の一つの受信コイルの位相データとの差分を位相差分計算部26によって計算し、ブロック95,97に示すように位相差分データθ''C1,θ''C2をそれぞれ算出する。
このとき、本実施の形態に係る位相差分計算部26は、所定のオフセット値Cstを加えて位相差分データθ''C1,θ''C2を計算する。オフセット値Cstは、たとえば、所定の大きさの定数である。オフセット値Cstを加えることにより、重み付け等の処理が可能になる。
【0050】
たとえば、コイルC1の位相データθC1を用いて位相差分データを計算する場合には、θ''C1=θC1−θC1+Cst=Cstとなり、θ''C2=θC2−θC1+Cstとなる。
図7(b),(e)は、このようにして求めた位相差分データθ''C1,θ''C2を用いて生成した画像Iθ''C1,Iθ''C2をそれぞれ示している。画像Iθ''C1は、オフセット値Cstに基づく均一な画像が被検体画像IBの領域に分布しているように表示される。
また、画像Iθ''C2における被検体の画像IBの領域には、位相差分データθ''C2に基づくパターンDDPC2が現われる。
【0051】
受信コイルがN個存在する場合には、N個の受信コイルのn番目(1≦n≦N)の受信コイルの位相差分データθ''nは、n番目のコイルの位相データθnと差分計算に用いるl番目のコイルの位相データθlとを用いて、θ''n=θn−θl+Cstと表わされる。lは位相の差分をN個の受信コイルについて計算するときには固定であるが、1からNの間で任意に選択することができる。
【0052】
フィッティング処理部27が、ブロック100に示すように位相差分データθ''C1,θ''C2に対してそれぞれフィッティング処理を施す。
フィッティング処理部27は、たとえば、以下に示す2次元多項式によって位相差分データθ''C1,θ''C2をフィッティングし、ブロック105,107に示すように位相データ分布θ’C1,θ’C2を得る。
【0053】
【数1】
θ’n =An・x2+Bn・y2+Cn・x+Dn・y+En・xy+Fn…(1)
【0054】
上式(1)において、引き数n(1≦n≦N)はコイルC1,C2等のコイルを表わし、変数x,yは図7に示すような、画像のx座標、y座標をそれぞれ表わす。変数x,yの各次数の係数が、位相差分データによって一意に決まる。
【0055】
図7(c)がコイルC1の位相データ分布θ’C1によって得られる画像Iθ’C1を表わしており、図7(f)がコイルC2の位相データ分布θ’C2によって得られる画像Iθ’C2を表わしている。
フィッティングにより、感度領域VS全体において位相データの分布を得ることができる。画像Iθ’C1においては位相差分データθ''C1が被検体画像IB以外の領域VTにも外挿され、感度領域VS全体にオフセット値Cstによる画像が均一に分布する画像となる。画像Iθ’C2は、図7(f)に示すように、パターンDDPC2が被検体画像IB以外の領域VTを含む感度領域VS全体に広がった画像となる。
【0056】
以上のような手順により、位相のデータについてはフィッティング処理が終了し、コイルC1,C2の感度領域VS全体における分布を得ることができる。
大きさのデータについても同様に、以下に示すようにフィッティングして感度領域VS全体における分布を計算する。
【0057】
コイルC1,C2がそれぞれ検出した磁気共鳴信号の大きさのデータMC1,MC2は、図5のブロック81に示すように、規格化部25によって規格化される。規格化後の大きさのデータMC1,MC2を、ブロック91,93に示すようにそれぞれ規格化データM''C1,M''C2とする。
【0058】
図8は、規格化データM''C1,M''C2に対するフィッティング処理の概念をイメージとして捉えるための図である。
図8(a),(c)は、規格化データM''C1,M''C2をそれぞれ用いて生成した、図3,4,7と同じXY平面に平行な断面における画像IMC1,IMC2をそれぞれ示している。
画像IMC1,IMC2においては、規格化データM''C1,M''C2の分布を表わすイメージであるパターンDMC1,DMC2が、それぞれ被検体画像IBの領域にのみ現われる。
【0059】
ブロック100に示すように、フィッティング処理部27は規格化データM''C1,M''C2にフィッティング処理を施す。
フィッティング処理部27は、たとえば、以下に示す2次元多項式によって規格化データM''C1,M''C2をフィッティングし、ブロック101,103に示すように規格化データ分布M’C1,M’C2を得る。
【0060】
【数2】
M’n =an・x2+bn・y2+cn・x+dn・y+en・xy+fn…(2)
【0061】
上式(2)における引き数nおよび変数x,yの意味は式(1)の場合と同じである。変数x,yの各次数の係数が、規格化データM''C1,M''C2によって一意に決まる。
【0062】
図8(b)がコイルC1の規格化データ分布M’C1によって得られる画像IM’C1を表わしており、図8(d)がコイルC2の規格化データ分布M’C2によって得られる画像IM’C2を表わしている。
被検体画像IBにおける規格化データM''C1,M''C2の分布と規格化データ分布M’C1,M’C2は完全には一致しない場合もあるが、基本的には、画像IM’C1,IM’C2は図8(b),(d)に示すようにパターンDMC1,DMC2がそれぞれ感度領域VS全体に広がった画像となる。
【0063】
以上により、コイルC1,C2のそれぞれについて感度領域VS全体における規格化データ分布と位相データ分布を得ることができる。
合成部28は、ブロック111,113に示すように、下記式(3)により規格化データ分布M’C1と位相データ分布θ’C1とを合成してコイルC1の感度領域VS全体についての感度分布S1を生成し、規格化データ分布M’C2と位相データ分布θ’C2とを合成してコイルC2の感度分布S2を生成する。
【0064】
【数3】
Sn=M’n e-i θ’ n…(3)
【0065】
式(3)におけるθ’nは式(1)を表わし、M’nは式(2)を表わす。また、引き数nはコイルC1,C2等のコイルを表わす。ここでは、n=1のときコイルC1を表わし、n=2のときコイルC2を表わす。受信コイルがたとえばN個存在する場合には、1≦n≦Nとなる。
また、図9(a),(b)は、感度分布S1,S2をイメージングした画像DS1,DS2をそれぞれ示している。画像DS1,DS2におけるパターンPS1,PS2は、コイルC1,C2の感度分布をそれぞれ示すパターンである。図9(a),(b)に示すように、フィッティングにより感度領域VS全体における各コイルの感度分布を入手することができる。
【0066】
ブロック120に示すように、アンフォールド処理部29は、画像データA1,A2および感度分布S1,S2を用いて、下記式(4)によりブロック130に示すようにFull FOV画像DVの画像データVを計算して生成する。
【0067】
【数4】
Figure 0004262518
【0068】
上式(4)における引き数coilは複数の受信コイルのチャンネルを表わす。たとえば、本実施の形態においてはコイルC1またはコイルC2となる。したがって、たとえば、感度分布Sには上述の感度分布S1またはS2を、画像データAには画像データA1またはA2をそれぞれ当てはめる。
また、引き数pixelは折返りの引き数であり、リダクション要素Rに相当する。R=2であればエンコーディング数を1/2に間引いてスキャンし、引き数pixelは2までとなる。
なお、式(4)におけるS* は感度分布Sの行列の随伴(conjugate transpose)行列である。
画像データVを用いることにより、図3および図4(b)に示すようなFull FOVの画像DVを生成することができる。
【0069】
以上のように、本実施の形態においては、各受信コイルの受信信号の位相データについて、所定の一つのコイルの位相データとの差分を計算する。これにより、磁場不均一による位相特性やMRI装置全体の位相特性等の、各受信コイル特有の位相特性以外の外乱としての位相特性が相殺され、各受信コイルの位相特性を正確に入手することが可能になる。キャリブレーションスキャンにおいてグラディエントエコー法を用いる場合には磁場不均一の影響が大きいため、差分を計算することは特に効果的である。
また、位相データの差分についてフィッティングを施すため、フィッティングを容易に実行することができ、たとえば2次多項式等の比較的簡単な関数の形に位相データの分布を回帰させることができる。フィッティングにより、コイルの感度領域全体について位相特性を得ることができる。差分を計算したときにもコイル間における相対的位相関係は保持されるため、フォールディング処理に対する影響はない。
【0070】
さらに、本実施の形態においては、位相データだけでなく大きさのデータについてもフィッティングを施し、フィッティング後の位相データと大きさのデータを用いて各受信コイルの感度分布を生成する。これにより、コイルの感度領域全体についての感度分布を得ることができる。位相については差分を計算することにより外乱の影響が取り除かれているため、感度分布の精度が向上する。
キャリブレーションスキャンと本スキャンとにおいて被検体4の位置がずれていたとしても、感度領域全体において感度分布を得ることができるため、アンフォールディング処理を確実に、かつ、ある程度の精度で実行することができる。その結果、被検体の位置ずれによるFull FOV画像の画質劣化を抑制可能になる。また、フィッティングにより滑らかな感度分布が得られるため、感度分布を表わす画像のノイズが減少し、感度分布画像からFull FOV画像へ伝播されるノイズが減少する。その結果、Full FOV画像のノイズが減少してS/N比が向上し、Full FOV画像の画質が向上する。
感度分布は画像処理部23における比較的簡単な計算によって生成することができるため、本実施の形態に係るような感度領域全体において精度を向上可能な感度分布を得るためにMRI装置100等のハードウェアに特別な変更を施す必要はない。
【0071】
変形形態
位相差分計算部26における差分計算に用いるl番目のコイルは、各コイルが受信する磁気共鳴信号の強度に基づいて選択するようにしてもよい。たとえば、最も強い磁気共鳴信号を検出したコイルを選択して使用する。または、1スキャンにおける検出信号の2次元積分を計算し、1スキャンにおける平均的な検出信号強度が最も高いコイルを選択して使用してもよい。
コイルの選択は、たとえば、入手したデータに基づいて位相差分計算部26が自動的に判断する形態にすることによって実現することができる。もしくは、各コイルの受信信号の強度データを表示装置14に表示させるようにし、表示されたデータに基づいてオペレータが指定するようにしてもよい。
信号強度が相対的に高いコイルを選択することによって、信号とノイズとの判別が明確となり、感度分布の精度を向上させることができる。
【0072】
磁気共鳴信号の強度の代わりに、感度領域が最も広いコイルを選択するようにしてもよい。基本的に、感度領域はコイルにおける磁気共鳴信号を検出可能な検出面の面積に比例する。このため、差分に用いる受信コイルは、各受信コイルの形状に基づいて位相差分計算部26に対して予め指定しておくことができる。
感度領域が最も広いコイルを基準とすることにより、位相データの差分の値を必ず計算することが可能になり、フィッティング処理およびアンフォールディング処理を確実に実行することができるようになる。
【0073】
なお、上記実施の形態および図面に記載の内容は本発明を説明するための一例であり、上記実施の形態および図面に記載の形状や数値等の条件は特許請求の範囲内において適宜変更可能である。たとえば、上記実施の形態においては矩形状のコイルC1,C2を例に挙げて述べたが、受信コイルにはバードケージコイルやサドルコイル等の他のコイルを用いることも可能であり、受信コイルの数は3個以上でもよい。また、本発明は、図2に示すようなシリンドリカルタイプのマグネットアセンブリを有するMRI装置だけでなく、撮影空間の大部分が開放されている、いわゆるオープンタイプのマグネットアセンブリを有するMRI装置にも適用可能である。
さらに、たとえば、感度領域VSの全領域ではなく、所定の領域までフィッティングにより感度分布を計算するようにしてもよい。
【0074】
【発明の効果】
以上のように、本発明によれば、パラレルイメージングに用いるコイルの感度分布の精度を向上可能なコイルの感度分布作成方法を提供することができる。
また、本発明によれば、コイルの感度分布の精度向上に伴い、画質を向上させることが可能な磁気共鳴撮影方法および磁気共鳴撮影装置を提供することもできる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係るMRI装置の概略構成を示すブロック図である。
【図2】図1に示すMRI装置に用いるマグネットアセンブリの一例の外観を示す斜視図である。
【図3】パラレルイメージング法の概略について述べるための図である。
【図4】コイルの感度分布について述べるための図である。
【図5】本発明の一実施の形態における感度分布作成、および作成した感度分布を用いた磁気共鳴撮影における処理の流れを示すブロック図である。
【図6】図1に示すMRI装置における計算機の画像処理部の機能ブロック図である。
【図7】位相のデータに対するフィッティング処理の概念について述べるための図である。
【図8】大きさのデータに対するフィッティング処理の概念について述べるための図である。
【図9】複数のコイルについて最終的に得られる感度分布を表わす図である。
【符号の説明】
1…マグネットアセンブリ
4…被検体
7…計算機
21…制御部
23…画像処理部
24…フーリエ変換部
25…規格化部
26…位相差分計算部
27…フィッティング処理部
28…合成部
29…アンフォールド処理部
100…MRI(磁気共鳴撮影)装置
C1,C2…受信コイル

Claims (5)

  1. コイルの感度領域内の被検体からの磁気共鳴信号を位相方向のエンコードステップを間引いて検出して生成した折返し偽像が存在する画像から、複数のコイルの前記感度領域における感度分布の差に基づいて前記折返し偽像を除去する磁気共鳴撮影装置であって、
    前記複数のコイルのそれぞれについて、各コイルが検出した前記磁気共鳴信号を分析して位相のデータを算出して出力する分析部と、
    前記複数のコイルのそれぞれについて、当該コイルから得られる前記位相のデータと所定の一つのコイルから得られる前記位相のデータとの差分を計算し位相差分データを出力する位相差分計算部と、
    前記位相差分データに基づいてフィッティング処理を施し、それぞれの前記コイルについて、前記被検体の領域と当該被検体の領域以外の領域とを含んで前記感度領域の位相データ分布を算出して出力するフィッティング処理部と
    を有する磁気共鳴撮影装置。
  2. 前記分析部は、前記磁気共鳴信号の分析において前記位相のデータに加えて大きさのデータを算出して出力し、
    前記フィッティング処理部は、前記位相差分データのフィッティングに加えて前記分析部からの前記大きさのデータに基づく大きさ処理データをフィッティングし、それぞれの前記コイルについて、前記被検体の領域と当該被検体の領域以外の領域とを含んで前記感度領域の大きさ処理データ分布を算出し、
    前記フィッティング処理部からの前記位相データ分布と前記大きさ処理データ分布とを合成して複数の前記コイルのそれぞれについて前記感度分布を作成する合成部をさらに有する
    請求項1に記載の磁気共鳴撮影装置。
  3. 前記位相差分計算部は、前記複数のコイルのそれぞれの前記位相差分データに、所定のオフセット値を加える
    請求項1または2に記載の磁気共鳴撮影装置。
  4. 前記位相差分計算部は、全ての前記コイルのうちから検出する前記磁気共鳴信号の強度に基づいて選択された前記所定の一つのコイルからの前記位相のデータを用いて前記位相差分データを計算する
    請求項1〜3のいずれかに記載の磁気共鳴撮影装置。
  5. 前記位相差分計算部は、全ての前記コイルのうち前記感度領域が最も広いコイルを前記所定の一つのコイルとして前記位相差分データを計算する
    請求項1〜3のいずれかに記載の磁気共鳴撮影装置。
JP2003143742A 2003-05-21 2003-05-21 磁気共鳴撮影装置 Expired - Fee Related JP4262518B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143742A JP4262518B2 (ja) 2003-05-21 2003-05-21 磁気共鳴撮影装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143742A JP4262518B2 (ja) 2003-05-21 2003-05-21 磁気共鳴撮影装置

