WO2013047526A1 - プレス成形品の製造方法およびプレス成形設備 - Google Patents
プレス成形品の製造方法およびプレス成形設備 Download PDFInfo
- Publication number
- WO2013047526A1 WO2013047526A1 PCT/JP2012/074571 JP2012074571W WO2013047526A1 WO 2013047526 A1 WO2013047526 A1 WO 2013047526A1 JP 2012074571 W JP2012074571 W JP 2012074571W WO 2013047526 A1 WO2013047526 A1 WO 2013047526A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- press
- molding
- cooling
- thin steel
- mold
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/208—Deep-drawing by heating the blank or deep-drawing associated with heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
Definitions
- the present invention relates to a method of manufacturing a hot press-formed product that requires strength such as that used for structural members of automobile parts, and equipment therefor, and in particular, a preheated thin steel plate (blank)
- the present invention relates to a method of manufacturing a press-molded product that can be subjected to heat treatment simultaneously with shape formation and obtain a predetermined strength, and equipment used for such a manufacturing method.
- the present invention relates to a method for manufacturing a press-formed product that can be manufactured with high productivity without causing breakage or cracking, and its equipment.
- the weight reduction of the vehicle body is being promoted, and it is necessary to increase the strength of steel sheets used in automobiles as much as possible.
- the strength of a thin steel plate is generally increased to reduce the weight of an automobile, the elongation EL and the r value (Rankford value) are lowered, and the press formability and shape freezing property are deteriorated.
- a thin steel plate (blank) is heated to a predetermined temperature (for example, a temperature at which it becomes an austenite phase) to reduce the strength (that is, to facilitate forming)
- a predetermined temperature for example, a temperature at which it becomes an austenite phase
- a rapid heat treatment using the temperature difference between the two is performed at the same time as providing the shape to ensure strength after molding.
- a hot press molding method (a so-called “hot press method”) is employed for manufacturing parts (for example, Patent Document 1).
- Such a hot pressing method since it is molded in a low strength state, the spring back is reduced (the shape freezing property is good), and a strength of a tensile strength of 1500 MPa class is obtained by rapid cooling.
- a hot pressing method is called by various names such as a hot forming method, a hot stamping method, a hot stamp method, and a die quench method in addition to the hot pressing method.
- FIG. 1 is a schematic explanatory view showing a mold configuration for carrying out hot press molding as described above, wherein 1 is a punch, 2 is a die, 3 is a blank holder, and 4 is a thin steel plate (blank).
- BHF indicates the crease pressing force
- rp indicates the punch shoulder radius
- rd indicates the die shoulder radius
- CL indicates the punch / die clearance.
- the punch 1 and the die 2 have passages 1a and 2a through which a cooling medium (for example, water) can pass, and the cooling medium is allowed to pass through the passages.
- a cooling medium for example, water
- a hot press forming facility provided with a press forming machine having a mold configuration as described above is disclosed in Non-Patent Document 1, for example.
- a heating furnace for heating and softening a thin steel plate an apparatus for conveying the heated thin steel plate, a press forming machine for press-forming the thin steel plate, and trimming the formed product (laser) Etc., and a device for performing correction processing to obtain a final shape (see FIG. 2 to be described later).
- the blank (thin steel plate) 4 is heated and softened to start forming (direct method). That is, in a state where the thin steel plate 4 in a high temperature state is sandwiched between the die 2 and the blank holder 3, the thin steel plate 4 is pushed into the hole of the die 2 (between 2 and 2 in FIG. 1) by the punch 1. The outer diameter is reduced to a shape corresponding to the outer shape of the punch 1. Further, by cooling the punch and die in parallel with the forming, heat is removed from the thin steel plate 4 to the mold (punch 1 and die 2), and the bottom dead center of the forming (the punch tip is located at the deepest part). At the time: the state shown in FIG.
- the present invention has been made in view of the above circumstances, and its purpose is to produce a press-formed product having a desired strength with high productivity without causing breakage or cracking during press molding, And it is providing the press molding equipment suitable for such a manufacturing method.
- the press molding method of the present invention that has achieved the above object is a method of producing a molded product by press-molding a thin steel plate using a press-molding die, and the thin steel plate is moved to an Ac 1 transformation point or higher. After heating to a temperature of 600 ° C., the mold is cooled to a temperature of 600 ° C. or less and then molding is started. After the molding is finished at a temperature equal to or higher than the martensite transformation start temperature Ms, the mold is released from the mold and quenched. It has a gist to do.
- the forming is preferably mechanical press forming or hydraulic press forming with a press speed of 100 mm / second or more, and cooling to the temperature of 600 ° C. or lower is performed by using the thin steel plate as a metal. It is desirable to carry out by sandwiching with gas or by blowing gas and / or mist.
- the press molding equipment of the present invention that has achieved the above object includes a heating furnace and a press molding machine, and after heating a thin steel plate to a temperature equal to or higher than the Ac 1 transformation point in the heating furnace, A press molding facility for press-molding a thin steel plate to produce a molded product, wherein the heated thin steel plate is rapidly cooled inside the heating furnace or between the heating furnace and the press molding machine.
- a cooling unit is provided, and the press molding machine is a mechanical press machine or a hydraulic press machine having a press speed of 100 mm / second or more.
- the present invention includes a press-molded product obtained by the press-molding equipment.
- the steel sheet after heating the thin steel sheet, the steel sheet is cooled to a predetermined temperature and then press forming is started, the forming is finished at a temperature equal to or higher than the martensite transformation start temperature Ms, and the mold is released from the mold and quenched.
- the mold operating efficiency can be improved, and it becomes possible to manufacture press-formed products with high productivity. Therefore, the manufacturing cost of hot stamp parts can also be reduced.
- a cooling unit for rapidly cooling the heated thin steel plate is provided inside the heating furnace or between the heating furnace and the press molding machine, and a mechanical press molding machine or a high-speed hydraulic press machine is provided. Therefore, if a blank cooled to 600 ° C. or lower before pressing by this equipment is press-molded, it is possible to increase the mold operating efficiency and manufacture a press-molded product with high productivity.
- the inventors of the present invention studied from various angles in order to heat a thin steel plate and then press-form it to produce a good press-formed product with high productivity.
- the inventors focused on the press molding process. Conventionally, since quenching is performed while cooling in a mold together with molding, it has been necessary to hold the molding at the bottom dead center for a certain period of time. For example, in the above-mentioned Patent Document 2, since the punch is stopped at the bottom dead center after press forming and the steel sheet temperature is lowered by removing heat to the mold (bottom dead center holding cooling), the mold operating efficiency is poor. The productivity was also poor.
- the present inventors do not perform quenching in the mold after forming the thin steel sheet, but if it is taken out from the mold and quenched, it is not necessary to hold at the bottom dead center, so that it is necessary for the press.
- the time (die occupancy time) was shortened, it was possible to increase the operating efficiency of the die, and the productivity could be improved.
- the inventors first heated a thin steel sheet having the chemical composition shown in Table 1 below to 900 ° C. (Ac 1 transformation point of this thin steel sheet: 718 ° C., Ac 3 transformation point: 830 ° C., martensite. Transformation start temperature Ms: 411 ° C.) After rapid cooling to 600 ° C. or less, a drawing molding experiment was performed using the mold (mechanical press machine) shown in FIG. It has been found that deep drawing can be performed, and if the forming is finished before reaching the martensite transformation start temperature Ms, and the thin steel sheet is released from the mold and cooled, sufficient quenching can be performed ( The heat pattern of the present invention is shown in FIG.
- the occupation time of the mold can be greatly shortened.
- the number of presses per minute spm: stroke / min
- the productivity can be greatly improved.
- the thin steel plate it is first necessary to heat the thin steel plate to a temperature equal to or higher than the Ac 1 transformation point to facilitate forming.
- Ac 1 transformation point or higher is, Ac 1 two-phase region temperature of transformation point ⁇ Ac 3 transformation point, it is either good sense of the Ac 3 transformation point or above of the single-layer region temperature.
- the upper limit of the heating temperature is preferably up to about 1000 ° C. When the temperature is higher than 1000 ° C., the generation of oxide scale becomes remarkable (for example, 100 ⁇ m or more), and the plate thickness (after descaling) of the molded product may be thinner than a predetermined value.
- the conventional hot press line generally has a configuration (equipment configuration) as shown in FIG. 2 (schematic explanatory diagram). That is, as shown in FIG. 2, after the coiled thin steel sheet 10 is cut out by a cutting machine 11 (Blanking), it is heated in a heating furnace 12 and then conveyed to the press molding machine 13 for press forming. Thus, a press-formed product 14 is obtained (a heat pattern of a conventional example is shown in FIG. 7).
- a thin steel plate is heated to a predetermined temperature in a heating furnace, and then directly conveyed to a press molding machine to start forming, but is rapidly cooled to a temperature of 600 ° C. or less, and then forming is started.
- the molding start temperature exceeds 600 ° C., the quenching time after molding becomes long, the productivity is lowered, and quenching does not occur and sufficient strength may not be obtained.
- the moldability may be reduced, and it may be difficult to draw or form a complex shaped part.
- a preferable molding start temperature is 580 ° C. or lower, more preferably 550 ° C. or lower.
- the molding start temperature is preferably higher than the Ms point, and more preferably Ms point + 30 ° C. or higher.
- the cooling rate (average cooling rate) when cooling to 600 ° C. or lower after heating is such that if the cooling rate is slow, sufficient strength cannot be secured and productivity deteriorates. It is necessary to have. It is preferable to cool at 80 ° C./second or more.
- FIGS. 3 to 6 Schematic explanatory diagram
- a cooling unit 15 is provided inside the heating furnace 12 along with the heating furnace 12, and cools the thin steel plate 10 before moving from the heating furnace 12 to the press forming machine 13.
- the cooling unit 15 may be provided between the heating furnace 12 and the press molding machine 13 (see, for example, “cooling unit” or “cooling zone” in FIGS. 4 to 6).
- cooling can be performed by the following methods (1) to (4) (or in combination).
- a means for bringing into contact with a metal as a refrigerant for example, a cooling means by sandwiching with a metal such as a metal plate or a metal roll
- a gas cooling means is provided to cool the gas jet.
- a mist cooling means is provided for cooling (for example, FIG. 6).
- a dry ice shot means (cooled by causing the granule dry ice to collide with the blank material) is cooled.
- the atmosphere can be controlled (for example, nitrogen or argon atmosphere) to prevent surface oxidation of the thin steel sheet. It is also possible to suppress surface oxidation by setting a relatively low temperature.
- FIG. 4 is a schematic diagram showing a configuration example of the cooling unit, and shows a facility for cooling a heated thin steel plate by sandwiching it with a metal.
- the heated thin steel sheet is transported from the heating furnace to a flat mold for cooling (dedicated cooling mold), and the thin steel sheet is rapidly cooled to a predetermined temperature by pressing with this mold (cooling by holding metal). .
- the thin steel plate may be conveyed to a mold having a predetermined shape (dedicated mold for press) and press-molded.
- the shape of the cooling-only mold is preferably a flat surface on the thin steel plate contact surface side in order to cool the thin steel plate uniformly, but in order to dare to have a temperature distribution or to perform some preliminary forming It does not necessarily have to be a flat surface and may have a step or curvature.
- Molding may be performed after cooling to a predetermined temperature in the cooling section as described above (cooling is completed before molding is started), but cooling by the molding die is continued after molding is started. You may shape
- the press forming may be performed in a plurality of times. For example, as shown in FIG. 5, after a thin steel plate is cooled to a predetermined temperature with a flat mold (cooling-dedicated mold), a mold having a predetermined shape sequentially. It is also possible to form in a complicated shape by press molding with (mold 1 for press, mold 2 for press). Further, a step of imparting shape freezing property and a step of performing die trim piercing may be added.
- the press forming machine 13 for press forming a thin steel plate has a high press speed (for example, 100 mm / second or more), does not need to maintain a bottom dead center, and has low equipment cost.
- a mechanical press for example, hydraulic pressure
- a hydraulic press for example, hydraulic pressure
- a hydraulic press with a press speed of 100 mm / second or more may be used.
- the mechanical press can use various slide drive mechanisms, such as a crank press, a knuckle press, a link press, a friction press, and the like.
- 4 and 5 are schematic views of a transfer press machine provided with a cooling die for cooling a thin steel plate and a press die for forming in the apparatus. It is not limited to.
- the molding end temperature is not less than the martensitic transformation start temperature Ms. This is because if the martensitic transformation occurs during molding, the moldability may deteriorate. Therefore, the molding end temperature is Ms point or higher, more preferably Ms point + 10 ° C. or higher.
- the quenching method after forming is not particularly limited, and after cooling the formed steel plate from the mold, it is allowed to cool, or the cooling rate is controlled by various cooling means such as the above (1) to (4) (for example, 10 ( ⁇ 200 ° C./second). From the viewpoint of securing a desired strength by quenching, it is desirable that the formed steel sheet is taken out of the mold and then cooled at 30 ° C./second or more by various cooling means such as (1) to (4) above. .
- the effect of the method of the present invention is remarkably exhibited when molding is performed using a mold having a wrinkle presser (that is, draw molding).
- the method of the present invention is not limited to drawing by forming using a crease presser, but also includes cases in which normal press forming is performed (for example, stretch forming). Even if it exists, the effect of this invention is achieved.
- Example 1 No. 1 to 3
- a thin steel plate (thickness: 1.0 mm) having a chemical composition shown in Table 1 below by a press forming facility having a cooling facility (cooling section or cooling zone) as exemplified in FIGS. (Circular blank with a diameter of 100 mm) is heated to 900 ° C. (Ac 1 transformation point of this steel plate: 718 ° C., Ac 3 transformation point: 830 ° C., martensitic transformation start temperature Ms: 411 ° C.) and then transferred to a cooling facility. Then, after cooling to a temperature of 600 ° C.
- quenching rate “quenching time” by the cooling method shown in Table 2 (“quenching method”)
- quenching method it is conveyed to the press machine and the mold [diameter Was formed by using a circular mold (cylindrical die and cylindrical punch) (see FIG. 1).
- a thin steel plate was mechanically press-formed while cooling the mold through a coolant (water) in the punch and die (forming time 1 second, forming speed: 100 mm / second, top dead center (the punch tip was before forming).
- the distance from the time point at the position) to the molding bottom dead center was set to 100 mm.
- the conveyance conditions at this time, the rapid cooling conditions in the cooling facility, and the press molding conditions are as follows.
- the “quenching rate” in the following “quenching conditions in the cooling equipment” is calculated based on the measured value obtained by measuring the cooling curve in each quenching method in advance.
- the press start temperature was adjusted by controlling the rapid cooling time from taking out the thin steel plate from the heating furnace to press forming based on the cooling curve.
- the measurement of the cooling curve was performed by rapidly cooling a thin steel plate attached with a thermocouple using each quenching method without performing press forming, and measuring changes in temperature and time.
- Rapid cooling rate gas jet: 85 ° C / second (using He gas) Rapid cooling rate (metal clamping): 160 ° C / second (Copper alloy is used for the material of the cooling mold) Rapid cooling rate (mist injection): 310 ° C / second (mixing of air and water)
- the Ac 1 transformation point, the Ac 3 transformation point, and the Ms point are obtained based on the following formulas (1) to (3) (for example, “Heat Treatment” 41 (3), 164 to 169, 2001). (See Tetsuro Kunitake, “Predicting Ac 1 , Ac 3 and Ms Transformation Points of Steel by Empirical Equations”).
- the rate of operation efficiency of the mold (pressing machine) could be set to the conveyance time and quenching time of the thin steel sheet. That is, since the press forming of the previous thin steel plate is completed within the conveyance time of the next thin steel plate, it is no longer necessary to consider the press forming time as in the prior art. In this example, since the conveyance from the heating furnace to the cooling facility (cooling section or cooling zone) and the conveyance from the cooling facility to the press machine are synchronized, the operating efficiency of the mold (press machine) (one press molding) The time required to produce the product) could be the transport time (3 seconds) + the quenching time.
- the rapid cooling time in the cooling facility before press forming can be set to a gas jet method (4 seconds), a metal clamping method (2 seconds), and a mist method (1 second), the temperature before pressing of the thin steel plate can be controlled.
- the number of presses per minute (“number of parts molded per minute”) could be 8.6 times, 12 times, and 15 times (spm), respectively.
- test No. 1 satisfying the above requirements of the present invention.
- Nos. 1 to 3 were excellent in the number of presses per minute, shortened the time (spm) required for press molding, and increased the operating efficiency of the mold. Therefore, according to the present invention, a good press-formed product having a desired strength can be produced with high productivity without causing breakage or cracking during molding.
- a thin steel plate is press-formed while cooling the die through a coolant (water) in the punch and die (forming time is 2 seconds, forming speed: 50 mm / second, distance from top dead center to bottom dead center) And was quenched for 20 seconds at the bottom dead center of the molding.
- the press molding conditions at this time are as follows.
- the steel sheet is heated to a temperature not lower than the Ac 1 transformation point, then cooled to a temperature of 600 ° C. or lower, and then molding is started with a mold, and the molding is terminated at a temperature equal to or higher than the martensite transformation start temperature Ms Then, by releasing from the mold and quenching, a press-formed product having a desired strength can be produced with high productivity without causing breakage or cracking during press molding.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
(2)ガス冷却手段を設けてガスジェット冷却する。
(3)ミスト冷却手段を設けて冷却する(例えば図6)。
(4)ドライアイスショット手段(顆粒ドライアイスをブランク材に衝突させて冷却する)を設けて冷却する。
図3、図4および図6に例示されるような冷却設備(冷却部又は冷却帯)を有するプレス成形設備によって、下記表1に示す化学成分組成を有する薄鋼板(厚さ:1.0mm、直径:100mmの円形ブランク)を、900℃に加熱した後(この鋼板のAc1変態点:718℃、Ac3変態点:830℃、マルテンサイト変態開始温度Ms:411℃)、冷却設備に搬送して表2に示す冷却方法(「急冷方法」)により所定の条件(「急冷速度」、「急冷時間」)で600℃以下の温度まで冷却した後、プレス機まで搬送し、金型[直径が50mmの円形の金型(円筒ダイおよび円筒パンチ)]を用い(前記図1参照)、円筒深絞り成形を行った。この際、パンチおよびダイ内に冷媒(水)を通して金型を冷却しながら薄鋼板をメカニカルプレス成形した(成形時間1秒、成形速度:100mm/秒とし、上死点(パンチ先端が成形前の位置にある時点)から成形下死点までの距離を100mmとした。)。このときの搬送条件、冷却設備での急冷条件、プレス成形条件は下記の通りである。
加熱炉から冷却部(冷却帯)および冷却部(冷却帯)からプレス専用金型までの搬送時間:それぞれ3秒で同期
急冷速度(ガスジェット):85℃/秒(Heガスを利用)
急冷速度(金属挟持):160℃/秒(冷却金型の素材には銅合金を利用)
急冷速度(ミスト噴射):310℃/秒(空気と水の混合)
しわ押え力:3トン
ダイ肩半径rd:5mm
パンチ肩半径rp:5mm
パンチ-ダイ間クリアランスCL:0.15/2+1.0(鋼板厚さ)mm
成形高さ:25mm
プレス機:メカニカルプレス(AIDA社製80tクランクプレス)
Ac3変態点(℃)=-230.5×[C]+31.6×[Si]-20.4×[Mn]-39.8×[Cu]-18.1×[Ni]-14.8×[Cr]+16.8×[Mo]+912 …(2)
Ms(℃)=560.5-{407.3×[C]+7.3×[Si]+37.8×[Mn]+20.5×[Cu]+19.5×[Ni]+19.8×[Cr]+4.5×[Mo]} …(3)
但し、[C],[Si],[Mn],[Cr],[Mo],[Cu]および[Ni]は、夫々C,Si,Mn,Cr,Mo,CuおよびNiの含有量(質量%)を示す。また、上記(1)式~(3)式の各項に示された元素が含まれない場合は、その項がないものとして計算する。
前記図2に示した従来のプレス成形設備によって、実施例1と同じ化学成分組成を有する薄鋼板を用いて、900℃に加熱した後、プレス成形機(金型:図1)に搬送して(搬送時間:3秒、プレス開始時の鋼板の温度:840℃)、実施例1と同じく円筒深絞り成形を行った。なお、この参考例では、プレス前に冷却設備による冷却を行っておらず、成形性が悪いため、薄鋼板の直径は90mmとし、成形高さも20mmとした。成形に際してはパンチおよびダイ内に冷媒(水)を通して金型を冷却しながら薄鋼板をプレス成形すると共に(成形時間2秒、成形速度:50mm/秒とし、上死点から下死点までの距離を100mmとした。)、成形下死点で20秒保持して焼入れを行った。このときのプレス成形条件は下記の通りである。
しわ押え力:3トン
ダイ肩半径rd:5mm
パンチ肩半径rp:5mm
パンチ-ダイ間クリアランスCL:0.15/2+1.0(鋼板厚さ)mm
成形高さ:20mm
プレス機:油圧プレス(川崎油工社製300t油圧プレス)
2 ダイ
3 ブランクホルダー
4,10 ブランク(薄鋼板)
11 切り出し機
12 加熱炉
13 プレス成形機
14 プレス成形品
15 冷却部
Claims (6)
- プレス成形金型を用いて薄鋼板をプレス成形して成形品を製造する方法であって、前記薄鋼板をAc1変態点以上の温度に加熱した後、600℃以下の温度まで冷却してから金型で成形を開始し、マルテンサイト変態開始温度Ms以上の温度で成形を終了した後、前記金型から離型して焼入れをすることを特徴とするプレス成形品の製造方法。
- 前記成形は、メカニカルプレス成形、またはプレス速度が100mm/秒以上の油圧プレス成形である請求項1に記載の製造方法。
- 前記600℃以下の温度までの冷却は、前記薄鋼板を金属で挟持して行うものである請求項1または2に記載の製造方法。
- 前記600℃以下の温度までの冷却は、ガスおよび/またはミストを吹き付けて行うものである請求項1または2に記載の製造方法。
- 加熱炉とプレス成形機を備え、前記加熱炉で薄鋼板をAc1変態点以上の温度に加熱した後、プレス成形機によって薄鋼板をプレス成形して成形品を製造するためのプレス成形設備であって、前記加熱炉内部、または前記加熱炉と前記プレス成形機の間には、加熱された薄鋼板を急冷するための冷却部が備えられていると共に、前記プレス成形機はメカニカルプレス機、またはプレス速度が100mm/秒以上の油圧プレス機であることを特徴とするプレス成形設備。
- 請求項5に記載のプレス成形設備によって得られたものであるプレス成形品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280046707.5A CN103826771B (zh) | 2011-09-30 | 2012-09-25 | 冲压成形品的制造方法和冲压成形设备 |
ES12837594T ES2858201T3 (es) | 2011-09-30 | 2012-09-25 | Método para fabricar un artículo moldeado en prensa y equipo de moldeo en prensa |
EP12837594.6A EP2762243B1 (en) | 2011-09-30 | 2012-09-25 | Method for manufacturing press-molded article and press molding equipment |
KR1020147008310A KR20140056374A (ko) | 2011-09-30 | 2012-09-25 | 프레스 성형품의 제조 방법 및 프레스 성형 설비 |
US14/344,516 US9469891B2 (en) | 2011-09-30 | 2012-09-25 | Press-forming product manufacturing method and press-forming facility |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-218348 | 2011-09-30 | ||
JP2011218348A JP2013075329A (ja) | 2011-09-30 | 2011-09-30 | プレス成形品の製造方法およびプレス成形設備 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013047526A1 true WO2013047526A1 (ja) | 2013-04-04 |
Family
ID=47995558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/074571 WO2013047526A1 (ja) | 2011-09-30 | 2012-09-25 | プレス成形品の製造方法およびプレス成形設備 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9469891B2 (ja) |
EP (1) | EP2762243B1 (ja) |
JP (1) | JP2013075329A (ja) |
KR (1) | KR20140056374A (ja) |
CN (1) | CN103826771B (ja) |
ES (1) | ES2858201T3 (ja) |
WO (1) | WO2013047526A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015032907A1 (de) * | 2013-09-05 | 2015-03-12 | Technische Universität Bergakademie Freiberg | Verfahren zur herstellung eines hochfesten bzw. höchstfesten formteils aus härtbarem stahl |
WO2015191678A1 (en) * | 2014-06-11 | 2015-12-17 | Magna International Inc. | Performing and communicating sheet metal simulations employing a combination of factors |
WO2016047058A1 (ja) * | 2014-09-25 | 2016-03-31 | Jfeスチール株式会社 | 熱間プレス成形品の製造方法および熱間プレス成形品 |
JP2016185565A (ja) * | 2015-03-09 | 2016-10-27 | オートテック エンジニアリング エー.アイ.イー. | プレスシステム及び方法 |
CN106399651A (zh) * | 2016-12-06 | 2017-02-15 | 圣智(福建)热处理有限公司 | 一种薄壁大直径模具整体真空淬火工艺 |
US10618094B2 (en) | 2015-03-09 | 2020-04-14 | Autotech Engineering S.L. | Press systems and methods |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103140304B (zh) * | 2010-09-30 | 2015-08-19 | 株式会社神户制钢所 | 冲压成形品及其制造方法 |
KR101318060B1 (ko) * | 2013-05-09 | 2013-10-15 | 현대제철 주식회사 | 인성이 향상된 핫스탬핑 부품 및 그 제조 방법 |
JP6381967B2 (ja) * | 2014-05-22 | 2018-08-29 | 住友重機械工業株式会社 | 成形装置及び成形方法 |
GB2530709B (en) * | 2014-07-14 | 2018-03-21 | Impression Tech Limited | Method to operate a press at two speeds for metal sheet forming |
JP6417138B2 (ja) * | 2014-07-16 | 2018-10-31 | 住友重機械工業株式会社 | 成形装置 |
DE102014112244A1 (de) | 2014-08-26 | 2016-03-03 | Benteler Automobiltechnik Gmbh | Verfahren und Presse zur Herstellung wenigstens abschnittsweise gehärteter Blechbauteile |
DE102014114394B3 (de) * | 2014-10-02 | 2015-11-05 | Voestalpine Stahl Gmbh | Verfahren zum Erzeugen eines gehärteten Stahlblechs |
JP6162677B2 (ja) * | 2014-11-28 | 2017-07-12 | 豊田鉄工株式会社 | ホットスタンプトリム部品 |
DE102015101668A1 (de) * | 2015-02-05 | 2016-08-11 | Benteler Automobiltechnik Gmbh | Zweifach fallendes Heiz- und Formwerkzeug sowie Verfahren zur Herstellung warmumgeformter und pressgehärteter Kraftfahrzeugbauteile |
MX2017009575A (es) * | 2015-04-10 | 2017-11-01 | R B & W Mfg Llc | Metodos para instalar un sujetador de autobloqueo. |
CN106350640A (zh) * | 2015-07-17 | 2017-01-25 | 宝山钢铁股份有限公司 | 一种对冷轧带钢进行连续淬火的方法 |
CN106425084B (zh) * | 2015-08-07 | 2019-05-31 | 昆山汉鼎精密金属有限公司 | 自动化加工系统及方法 |
EP3211103B1 (de) * | 2016-02-25 | 2020-09-30 | Benteler Automobiltechnik GmbH | Verfahren zur herstellung eines kraftfahrzeugbauteils mit mindestens zwei voneinander verschiedenen festigkeitsbereichen |
EP3437750A1 (en) * | 2017-08-02 | 2019-02-06 | Autotech Engineering A.I.E. | Press method for coated steels |
US11198915B2 (en) | 2018-02-08 | 2021-12-14 | Ford Motor Company | Hybrid quench process for hot stamping of steel parts |
CN109333001B (zh) * | 2018-09-30 | 2020-06-19 | 苏州普热斯勒先进成型技术有限公司 | 高强钢汽车外覆盖件总成及其制造方法 |
CN113165299B (zh) * | 2018-11-28 | 2023-05-02 | 日本制铁株式会社 | 冲压成形品的制造方法、金属板集、冲压装置以及冲压生产线 |
KR20200067343A (ko) | 2018-12-04 | 2020-06-12 | 한국생산기술연구원 | 피어싱 및 버링 가공을 동시에 실시하는 성형 장치 |
KR102206174B1 (ko) * | 2018-12-24 | 2021-01-22 | 주식회사 엠에스 오토텍 | 경량의 차량 부품 제조방법 |
US11209040B2 (en) | 2019-07-15 | 2021-12-28 | Rb&W Manufacturing Llc | Self-clinching fastener |
CN112676459B (zh) * | 2020-12-07 | 2022-09-27 | 北京卫星制造厂有限公司 | 一种铝锂合金复杂薄壁结构件的超低温柔性成形方法 |
US11913488B2 (en) | 2021-05-27 | 2024-02-27 | Rb&W Manufacturing Llc | Self-clinching and self-piercing construction element with multi-purpose pilot |
CN117867246B (zh) * | 2023-12-26 | 2024-08-23 | 武汉理工大学 | 一种超高强钢板的强韧化热成形方法及高强韧热成形构件 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62286626A (ja) * | 1986-06-04 | 1987-12-12 | Nippon Steel Corp | 鋼板のプレス成形方法 |
JPH01113137A (ja) * | 1987-10-23 | 1989-05-01 | Daido Steel Co Ltd | ホビングによる金型製造方法 |
JP2005199300A (ja) * | 2004-01-15 | 2005-07-28 | Komatsu Sanki Kk | プレス加工方法 |
JP2005329449A (ja) * | 2004-05-21 | 2005-12-02 | Kobe Steel Ltd | 温熱間成形品の製造方法および成形品 |
JP2007275937A (ja) * | 2006-04-07 | 2007-10-25 | Nippon Steel Corp | 鋼板熱間プレス方法及びプレス成形品 |
JP2010036208A (ja) * | 2008-08-04 | 2010-02-18 | Sumitomo Metal Ind Ltd | 金属板の熱間プレス成形方法 |
JP2010520058A (ja) * | 2007-03-01 | 2010-06-10 | シューラー エスエムゲー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | ブランクを成形するための方法およびブランク用冷却装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3389562B2 (ja) | 2000-07-28 | 2003-03-24 | アイシン高丘株式会社 | 車輌用衝突補強材の製造方法 |
JP2005288528A (ja) * | 2004-04-05 | 2005-10-20 | Nippon Steel Corp | 成形後高強度となる鋼板の熱間プレス方法 |
DE102005003551B4 (de) * | 2005-01-26 | 2015-01-22 | Volkswagen Ag | Verfahren zur Warmumformung und Härtung eines Stahlblechs |
CN101280352B (zh) * | 2008-05-21 | 2010-06-09 | 钢铁研究总院 | 热成型马氏体钢零件制备方法 |
AU2011269680B2 (en) * | 2010-06-24 | 2015-04-02 | Magna International Inc. | Tailored properties by post hot forming processing |
-
2011
- 2011-09-30 JP JP2011218348A patent/JP2013075329A/ja active Pending
-
2012
- 2012-09-25 WO PCT/JP2012/074571 patent/WO2013047526A1/ja active Application Filing
- 2012-09-25 ES ES12837594T patent/ES2858201T3/es active Active
- 2012-09-25 US US14/344,516 patent/US9469891B2/en active Active
- 2012-09-25 EP EP12837594.6A patent/EP2762243B1/en active Active
- 2012-09-25 KR KR1020147008310A patent/KR20140056374A/ko not_active Application Discontinuation
- 2012-09-25 CN CN201280046707.5A patent/CN103826771B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62286626A (ja) * | 1986-06-04 | 1987-12-12 | Nippon Steel Corp | 鋼板のプレス成形方法 |
JPH01113137A (ja) * | 1987-10-23 | 1989-05-01 | Daido Steel Co Ltd | ホビングによる金型製造方法 |
JP2005199300A (ja) * | 2004-01-15 | 2005-07-28 | Komatsu Sanki Kk | プレス加工方法 |
JP2005329449A (ja) * | 2004-05-21 | 2005-12-02 | Kobe Steel Ltd | 温熱間成形品の製造方法および成形品 |
JP2007275937A (ja) * | 2006-04-07 | 2007-10-25 | Nippon Steel Corp | 鋼板熱間プレス方法及びプレス成形品 |
JP2010520058A (ja) * | 2007-03-01 | 2010-06-10 | シューラー エスエムゲー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | ブランクを成形するための方法およびブランク用冷却装置 |
JP2010036208A (ja) * | 2008-08-04 | 2010-02-18 | Sumitomo Metal Ind Ltd | 金属板の熱間プレス成形方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015032907A1 (de) * | 2013-09-05 | 2015-03-12 | Technische Universität Bergakademie Freiberg | Verfahren zur herstellung eines hochfesten bzw. höchstfesten formteils aus härtbarem stahl |
DE112014004087B4 (de) | 2013-09-05 | 2019-09-05 | Technische Universität Bergakademie Freiberg | Verfahren zur Herstellung eines hochfesten bzw. höchstfesten Formteils aus härtbarem Stahl |
WO2015191678A1 (en) * | 2014-06-11 | 2015-12-17 | Magna International Inc. | Performing and communicating sheet metal simulations employing a combination of factors |
US10372849B2 (en) | 2014-06-11 | 2019-08-06 | Magna International Inc. | Performing and communicating sheet metal simulations employing a combination of factors |
WO2016047058A1 (ja) * | 2014-09-25 | 2016-03-31 | Jfeスチール株式会社 | 熱間プレス成形品の製造方法および熱間プレス成形品 |
JP2016064440A (ja) * | 2014-09-25 | 2016-04-28 | Jfeスチール株式会社 | 熱間プレス成形品の製造方法および熱間プレス成形品 |
JP2016185565A (ja) * | 2015-03-09 | 2016-10-27 | オートテック エンジニアリング エー.アイ.イー. | プレスシステム及び方法 |
US10618094B2 (en) | 2015-03-09 | 2020-04-14 | Autotech Engineering S.L. | Press systems and methods |
CN106399651A (zh) * | 2016-12-06 | 2017-02-15 | 圣智(福建)热处理有限公司 | 一种薄壁大直径模具整体真空淬火工艺 |
Also Published As
Publication number | Publication date |
---|---|
US9469891B2 (en) | 2016-10-18 |
CN103826771A (zh) | 2014-05-28 |
EP2762243B1 (en) | 2021-03-17 |
EP2762243A4 (en) | 2015-06-03 |
ES2858201T3 (es) | 2021-09-29 |
US20140338802A1 (en) | 2014-11-20 |
KR20140056374A (ko) | 2014-05-09 |
JP2013075329A (ja) | 2013-04-25 |
CN103826771B (zh) | 2015-09-30 |
EP2762243A1 (en) | 2014-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013047526A1 (ja) | プレス成形品の製造方法およびプレス成形設備 | |
JP3816937B1 (ja) | 熱間成形品用鋼板およびその製造方法並びに熱間成形品 | |
JP5808845B2 (ja) | プレス成形品の製造装置 | |
JP5695381B2 (ja) | プレス成形品の製造方法 | |
US20160059295A1 (en) | Method and press for producing sheet metal parts that are hardened at least in regions | |
JP5902939B2 (ja) | 熱間プレス成形品の製造方法 | |
KR20180012240A (ko) | 프레스 시스템 및 방법 | |
JP2011179028A (ja) | 成形品の製造方法 | |
KR20140006483A (ko) | 열간 프레스 성형(hpf) 제품의 제조방법 | |
JP4968208B2 (ja) | 金属板の熱間プレス成形方法 | |
WO2013118862A1 (ja) | プレス成形品およびその製造方法 | |
WO2012043833A1 (ja) | プレス成形設備 | |
JP5612992B2 (ja) | 熱間成形品の製造方法 | |
WO2012043834A1 (ja) | プレス成形品およびその製造方法 | |
JP5612993B2 (ja) | プレス成形品およびその製造方法 | |
KR101505272B1 (ko) | 국부 연화가 가능한 핫 스탬핑 성형장치 및 성형방법 | |
JP5952881B2 (ja) | プレス成形品の製造装置 | |
JP2022551055A (ja) | プレスシステム及び方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12837594 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012837594 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14344516 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147008310 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |