WO2013047502A1 - 非水電解質及び非水電解質二次電池 - Google Patents

非水電解質及び非水電解質二次電池 Download PDF

Info

Publication number
WO2013047502A1
WO2013047502A1 PCT/JP2012/074529 JP2012074529W WO2013047502A1 WO 2013047502 A1 WO2013047502 A1 WO 2013047502A1 JP 2012074529 W JP2012074529 W JP 2012074529W WO 2013047502 A1 WO2013047502 A1 WO 2013047502A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonaqueous electrolyte
secondary battery
electrolyte secondary
carbon atoms
general formula
Prior art date
Application number
PCT/JP2012/074529
Other languages
English (en)
French (fr)
Inventor
貴信 千賀
聖 高務
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US14/239,638 priority Critical patent/US9240615B2/en
Priority to CN201280043369.XA priority patent/CN103765664B/zh
Priority to JP2013536292A priority patent/JP5925792B2/ja
Publication of WO2013047502A1 publication Critical patent/WO2013047502A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary batteries such as lithium secondary batteries have been widely used in electronic devices such as mobile phones, notebook computers, and PDAs.
  • a carbon material such as graphite is used for the negative electrode active material of the nonaqueous electrolyte secondary battery.
  • the organic solvent contained in the nonaqueous electrolyte is reduced and decomposed on the surface of the electrode during the charge / discharge process of the nonaqueous electrolyte secondary battery, and gas is generated or decomposed.
  • the charge / discharge efficiency is deteriorated and the charge / discharge cycle characteristics are deteriorated.
  • Patent Document 1 As a method for solving such a problem, for example, as disclosed in Patent Document 1, a method of adding vinylene carbonate to a nonaqueous electrolyte can be mentioned.
  • the main object of the present invention is to provide a non-aqueous electrolyte capable of suppressing the expansion of the non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery of the present invention includes lithium salt, vinylene carbonate, and the following general formula (1):
  • X is an alkylene group having 2 to 4 carbon atoms which may have a substituent.
  • Rf is a linear or branched fluorine-containing alkyl group having 1 to 6 carbon atoms.
  • R is a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • the non-aqueous electrolyte secondary battery of the present invention includes the non-aqueous electrolyte, a positive electrode, a negative electrode, and a separator.
  • FIG. 1 is a schematic cross-sectional view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • the nonaqueous electrolyte secondary battery 1 includes a battery container 17.
  • the battery container 17 is a flat aluminum laminate type.
  • the battery container is not limited to the flat aluminum laminate type.
  • the battery container 17 may be, for example, a cylindrical shape or a square shape.
  • an electrode body 10 impregnated with a nonaqueous electrolyte is accommodated.
  • the nonaqueous electrolyte contains a lithium salt and a nonaqueous solvent.
  • lithium salt examples include LiXF y (wherein X is P, As, Sb, B, Bi, Al, Ga or In, and y is 6 when X is P, As or Sb, X but B, Bi, Al, Ga or y when in, a 4), lithium perfluoroalkyl sulfonic acid imide LiN (C m F 2m + 1 SO 2) (C n F 2n + 1 SO 2) (wherein, m and n Are each independently an integer of 1 to 4), and lithium perfluoroalkylsulfonic acid methide LiC (C p F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2 ) (C r F 2r + 1 SO 2 ) p, q and r are each independently an integer of 1 to 4), LiCF 3 SO 3, LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12, etc.
  • the non-aqueous electrolyte may contain one type of lithium salt or may contain a plurality of types of lithium salt.
  • non-aqueous solvent of the non-aqueous electrolyte examples include cyclic carbonate, chain carbonate, or a mixed solvent of cyclic carbonate and chain carbonate.
  • cyclic carbonate examples include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and the like.
  • chain carbonate examples include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and the like.
  • a mixed solvent of a cyclic carbonate and a chain carbonate is preferably used as a non-aqueous solvent having a low viscosity, a low melting point, and a high lithium ion conductivity.
  • the mixing ratio of cyclic carbonate to chain carbonate may be in the range of 1: 9 to 5: 5 by volume ratio. preferable.
  • non-aqueous electrolyte may be a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide or polyacrylonitrile with an electrolytic solution.
  • Non-aqueous electrolyte is vinylene carbonate and the following general formula (1):
  • X is an alkylene group having 2 to 4 carbon atoms which may have a substituent.
  • X is preferably an alkylene group having 2 to 3 carbon atoms which may have a substituent, and more preferably an ethylene group or a propylene group.
  • examples of the substituent include an alkyl group having 1 to 4 carbon atoms and a fluorine atom.
  • the number of substituents may be only one, or two or more. Only one type of substituent may be used, or a plurality of types may be used.
  • Rf is a linear or branched fluorinated alkyl group having 1 to 6 carbon atoms.
  • Rf is preferably a linear or branched fluorinated alkyl group having 1 to 3 carbon atoms, more preferably a linear or branched perfluoroalkyl group having 1 to 3 carbon atoms. Preferably, it is a trifluoromethyl group.
  • R is a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • substituents include a fluorine atom, an alkoxy group, and an acyloxy group.
  • R is preferably a linear, branched or cyclic alkyl group having 1 to 3 carbon atoms which may have a substituent, and more preferably a methyl group.
  • the number of substituents may be only one, or two or more. Only one type of substituent may be used, or a plurality of types may be used.
  • the content of vinylene carbonate in the non-aqueous electrolyte is preferably 0.05% by mass to 2% by mass, and more preferably 0.1% by mass to 1% by mass. Further, the content of the compound represented by the general formula (1) in the non-aqueous electrolyte is preferably 0.05% by mass to 5% by mass, and more preferably 0.1% by mass to 3% by mass. It is more preferable.
  • the electrode body 10 is formed by winding a negative electrode 11, a positive electrode 12, and a separator 13 disposed between the negative electrode 11 and the positive electrode 12.
  • the separator 13 is not particularly limited as long as it can suppress a short circuit due to contact between the negative electrode 11 and the positive electrode 12 and can impregnate a nonaqueous electrolyte to obtain lithium ion conductivity.
  • Separator 13 can be constituted by a porous film made of resin, for example.
  • the resin porous film include a polypropylene or polyethylene porous film, a laminate of a polypropylene porous film and a polyethylene porous film, and the like.
  • the negative electrode 11 has a negative electrode current collector and a negative electrode active material layer disposed on at least one surface of the negative electrode current collector.
  • the negative electrode current collector can be composed of, for example, a foil made of a metal such as Cu or an alloy containing a metal such as Cu.
  • the negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material is not particularly limited as long as it can reversibly store and release lithium.
  • Examples of the negative electrode active material include a carbon material, a material alloyed with lithium, and a metal oxide such as tin oxide.
  • a carbon material is preferable as the negative electrode active material.
  • Specific examples of the carbon material include natural graphite, artificial graphite, mesophase pitch-based carbon fiber (MCF), mesocarbon microbeads (MCMB), coke, hard carbon, fullerene, and carbon nanotube.
  • Examples of the material to be alloyed with lithium include one or more metals selected from the group consisting of silicon, germanium, tin, and aluminum, or one or more types selected from the group consisting of silicon, germanium, tin, and aluminum. The thing which consists of an alloy containing a metal is mentioned.
  • the negative electrode active material layer may contain a carbon conductive agent such as graphite, a binder such as sodium carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR).
  • a carbon conductive agent such as graphite
  • a binder such as sodium carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR).
  • the positive electrode 12 has a positive electrode current collector and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode current collector can be made of, for example, a metal such as Al or an alloy containing a metal such as Al.
  • the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode active material layer may contain appropriate materials such as a binder and a conductive agent in addition to the positive electrode active material.
  • a binder preferably used include, for example, polyvinylidene fluoride.
  • a conductive agent preferably used include carbon materials such as graphite and acetylene black.
  • the type of the positive electrode active material is not particularly limited, and a positive electrode active material can be used.
  • the positive electrode active material preferably has a layered structure.
  • the positive electrode active material having a layered structure preferably used include a lithium-containing transition metal oxide having a layered structure.
  • lithium-containing transition metal oxides include lithium cobalt oxide, cobalt-nickel-manganese lithium composite oxide, aluminum-nickel-manganese lithium composite oxide, and aluminum-nickel-cobalt composite oxide.
  • lithium composite oxides containing at least one of cobalt and manganese may be composed of only one type or may be composed of two or more types.
  • the non-aqueous solvent contained in the non-aqueous electrolyte is reduced and decomposed on the surface of the electrode, generating gas or depositing decomposition products.
  • a method for solving such a problem for example, a method of adding vinylene carbonate to a nonaqueous electrolyte is known. When vinylene carbonate is added to the nonaqueous electrolyte, a film is formed on the negative electrode, and reductive decomposition of the electrolyte component on the electrode surface is suppressed.
  • the non-aqueous electrolyte according to this embodiment includes a compound represented by the above general formula (1) in addition to vinylene carbonate.
  • the nonaqueous electrolyte according to the present embodiment effectively suppresses the expansion of the nonaqueous electrolyte secondary battery 1 even when the nonaqueous electrolyte secondary battery 1 is continuously charged at a high temperature. be able to.
  • the capacity remaining rate and the capacity recovery rate can be increased while maintaining the initial charge / discharge efficiency of the nonaqueous electrolyte secondary battery 1 high. Details of these reasons are not clear, but can be considered as follows, for example.
  • the compound represented by the general formula (1) when the compound represented by the general formula (1) is contained in the nonaqueous electrolyte in addition to vinylene carbonate, these compounds have a reduction potential close to each other, so that a composite film is formed on the negative electrode. It is thought. Even when this composite membrane is continuously charged at a high temperature, it is considered that the composite membrane has high stability and can suppress decomposition of the nonaqueous electrolyte component on the negative electrode surface. In addition, since the composite membrane itself is hardly eluted into the non-aqueous electrolyte, decomposition of the eluted composite membrane on the positive electrode surface is also suppressed. Therefore, it is thought that generation
  • Example 1 [Production of positive electrode plate] LiCoO 2 as a positive electrode active material (Al and Mg are each solid-dissolved in 1.0 mol% and Zr adheres to the surface of 0.05 mol%), acetylene black as a conductive agent, and polyvinylidene as a binder Fluoride was kneaded with N-methylpyrrolidone as a solvent to obtain a slurry. The obtained slurry was uniformly applied to both surfaces of a positive electrode core (15 ⁇ m thick aluminum foil), and then passed through a dryer to remove the solvent. This was rolled by a roll press to obtain a positive electrode plate having a packing density of 3.8 g / cc.
  • Electrode body The positive electrode plate and the negative electrode plate were overlapped with a separator made of a polyolefin-based microporous film interposed therebetween, with the center lines in the width direction of the electrode plates aligned. Then, it wound with the winder, the outermost periphery was taped, and it was set as the winding electrode body. Next, this wound electrode body was pressed to obtain a flat electrode body.
  • LiPF 6 was added to the non-aqueous solvent so that the concentration in the non-aqueous solvent was 1.0M.
  • vinylene carbonate (VC) and the following general formula (2) are set so that the content in the non-aqueous electrolyte is 1% by mass, respectively:
  • the flat electrode body was housed in a flat aluminum laminate-type outer package, and was heat-sealed leaving a liquid injection port, to prepare a battery before liquid injection.
  • a reduced pressure impregnation treatment was performed. Further, the liquid injection port was heat-sealed to produce a nonaqueous electrolyte secondary battery (hereinafter sometimes simply referred to as a battery).
  • the design capacity of the obtained battery was 750 mAh.
  • the battery whose discharge capacity was measured before the test was charged with a constant current of 1 It (750 mA) to a battery voltage of 4.4 V, and then charged with a constant voltage of 4.4 V until the current became 1/20 It (37.5 mA). Thereafter, the thickness of the battery was measured. Next, the constant voltage charge of 4.4V was performed for 65 hours in a 60 degreeC thermostat. Immediately after the test, the thickness was measured.
  • the battery swelling was determined by the following formula.
  • the battery after the thickness was measured was discharged at a constant current to a battery voltage of 2.75 V at a current of 1 It (750 mA), then switched to a current of 0.2 It (150 mA) and discharged at a constant current to 2.75 V. In this way, the remaining capacity was measured.
  • the battery whose remaining capacity was measured was charged with a constant current of 1 It (750 mA) to a battery voltage of 4.4 V, and then charged with a constant voltage of 4.4 V until the current became 1/20 It (37.5 mA). Thereafter, a constant current was discharged to a battery voltage of 2.75 V with a current of 1 It (750 mA), and then the current was switched to 0.2 It (150 mA) and a constant current was discharged to 2.75 V. In this way, the return capacity was measured.
  • the capacity remaining rate (%) and the capacity recovery rate (%) were obtained by the following calculation formula. The results are shown in Table 1.
  • Capacity remaining rate (%) ((1 It remaining capacity + 0.2 It remaining capacity) / (1 It discharge capacity before test + 0.2 It discharge capacity before test)) ⁇ 100
  • Capacity recovery rate (%) ((1 It recovery capacity + 0.2 It recovery capacity) / (1 It discharge capacity before test + 0.2 It discharge capacity before test)) ⁇ 100
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that methyl 2- (trifluoromethyl) -1,3-dioxane-2-carboxylate (compound 2) represented by .
  • compound 2 represents methyl 2- (trifluoromethyl) -1,3-dioxane-2-carboxylate
  • the initial charge / discharge efficiency, swelling, capacity remaining rate, and capacity recovery rate of the nonaqueous electrolyte secondary battery obtained in Example 2 were measured. The results are shown in Table 1.
  • Example 1 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that Compound 1 was not added. Next, in the same manner as in Example 1, the initial charge / discharge efficiency, swelling, capacity remaining rate, and capacity recovery rate of the nonaqueous electrolyte secondary battery obtained in Comparative Example 1 were measured. The results are shown in Table 1.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that methyl 2,2-dimethyl-3,3,3-trifluoropropionate (compound 3) represented by the following formula was used.
  • compound 3 represented by the following formula
  • the initial charge / discharge efficiency, swelling, capacity remaining rate, and capacity recovery rate of the nonaqueous electrolyte secondary battery obtained in Reference Example 1 were measured. The results are shown in Table 1.
  • Example 1 in which the compound 1 represented by the general formula (2) was added in addition to vinylene carbonate, the swelling of the battery was smaller than in Comparative Example 1, and the remaining capacity was The rate and the capacity recovery rate also show high values. Further, in Example 2 to which the compound 2 represented by the general formula (3) was added, the swelling of the battery was smaller than that in Comparative Example 1, and the capacity remaining rate and the capacity recovery rate were high. Yes.
  • Example 3 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the content of Compound 1 in the nonaqueous electrolyte was 0.1% by mass. Next, in the same manner as in Example 1, the initial charge / discharge efficiency, swelling, capacity remaining rate, and capacity recovery rate of the nonaqueous electrolyte secondary battery obtained in Example 3 were measured. The results are shown in Table 2.
  • Example 4 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the content of Compound 1 in the nonaqueous electrolyte was 0.5 mass%. Next, in the same manner as in Example 1, the initial charge / discharge efficiency, swelling, capacity remaining rate, and capacity recovery rate of the nonaqueous electrolyte secondary battery obtained in Example 4 were measured. The results are shown in Table 2.
  • Example 5 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the content of Compound 1 in the nonaqueous electrolyte was 2% by mass. Next, in the same manner as in Example 1, the initial charge / discharge efficiency, swelling, capacity remaining rate, and capacity recovery rate of the nonaqueous electrolyte secondary battery obtained in Example 5 were measured. The results are shown in Table 2.
  • Example 6 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the content of Compound 1 in the nonaqueous electrolyte was 3% by mass. Next, in the same manner as in Example 1, the initial charge / discharge efficiency, swelling, capacity remaining rate, and capacity recovery rate of the nonaqueous electrolyte secondary battery obtained in Example 6 were measured. The results are shown in Table 2.
  • Example 7 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the content of vinylene carbonate in the nonaqueous electrolyte was 0.1% by mass. Next, in the same manner as in Example 1, the initial charge / discharge efficiency, swelling, capacity remaining rate, and capacity recovery rate of the nonaqueous electrolyte secondary battery obtained in Example 7 were measured. The results are shown in Table 3.
  • Example 8 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the content of vinylene carbonate in the nonaqueous electrolyte was 0.3% by mass. Next, in the same manner as in Example 1, the initial charge / discharge efficiency, swelling, capacity remaining rate, and capacity recovery rate of the nonaqueous electrolyte secondary battery obtained in Example 8 were measured. The results are shown in Table 3.
  • Example 9 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the content of vinylene carbonate in the nonaqueous electrolyte was 0.5 mass%. Next, in the same manner as in Example 1, the initial charge / discharge efficiency, swelling, capacity remaining rate, and capacity recovery rate of the nonaqueous electrolyte secondary battery obtained in Example 9 were measured. The results are shown in Table 3.
  • Comparative Example 2 A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 1 except that the content of vinylene carbonate in the nonaqueous electrolyte was 0.1% by mass. Next, in the same manner as in Example 1, the initial charge / discharge efficiency, swelling, capacity remaining rate, and capacity recovery rate of the nonaqueous electrolyte secondary battery obtained in Comparative Example 2 were measured. The results are shown in Table 3.
  • Comparative Example 3 A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 1 except that the content of vinylene carbonate in the nonaqueous electrolyte was 0.5 mass%. Next, in the same manner as in Example 1, the initial charge / discharge efficiency, swelling, capacity remaining rate, and capacity recovery rate of the nonaqueous electrolyte secondary battery obtained in Comparative Example 3 were measured. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

 非水電解質二次電池の膨張を抑制し得る非水電解質を提供する。 非水電解質二次電池1の非水電解質は、リチウム塩、ビニレンカーボネート、及び下記一般式(1): で表される化合物を含む。一般式(1)において、Xは、置換基を有していてもよい炭素数2~4のアルキレン基である。Rfは、直鎖状または分岐鎖状の炭素数1~6の含フッ素アルキル基である。Rは、置換基を有していてもよい直鎖状、分岐鎖状または環状の炭素数1~6のアルキル基である。

Description

非水電解質及び非水電解質二次電池
 本発明は、非水電解質及び非水電解質二次電池に関する。
 従来、携帯電話、ノートパソコン、PDAなどの電子デバイスには、リチウム二次電池などの非水電解質二次電池が広く使用されている。
 非水電解質二次電池の負極活物質には、一般的に、黒鉛などの炭素材料が使用されている。しかしながら、負極活物質に炭素材料を使用すると、非水電解質二次電池の充放電過程において、非水電解質に含まれる有機溶媒などが電極の表面で還元分解され、ガスが発生したり、分解物が堆積するなどして、充放電効率の低下、充放電サイクル特性の劣化などを引き起こす問題がある。
 このような問題を解決する方法としては、例えば、特許文献1に開示されているように、非水電解質にビニレンカーボネートを添加する方法が挙げられる。
特開平8-45545号公報
 しかしながら、非水電解質にビニレンカーボネートを単に添加した場合、高温下で連続して充電すると、ガスが多く発生し、非水電解質二次電池が膨張するなどの問題がある。
 本発明は、非水電解質二次電池の膨張を抑制し得る非水電解質を提供することを主な目的とする。
 本発明の非水電解質二次電池の非水電解質は、リチウム塩、ビニレンカーボネート、及び下記一般式(1):
Figure JPOXMLDOC01-appb-C000002
で表される化合物を含む。一般式(1)において、Xは、置換基を有していてもよい炭素数2~4のアルキレン基である。Rfは、直鎖状または分岐鎖状の炭素数1~6の含フッ素アルキル基である。Rは、置換基を有していてもよい直鎖状、分岐鎖状または環状の炭素数1~6のアルキル基である。
 本発明の非水電解質二次電池は、上記の非水電解質と、正極と、負極と、セパレータとを備える。
 本発明によれば、非水電解質二次電池の膨張を抑制し得る非水電解質を提供することができる。
図1は、本発明の一実施形態に係る非水電解質二次電池の略図的断面図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 図1に示されるように、非水電解質二次電池1は、電池容器17を備えている。本実施形態では、電池容器17は、扁平状アルミニウムラミネート型である。但し、本発明において、電池容器は、扁平状アルミニウムラミネート型に限定されない。電池容器17は、例えば、円筒型、角型であってもよい。
 電池容器17内には、非水電解質を含浸した電極体10が収納されている。
 非水電解質は、リチウム塩、非水系溶媒を含む。
 リチウム塩としては、例えば、LiXF(式中、Xは、P、As、Sb、B、Bi、Al、GaまたはInであり、XがP、AsまたはSbのときyは6であり、XがB、Bi、Al、Ga、またはInのときyは4である)、リチウムペルフルオロアルキルスルホン酸イミドLiN(C2m+1SO)(C2n+1SO)(式中、m及びnはそれぞれ独立して1~4の整数である)、及びリチウムペルフルオロアルキルスルホン酸メチドLiC(C2p+1SO)(C2q+1SO)(C2r+1SO)(式中、p、q及びrはそれぞれ独立して1~4の整数である)、LiCFSO3、LiClO、Li10Cl10、及びLi12Cl12などが挙げられる。リチウム塩としては、これらの中でも、LiPF、LiBF、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSOなどが好ましい。非水電解質は、1種類のリチウム塩を含んでいてもよいし、複数種類のリチウム塩を含んでいてもよい。
 非水電解質の非水系溶媒としては、例えば、環状カーボネート、鎖状カーボネート、又は環状カーボネートと鎖状カーボネートとの混合溶媒などが挙げられる。環状カーボネートの具体例としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどが挙げられる。鎖状カーボネートの具体例としては、例えば、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどが挙げられる。なかでも、低粘度且つ低融点でリチウムイオン伝導度の高い非水系溶媒として、環状カーボネートと鎖状カーボネートとの混合溶媒が好ましく用いられる。環状カーボネートと鎖状カーボネートとの混合溶媒において、環状カーボネートと鎖状カーボネートとの混合比(環状カーボネート:鎖状カーボネート)は、体積比で、1:9~5:5の範囲内にあることが好ましい。
 また、非水電解質は、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質であってもよい。
 非水電解質は、さらにビニレンカーボネートと、下記一般式(1):
Figure JPOXMLDOC01-appb-C000003
で表される化合物とを含む。
 一般式(1)で表される化合物において、Xは、置換基を有していてもよい炭素数2~4のアルキレン基である。Xは、置換基を有していてもよい炭素数2~3のアルキレン基であることが好ましく、エチレン基またはプロピレン基であることがさらに好ましい。
 Xが置換基を有する場合、置換基としては、例えば、炭素数1~4のアルキル基、フッ素原子などが挙げられる。置換基の数は、1つのみであってもよいし、2つ以上であってもよい。置換基の種類は、1種類のみであってもよいし、複数種類であってもよい。
 Rfは、直鎖状または分岐鎖状の炭素数1~6の含フッ素アルキル基である。Rfは、直鎖状または分岐鎖状の炭素数1~3の含フッ素アルキル基であることが好ましく、直鎖状または分岐鎖状の炭素数1~3のパーフルオロアルキル基であることがより好ましく、トリフルオロメチル基であることがさらに好ましい。
 Rは、置換基を有していてもよい直鎖状、分岐鎖状または環状の炭素数1~6のアルキル基である。Rが置換基を有する場合、置換基としては、フッ素原子、アルコキシ基、アシロキシ基などが挙げられる。Rは、置換基を有していてもよい直鎖状、分岐鎖状または環状の炭素数1~3のアルキル基であることが好ましく、メチル基であることがさらに好ましい。置換基の数は、1つのみであってもよいし、2つ以上であってもよい。置換基の種類は、1種類のみであってもよいし、複数種類であってもよい。
 非水電解質中のビニレンカーボネートの含有量は、0.05質量%~2質量%であることが好ましく、0.1質量%~1質量%であることがより好ましい。また、非水電解質中の一般式(1)で表される化合物の含有量は、0.05質量%~5質量%であるであることが好ましく、0.1質量%~3質量%であることがより好ましい。
 電極体10は、負極11と、正極12と、負極11及び正極12の間に配置されているセパレータ13とが巻回されてなる。
 セパレータ13は、負極11と正極12との接触による短絡を抑制でき、かつ非水電解質を含浸して、リチウムイオン伝導性が得られるものであれば特に限定されない。セパレータ13は、例えば、樹脂製の多孔膜により構成することができる。樹脂製の多孔膜の具体例としては、例えば、ポリプロピレン製やポリエチレン製の多孔膜、ポリプロピレン製の多孔膜とポリエチレン製の多孔膜との積層体などが挙げられる。
 負極11は、負極集電体と、負極集電体の少なくとも一方の表面の上に配された負極活物質層とを有する。負極集電体は、例えば、Cuなどの金属や、Cuなどの金属を含む合金からなる箔により構成することができる。
 負極活物質層には、負極活物質が含まれる。負極活物質は、リチウムを可逆的に吸蔵・放出できるものであれば特に限定されない。負極活物質としては、例えば、炭素材料、リチウムと合金化する材料、酸化スズ等の金属酸化物などが挙げられる。負極活物質としては、これらの中でも、炭素材料が好ましい。炭素材料の具体例としては、例えば、天然黒鉛、人造黒鉛、メソフェーズピッチ系炭素繊維(MCF)、メソカーボンマイクロビーズ(MCMB)、コークス、ハードカーボン、フラーレン、カーボンナノチューブなどが挙げられる。リチウムと合金化する材料としては、例えば、シリコン、ゲルマニウム、スズ及びアルミニウムからなる群から選ばれた1種以上の金属、またはシリコン、ゲルマニウム、スズ及びアルミニウムからなる群から選ばれた1種以上の金属を含む合金からなるものが挙げられる。
 負極活物質層には、グラファイトなどの炭素導電剤、カルボキシメチルセルロースナトリウム(CMC)、スチレンブタジエンゴム(SBR)などの結着剤などが含まれていてもよい。
 正極12は、正極集電体と、正極集電体の少なくとも一方の表面の上に配された正極活物質層とを有する。正極集電体は、例えば、Alなどの金属、Alなどの金属を含む合金により構成することができる。
 正極活物質層は、正極活物質を含む。正極活物質層は、正極活物質に加えて、結着剤、導電剤などの適宜の材料を含んでいてもよい。好ましく用いられる結着剤の具体例としては、例えばポリフッ化ビニリデンなどが挙げられる。好ましく用いられる導電剤の具体例としては、例えば、黒鉛、アセチレンブラックなどの炭素材料などが挙げられる。
 正極活物質の種類は、特に限定されず、正極活物質を用いることができる。正極活物質は、例えば、層状構造を有することが好ましい。好ましく用いられる層状構造を有する正極活物質としては、層状構造を有するリチウム含有遷移金属酸化物が挙げられる。このようなリチウム含有遷移金属酸化物としては、例えば、コバルト酸リチウム、コバルト-ニッケル-マンガンのリチウム複合酸化物、アルミニウム-ニッケル-マンガンのリチウム複合酸化物、アルミニウム-ニッケル-コバルトの複合酸化物などのコバルト及びマンガンの少なくとも1種を含むリチウム複合酸化物などが挙げられる。正極活物質は、1種類のみから構成されていてもよいし、2種類以上により構成されていてもよい。
 ところで、非水電解質二次電池の充放電過程において、非水電解質に含まれる非水系溶媒などが電極の表面で還元分解され、ガスが発生したり、分解物が堆積するなどして、充放電効率の低下、充放電サイクル特性の劣化などを引き起こす問題がある。このような問題を解決する方法として、例えば、非水電解質にビニレンカーボネートを添加する方法が知られている。非水電解質にビニレンカーボネートを添加すると、負極上に被膜が形成され、電極表面での電解質成分の還元分解が抑制される。しかしながら、非水電解質にビニレンカーボネートを添加した非水電解質二次電池を高温下で連続して充電すると、ガスを多く発生するため、非水電解質二次電池が膨張するなどの問題がある。
 これに対して、本実施形態に係る非水電解質は、ビニレンカーボネートに加えて、上記一般式(1)で表される化合物を含む。本実施形態に係る非水電解質は、これにより、非水電解質二次電池1を高温下で連続して充電した場合にも、非水電解質二次電池1が膨張することを効果的に抑制することができる。さらに、非水電解質二次電池1の初期充放電効率を高く維持しつつ、容量残存率及び容量復帰率を高くし得る。これらの理由の詳細は明らかではないが、例えば、次のように考えることができる。すなわち、非水電解質中に、ビニレンカーボネートに加えて上記一般式(1)で表される化合物が含まれている場合、これらの化合物は、還元電位が近いため、負極上に複合膜が形成されると考えられる。この複合膜は、高温下で連続充電する場合であっても、安定性が高く、非水電解質成分の負極表面での分解を抑制できると考えられる。また、この複合膜自体の非水電解質中への溶出も少ないため、溶出した複合膜の正極表面での分解も抑制される。そのため、ガスなどが発生することが抑制され、非水電解質二次電池1の上記の特性が改善されるものと考えられる。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。但し、本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 (実施例1)
 [正極板の作製]
 正極活物質としてLiCoO(Al及びMgがそれぞれ1.0mol%固溶されており、且つZrが0.05mol%表面に付着したもの)と、導電剤としてアセチレンブラックと、結着剤としてポリビニリデンフルオライドとを、溶剤であるN-メチルピロリドンと共に混錬してスラリーを得た。得られたスラリーを正極芯体(厚さ15μmのアルミニウム箔)の両面に均一に塗布した後、乾燥機の中を通過させて溶剤を除去した。これをロールプレス機により圧延して、充填密度3.8g/ccの正極板とした。
 [負極板の作製]
 負極活物質として黒鉛粉末と、結着剤としてカルボキシメチルセルロース及びスチレンブタジエンゴムとを、溶剤である水と共に混練し、負極活物質スラリーを得た。得られたスラリーを負極芯体(10μmの銅箔)に塗布した後、乾燥機の中を通過させて、溶剤を除去した。これをロールプレス機により圧延して、充填密度1.6g/ccの負極板とした。
 [電極体の作製]
 正極板と負極板とを、ポリオレフィン系微多孔膜からなるセパレータを間に挟み、各極板の幅方向の中心線を一致させて重ね合わせた。この後、巻取り機により巻回し、最外周をテープ止めして巻回電極体とした。次いで、この巻回電極体をプレスして扁平電極体とした。
 [非水電解質の作製]
 エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を容量比でEC/EMC=30/70となるように混合して非水系溶媒とした。この非水系溶媒に、非水系溶媒中の濃度が1.0MとなるようにしてLiPF6を加えた。さらに、非水電解質中の含有量が、それぞれ1質量%となるようにして、ビニレンカーボネート(VC)と下記一般式(2):
Figure JPOXMLDOC01-appb-C000004
で表される2-(トリフルオロメチル)-1,3-ジオキソラン-2-カルボン酸メチル(化合物1)を加えた。
 [非水電解質二次電池の作製]
扁平電極体を扁平状アルミニウムラミネート型の外装体内に収納し、注液口を残して熱シールして、注液前の電池を作製した。
 次に、非水電解質を、注液前の電池の注液口より所定量注入した後に減圧含浸処理を行った。さらに、注液口を熱シールして非水電解質二次電池(以下、単に電池ということがある。)を作製した。得られた電池の設計容量は750mAhとした。
 [初期充放電効率の評価]
 電池を1It(750mA)の電流で電池電圧4.4Vまで定電流充電した後、4.4V定電圧で電流が1/20It(37.5mA)となるまで充電した。このときの充電容量を初期充電容量とした。
 次に、1It(750mA)の電流で電池電圧2.75Vまで定電流放電を行った。このときの放電容量を初期放電容量とした。以下の計算式によって初期充放電効率を求めた。評価結果を表1に示す。
 初期充放電効率(%)=(初期放電容量/初期充電容量)×100
 [連続充電特性の評価]
 初期充放電効率の測定を終えた電池を1It(750mA)の電流で電池電圧4.4Vまで定電流充電した後、4.4V定電圧で電流が1/20It(37.5mA)となるまで充電した。次に、1It(750mA)の電流で電池電圧2.75Vまで定電流放電した。次に、電流を0.2It(150mA)に切り替え、電池電圧2.75Vまで定電流放電した。このときの放電容量を試験前放電容量とした。
 試験前放電容量を測定した電池を1It(750mA)の電流で電池電圧4.4Vまで定電流充電した後、4.4V定電圧で電流が1/20It(37.5mA)となるまで充電した。その後、電池の厚みを測定した。次に60℃の恒温槽中で4.4Vの定電圧充電を65時間行った。試験終了後、直ちに厚みを測定した。以下の計算式によって電池の膨れを求めた。
 膨れ(mm)=試験後の厚み-試験前の厚み
 厚みを測定した後の電池を1It(750mA)の電流で電池電圧2.75Vまで定電流放電し、次に電流を0.2It(150mA)に切り替え、2.75Vまで定電流放電した。このようにして残存容量を測定した。
 残存容量を測定した電池を1It(750mA)の電流で電池電圧4.4Vまで定電流充電を行った後、4.4V定電圧で電流が1/20It(37.5mA)となるまで充電した。その後、1It(750mA)の電流で電池電圧2.75Vまで定電流放電し、次に、電流を0.2It(150mA)に切り替え、2.75Vまで定電流放電した。このようにして、復帰容量を測定した。以下の計算式によって容量残存率(%)、及び容量復帰率(%)を求めた。結果を表1に示す。
 容量残存率(%)=((1It残存容量+0.2It残存容量)/(1It試験前放電容量+0.2It試験前放電容量))×100
 容量復帰率(%)=((1It復帰容量+0.2It復帰容量)/(1It試験前放電容量+0.2It試験前放電容量))×100
 (実施例2)
 化合物1の代わりに、下記一般式(3):
Figure JPOXMLDOC01-appb-C000005
で表される2-(トリフルオロメチル)-1,3-ジオキサン-2-カルボン酸メチル(化合物2)を用いたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。次に、実施例1と同様にして、実施例2で得られた非水電解質二次電池の初期充放電効率、膨れ、容量残存率、容量復帰率を測定した。結果を表1に示す。
 (比較例1)
 化合物1を添加しなかったこと以外は、実施例1と同様にして非水電解質二次電池を作製した。次に、実施例1と同様にして、比較例1で得られた非水電解質二次電池の初期充放電効率、膨れ、容量残存率、容量復帰率を測定した。結果を表1に示す。
 (参考例1)
 化合物1の代わりに、下記一般式(4):
Figure JPOXMLDOC01-appb-C000006
で表される2,2-ジメチル-3,3,3-トリフルオロプロピオン酸メチル(化合物3)を用いたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。次に、実施例1と同様にして、参考例1で得られた非水電解質二次電池の初期充放電効率、膨れ、容量残存率、容量復帰率を測定した。結果を表1に示す。
 (参考例2)
 ビニレンカーボネート(VC)を添加しなかったこと以外は、実施例1と同様にして非水電解質二次電池を作製した。次に、実施例1と同様にして、参考例2で得られた非水電解質二次電池の初期充放電効率、膨れ、容量残存率、容量復帰率を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000007
 表1に示される結果から、ビニレンカーボネートに加えて、一般式(2)で表される化合物1を添加した実施例1では、比較例1に比して、電池の膨れが小さくなり、容量残存率及び容量復帰率も高い値を示している。また、一般式(3)で表される化合物2を添加した実施例2についても、比較例1に比して、電池の膨れが小さくなり、容量残存率及び容量復帰率も高い値を示している。
 ビニレンカーボネートと一般式(4)で表される化合物3を添加した参考例1では、比較例1に比して、電池の膨れは抑制されるものの、初期充放電効率及び容量復帰率が低い値となった。また、ビニレンカーボネートは添加せず、一般式(2)で表される化合物1を添加した参考例2についても、電池の膨れは抑制されるものの、初期充放電効率及び容量復帰率が低い値となった。
 (実施例3)
 非水電解質中の化合物1の含有量を0.1質量%としたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。次に、実施例1と同様にして、実施例3で得られた非水電解質二次電池の初期充放電効率、膨れ、容量残存率、容量復帰率を測定した。結果を表2に示す。
 (実施例4)
 非水電解質中の化合物1の含有量を0.5質量%としたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。次に、実施例1と同様にして、実施例4で得られた非水電解質二次電池の初期充放電効率、膨れ、容量残存率、容量復帰率を測定した。結果を表2に示す。
 (実施例5)
 非水電解質中の化合物1の含有量を2質量%としたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。次に、実施例1と同様にして、実施例5で得られた非水電解質二次電池の初期充放電効率、膨れ、容量残存率、容量復帰率を測定した。結果を表2に示す。
 (実施例6)
 非水電解質中の化合物1の含有量を3質量%としたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。次に、実施例1と同様にして、実施例6で得られた非水電解質二次電池の初期充放電効率、膨れ、容量残存率、容量復帰率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
 表2に示される結果から、一般式(2)で表される化合物1の含有量を0.1質量%~3質量%とした実施例3~6の電池は、実施例1及び2と同様に、高い初期充放電効率を示し、膨れも抑制できていることが分かる。また、これらの電池は、容量残存率と容量復帰率についても実施例1及び2と同様に、高い値を示した。
 (実施例7)
 非水電解質中のビニレンカーボネートの含有量を0.1質量%としたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。次に、実施例1と同様にして、実施例7で得られた非水電解質二次電池の初期充放電効率、膨れ、容量残存率、容量復帰率を測定した。結果を表3に示す。
 (実施例8)
 非水電解質中のビニレンカーボネートの含有量を0.3質量%としたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。次に、実施例1と同様にして、実施例8で得られた非水電解質二次電池の初期充放電効率、膨れ、容量残存率、容量復帰率を測定した。結果を表3に示す。
 (実施例9)
 非水電解質中のビニレンカーボネートの含有量を0.5質量%としたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。次に、実施例1と同様にして、実施例9で得られた非水電解質二次電池の初期充放電効率、膨れ、容量残存率、容量復帰率を測定した。結果を表3に示す。
 (比較例2)
 非水電解質中のビニレンカーボネートの含有量を0.1質量%としたこと以外は、比較例1と同様にして非水電解質二次電池を作製した。次に、実施例1と同様にして、比較例2で得られた非水電解質二次電池の初期充放電効率、膨れ、容量残存率、容量復帰率を測定した。結果を表3に示す。
 (比較例3)
 非水電解質中のビニレンカーボネートの含有量を0.5質量%としたこと以外は、比較例1と同様にして非水電解質二次電池を作製した。次に、実施例1と同様にして、比較例3で得られた非水電解質二次電池の初期充放電効率、膨れ、容量残存率、容量復帰率を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000009
 表3に示される結果から、ビニレンカーボネートの含有量を0.1質量%~0.5質量%とした実施例7~9の電池は、実施例1及び2と同様に、高い初期充放電効率を示し、膨れも抑制できていることが分かる。また、これらの電池は、容量残存率と容量復帰率についても実施例1及び2と同様に、高い値を示していた。
 一方、一般式(2)で表される化合物1を加えていない比較例3及び4では、ビニレンカーボネートの含有量を0.1質量%~0.5質量%としても、実施例7~9と比して、電池の膨れは大きくなり、容量残存率及び容量復帰率も低い値となった。
1…非水電解質二次電池
10…電極体
11…負極
12…正極
13…セパレータ
17…電池容器

Claims (7)

  1.  リチウム塩、ビニレンカーボネート、及び下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Xは、置換基を有していてもよい炭素数2~4のアルキレン基であり、Rfは、直鎖状または分岐鎖状の炭素数1~6の含フッ素アルキル基であり、Rは、置換基を有していてもよい直鎖状、分岐鎖状または環状の炭素数1~6のアルキル基である。]
    で表される化合物を含む、非水電解質二次電池の非水電解質。
  2.  前記一般式(1)において、Xは、置換基を有していてもよい炭素数2~3のアルキレン基であり、Rfは、直鎖状または分岐鎖状の炭素数1~3の含フッ素アルキル基であり、Rは、置換基を有していてもよい直鎖状、分岐鎖状または環状の炭素数1~3のアルキル基である、請求項1に記載の非水電解質二次電池の非水電解質。
  3.  前記一般式(1)において、Rfは、直鎖状または分岐鎖状の炭素数1~3のパーフルオロアルキル基である、請求項1または2に記載の非水電解質二次電池の非水電解質。
  4.  前記一般式(1)において、Xは、エチレン基またはプロピレン基であり、Rfは、トリフルオロメチル基であり、Rはメチル基である、請求項1~3のいずれか一項に記載の非水電解質二次電池の非水電解質。
  5.  前記非水電解質中のビニレンカーボネートの含有量が、0.05質量%~2質量%であり、前記一般式(1)で表される化合物の含有量が、0.05質量%~5質量%である、請求項1~4のいずれか一項に記載の非水電解質二次電池の非水電解質。
  6.  前記非水電解質二次電池は、負極に炭素材料からなる負極活物質を含む、請求項1~5のいずれか一項に記載の非水電解質二次電池の非水電解質。
  7.  請求項1~6のいずれか一項に記載の非水電解質と、正極と、負極と、セパレータとを備える、非水電解質二次電池。
PCT/JP2012/074529 2011-09-29 2012-09-25 非水電解質及び非水電解質二次電池 WO2013047502A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/239,638 US9240615B2 (en) 2011-09-29 2012-09-25 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
CN201280043369.XA CN103765664B (zh) 2011-09-29 2012-09-25 非水电解质及非水电解质二次电池
JP2013536292A JP5925792B2 (ja) 2011-09-29 2012-09-25 非水電解質及び非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-214165 2011-09-29
JP2011214165 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013047502A1 true WO2013047502A1 (ja) 2013-04-04

Family

ID=47995534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074529 WO2013047502A1 (ja) 2011-09-29 2012-09-25 非水電解質及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US9240615B2 (ja)
JP (1) JP5925792B2 (ja)
CN (1) CN103765664B (ja)
WO (1) WO2013047502A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116879A1 (ja) * 2016-12-22 2018-06-28 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180066085A (ko) * 2015-10-09 2018-06-18 고션 인코포레이티드 메틸 2-메틸-1,3-다이옥솔란-2-카복실레이트를 함유하는 전해질 조성물 및 이를 포함하는 전기화학 셀

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303437A (ja) * 2003-03-28 2004-10-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2006252829A (ja) * 2005-03-09 2006-09-21 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011150873A (ja) * 2010-01-21 2011-08-04 Sanyo Electric Co Ltd 非水電解質二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2719161B1 (fr) 1994-04-22 1996-08-02 Accumulateurs Fixes Générateur électrochimique rechargeable au lithium à anode de carbone.
US5750730A (en) * 1996-01-10 1998-05-12 Sanyo Chemical Industries, Ltd. Fluorine-containing dioxolane compound, electrolytic solution composition, battery and capacitor
JP2003297417A (ja) * 2002-03-29 2003-10-17 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
JP4239467B2 (ja) * 2002-04-17 2009-03-18 株式会社ジーエス・ユアサコーポレーション 非水電解質電池
CN101632198A (zh) * 2007-03-09 2010-01-20 巴斯夫欧洲公司 用于锂离子电池的硝基氧
JP5217512B2 (ja) * 2008-03-04 2013-06-19 ソニー株式会社 二次電池用電解液、二次電池および電子機器
WO2012029625A1 (ja) * 2010-09-02 2012-03-08 日本電気株式会社 二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303437A (ja) * 2003-03-28 2004-10-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2006252829A (ja) * 2005-03-09 2006-09-21 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011150873A (ja) * 2010-01-21 2011-08-04 Sanyo Electric Co Ltd 非水電解質二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116879A1 (ja) * 2016-12-22 2018-06-28 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JPWO2018116879A1 (ja) * 2016-12-22 2019-10-24 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP7019598B2 (ja) 2016-12-22 2022-02-15 Muアイオニックソリューションズ株式会社 非水電解液及びそれを用いた蓄電デバイス
US11462771B2 (en) 2016-12-22 2022-10-04 Mu Ionic Solutions Corporation Nonaqueous electrolyte solution and electricity storage device using same

Also Published As

Publication number Publication date
US9240615B2 (en) 2016-01-19
CN103765664B (zh) 2015-12-09
US20140220429A1 (en) 2014-08-07
CN103765664A (zh) 2014-04-30
JPWO2013047502A1 (ja) 2015-03-26
JP5925792B2 (ja) 2016-05-25

Similar Documents

Publication Publication Date Title
JP4012174B2 (ja) 効率的な性能を有するリチウム電池
JP5094084B2 (ja) 非水電解質二次電池
WO2016126534A1 (en) Electrochemical cells that include lewis acid: lewis base complex electrolyte additives
CN110176630B (zh) 电解液和使用其的电化学装置
WO2015037451A1 (ja) リチウムイオン二次電池
JP2008097879A (ja) リチウムイオン二次電池
KR20160069996A (ko) 리튬 이차 전지
JPWO2015087580A1 (ja) 二次電池の製造方法
JP2016048624A (ja) リチウム二次電池
JP6208560B2 (ja) リチウム二次電池
US8709665B2 (en) Nonaqueous secondary battery with nitrile group-containing compound
WO2015025915A1 (ja) 二次電池
KR102230038B1 (ko) 리튬 이차 전지
JP2022126851A (ja) 電池用非水電解液及びリチウム二次電池
US20180241085A1 (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery using the same
CN110854432B (zh) 电解液以及使用其的电化学装置和电子装置
JP5499359B2 (ja) 非水電解質及び該非水電解質を含む非水電解質二次電池
JP5925792B2 (ja) 非水電解質及び非水電解質二次電池
JP6992362B2 (ja) リチウムイオン二次電池
CN112271327B (zh) 电解液以及包含电解液的电化学装置和电子装置
JP7339921B2 (ja) 非水系電解液及び非水系二次電池
JP6980502B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2015125949A (ja) リチウムイオン二次電池
JP2003263984A (ja) 非水電解質電池および非水電解質電池の製造法。
WO2012086618A1 (ja) 負極活物質、負極および非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536292

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14239638

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834801

Country of ref document: EP

Kind code of ref document: A1