Publications (2)

Publication Number Publication Date
JP2004344327A JP2004344327A (ja) 2004-12-09
JP4262518B2 true JP4262518B2 (ja) 2009-05-13

Family

ID=33531428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143742A Expired - Fee Related JP4262518B2 (ja) 2003-05-21 2003-05-21 磁気共鳴撮影装置

Country Status (1)

Country Link
JP (1) JP4262518B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2762071B1 (en) * 2011-09-28 2021-03-24 National University Corporation Kumamoto University Image analysis device, image analysis method, and image analysis programme
JP7150415B2 (ja) * 2017-04-27 2022-10-11 コーニンクレッカ フィリップス エヌ ヴェ 磁気共鳴イメージング誘導放射線治療用の医療機器
KR102001874B1 (ko) * 2018-01-05 2019-07-19 한국과학기술원 고정 rf 코일과 자유이동 rf 코일의 조합을 이용하여 mri 이미지의 snr을 실시간으로 향상하는 방법 및 이를 이용한 mri 데이터 처리장치

Also Published As

Publication number Publication date
JP2004344327A (ja) 2004-12-09

Similar Documents

Publication Publication Date Title
US9396562B2 (en) MRI reconstruction with incoherent sampling and redundant haar wavelets
US9482732B2 (en) MRI reconstruction with motion-dependent regularization
US8664953B2 (en) Magnetic resonance imaging apparatus setting field-of-view (FOV) based on patient size and region of interest (ROI)
US8754645B2 (en) Method for spatially resolved determination of an MR parameter
US10031201B2 (en) Method and apparatus for magnetic resonance imaging
JP2007244848A (ja) データ補正装置、データ補正方法、磁気共鳴イメージング装置およびx線ct装置
JP2015039635A (ja) 種々の形式のシムコイルを使用する磁気共鳴トモグラフィシステムの特に患者に適応した静磁場均一化方法
US10444314B2 (en) Magnetic resonance imaging apparatus and method for acquiring under-sampled MR signal
JP2017070386A (ja) 磁気共鳴イメージング装置、画像処理装置、及び画像処理方法
US10698060B2 (en) Magnetic resonance imaging apparatus and medical image processing apparatus
JP6433653B2 (ja) 磁気共鳴イメージング装置、及び、磁気共鳴イメージングにおけるコイル選択支援方法
JP4047553B2 (ja) 磁気共鳴イメージング装置
EP3723037A1 (en) Medical information processing apparatus and medical information processing method
US7587231B2 (en) Water fat separated magnetic resonance imaging method and system using steady-state free-precession
US6915152B2 (en) Method for MR imaging with an array of RF coils
JP5268270B2 (ja) 磁気共鳴イメージング装置および磁気共鳴イメージングデータ処理方法
US7956611B2 (en) Magnetic resonance imaging apparatus and method
US9157978B2 (en) Magnetic resonance imaging apparatus and method
JP4262518B2 (ja) 磁気共鳴撮影装置
JP6996865B2 (ja) 磁気共鳴イメージング装置
JPH09238920A (ja) 磁気共鳴イメージング装置
WO2012057222A1 (ja) 磁気共鳴撮影装置
US11698432B2 (en) Magnetic resonance imaging system, and main magnetic field correction method therefor and storage medium
US11372067B2 (en) Method for acquiring water-fat separation image, and magnetic resonance imaging apparatus therefor
US10761164B2 (en) Generating a spatially resolved magnetic resonance dataset

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4262518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees