WO2013047526A1 - プレス成形品の製造方法およびプレス成形設備 - Google Patents

プレス成形品の製造方法およびプレス成形設備 Download PDF

Info

Publication number
WO2013047526A1
WO2013047526A1 PCT/JP2012/074571 JP2012074571W WO2013047526A1 WO 2013047526 A1 WO2013047526 A1 WO 2013047526A1 JP 2012074571 W JP2012074571 W JP 2012074571W WO 2013047526 A1 WO2013047526 A1 WO 2013047526A1
Authority
WO
WIPO (PCT)
Prior art keywords
press
molding
cooling
thin steel
mold
Prior art date
Application number
PCT/JP2012/074571
Other languages
English (en)
French (fr)
Inventor
圭介 沖田
純也 内藤
池田 周之
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201280046707.5A priority Critical patent/CN103826771B/zh
Priority to ES12837594T priority patent/ES2858201T3/es
Priority to EP12837594.6A priority patent/EP2762243B1/en
Priority to KR1020147008310A priority patent/KR20140056374A/ko
Priority to US14/344,516 priority patent/US9469891B2/en
Publication of WO2013047526A1 publication Critical patent/WO2013047526A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Definitions

  • the present invention relates to a method of manufacturing a hot press-formed product that requires strength such as that used for structural members of automobile parts, and equipment therefor, and in particular, a preheated thin steel plate (blank)
  • the present invention relates to a method of manufacturing a press-molded product that can be subjected to heat treatment simultaneously with shape formation and obtain a predetermined strength, and equipment used for such a manufacturing method.
  • the present invention relates to a method for manufacturing a press-formed product that can be manufactured with high productivity without causing breakage or cracking, and its equipment.
  • the weight reduction of the vehicle body is being promoted, and it is necessary to increase the strength of steel sheets used in automobiles as much as possible.
  • the strength of a thin steel plate is generally increased to reduce the weight of an automobile, the elongation EL and the r value (Rankford value) are lowered, and the press formability and shape freezing property are deteriorated.
  • a thin steel plate (blank) is heated to a predetermined temperature (for example, a temperature at which it becomes an austenite phase) to reduce the strength (that is, to facilitate forming)
  • a predetermined temperature for example, a temperature at which it becomes an austenite phase
  • a rapid heat treatment using the temperature difference between the two is performed at the same time as providing the shape to ensure strength after molding.
  • a hot press molding method (a so-called “hot press method”) is employed for manufacturing parts (for example, Patent Document 1).
  • Such a hot pressing method since it is molded in a low strength state, the spring back is reduced (the shape freezing property is good), and a strength of a tensile strength of 1500 MPa class is obtained by rapid cooling.
  • a hot pressing method is called by various names such as a hot forming method, a hot stamping method, a hot stamp method, and a die quench method in addition to the hot pressing method.
  • FIG. 1 is a schematic explanatory view showing a mold configuration for carrying out hot press molding as described above, wherein 1 is a punch, 2 is a die, 3 is a blank holder, and 4 is a thin steel plate (blank).
  • BHF indicates the crease pressing force
  • rp indicates the punch shoulder radius
  • rd indicates the die shoulder radius
  • CL indicates the punch / die clearance.
  • the punch 1 and the die 2 have passages 1a and 2a through which a cooling medium (for example, water) can pass, and the cooling medium is allowed to pass through the passages.
  • a cooling medium for example, water
  • a hot press forming facility provided with a press forming machine having a mold configuration as described above is disclosed in Non-Patent Document 1, for example.
  • a heating furnace for heating and softening a thin steel plate an apparatus for conveying the heated thin steel plate, a press forming machine for press-forming the thin steel plate, and trimming the formed product (laser) Etc., and a device for performing correction processing to obtain a final shape (see FIG. 2 to be described later).
  • the blank (thin steel plate) 4 is heated and softened to start forming (direct method). That is, in a state where the thin steel plate 4 in a high temperature state is sandwiched between the die 2 and the blank holder 3, the thin steel plate 4 is pushed into the hole of the die 2 (between 2 and 2 in FIG. 1) by the punch 1. The outer diameter is reduced to a shape corresponding to the outer shape of the punch 1. Further, by cooling the punch and die in parallel with the forming, heat is removed from the thin steel plate 4 to the mold (punch 1 and die 2), and the bottom dead center of the forming (the punch tip is located at the deepest part). At the time: the state shown in FIG.
  • the present invention has been made in view of the above circumstances, and its purpose is to produce a press-formed product having a desired strength with high productivity without causing breakage or cracking during press molding, And it is providing the press molding equipment suitable for such a manufacturing method.
  • the press molding method of the present invention that has achieved the above object is a method of producing a molded product by press-molding a thin steel plate using a press-molding die, and the thin steel plate is moved to an Ac 1 transformation point or higher. After heating to a temperature of 600 ° C., the mold is cooled to a temperature of 600 ° C. or less and then molding is started. After the molding is finished at a temperature equal to or higher than the martensite transformation start temperature Ms, the mold is released from the mold and quenched. It has a gist to do.
  • the forming is preferably mechanical press forming or hydraulic press forming with a press speed of 100 mm / second or more, and cooling to the temperature of 600 ° C. or lower is performed by using the thin steel plate as a metal. It is desirable to carry out by sandwiching with gas or by blowing gas and / or mist.
  • the press molding equipment of the present invention that has achieved the above object includes a heating furnace and a press molding machine, and after heating a thin steel plate to a temperature equal to or higher than the Ac 1 transformation point in the heating furnace, A press molding facility for press-molding a thin steel plate to produce a molded product, wherein the heated thin steel plate is rapidly cooled inside the heating furnace or between the heating furnace and the press molding machine.
  • a cooling unit is provided, and the press molding machine is a mechanical press machine or a hydraulic press machine having a press speed of 100 mm / second or more.
  • the present invention includes a press-molded product obtained by the press-molding equipment.
  • the steel sheet after heating the thin steel sheet, the steel sheet is cooled to a predetermined temperature and then press forming is started, the forming is finished at a temperature equal to or higher than the martensite transformation start temperature Ms, and the mold is released from the mold and quenched.
  • the mold operating efficiency can be improved, and it becomes possible to manufacture press-formed products with high productivity. Therefore, the manufacturing cost of hot stamp parts can also be reduced.
  • a cooling unit for rapidly cooling the heated thin steel plate is provided inside the heating furnace or between the heating furnace and the press molding machine, and a mechanical press molding machine or a high-speed hydraulic press machine is provided. Therefore, if a blank cooled to 600 ° C. or lower before pressing by this equipment is press-molded, it is possible to increase the mold operating efficiency and manufacture a press-molded product with high productivity.
  • the inventors of the present invention studied from various angles in order to heat a thin steel plate and then press-form it to produce a good press-formed product with high productivity.
  • the inventors focused on the press molding process. Conventionally, since quenching is performed while cooling in a mold together with molding, it has been necessary to hold the molding at the bottom dead center for a certain period of time. For example, in the above-mentioned Patent Document 2, since the punch is stopped at the bottom dead center after press forming and the steel sheet temperature is lowered by removing heat to the mold (bottom dead center holding cooling), the mold operating efficiency is poor. The productivity was also poor.
  • the present inventors do not perform quenching in the mold after forming the thin steel sheet, but if it is taken out from the mold and quenched, it is not necessary to hold at the bottom dead center, so that it is necessary for the press.
  • the time (die occupancy time) was shortened, it was possible to increase the operating efficiency of the die, and the productivity could be improved.
  • the inventors first heated a thin steel sheet having the chemical composition shown in Table 1 below to 900 ° C. (Ac 1 transformation point of this thin steel sheet: 718 ° C., Ac 3 transformation point: 830 ° C., martensite. Transformation start temperature Ms: 411 ° C.) After rapid cooling to 600 ° C. or less, a drawing molding experiment was performed using the mold (mechanical press machine) shown in FIG. It has been found that deep drawing can be performed, and if the forming is finished before reaching the martensite transformation start temperature Ms, and the thin steel sheet is released from the mold and cooled, sufficient quenching can be performed ( The heat pattern of the present invention is shown in FIG.
  • the occupation time of the mold can be greatly shortened.
  • the number of presses per minute spm: stroke / min
  • the productivity can be greatly improved.
  • the thin steel plate it is first necessary to heat the thin steel plate to a temperature equal to or higher than the Ac 1 transformation point to facilitate forming.
  • Ac 1 transformation point or higher is, Ac 1 two-phase region temperature of transformation point ⁇ Ac 3 transformation point, it is either good sense of the Ac 3 transformation point or above of the single-layer region temperature.
  • the upper limit of the heating temperature is preferably up to about 1000 ° C. When the temperature is higher than 1000 ° C., the generation of oxide scale becomes remarkable (for example, 100 ⁇ m or more), and the plate thickness (after descaling) of the molded product may be thinner than a predetermined value.
  • the conventional hot press line generally has a configuration (equipment configuration) as shown in FIG. 2 (schematic explanatory diagram). That is, as shown in FIG. 2, after the coiled thin steel sheet 10 is cut out by a cutting machine 11 (Blanking), it is heated in a heating furnace 12 and then conveyed to the press molding machine 13 for press forming. Thus, a press-formed product 14 is obtained (a heat pattern of a conventional example is shown in FIG. 7).
  • a thin steel plate is heated to a predetermined temperature in a heating furnace, and then directly conveyed to a press molding machine to start forming, but is rapidly cooled to a temperature of 600 ° C. or less, and then forming is started.
  • the molding start temperature exceeds 600 ° C., the quenching time after molding becomes long, the productivity is lowered, and quenching does not occur and sufficient strength may not be obtained.
  • the moldability may be reduced, and it may be difficult to draw or form a complex shaped part.
  • a preferable molding start temperature is 580 ° C. or lower, more preferably 550 ° C. or lower.
  • the molding start temperature is preferably higher than the Ms point, and more preferably Ms point + 30 ° C. or higher.
  • the cooling rate (average cooling rate) when cooling to 600 ° C. or lower after heating is such that if the cooling rate is slow, sufficient strength cannot be secured and productivity deteriorates. It is necessary to have. It is preferable to cool at 80 ° C./second or more.
  • FIGS. 3 to 6 Schematic explanatory diagram
  • a cooling unit 15 is provided inside the heating furnace 12 along with the heating furnace 12, and cools the thin steel plate 10 before moving from the heating furnace 12 to the press forming machine 13.
  • the cooling unit 15 may be provided between the heating furnace 12 and the press molding machine 13 (see, for example, “cooling unit” or “cooling zone” in FIGS. 4 to 6).
  • cooling can be performed by the following methods (1) to (4) (or in combination).
  • a means for bringing into contact with a metal as a refrigerant for example, a cooling means by sandwiching with a metal such as a metal plate or a metal roll
  • a gas cooling means is provided to cool the gas jet.
  • a mist cooling means is provided for cooling (for example, FIG. 6).
  • a dry ice shot means (cooled by causing the granule dry ice to collide with the blank material) is cooled.
  • the atmosphere can be controlled (for example, nitrogen or argon atmosphere) to prevent surface oxidation of the thin steel sheet. It is also possible to suppress surface oxidation by setting a relatively low temperature.
  • FIG. 4 is a schematic diagram showing a configuration example of the cooling unit, and shows a facility for cooling a heated thin steel plate by sandwiching it with a metal.
  • the heated thin steel sheet is transported from the heating furnace to a flat mold for cooling (dedicated cooling mold), and the thin steel sheet is rapidly cooled to a predetermined temperature by pressing with this mold (cooling by holding metal). .
  • the thin steel plate may be conveyed to a mold having a predetermined shape (dedicated mold for press) and press-molded.
  • the shape of the cooling-only mold is preferably a flat surface on the thin steel plate contact surface side in order to cool the thin steel plate uniformly, but in order to dare to have a temperature distribution or to perform some preliminary forming It does not necessarily have to be a flat surface and may have a step or curvature.
  • Molding may be performed after cooling to a predetermined temperature in the cooling section as described above (cooling is completed before molding is started), but cooling by the molding die is continued after molding is started. You may shape
  • the press forming may be performed in a plurality of times. For example, as shown in FIG. 5, after a thin steel plate is cooled to a predetermined temperature with a flat mold (cooling-dedicated mold), a mold having a predetermined shape sequentially. It is also possible to form in a complicated shape by press molding with (mold 1 for press, mold 2 for press). Further, a step of imparting shape freezing property and a step of performing die trim piercing may be added.
  • the press forming machine 13 for press forming a thin steel plate has a high press speed (for example, 100 mm / second or more), does not need to maintain a bottom dead center, and has low equipment cost.
  • a mechanical press for example, hydraulic pressure
  • a hydraulic press for example, hydraulic pressure
  • a hydraulic press with a press speed of 100 mm / second or more may be used.
  • the mechanical press can use various slide drive mechanisms, such as a crank press, a knuckle press, a link press, a friction press, and the like.
  • 4 and 5 are schematic views of a transfer press machine provided with a cooling die for cooling a thin steel plate and a press die for forming in the apparatus. It is not limited to.
  • the molding end temperature is not less than the martensitic transformation start temperature Ms. This is because if the martensitic transformation occurs during molding, the moldability may deteriorate. Therefore, the molding end temperature is Ms point or higher, more preferably Ms point + 10 ° C. or higher.
  • the quenching method after forming is not particularly limited, and after cooling the formed steel plate from the mold, it is allowed to cool, or the cooling rate is controlled by various cooling means such as the above (1) to (4) (for example, 10 ( ⁇ 200 ° C./second). From the viewpoint of securing a desired strength by quenching, it is desirable that the formed steel sheet is taken out of the mold and then cooled at 30 ° C./second or more by various cooling means such as (1) to (4) above. .
  • the effect of the method of the present invention is remarkably exhibited when molding is performed using a mold having a wrinkle presser (that is, draw molding).
  • the method of the present invention is not limited to drawing by forming using a crease presser, but also includes cases in which normal press forming is performed (for example, stretch forming). Even if it exists, the effect of this invention is achieved.
  • Example 1 No. 1 to 3
  • a thin steel plate (thickness: 1.0 mm) having a chemical composition shown in Table 1 below by a press forming facility having a cooling facility (cooling section or cooling zone) as exemplified in FIGS. (Circular blank with a diameter of 100 mm) is heated to 900 ° C. (Ac 1 transformation point of this steel plate: 718 ° C., Ac 3 transformation point: 830 ° C., martensitic transformation start temperature Ms: 411 ° C.) and then transferred to a cooling facility. Then, after cooling to a temperature of 600 ° C.
  • quenching rate “quenching time” by the cooling method shown in Table 2 (“quenching method”)
  • quenching method it is conveyed to the press machine and the mold [diameter Was formed by using a circular mold (cylindrical die and cylindrical punch) (see FIG. 1).
  • a thin steel plate was mechanically press-formed while cooling the mold through a coolant (water) in the punch and die (forming time 1 second, forming speed: 100 mm / second, top dead center (the punch tip was before forming).
  • the distance from the time point at the position) to the molding bottom dead center was set to 100 mm.
  • the conveyance conditions at this time, the rapid cooling conditions in the cooling facility, and the press molding conditions are as follows.
  • the “quenching rate” in the following “quenching conditions in the cooling equipment” is calculated based on the measured value obtained by measuring the cooling curve in each quenching method in advance.
  • the press start temperature was adjusted by controlling the rapid cooling time from taking out the thin steel plate from the heating furnace to press forming based on the cooling curve.
  • the measurement of the cooling curve was performed by rapidly cooling a thin steel plate attached with a thermocouple using each quenching method without performing press forming, and measuring changes in temperature and time.
  • Rapid cooling rate gas jet: 85 ° C / second (using He gas) Rapid cooling rate (metal clamping): 160 ° C / second (Copper alloy is used for the material of the cooling mold) Rapid cooling rate (mist injection): 310 ° C / second (mixing of air and water)
  • the Ac 1 transformation point, the Ac 3 transformation point, and the Ms point are obtained based on the following formulas (1) to (3) (for example, “Heat Treatment” 41 (3), 164 to 169, 2001). (See Tetsuro Kunitake, “Predicting Ac 1 , Ac 3 and Ms Transformation Points of Steel by Empirical Equations”).
  • the rate of operation efficiency of the mold (pressing machine) could be set to the conveyance time and quenching time of the thin steel sheet. That is, since the press forming of the previous thin steel plate is completed within the conveyance time of the next thin steel plate, it is no longer necessary to consider the press forming time as in the prior art. In this example, since the conveyance from the heating furnace to the cooling facility (cooling section or cooling zone) and the conveyance from the cooling facility to the press machine are synchronized, the operating efficiency of the mold (press machine) (one press molding) The time required to produce the product) could be the transport time (3 seconds) + the quenching time.
  • the rapid cooling time in the cooling facility before press forming can be set to a gas jet method (4 seconds), a metal clamping method (2 seconds), and a mist method (1 second), the temperature before pressing of the thin steel plate can be controlled.
  • the number of presses per minute (“number of parts molded per minute”) could be 8.6 times, 12 times, and 15 times (spm), respectively.
  • test No. 1 satisfying the above requirements of the present invention.
  • Nos. 1 to 3 were excellent in the number of presses per minute, shortened the time (spm) required for press molding, and increased the operating efficiency of the mold. Therefore, according to the present invention, a good press-formed product having a desired strength can be produced with high productivity without causing breakage or cracking during molding.
  • a thin steel plate is press-formed while cooling the die through a coolant (water) in the punch and die (forming time is 2 seconds, forming speed: 50 mm / second, distance from top dead center to bottom dead center) And was quenched for 20 seconds at the bottom dead center of the molding.
  • the press molding conditions at this time are as follows.
  • the steel sheet is heated to a temperature not lower than the Ac 1 transformation point, then cooled to a temperature of 600 ° C. or lower, and then molding is started with a mold, and the molding is terminated at a temperature equal to or higher than the martensite transformation start temperature Ms Then, by releasing from the mold and quenching, a press-formed product having a desired strength can be produced with high productivity without causing breakage or cracking during press molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

 プレス成形金型を用いて薄鋼板をプレス成形して成形品を製造する方法であって、前記薄鋼板をAc1変態点以上の温度に加熱した後、600℃以下の温度まで冷却してから金型で成形を開始し、マルテンサイト変態開始温度Ms以上の温度で成形を終了した後、前記金型から離型して焼入れをすることによって、深絞り加工が可能な程度に成形性が良好なプレス成形品を生産性良く製造する。

Description

プレス成形品の製造方法およびプレス成形設備
 本発明は、自動車部品の構造部材に使用されるような強度が必要とされる熱間プレス成形品を製造する方法、およびそのための設備に関し、特に予め加熱された薄鋼板(ブランク)を所定の形状に成形加工する際に、形状付与と同時に熱処理を施して所定の強度を得ることのできるプレス成形品を製造する方法、およびそのような製造方法に用いる設備に関するものであり、殊にプレス成形時に破断や割れなどを発生させずにプレス成形品を生産性良く製造できるプレス成形品の製造方法、およびその設備に関するものである。
 地球環境問題に端を発する自動車の燃費向上対策の一つとして車体の軽量化が進められており、自動車に使用される薄鋼板をできるだけ高強度化することが必要となる。しかし、自動車の軽量化のために一般に薄鋼板を高強度化していくと伸びELやr値(ランクフォード値)が低下し、プレス成形性や形状凍結性が劣化することになる。
 このような課題を解決するために、薄鋼板(ブランク)を所定の温度(例えば、オーステナイト相となる温度)に加熱して強度を下げた(即ち、成形を容易にした)後、薄鋼板(被加工材)に比べて低温(例えば室温)の金型で成形することによって、形状の付与と同時に、両者の温度差を利用した急冷熱処理(焼入れ)を行って、成形後の強度を確保する熱間プレス成形法(いわゆる「ホットプレス法」)が部品製造に採用されている(例えば特許文献1)。
 こうした熱間プレス方法によれば、低強度状態で成形されるので、スプリングバックも小さくなると共に(形状凍結性が良好)、急冷によって引張強度が1500MPa級の強度が得られることになる。尚、このような熱間プレス方法は、ホットプレス法の他、ホットフォーミング法、ホットスタンピング法、ホットスタンプ法、ダイクエンチ法、等様々な名称で呼ばれている。
 図1は、上記のような熱間プレス成形を実施するための金型構成を示す概略説明図であり、図中1はパンチ、2はダイ、3はブランクホルダー、4は薄鋼板(ブランク)、BHFはしわ押え力、rpはパンチ肩半径、rdはダイ肩半径、CLはパンチ/ダイ間クリアランスを夫々示している。また、これらの部品のうち、パンチ1とダイ2には冷却媒体(例えば水)を通過させることができる通路1a,2aが夫々の内部に形成されており、この通路に冷却媒体を通過させることによってこれらの部材が冷却されるように構成されている。
 上記のような金型構成を有するプレス成形機を備えた熱間プレス成形設備は、例えば非特許文献1に開示されている。この設備では、薄鋼板を加熱して軟化させるための加熱炉、加熱した薄鋼板を搬送するための装置、薄鋼板をプレス成形するためのプレス成形機、および成形した成形品をトリミング加工(レーザ等によって最終形状にするための補正加工)するための装置等を備えたものである(後記図2参照)。
 こうした金型を用いてホットプレス(例えば熱間深絞り加工)するに際しては、ブランク(薄鋼板)4を加熱して軟化させた状態で成形を開始する(ダイレクト工法)。即ち、高温状態にある薄鋼板4をダイ2とブランクホルダー3間に挟んだ状態で、パンチ1によってダイ2の穴内(図1の2,2間)に薄鋼板4を押し込み、薄鋼板4の外径を縮めつつパンチ1の外形に対応した形状に成形する。また、成形と並行してパンチおよびダイを冷却することによって、薄鋼板4から金型(パンチ1およびダイ2)への抜熱を行うと共に、成形下死点(パンチ先端が最深部に位置した時点:図1に示した状態)で更に保持冷却することによって素材の焼入れを実施する(ダイクエンチ)。こうした成形法を実施することによって、寸法精度の良い1500MPa級の成形品を得ることができ、しかも冷間で同じ強度クラスの部品を成形する場合に比較して、成形荷重が低減できることからプレス機の容量が小さくて済むことになる。このような成形方法は例えば特許文献2にも開示されている。
特開2002-102980号公報 特開2007-275937号公報
「新しい自動車生産ライン 熱間プレス成形とレーザ加工」:藍田和雄(AP&T)、FORUM on LASER MATERIAL PROCESSING 2010、pp.42-49
 しかしながらこれまでのホットプレスでは、通常700~900℃付近でプレスを行った後、引き続き金型内で200℃程度まで冷却して焼入れを行うため、成形下死点(パンチ先端が最深部に位置した時点)で一定時間保持する必要があり、ダイクエンチに要する時間が長かった。そのため、1分あたりのプレス回数(spm:ストローク/分)が2~6回程度と少なく、金型稼働効率が低く、生産性が悪かった。
 こうしたことから、冷間プレスによってニアネット(成形品に近い状態)まで成形し、その後、加熱・ダイクエンチする、いわゆるインダイレクト工法も提案されているが、この方法では成形工程が増えるためにやはり成形時間が長くなるという欠点がある。したがって、成形工程がそれほど多くならないダイレクト工法によって生産性を一層向上する技術が求められているのが実情である。
 本発明は上記事情に鑑みてなされたものであって、その目的は、プレス成形時に破断や割れなどを発生させることなく、所望の強度を有するプレス成形品を生産性良く製造するための方法、およびこうした製造方法に適したプレス成形設備を提供することにある。
 上記目的を達成することのできた本発明のプレス成形方法とは、プレス成形金型を用いて薄鋼板をプレス成形して成形品を製造する方法であって、前記薄鋼板をAc1変態点以上の温度に加熱した後、600℃以下の温度まで冷却してから金型で成形を開始し、マルテンサイト変態開始温度Ms以上の温度で成形を終了した後、前記金型から離型して焼入れをすることに要旨を有する。
 本発明を実施するにあたって、前記成形は、メカニカルプレス成形、またはプレス速度が100mm/秒以上の油圧プレス成形であることが望ましく、また前記600℃以下の温度までの冷却は、前記薄鋼板を金属で挟持して行うものであるか、ガスおよび/またはミストを吹き付けて行うものであることが望ましい。
 また上記目的を達成することのできた本発明のプレス成形設備とは、加熱炉とプレス成形機を備え、前記加熱炉で薄鋼板をAc1変態点以上の温度に加熱した後、プレス成形機によって薄鋼板をプレス成形して成形品を製造するためのプレス成形設備であって、前記加熱炉内部、または前記加熱炉と前記プレス成形機の間には、加熱された薄鋼板を急冷するための冷却部が備えられていると共に、前記プレス成形機は、メカニカルプレス機、或いはプレス速度が100mm/秒以上の油圧プレス機であることに要旨を有する。
 本発明には上記プレス成形設備によって、得られたプレス成形品も含まれる。
 本発明によれば、薄鋼板を加熱した後、所定の温度まで冷却してからプレス成形を開始し、マルテンサイト変態開始温度Ms以上の温度で成形を終了し、金型から離型して焼入れをするようにしたので、金型稼働効率を高めることができ、プレス成形品を生産性良く製造することが可能となった。したがってホットスタンプ部品の製造コストも低減できる。
 また本発明によれば、前記加熱炉内部、または前記加熱炉とプレス成形機の間に、加熱された薄鋼板を急冷するための冷却部を備えると共に、メカニカルプレス成形機或いは高速の油圧プレス機を備えたので、この設備によってプレス前に600℃以下に冷却されたブランクをプレス成形すれば、金型稼働効率を高めてプレス成形品を生産性良く製造することが可能である。
 したがって本発明によれば、成形時に破断や割れなどを発生させることなく所望の強度を有する良好なプレス成形品を生産性良く提供することが可能である。
熱間プレス成形を実施するための金型構成を示す概略説明図である。 従来の熱間プレス成形設備の構成例を示す概略説明図である。 本発明のプレス成形設備の一例を示す概略説明図である。 本発明のプレス成形設備の冷却部の構成例を示す概略説明図である。 本発明のプレス成形設備の他の冷却部の構成例を示す概略説明図である。 本発明のプレス成形設備の更に他の冷却部の構成例を示す概略説明図である。 従来のプレス成形設備を用いてプレス成形したときのヒートパターンと時間との関係を示すグラフである。 本発明のプレス成形設備を用いてプレス成形したときのヒートパターンと時間との関係を示すグラフである。
 本発明者らは、薄鋼板を加熱した後、プレス成形し、良好なプレス成形品を生産性良く製造するために、様々な角度から検討した。
 まず、本発明者らはプレス成形工程に着目した。従来は、金型内で成形と共に冷却して焼入れを行うため、成形下死点で一定時間保持しなければならなかった。例えば上記特許文献2では、プレス成形後、成形下死点でパンチを停止させて金型への抜熱により鋼板温度を低下させているため(下死点保持冷却)、金型稼動効率が悪く、生産性も悪かった。
 そこで本発明者らは、薄鋼板を成形後、金型内で焼入れを行わず、金型から取り出して焼入れを行うようにすれば、成形下死点で保持する必要がないため、プレスに要する時間(金型占有時間)が短くなり、金型の稼働効率を高めることが可能となり、生産性を向上できると考え、成形条件について更に検討を重ねた。
 その結果、薄鋼板(ブランク)を加熱した後、そのまま成形を開始するのではなく、薄鋼板を加熱した後、600℃以下の温度域まで急冷してから金型で成形を開始し、マルテンサイト変態開始温度Ms以上の温度で成形を終了した後、金型から離型して焼入れするようにすれば、割れなどを生じることなく良好な成形性を維持しつつ、生産性も大幅に向上できることを見出し、本発明を完成した。以下、本発明が完成された経緯を具体的に説明する。
 本発明者らは、まず後記表1に示す化学成分組成を有する薄鋼板を、900℃に加熱した後(この薄鋼板のAc1変態点:718℃、Ac3変態点:830℃、マルテンサイト変態開始温度Ms:411℃)、600℃以下に急冷してから前記図1に示した金型(メカニカルプレス機)を用いて前述した手順で絞り成形実験を行ったところ、成形下死点まで深絞り成形が可能であり、しかもマルテンサイト変態開始温度Msに達するまでに成形を終了させ、金型から薄鋼板を離型して冷却すれば、十分に焼入れを行うことができることが判明した(本発明のヒートパターンを図8に示す)。したがって、金型内で焼入れをする従来例と比べて、金型占有時間を大幅に短縮できるため、例えば1分あたりのプレス回数(spm:ストローク/分)を8~15回とすることができ、従来の2~6回と比べると大幅に生産性を向上させることが可能になった。
 本発明を実施するに当たっては、まず薄鋼板をAc変態点以上の温度に加熱して成形を容易にする必要がある。なお、Ac変態点以上とは、Ac変態点~Ac3変態点の二相域温度、Ac3変態点以上の単層域温度のいずれでもよい意味である。この加熱温度の上限は1000℃程度までとすることが好ましい。1000℃よりも高くなると、酸化スケールの生成が著しくなって(例えば、100μm以上)、成形品の板厚(デスケーリング後)が所定のものよりも薄くなる恐れがある。
 ところで、従来の熱間プレスラインは、図2(概略説明図)に示すような構成(設備構成)となっているのが一般的である。即ち、図2に示すように、コイル状態の薄鋼板10を切り出し機11によって切り出した後(Blanking)、加熱炉12内で加熱し、その後、プレス成形機13に搬送してプレス成形を行うことによって、プレス成形品14が得られる(従来例のヒートパターンを図7に示す)。
 本発明では、薄鋼板を加熱炉で所定の温度に加熱した後、そのままプレス成形機に搬送して成形を開始するのではなく、600℃以下の温度まで急冷してから成形を開始する。成形開始温度が600℃を超えると成形後の焼入れ時間が長くなり、生産性が低下するとともに、焼きが入らず十分な強度が得られないことがある。また、成形性が低下し、絞り成形や複雑形状部品の成形が困難となることがある。好ましい成形開始温度は580℃以下、より好ましくは550℃以下である。一方、成形開始温度を低下させすぎると、成形開始の段階で既に薄鋼板自体が硬くなってしまい、良好な成形性を発揮できなくなる。したがって成形開始温度はMs点よりも高温とすることが好ましく、より好ましくはMs点+30℃以上とすることが望ましい。加熱後、600℃以下まで冷却する際の冷却速度(平均冷却速度)は、冷却速度が遅いと十分な強度が確保できないことや生産性が悪化することから、30℃/秒以上の冷却能力を有するものであることが必要である。好ましくは80℃/秒以上で冷却することが望ましい。
 薄鋼板を加熱後、600℃以下まで冷却を行うに際しては、例えば図3~6(概略説明図)に示すような設備構成を採用すれば良い(図3において、図2に対応する部分には同一の参照符号が付してある)。本発明のプレス成形設備においては、加熱炉12の内部に、加熱炉12に付随して冷却部15が備えられ、薄鋼板10を加熱炉12からプレス成形機13に移動するまでに冷却する。この冷却部15は、加熱炉12とプレス成形機13の間の備えるようにしても良い(例えば図4~6の「冷却部」または「冷却帯」参照。)。冷却部15で行う冷却では、例えば下記(1)~(4)等の方法で(或は併用して)冷却を実施することができる。
 (1)冷媒としての金属と接触させる手段(例えば、金属板や金属ロールなどの金属で挟持することによる冷却手段)を設けて抜熱する(例えば図4、5)。
 (2)ガス冷却手段を設けてガスジェット冷却する。
 (3)ミスト冷却手段を設けて冷却する(例えば図6)。
 (4)ドライアイスショット手段(顆粒ドライアイスをブランク材に衝突させて冷却する)を設けて冷却する。
 本発明の冷却設備(冷却部)を用いた冷却では、冷却と同時に雰囲気を制御することも好ましい。雰囲気を制御(例えば、窒素やアルゴン雰囲気)して、薄鋼板の表面酸化を防止することができる。また比較的低い温度に設定することによって表面酸化を抑制することも可能である。
 図4は、冷却部の構成例を示す概略図であり、加熱された薄鋼板を金属で挟持して冷却する設備を示す。加熱された薄鋼板は、加熱炉から急冷用の平面金型(冷却専用金型)に搬送され、この金型でプレスすることによって薄鋼板は所定の温度に急冷される(金属挟持による冷却)。冷却後は薄鋼板を所定の形状を有する金型(プレス専用金型)に搬送してプレス成形すればよい。冷却専用金型の形状は、薄鋼板を均一に冷却させるために金型の薄鋼板接触面側が平面であることが好ましいが、あえて温度分布をつける場合や、若干の予備成形を行うためには必ずしも平面である必要はなく段差や曲率を持っていてもよい。
 上記のような冷却部で所定温度までの冷却を行った後、成形を行っても良いが(成形を開始するまでに冷却を完了)、成形を開始してからも引き続き成形金型による冷却を行いつつ成形を行っても良い。
 またプレス成形は複数回に分けて行ってもよく、例えば図5に示すように平面金型(冷却専用金型)で薄鋼板を所定の温度まで冷却した後、順次所定の形状を有する金型でプレス成形することで、複雑な形状に成形することも可能である(プレス専用金型1、プレス専用金型2)。更に形状凍結性を付与する工程やダイトリム・ピアスを行う工程を付加してもよい。
 本発明では、薄鋼板をプレス成形するためのプレス成形機13には、プレス速度が速いこと(例えば、100mm/秒以上)、下死点保持が必要ないこと、設備コストが安いことから圧力の発生機構に機械的な駆動力による機械プレス(以下、メカニカルプレスという)を使用することがプレス時間を短縮する観点からは好ましいが、圧力の発生機構に液圧を使用する液圧プレス(例えば油圧プレス)であってもプレス速度が100mm/秒以上の油圧プレス機を使用してもよい。このようなプレス速度を有する油圧プレス機であれば、下死点での保持時間も殆どなく、金型稼働効率を高めることが可能である。
 従来は金型内で焼入れを行うために成形下死点で保持する手段として、液圧プレスを使う必要があったが、本発明では焼入れを金型から離型して行うため、従来で使用されているような比較的プレス速度の遅い液圧プレスを使用しなくてもよい。メカニカルプレスやプレス速度が100mm/秒以上の油圧プレスを使用した場合、プレスに要する時間を短縮でき、しかも本発明では、焼入れのために金型を成形下死点で保持しないため、1分あたりのプレス回数(spm:ストローク/分)を向上できるため、金型稼働効率がよい。
 メカニカルプレス機は各種スライド駆動機構のものを使用することができ、例えばクランクプレス、ナックルプレス、リンクプレス、フリクションプレスなどを使用できる。また図4、5は、装置内で薄鋼板を冷却するための冷却専用金型と成形するためのプレス専用金型を備えたトランスファープレス機の概略図を示しているが、プレス成形機はこれに限定されない。
 成形終了温度については、マルテンサイト変態開始温度Ms以上とする。成形中にマルテンサイト変態が生じると成形性が低下する場合があるからである。したがって成形終了温度はMs点以上、より好ましくはMs点+10℃以上である。
 成形終了後の焼入れ方法は特に限定されず、成形した鋼板を金型から取り出した後、放冷、または上記(1)~(4)などの各種冷却手段によって冷却速度を制御しながら(例えば10~200℃/秒)冷却すればよい。焼き入れによって所望の強度を確保するという観点からは成形した鋼板を金型から取り出した後、上記(1)~(4)などの各種冷却手段によって、30℃/秒以上で冷却することが望ましい。
 本発明の熱間プレス成形品の製造方法では、前記図1に示したような単純な形状の熱間プレス成形品を製造する場合は勿論のこと、比較的複雑な形状の成形品を製造する場合にも適用できる。
 本発明方法の効果は、しわ押えを有する金型を用いて成形(即ち、絞り成形)する場合に顕著に発揮されることになる。但し、本発明方法は、しわ押えを用いて成形する絞り成形に限らず、通常のプレス成形を実施する場合(例えば、張り出し成形)も含むものであり、こうした方法によって成形品を製造する場合であっても本発明の効果が達成される。
 本発明によれば、成形時に破断や割れを発生させることなく、所定の強度を有する良好なプレス成形品の製造が可能となる。
 以下、本発明の効果を実施例によって更に具体的に示すが、下記実施例は本発明を限定するものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
 本願は、2011年9月30日に出願された日本国特許出願第2011-218348号に基づく優先権の利益を主張するものである。2011年9月30日に出願された日本国特許出願第2011-218348号の明細書の全内容が、本願に参考のため援用される。
 (実施例1:No.1~3)
 図3、図4および図6に例示されるような冷却設備(冷却部又は冷却帯)を有するプレス成形設備によって、下記表1に示す化学成分組成を有する薄鋼板(厚さ:1.0mm、直径:100mmの円形ブランク)を、900℃に加熱した後(この鋼板のAc1変態点:718℃、Ac3変態点:830℃、マルテンサイト変態開始温度Ms:411℃)、冷却設備に搬送して表2に示す冷却方法(「急冷方法」)により所定の条件(「急冷速度」、「急冷時間」)で600℃以下の温度まで冷却した後、プレス機まで搬送し、金型[直径が50mmの円形の金型(円筒ダイおよび円筒パンチ)]を用い(前記図1参照)、円筒深絞り成形を行った。この際、パンチおよびダイ内に冷媒(水)を通して金型を冷却しながら薄鋼板をメカニカルプレス成形した(成形時間1秒、成形速度:100mm/秒とし、上死点(パンチ先端が成形前の位置にある時点)から成形下死点までの距離を100mmとした。)。このときの搬送条件、冷却設備での急冷条件、プレス成形条件は下記の通りである。
 なお、下記の「冷却設備での急冷条件」における「急冷速度」は、各急冷方法での冷却曲線をあらかじめ測定し、その測定値に基づいて算出したものである。また、プレス開始温度は、冷却曲線に基づいて、加熱炉から薄鋼板を取り出してプレス成形するまでの急冷時間を制御して調整した。冷却曲線の測定は、熱電対を取り付けた薄鋼板を、各急冷方法を用いて、プレス成形を行わないまま急冷し、温度と時間の変化を測定した。
 <搬送条件>
 加熱炉から冷却部(冷却帯)および冷却部(冷却帯)からプレス専用金型までの搬送時間:それぞれ3秒で同期
 <冷却設備での急冷条件>
 急冷速度(ガスジェット):85℃/秒(Heガスを利用)
 急冷速度(金属挟持):160℃/秒(冷却金型の素材には銅合金を利用)
 急冷速度(ミスト噴射):310℃/秒(空気と水の混合)
 <プレス成形条件>
 しわ押え力:3トン
 ダイ肩半径rd:5mm
 パンチ肩半径rp:5mm
 パンチ-ダイ間クリアランスCL:0.15/2+1.0(鋼板厚さ)mm
 成形高さ:25mm
 プレス機:メカニカルプレス(AIDA社製80tクランクプレス)
 なお、Ac1変態点、Ac3変態点、Ms点は、下記の(1)式~(3)式に基づいて求めたものである(例えば『熱処理』41(3),164~169,2001 邦武立朗「鋼のAc1,Ac3およびMs変態点の経験式による予測」参照)。
 Ac1変態点(℃)=723+29.1×[Si]-10.7×[Mn]+16.9×[Cr]-16.9×[Ni]   …(1)
 Ac3変態点(℃)=-230.5×[C]+31.6×[Si]-20.4×[Mn]-39.8×[Cu]-18.1×[Ni]-14.8×[Cr]+16.8×[Mo]+912         …(2)
 Ms(℃)=560.5-{407.3×[C]+7.3×[Si]+37.8×[Mn]+20.5×[Cu]+19.5×[Ni]+19.8×[Cr]+4.5×[Mo]}              …(3)
 但し、[C],[Si],[Mn],[Cr],[Mo],[Cu]および[Ni]は、夫々C,Si,Mn,Cr,Mo,CuおよびNiの含有量(質量%)を示す。また、上記(1)式~(3)式の各項に示された元素が含まれない場合は、その項がないものとして計算する。
Figure JPOXMLDOC01-appb-T000001
 プレス成形した後、金型から取り出して空冷(放冷)した(「プレス成形後冷却速度」)。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 試験No.1~3では、金型(プレス機)の稼動効率の律速を薄鋼板の搬送時間および急冷時間とすることができた。すなわち、次の薄鋼板の搬送時間内に前の薄鋼板のプレス成形が終了するため、従来のようにプレス成形時間を考慮する必要がなくなった。本実施例では加熱炉から冷却設備(冷却部または冷却帯)までの搬送と、冷却設備からプレス機までの搬送を同期させているため、金型(プレス機)の稼動効率(一つのプレス成形品を作製するのに必要な時間)は、搬送時間(3秒)+急冷時間とすることができた。
 またプレス成形前の冷却設備における急冷時間を、ガスジェット方式(4秒)、金属挟持方式(2秒)、ミスト方式(1秒)と設定して薄板鋼板のプレス前温度を制御できるため、1分あたりのプレス回数(「一分あたりの部品成型回数」)をそれぞれ8.6回、12回、15回(spm)とすることができた。
 試験No.1~3によれば、良好な成形性が得られ、成形下死点まで深絞りができた(前記図1に示した状態)。また、成形時に破断や割れなどが発生することなく良好なプレス成形品が得られた。更にいずれの場合もビッカース硬さで450Hv以上を達成できた。
 下記参考例(表2中、No.4)と比べると、上記本発明の要件を満足する試験No.1~3は、1分あたりのプレス回数に優れており、プレス成形に要する時間(spm)を短縮でき、金型の稼働効率を高めることが可能となった。したがって本発明によれば、成形時に破断や割れなどを発生させることなく所望の強度を有する良好なプレス成形品を生産性良く製造できた。
 (参考例:試験No.4)
 前記図2に示した従来のプレス成形設備によって、実施例1と同じ化学成分組成を有する薄鋼板を用いて、900℃に加熱した後、プレス成形機(金型:図1)に搬送して(搬送時間:3秒、プレス開始時の鋼板の温度:840℃)、実施例1と同じく円筒深絞り成形を行った。なお、この参考例では、プレス前に冷却設備による冷却を行っておらず、成形性が悪いため、薄鋼板の直径は90mmとし、成形高さも20mmとした。成形に際してはパンチおよびダイ内に冷媒(水)を通して金型を冷却しながら薄鋼板をプレス成形すると共に(成形時間2秒、成形速度:50mm/秒とし、上死点から下死点までの距離を100mmとした。)、成形下死点で20秒保持して焼入れを行った。このときのプレス成形条件は下記の通りである。
 <プレス成形条件>
 しわ押え力:3トン
 ダイ肩半径rd:5mm
 パンチ肩半径rp:5mm
 パンチ-ダイ間クリアランスCL:0.15/2+1.0(鋼板厚さ)mm
 成形高さ:20mm
 プレス機:油圧プレス(川崎油工社製300t油圧プレス)
 薄鋼板をプレス成形した後、成形下死点で停止してから、焼入れが終了するまでの保持時間は22秒であった。したがって1分あたりのプレス回数は2.7回[2.7spm(ストローク/minute)]程度であり、金型の稼働効率が悪く、生産性が低かった。結果を上記表2に示す。
 本発明は、薄鋼板をAc1変態点以上の温度に加熱した後、600℃以下の温度まで冷却してから金型で成形を開始し、マルテンサイト変態開始温度Ms以上の温度で成形を終了した後、前記金型から離型して焼入れをすることによって、プレス成形時に破断や割れなどを発生させることなく、所望の強度を有するプレス成形品を生産性良く製造できる。
1 パンチ
2 ダイ
3 ブランクホルダー
4,10 ブランク(薄鋼板)
11 切り出し機
12 加熱炉
13 プレス成形機
14 プレス成形品
15 冷却部

Claims (6)

  1.  プレス成形金型を用いて薄鋼板をプレス成形して成形品を製造する方法であって、前記薄鋼板をAc1変態点以上の温度に加熱した後、600℃以下の温度まで冷却してから金型で成形を開始し、マルテンサイト変態開始温度Ms以上の温度で成形を終了した後、前記金型から離型して焼入れをすることを特徴とするプレス成形品の製造方法。
  2.  前記成形は、メカニカルプレス成形、またはプレス速度が100mm/秒以上の油圧プレス成形である請求項1に記載の製造方法。
  3.  前記600℃以下の温度までの冷却は、前記薄鋼板を金属で挟持して行うものである請求項1または2に記載の製造方法。
  4.  前記600℃以下の温度までの冷却は、ガスおよび/またはミストを吹き付けて行うものである請求項1または2に記載の製造方法。
  5.  加熱炉とプレス成形機を備え、前記加熱炉で薄鋼板をAc1変態点以上の温度に加熱した後、プレス成形機によって薄鋼板をプレス成形して成形品を製造するためのプレス成形設備であって、前記加熱炉内部、または前記加熱炉と前記プレス成形機の間には、加熱された薄鋼板を急冷するための冷却部が備えられていると共に、前記プレス成形機はメカニカルプレス機、またはプレス速度が100mm/秒以上の油圧プレス機であることを特徴とするプレス成形設備。
  6.  請求項5に記載のプレス成形設備によって得られたものであるプレス成形品。
     
     
PCT/JP2012/074571 2011-09-30 2012-09-25 プレス成形品の製造方法およびプレス成形設備 WO2013047526A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280046707.5A CN103826771B (zh) 2011-09-30 2012-09-25 冲压成形品的制造方法和冲压成形设备
ES12837594T ES2858201T3 (es) 2011-09-30 2012-09-25 Método para fabricar un artículo moldeado en prensa y equipo de moldeo en prensa
EP12837594.6A EP2762243B1 (en) 2011-09-30 2012-09-25 Method for manufacturing press-molded article and press molding equipment
KR1020147008310A KR20140056374A (ko) 2011-09-30 2012-09-25 프레스 성형품의 제조 방법 및 프레스 성형 설비
US14/344,516 US9469891B2 (en) 2011-09-30 2012-09-25 Press-forming product manufacturing method and press-forming facility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-218348 2011-09-30
JP2011218348A JP2013075329A (ja) 2011-09-30 2011-09-30 プレス成形品の製造方法およびプレス成形設備

Publications (1)

Publication Number Publication Date
WO2013047526A1 true WO2013047526A1 (ja) 2013-04-04

Family

ID=47995558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074571 WO2013047526A1 (ja) 2011-09-30 2012-09-25 プレス成形品の製造方法およびプレス成形設備

Country Status (7)

Country Link
US (1) US9469891B2 (ja)
EP (1) EP2762243B1 (ja)
JP (1) JP2013075329A (ja)
KR (1) KR20140056374A (ja)
CN (1) CN103826771B (ja)
ES (1) ES2858201T3 (ja)
WO (1) WO2013047526A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015032907A1 (de) * 2013-09-05 2015-03-12 Technische Universität Bergakademie Freiberg Verfahren zur herstellung eines hochfesten bzw. höchstfesten formteils aus härtbarem stahl
WO2015191678A1 (en) * 2014-06-11 2015-12-17 Magna International Inc. Performing and communicating sheet metal simulations employing a combination of factors
WO2016047058A1 (ja) * 2014-09-25 2016-03-31 Jfeスチール株式会社 熱間プレス成形品の製造方法および熱間プレス成形品
JP2016185565A (ja) * 2015-03-09 2016-10-27 オートテック エンジニアリング エー.アイ.イー. プレスシステム及び方法
CN106399651A (zh) * 2016-12-06 2017-02-15 圣智(福建)热处理有限公司 一种薄壁大直径模具整体真空淬火工艺
US10618094B2 (en) 2015-03-09 2020-04-14 Autotech Engineering S.L. Press systems and methods

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103140304B (zh) * 2010-09-30 2015-08-19 株式会社神户制钢所 冲压成形品及其制造方法
KR101318060B1 (ko) * 2013-05-09 2013-10-15 현대제철 주식회사 인성이 향상된 핫스탬핑 부품 및 그 제조 방법
JP6381967B2 (ja) * 2014-05-22 2018-08-29 住友重機械工業株式会社 成形装置及び成形方法
GB2530709B (en) * 2014-07-14 2018-03-21 Impression Tech Limited Method to operate a press at two speeds for metal sheet forming
JP6417138B2 (ja) * 2014-07-16 2018-10-31 住友重機械工業株式会社 成形装置
DE102014112244A1 (de) 2014-08-26 2016-03-03 Benteler Automobiltechnik Gmbh Verfahren und Presse zur Herstellung wenigstens abschnittsweise gehärteter Blechbauteile
DE102014114394B3 (de) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Verfahren zum Erzeugen eines gehärteten Stahlblechs
JP6162677B2 (ja) * 2014-11-28 2017-07-12 豊田鉄工株式会社 ホットスタンプトリム部品
DE102015101668A1 (de) * 2015-02-05 2016-08-11 Benteler Automobiltechnik Gmbh Zweifach fallendes Heiz- und Formwerkzeug sowie Verfahren zur Herstellung warmumgeformter und pressgehärteter Kraftfahrzeugbauteile
MX2017009575A (es) * 2015-04-10 2017-11-01 R B & W Mfg Llc Metodos para instalar un sujetador de autobloqueo.
CN106350640A (zh) * 2015-07-17 2017-01-25 宝山钢铁股份有限公司 一种对冷轧带钢进行连续淬火的方法
CN106425084B (zh) * 2015-08-07 2019-05-31 昆山汉鼎精密金属有限公司 自动化加工系统及方法
EP3211103B1 (de) * 2016-02-25 2020-09-30 Benteler Automobiltechnik GmbH Verfahren zur herstellung eines kraftfahrzeugbauteils mit mindestens zwei voneinander verschiedenen festigkeitsbereichen
EP3437750A1 (en) * 2017-08-02 2019-02-06 Autotech Engineering A.I.E. Press method for coated steels
US11198915B2 (en) 2018-02-08 2021-12-14 Ford Motor Company Hybrid quench process for hot stamping of steel parts
CN109333001B (zh) * 2018-09-30 2020-06-19 苏州普热斯勒先进成型技术有限公司 高强钢汽车外覆盖件总成及其制造方法
CN113165299B (zh) * 2018-11-28 2023-05-02 日本制铁株式会社 冲压成形品的制造方法、金属板集、冲压装置以及冲压生产线
KR20200067343A (ko) 2018-12-04 2020-06-12 한국생산기술연구원 피어싱 및 버링 가공을 동시에 실시하는 성형 장치
KR102206174B1 (ko) * 2018-12-24 2021-01-22 주식회사 엠에스 오토텍 경량의 차량 부품 제조방법
US11209040B2 (en) 2019-07-15 2021-12-28 Rb&W Manufacturing Llc Self-clinching fastener
CN112676459B (zh) * 2020-12-07 2022-09-27 北京卫星制造厂有限公司 一种铝锂合金复杂薄壁结构件的超低温柔性成形方法
US11913488B2 (en) 2021-05-27 2024-02-27 Rb&W Manufacturing Llc Self-clinching and self-piercing construction element with multi-purpose pilot
CN117867246B (zh) * 2023-12-26 2024-08-23 武汉理工大学 一种超高强钢板的强韧化热成形方法及高强韧热成形构件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286626A (ja) * 1986-06-04 1987-12-12 Nippon Steel Corp 鋼板のプレス成形方法
JPH01113137A (ja) * 1987-10-23 1989-05-01 Daido Steel Co Ltd ホビングによる金型製造方法
JP2005199300A (ja) * 2004-01-15 2005-07-28 Komatsu Sanki Kk プレス加工方法
JP2005329449A (ja) * 2004-05-21 2005-12-02 Kobe Steel Ltd 温熱間成形品の製造方法および成形品
JP2007275937A (ja) * 2006-04-07 2007-10-25 Nippon Steel Corp 鋼板熱間プレス方法及びプレス成形品
JP2010036208A (ja) * 2008-08-04 2010-02-18 Sumitomo Metal Ind Ltd 金属板の熱間プレス成形方法
JP2010520058A (ja) * 2007-03-01 2010-06-10 シューラー エスエムゲー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト ブランクを成形するための方法およびブランク用冷却装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389562B2 (ja) 2000-07-28 2003-03-24 アイシン高丘株式会社 車輌用衝突補強材の製造方法
JP2005288528A (ja) * 2004-04-05 2005-10-20 Nippon Steel Corp 成形後高強度となる鋼板の熱間プレス方法
DE102005003551B4 (de) * 2005-01-26 2015-01-22 Volkswagen Ag Verfahren zur Warmumformung und Härtung eines Stahlblechs
CN101280352B (zh) * 2008-05-21 2010-06-09 钢铁研究总院 热成型马氏体钢零件制备方法
AU2011269680B2 (en) * 2010-06-24 2015-04-02 Magna International Inc. Tailored properties by post hot forming processing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286626A (ja) * 1986-06-04 1987-12-12 Nippon Steel Corp 鋼板のプレス成形方法
JPH01113137A (ja) * 1987-10-23 1989-05-01 Daido Steel Co Ltd ホビングによる金型製造方法
JP2005199300A (ja) * 2004-01-15 2005-07-28 Komatsu Sanki Kk プレス加工方法
JP2005329449A (ja) * 2004-05-21 2005-12-02 Kobe Steel Ltd 温熱間成形品の製造方法および成形品
JP2007275937A (ja) * 2006-04-07 2007-10-25 Nippon Steel Corp 鋼板熱間プレス方法及びプレス成形品
JP2010520058A (ja) * 2007-03-01 2010-06-10 シューラー エスエムゲー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト ブランクを成形するための方法およびブランク用冷却装置
JP2010036208A (ja) * 2008-08-04 2010-02-18 Sumitomo Metal Ind Ltd 金属板の熱間プレス成形方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015032907A1 (de) * 2013-09-05 2015-03-12 Technische Universität Bergakademie Freiberg Verfahren zur herstellung eines hochfesten bzw. höchstfesten formteils aus härtbarem stahl
DE112014004087B4 (de) 2013-09-05 2019-09-05 Technische Universität Bergakademie Freiberg Verfahren zur Herstellung eines hochfesten bzw. höchstfesten Formteils aus härtbarem Stahl
WO2015191678A1 (en) * 2014-06-11 2015-12-17 Magna International Inc. Performing and communicating sheet metal simulations employing a combination of factors
US10372849B2 (en) 2014-06-11 2019-08-06 Magna International Inc. Performing and communicating sheet metal simulations employing a combination of factors
WO2016047058A1 (ja) * 2014-09-25 2016-03-31 Jfeスチール株式会社 熱間プレス成形品の製造方法および熱間プレス成形品
JP2016064440A (ja) * 2014-09-25 2016-04-28 Jfeスチール株式会社 熱間プレス成形品の製造方法および熱間プレス成形品
JP2016185565A (ja) * 2015-03-09 2016-10-27 オートテック エンジニアリング エー.アイ.イー. プレスシステム及び方法
US10618094B2 (en) 2015-03-09 2020-04-14 Autotech Engineering S.L. Press systems and methods
CN106399651A (zh) * 2016-12-06 2017-02-15 圣智(福建)热处理有限公司 一种薄壁大直径模具整体真空淬火工艺

Also Published As

Publication number Publication date
US9469891B2 (en) 2016-10-18
CN103826771A (zh) 2014-05-28
EP2762243B1 (en) 2021-03-17
EP2762243A4 (en) 2015-06-03
ES2858201T3 (es) 2021-09-29
US20140338802A1 (en) 2014-11-20
KR20140056374A (ko) 2014-05-09
JP2013075329A (ja) 2013-04-25
CN103826771B (zh) 2015-09-30
EP2762243A1 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
WO2013047526A1 (ja) プレス成形品の製造方法およびプレス成形設備
JP3816937B1 (ja) 熱間成形品用鋼板およびその製造方法並びに熱間成形品
JP5808845B2 (ja) プレス成形品の製造装置
JP5695381B2 (ja) プレス成形品の製造方法
US20160059295A1 (en) Method and press for producing sheet metal parts that are hardened at least in regions
JP5902939B2 (ja) 熱間プレス成形品の製造方法
KR20180012240A (ko) 프레스 시스템 및 방법
JP2011179028A (ja) 成形品の製造方法
KR20140006483A (ko) 열간 프레스 성형(hpf) 제품의 제조방법
JP4968208B2 (ja) 金属板の熱間プレス成形方法
WO2013118862A1 (ja) プレス成形品およびその製造方法
WO2012043833A1 (ja) プレス成形設備
JP5612992B2 (ja) 熱間成形品の製造方法
WO2012043834A1 (ja) プレス成形品およびその製造方法
JP5612993B2 (ja) プレス成形品およびその製造方法
KR101505272B1 (ko) 국부 연화가 가능한 핫 스탬핑 성형장치 및 성형방법
JP5952881B2 (ja) プレス成形品の製造装置
JP2022551055A (ja) プレスシステム及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837594

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012837594

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14344516

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147008310

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE