WO2013047465A1 - 導電粒子及び金属ペースト並びに電極 - Google Patents

導電粒子及び金属ペースト並びに電極 Download PDF

Info

Publication number
WO2013047465A1
WO2013047465A1 PCT/JP2012/074469 JP2012074469W WO2013047465A1 WO 2013047465 A1 WO2013047465 A1 WO 2013047465A1 JP 2012074469 W JP2012074469 W JP 2012074469W WO 2013047465 A1 WO2013047465 A1 WO 2013047465A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
ceramic
noble metal
conductive particles
electrode
Prior art date
Application number
PCT/JP2012/074469
Other languages
English (en)
French (fr)
Inventor
拓也 細井
順久 岡本
弘一 坂入
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to US14/238,200 priority Critical patent/US9245660B2/en
Priority to KR1020147010785A priority patent/KR101581602B1/ko
Priority to EP12835424.8A priority patent/EP2763143B1/en
Priority to ES12835424.8T priority patent/ES2676021T3/es
Publication of WO2013047465A1 publication Critical patent/WO2013047465A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/016Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables
    • H01B13/0162Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables of the central conductor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • B22F1/147Making a dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials

Definitions

  • the present invention relates to conductive particles for forming various electrodes such as a sensor electrode, a heater electrode, and a lead wire electrode, and further relates to a metal paste for electrode formation using the conductive particles.
  • a metal paste containing conductive metal powder is applied to the substrate by various methods such as screen printing and fired. It is common to manufacture. In addition to being able to deal with complex electrode patterns, the form of metal paste can be used to simultaneously manufacture the substrate and the electrode by applying and baking the metal paste on the green sheet forming the ceramic substrate. This is because it is preferable from the viewpoint of manufacturing efficiency.
  • a metal paste for electrode formation As a metal paste for electrode formation, a mixture of conductive particles such as noble metal and ceramic powder such as Al 2 O 3 and ZrO 2 in a solvent has been conventionally used.
  • ceramic powder is mixed with metal paste, the difference in shrinkage between metal paste and green sheet is corrected when the substrate and electrode are manufactured by applying metal paste to green sheet and firing as described above. This is because the problem of warping or deformation of the substrate due to the difference in shrinkage rate is solved and the adhesion of the electrodes is improved.
  • the conductive particles can be prevented from being oversintered during firing by mixing ceramic powder with the metal paste.
  • the ceramic powder tends to increase the resistance value of the manufactured electrode film and make it considerably higher than that of the bulk metal electrode while ensuring the formability of the electrode film as described above. Therefore, the use of ceramic powder is not preferable from the viewpoint of characteristics as an electrode precursor material. However, if the ceramic is not mixed or the mixing amount is too small, the electrode itself cannot be formed. For this reason, it was unavoidable to mix ceramics.
  • the significance of mixing the ceramic powder with the metal paste for electrode formation is also the aspect of ensuring the durability of the electrode film.
  • the durability of the electrode is, for example, a characteristic required for an electrode film that is exposed to a high temperature, such as a heater electrode.
  • an electrode film having poor durability may be disconnected in a relatively short time.
  • durability of an electrode film can be improved by increasing the mixing amount of ceramic powder, as above-mentioned, there exists a request
  • the present invention has been made in consideration of the above circumstances, and can produce an electrode film having low resistance and excellent durability, and is a conductive particle constituting a metal paste having excellent adhesion and followability to a substrate. I will provide a. It is another object of the present invention to provide a metal paste using such conductive particles.
  • the inventors of the present invention first examined a firing process when using a conventional metal paste as an electrode film.
  • a conventional metal paste conductive particles and ceramic particles are dispersed in a solvent, and the conductive particles are baked to sinter and bond the conductive particles so as to be conductive as an electrode.
  • the ceramic powder is also sintered.
  • the unsintered ceramic particles in the vicinity of the conductive particles gather so as to be pushed out from the conductive particles that start sintering first. That is, in the conventional metal paste, the conductive particles and the ceramic particles are dispersed non-uniformly during the firing process. And when sintering of the ceramic proceeds in such a non-uniform dispersion state, the ceramic particles become coarse.
  • the present inventors considered that the coarsening of the ceramic particles as described above is a factor that increases the resistance of the electrode film. It can be said that such coarsening of the ceramic particles is more likely to occur when the mixing amount of the ceramic powder is increased.
  • the ceramic powder is necessary for securing the adhesion of the electrode, and it is not a preferable measure to completely exclude the ceramic powder from the metal paste. Therefore, the present inventors have studied to find a metal paste in which ceramic particles are fine even after firing.
  • the metal paste is not composed of conductive particles and ceramic powder separately dispersed in a solvent as in the conventional metal paste, but in a state where the ceramic is bonded to the conductive particles. It was conceived to be dispersed in a solvent. And it discovered that a fine ceramic particle was disperse
  • the present invention that solves the above-mentioned problems is a conductive particle for electrode formation, comprising noble metal particles having an average particle diameter of 50 to 150 nm made of Pt or a Pt alloy, and Al 2 O 3 or ZrO 2 dispersed in the noble metal particles.
  • An electrode comprising: first ceramic particles having an average particle diameter of 5 to 50 nm comprising; and second ceramic particles having an average particle diameter of 5 to 50 nm comprising Al 2 O 3 or ZrO 2 bonded to the outer periphery of the noble metal particles. It is a conductive particle for formation.
  • the present invention discloses conductive particles prior to pasting, in which noble metal particles and ceramic particles are combined, and the ceramic particles are dispersed as dispersed particles using the noble metal particles as a matrix.
  • the noble metal particles according to the present invention are in a state in which the entire ceramic particles are completely confined therein.
  • precious metal particles having a low sintering temperature are preferentially sintered in the firing process, but there is no movement of the ceramic particles at this stage, and the sintering of the precious metal particles is completed. Keep it as it is. Therefore, the ceramic particles in the noble metal particles are in a fine state even in the electrode film and do not cause an increase in the resistance value. Further, such fine ceramic particles have a function as a dispersion reinforcing material for the electrode film, and increase the durability thereof.
  • the conductive particles according to the present invention are obtained by dispersing ceramic particles inside noble metal particles and bonding (supporting) ceramic particles around the noble metal particles.
  • the significance of supporting the ceramic particles around the noble metal particles is to supplement the amount of ceramic inside the conductive particles.
  • the ceramic particles dispersed inside the noble metal particles have functions such as improvement of adhesion to the substrate, as in the prior art.
  • the ceramic particles are bonded to the noble metal particles around the noble metal particles, the ceramic particles can move together with the noble metal particles even in the firing process of the metal paste. Therefore, there is no possibility that the individually dispersed ceramic particles as in the prior art are sintered and coarsened. In the present invention, although some sintering occurs, it is difficult to cause coarsening that excessively increases the resistance value.
  • the conductive particles according to the present invention have fine ceramic particles while preventing the coarsening of the ceramic particles and reducing the resistance value when the electrode particles are dispersed by dispersing the ceramic particles inside the noble metal particles. Improve durability by strengthening dispersion. Further, in order to ensure the formability of the electrode film, the ceramic particles are bonded around the noble metal particles so as to complement the ceramic particles in a form that does not increase the resistance value.
  • the noble metal particles are made of Pt or a Pt alloy. These metals have good conductivity and excellent heat resistance. Since various sensors are used at high temperatures, such as automobile exhaust sensors, they are suitable as their electrode materials. Which of Pt and Pt alloy is used as the noble metal particles can be selected depending on the use and required characteristics. Pt has a lower resistance than a Pt alloy, and is suitable for applications in which lower resistance such as sensor electrodes and lead wire electrodes is first required. On the other hand, the Pt alloy has a higher resistance than Pt, but has a low resistance temperature coefficient (TCR) and is suitable for applications such as heater electrodes.
  • TCR resistance temperature coefficient
  • Pd, Au, Ag, and Rh are preferable as the metal alloyed with Pt as the Pt alloy.
  • a Pt—Pd alloy containing Pd is preferable from the viewpoint of good compatibility with the ceramic as a substrate and good wettability when used as a paste.
  • the Pd content is preferably 30% by weight or less. This is because if the Pd content is excessive, the Pd oxide is likely to precipitate during the firing process, and the reliability of the electrode is lowered.
  • the average particle diameter of the noble metal particles is 50 to 150 nm. Particles that are too fine below 50 nm make it difficult to produce a thick electrode film. On the other hand, when the thickness exceeds 150 nm, the dispersibility when a metal paste is used is lowered, which is not preferable. *
  • the ceramic particles (first ceramic particles) dispersed in the noble metal particles are made of Al 2 O 3 or ZrO 2 ceramic. This is in consideration of the bondability to the ceramic substrate.
  • the ceramic particles have an average particle size of 5 to 50 nm. When the thickness is less than 5 nm, the sintering temperature may be lowered due to the influence of the size effect, which is not preferable. Ceramic particles exceeding 50 nm are not preferable because the dispersibility in the noble metal particles is reduced and dispersion strengthening cannot be expected.
  • the ceramic particles (second ceramic particles) bonded to the outer periphery of the noble metal particles are made of Al 2 O 3 or ZrO 2 and have an average particle diameter of 5 to 50 nm, like the ceramic particles dispersed inside the noble metal particles. If the thickness is less than 5 nm, the sintering temperature may be lowered as described above, which is not preferable. Moreover, although the ceramic particle
  • Al 2 O 3 having a purity of 90% by weight or more which is generally circulated is preferable.
  • ZrO 2 stabilized zirconia to which several percent of oxides such as yttria and calcia are added in addition to pure zirconia. Is applicable.
  • oxides such as hafnium, cerium, titanium, tantalum, and magnesium can also act as the ceramic particles of the present invention.
  • Al 2 O 3 or ZrO 2 is preferable in view of ease of material procurement, cost, and the like.
  • the total amount of the ceramic particles contained in the conductive particles according to the present invention is 2 on the basis of the entire conductive particles. It is preferable that it is ⁇ 40% by volume. If it is less than 2% by volume, it is difficult to ensure adhesion to the substrate, which is the reason for applying ceramic particles, and peeling or deformation from the substrate is likely to occur during metal paste firing. Moreover, when it exceeds 40 volume%, even if it considers the effect of the ceramic particle coarsening suppression of this invention, resistance of an electrode film becomes excessive and electroconductivity cannot be obtained.
  • a preferable range of the total amount of ceramic particles is 5.0 to 35% by volume.
  • the amount of ceramic particles dispersed in the noble metal particles is preferably 0.5 to 15% by volume based on the entire conductive particles. If it is less than 0.5% by volume, the degree of dispersion in the electrode film after firing is low, and the effect of improving durability cannot be sufficiently exhibited. Moreover, it is because resistance will become high when it exceeds 15 volume%. A more preferable amount of the ceramic particles dispersed in the noble metal particles is 1.0 to 12% by volume.
  • the conductive particles according to the present application have a structure in which a ceramic, that is, a metal oxide is dispersed using a noble metal as a matrix.
  • An internal oxidation method is generally known as a method for producing such a metal material in which an oxide is dispersed.
  • the internal oxidation method is applied to disperse an oxide using noble metal fine particles as a matrix as in the present invention.
  • the internal oxidation method is a method in which an alloy of a metal serving as a matrix and a metal serving as a metal source of an oxide to be dispersed is heated in an oxidizing atmosphere. It is difficult to maintain a state in which the product segregates and precipitates on the powder surface and is dispersed inside the powder.
  • the inventors of the present invention manufactured composite particles having a core / shell structure composed of noble metal particles and a shell-like ceramic covering at least a part of the noble metal particles, and heat-treating the composite particles so that the noble metal particles of the composite particles It has been found that bonding occurs, and at the same time, the shell-like ceramic finely penetrates and disperses in the noble metal particles. And the manufacturing method of the electrically-conductive particle which concerns on this application was discovered using this phenomenon. That is, the method for producing conductive particles according to the present application includes a core / shell structure comprising noble metal particles made of Pt or a Pt alloy and a shell-like ceramic containing Al 2 O 3 or ZrO 2 covering at least a part of the noble metal particles. After producing composite particles having the above, the composite particles are heated to 650-1200 ° C. to produce conductive particles.
  • the composite particles having a core / shell structure which is a precursor of the conductive particles according to the present application, preferably have an average particle size of 30 to 100 nm.
  • the heat treatment for forming the dispersed particles is to cause bonding and granulation of the noble metal particles, and to make the particle size of the conductive particles to be manufactured within an appropriate range.
  • the amount of the shell-like ceramic of the composite particles is preferably such that the noble metal particles are coated at a ratio of 2 to 40% by volume based on the total composite particles. This is also in order to make the amount of ceramic in the conductive particles to be produced within an appropriate range.
  • Production of composite particles having a core / shell structure can utilize a gas phase reaction in a high temperature atmosphere.
  • the metal / alloy powder that becomes the precious metal particles and the ceramic powder that becomes the shell are mixed, and the mixed powder is discharged into a high-temperature atmosphere above the boiling points of both components, and the fine powder produced by cooling is obtained. It is to be collected.
  • the high-temperature atmosphere for discharging the raw material powder is a plasma atmosphere.
  • the amount of ceramic can be set by adjusting the ratio in the mixed powder at the stage of producing composite particles.
  • the heat treatment temperature of the composite particles is set to 650 to 1200 ° C.
  • the temperature is lower than 650 ° C.
  • noble metal particles are hardly bonded, and as a result, conductive particles cannot be produced.
  • the temperature exceeds 1200 ° C., the conductive particles become coarse, which is not preferable.
  • the heating time is preferably 0.5 to 10.0 hours.
  • the metal paste to which the conductive particles according to the present invention are applied is a mixture of the conductive particles and a solvent.
  • Solvents applicable to metal paste production in the present invention include ethylene glycol, propylene glycol, ethyl cellosolve, butyl cellosolve, ethylene glycol monophenyl ether, ethylene glycol monomethyl ether acetate, benzyl alcohol, kerosene, paraffin, toluene, cyclohexanone, ⁇ - General materials such as butyrolactone, methyl ethyl ketone, N-methylpyrrolidone, N-dimethylformamide, N-methylacetamide, N, N-dimethylacetamide, butyl carbitol, turpentine oil, ⁇ -terpineol, terpineol, etc. can be applied, especially , ⁇ -terpin
  • the amount of conductive particles mixed is preferably 4.0 to 40% by volume with respect to the entire paste. This is because when the amount is less than 4.0% by volume, the electrode film becomes too thin, and when the amount exceeds 40% by volume, pasting becomes difficult.
  • a resin usually used for imparting viscosity and thixotropy to the metal paste may be added.
  • this resin natural resins, amino resins, alkyd resins and the like are common. Particularly preferred is ethyl cellulose.
  • the firing temperature is preferably 1300 to 1600 ° C. This is because a sufficiently low sintered product can be obtained.
  • the electrode film thus formed is in a state in which fine ceramic particles (Al 2 O 3 particles, ZrO 2 particles) are dispersed. Specifically, more than half of the ceramic particles are 300 nm or less. Yes.
  • the conductive particles according to the present invention can be applied to a metal paste and fired to form an electrode film having excellent resistance and low resistance in which fine ceramic particles are dispersed.
  • the metal paste according to the present invention can be applied to both thick and thin electrode films, and the resistance can be reduced to reduce the thickness of conventional electrode films. This will also reduce the amount of precious metals used and reduce the cost of electronic equipment.
  • conductive particles in which Pt is used as noble metal particles and Al 2 O 3 is dispersed and supported as ceramic particles are manufactured, and the resistance value of an electrode obtained by firing the conductive particles as a metal paste was measured. The durability of the electrode film was also evaluated.
  • the amount of ceramic was changed to produce conductive particles to produce an electrode film.
  • the method for producing conductive particles was basically the same as described above, and composite particle powder was obtained by a gas phase reaction method by changing the amount of Al 2 O 3 powder mixed with Pt powder. Then, the composite particle powder was heat-treated to produce conductive particles. And the metal paste was manufactured like the above and the electrode was produced.
  • the resistance value of the electrode film manufactured by the above process was measured by a four-terminal method using a digital multimeter. Moreover, the durability test for evaluating durability of an electrode was done. The durability test was performed by energizing the electrodes on the substrate to heat the substrate to 1200 ° C. and measuring the time until disconnection occurred. The test results are shown in Table 1.
  • the electrode film produced by the metal paste to which the conductive particles according to each example are applied is remarkably improved in high temperature durability when the amount of ceramic is the same as that produced from the conventional metal paste. It can be seen that the durability time is several times that of the prior art. This means that when the amount of ceramic is defined based on durability, for example, the conventional ceramic volume of 40% by volume (conventional example 3) is reduced to 5% by volume of ceramic (implementation). Even if it changes to Example 1), it shows sufficient durability and also a resistance value becomes low.
  • Second Embodiment Here, conductive particles to which a Pt—Pd alloy (Pd 25 wt%) is applied as noble metal particles were manufactured.
  • the manufacturing method is basically the same as that of the first embodiment.
  • the raw material powder is changed from Pt powder to Pt—Pd alloy powder (average particle size: 10 nm), and the rest is the same as in the first embodiment.
  • a reaction method a composite particle powder having a core / shell structure with Pt—Pd alloy as noble metal particles and Al 2 O 3 as a shell was obtained. And this composite particle powder was heat-processed, and the electroconductive particle was manufactured (the heat processing temperature is 950 degreeC, and the heat processing time is 1 hour).
  • the conductive particles of the first embodiment were manufactured by applying ZrO 2 (YSZ) as ceramic particles.
  • ZrO 2 (YSZ) as ceramic particles.
  • YSZ ZrO 2
  • this manufacturing method basically the same conditions as in the first embodiment are applied, and a mixed powder of Pt powder and ZrO 2 (YSZ) powder is released into the plasma gas phase to form a composite particle powder having a core / shell structure.
  • Manufactured And the heat processing similar to 1st Embodiment was performed, and the electrically-conductive particle was manufactured.
  • a metal paste was produced, applied to a zirconia green sheet and fired to form an electrode film, and the resistance value was measured.
  • the characteristics of the electrode film of a metal paste obtained by separately mixing Pt powder and ZrO 2 (YSZ) powder were also evaluated (conventional examples 5 and 6). The results are shown in Table 3.
  • an electrode forming paste capable of forming a low resistance electrode can be provided. Moreover, the electrode manufactured by this invention is excellent also in durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 本発明は、電極形成用の導電粒子であって、Pt又はPt合金からなる平均粒径50~150nmの貴金属粒子と、前記貴金属粒子中に分散するAl又はZrOからなる平均粒径5~50nmの第1のセラミック粒子と、前記貴金属粒子の外周に結合するAl又はZrOからなる平均粒径5~50nmの第2のセラミック粒子と、からなる電極形成用の導電粒子である。ここで、第1のセラミック粒子の容積と、第2のセラミック粒子の容積との合計は、導電粒子全体基準で2~40容積%の割合とするのが好ましい。本発明に係る導電粒子を含む金属ペーストは、低抵抗で耐久性に優れた電極膜を製造可能であり、基板への密着性・追従性にも優れる。

Description

導電粒子及び金属ペースト並びに電極
 本発明は、センサー電極、ヒーター電極、リード線電極等の各種の電極を形成するための導電粒子に関し、更に、これを用いた電極形成用の金属ペーストに関する。
 酸素センサー、NOxセンサー、排気温度センサー等の各種のガスセンサーのセンサー電極やヒーター電極等の製造においては、基板に導電金属粉末を含む金属ペーストをスクリーン印刷等の各種方法で塗布して焼成して製造するのが一般的である。金属ペーストの形態が多用されるのは、複雑な電極パターンにも対応できることの他、セラミック基板を形成するグリーンシート上に金属ペーストを塗布し焼成することで、基板と電極を同時に製造することができ製造効率の観点からも好ましいからである。
 電極形成用の金属ペーストとしては、溶剤に、貴金属等の導電粒子とAl、ZrO等のセラミック粉末を混合したものが従来から用いられている。金属ペーストにセラミック粉末を混合するのは、上記のようにグリーンシートに金属ペーストを塗布して焼成して基板と電極を製造する際に、金属ペーストとグリーンシートとの収縮率の差を修正し、収縮率差による基板の反りや変形の問題を解消して、電極の密着性を向上させるためである。また、金属ペーストにセラミック粉末を混合することで、焼成時の導電粒子の過焼結を防止することができるという利点もある。
 しかし、セラミック粉末は、上記のような電極膜の成形性を確保する一方、製造される電極膜の抵抗値を上昇させ、バルク金属の電極よりもかなり高くする傾向がある。よって、セラミック粉末の使用は、電極の前駆材料としての特性の観点から好ましいものではないが、かといってセラミックを混合しない、或いは、混合量が少なすぎると、電極の形成自体が不可能になるため、やむなくセラミックを混合するというのが実情であった。
 また、電極形成用の金属ペーストにセラミック粉末を混合する意義としては、電極膜の耐久性確保という側面もある。電極の耐久性は、例えば、ヒーター電極等の高温に晒される電極膜において要求される特性であるが、耐久性に乏しい電極膜は比較的短時間で断線が生じるおそれがある。そして、電極膜の耐久性は、セラミック粉末の混合量を増大することで向上させることができるが、上記の通り、抵抗値低減の観点からはセラミック粉末の混合量を減らしたいという要求がある。
特許第3510050号明細書
 本発明は、上記の事情を考慮したものであり、低抵抗で耐久性に優れた電極膜を製造可能であり、且つ、基板への密着性・追従性に優れた金属ペーストを構成する導電粒子を提供する。また、かかる導電粒子を利用した金属ペーストを提供することを目的とする。
 本発明者等は、まず、従来の金属ペーストを電極膜とする際の焼成プロセスを検討した。従来の金属ペーストにあっては、溶剤中で導電粒子とセラミック粒子が個々に分散した状態にあり、これを焼成し導電粒子を焼結・結合させて電極として導通が取れるようにするものであるが、金属ペーストの焼成時には、セラミック粉末の焼結も生じている。ここで、導電粒子(金属)の焼結温度とセラミック粉末の焼結温度との間には温度差があり、導電粒子の焼結温度の方が低いため、焼成過程では導電粒子の焼結が優先的に生じる。そのため、導電粒子近辺の未焼結のセラミック粒子は、先に焼結を開始する導電粒子から押し出されるように集合する。即ち、従来の金属ペーストでは、焼成の過程で導電粒子とセラミック粒子とが不均一に分散した状態が生じる。そして、かかる不均一な分散状態でセラミックの焼結が進行すると、セラミック粒子の粗大化が生じることとなる。
 本発明者等は、上記のようなセラミック粒子の粗大化が電極膜の抵抗を上昇させる要因と考えた。このようなセラミック粒子の粗大化は、セラミック粉末の混合量を増大させるとより生じやすくなるといえる。もっとも、セラミック粉末は、電極の密着性確保のために必要なものであり、金属ペーストからこれを完全に除外することは好ましい対策とはいえない。そこで、本発明者等は、焼成後もセラミック粒子が微細な状態を有する金属ペーストを見出すべく検討を行った。
 この検討の結果、まず、金属ペーストの構成として、従来の金属ペーストのように、導電粒子とセラミック粉末とを別々に溶剤に分散させたものではなく、導電粒子にセラミックを結合した状態とし、これを溶剤に分散させることに想到した。そして、導電粒子へのセラミックの結合状態として、導電粒子中に微細なセラミック粒子を分散させることを見出した。
 上記課題を解決する本願発明は、電極形成用の導電粒子であって、Pt又はPt合金からなる平均粒径50~150nmの貴金属粒子と、前記貴金属粒子中に分散するAl又はZrOからなる平均粒径5~50nmの第1のセラミック粒子と、前記貴金属粒子の外周に結合するAl又はZrOからなる平均粒径5~50nmの第2のセラミック粒子と、からなる電極形成用の導電粒子である。
 本願発明は、ペースト化の前段階の導電粒子を開示するものであり、貴金属粒子とセラミック粒子とを結合し、貴金属粒子をマトリックスとしてセラミック粒子を分散粒子として分散させたものである。本発明に係る貴金属粒子は、セラミック粒子全体をその内部に完全に閉じ込めた状態である。本発明を適用する金属ペーストにおいては、その焼成過程において、焼結温度の低い貴金属粒子の優先的な焼結が生じるものの、この段階でセラミック粒子の移動はなく、貴金属粒子の焼結の完了までそのままの状態を維持する。従って、貴金属粒子中のセラミック粒子は、電極膜中でも微細な状態となっており、抵抗値上昇の要因となることはない。更に、かかる微細なセラミック粒子は、電極膜の分散強化材としての機能を有し、その耐久性を上昇させることとなる。
 また、本発明に係る導電粒子は、貴金属粒子内部にセラミック粒子を分散させると共に、貴金属粒子の周囲にセラミック粒子を結合(担持)させたものである。この貴金属粒子の周囲にセラミック粒子を担持させる意義は、導電粒子内部のセラミック量の補完にある。本発明においても、貴金属粒子内部に分散するセラミック粒子は、従来技術と同様、基板との密着性の向上等の機能を有する。もっとも、微細な貴金属粒子の内部に上記作用を十分発揮させるだけのセラミック粒子を含有させるのは困難であり、そのままでは電極の形成が困難となる可能性がある。そこで、貴金属粒子の周囲にセラミック粒子を補完的に結合させることで成形性確保のために十分な量のセラミック粒子を確保することができる。この貴金属粒子の周囲にセラミック粒子は、貴金属粒子と結合状態にあることから、金属ペーストの焼成過程でも貴金属粒子と共に移動することができる。そのため、従来技術のような個別に分散するセラミック粒子が焼結して粗大化するおそれはない。本発明では、多少の焼結は生じるものの抵抗値を過度に上昇させるほどの粗大化は生じ難い。
 以上のように、本発明に係る導電粒子は、貴金属粒子内部にセラミック粒子を分散させることで、電極膜としたときのセラミック粒子の粗大化を防止し抵抗値を低減しつつ、微細なセラミック粒子の分散強化による耐久性の向上を図る。また、電極膜の成形性確保のために、抵抗値を上昇させない形態でセラミック粒子を補完すべく、貴金属粒子の周囲にセラミック粒子が結合させたものである。
 以下、本発明についてより詳細に説明する。本願に係る導電粒子において、貴金属粒子は、Pt又はPt合金からなる。これらの金属は導電性が良好であり、また、耐熱性も優れる。各種センサーの中には、自動車の排気センサーのように高温下で使用されるものもあることから、それらの電極材料として好適である。貴金属粒子としてPt、Pt合金のいずれを用いるかは、その用途及び要求される特性により選択できる。PtはPt合金に比して抵抗が低く、センサー電極、リード線電極等の低抵抗化が第1に求められる用途に好適である。一方、Pt合金は、Ptよりも抵抗は高めになるが、抵抗温度係数(TCR)が低くヒーター電極等の用途に好適である。ここで、Pt合金としてPtと合金化する金属としては、Pd、Au、Ag、Rhが好ましい。また、Pdを含むPt-Pd合金は、基板となるセラミックとの相性が良好であり、ペーストとしたときの濡れ性が良好である点からも好ましい。尚、Pt-Pd合金については、Pd含有量が30重量%以下とするのが好ましい。Pd含有量が過大となると、焼成過程でPd酸化物が析出しやすくなり、電極の信頼性を低下させることとなるからである。
 そして、貴金属粒子の平均粒径は、50~150nmとする。50nm未満の微細過ぎる粒子は、厚みのある電極膜を製造するのが困難となる。一方、150nmを超える場合、金属ペーストとしたときの分散性が落ちるため好ましくない。 
 貴金属粒子中に分散するセラミック粒子(第1のセラミック粒子)は、Al又はZrOのセラミックからなる。セラミック基板への接合性を考慮したものである。このセラミック粒子は、平均粒径5~50nmとする。5nm未満の場合、サイズ効果の影響で焼結温度が下がる懸念があるため好ましくなく、50nmを超えるセラミック粒子は貴金属粒子中の分散性が落ち、分散強化が期待できないため好ましくない。
 一方、貴金属粒子の外周に結合させるセラミック粒子(第2のセラミック粒子)は、貴金属粒子内部に分散するセラミック粒子と同様、Al又はZrOからなり、平均粒径5~50nmとする。5nm未満では、上記と同様、焼結温度が下がる懸念があるため好ましくない。また、貴金属粒子外周に結合させるセラミック粒子は、分散強化を期待するものではないが、50nmを超えると、焼結による粗大化の影響が懸念されることから好ましくない。
 尚、いずれの場合も、Alは一般に流通する90重量%以上の純度のものが好ましく、ZrOについては純ジルコニアの他、イットリアやカルシア等の酸化物を数%添加した安定化ジルコニアが適用できる。尚、Al又はZrO以外にも、ハフニュウム、セリウム、チタニウム、タンタル、マグネシウム等の酸化物も本発明のセラミック粒子として作用し得る。但し、材料調達の容易さ、コスト等を考慮すると、Al又はZrOが好ましい。
 本願発明に係る導電粒子に含まれるセラミック粒子の総量、即ち、貴金属粒子中に分散するセラミック粒子の量と、貴金属粒子周囲に担持されたセラミック粒子の量との合計は、導電粒子全体基準で2~40容積%となっていることが好ましい。2容積%未満ではセラミック粒子適用の理由である基板への密着性の確保等が困難となり、金属ペースト焼成の際に基板からの剥離や変形が生じ易くなるからである。また、40容積%を超える場合、本願発明のセラミック粒子粗大化抑制の効果を考慮しても、電極膜の抵抗が過大となり導電性が得られなくなるからである。尚、このセラミック粒子総量の好ましい範囲は、5.0~35容積%である。
 尚、貴金属粒子中に分散するセラミック粒子の量は、導電粒子全体基準で0.5~15容積%とするのが好ましい。0.5容積%未満では、焼成後の電極膜中の分散度合いが低く耐久性向上の効果が十分発揮できない。また、15容積%を超えると抵抗が高くなるからである。この貴金属粒子中に分散するセラミック粒子のより好ましい量は、1.0~12容積%である。
 次に、本願に係る導電粒子の製造方法について説明する。本願に係る導電粒子は、貴金属をマトリックスとしてセラミック、即ち、金属酸化物が分散する構成を有する。このような酸化物が分散する金属材料の製造方法としては、内部酸化法が一般に知られているが、本発明のように貴金属の微粒子をマトリックスとして酸化物を分散させるには内部酸化法は適用できない。内部酸化法は、マトリックスとなる金属と、分散させる酸化物の金属源となる金属との合金を酸化雰囲気中で加熱する方法であるが、かかる手法を本発明のような微粒子に関した場合、酸化物が粉末表面に偏析・析出し、粉末内部に分散した状態を保持し難い。
 本発明者等は、貴金属粒子と、貴金属粒子の少なくとも一部を覆うシェル状セラミックとからなるコア/シェル構造を有する複合粒子を製造し、これを熱処理することで、複合粒子の貴金属粒子どうしの結合が生じ、同時にシェル状セラミックが貴金属粒子中に微細に侵入・分散することを見出した。そして、この現象を利用し本願に係る導電粒子の製造方法を見出した。即ち、本願に係る導電粒子の製造方法は、Pt又はPt合金からなる貴金属粒子と、前記貴金属粒子の少なくとも一部を覆うAl又はZrOを含むシェル状セラミックとからなるコア/シェル構造を有する複合粒子を製造した後、前記複合粒子を650~1200℃に加熱する導電粒子の製造方法である。
 ここで、本願に係る導電粒子の前駆体であるコア/シェル構造を有する複合粒子は、その平均粒径が30~100nmであるものが好ましい。分散粒子形成のための熱処理は、貴金属粒子の結合・造粒を生じさせるものであり、製造される導電粒子の粒径を適正範囲にするためである。また、複合粒子のシェル状セラミックの量は、複合粒子全体基準で2~40容積%の割合で貴金属粒子を被覆するものが好ましい。これも、製造される導電粒子中のセラミック量を適正範囲にするためである。
 コア/シェル構造を有する複合粒子の製造は、高温雰囲気内における気相反応を利用することができる。この方法は、貴金属粒子となる金属・合金の粉末と、シェルとなるセラミック粉末とを混合し、この混合粉末を両成分の沸点以上の高温雰囲気中に放出し、冷却して生成した微粉末を回収するものである。このとき、原料となる粉末を放出する高温雰囲気は、プラズマ雰囲気によるのが好ましい。また、セラミック量は、複合粒子製造の段階における混合粉末中の比率調整により設定可能である。
 複合粒子の熱処理温度として、650~1200℃とするのは、650℃未満では、貴金属粒子の結合が生じ難く、結果として導電粒子を製造できないからである。また、1200℃を超えると導電粒子が粗大となるため好ましくないからである。尚、この熱処理は、加熱時間としては、0.5~10.0時間にするのが好ましい。
 そして、本発明に係る導電粒子を適用した金属ペーストは、この導電粒子と溶剤とを混合してなるものである。本発明においては、従来の金属ペーストの構成として必須のセラミック粉末(フリット)の混合は必須ではない。本発明で金属ペースト製造に適用可能な溶剤としては、エチレングリコール、プロピレングリコール、エチルセロソルブ、ブチルセロソルブ、エチレングリコールモノフェニルエーテル、エチレングリコールモノメチルエーテルアセテート、ベンジルアルコール、ケロシン、パラフィン、トルエン、シクロヘキサノン、γ―ブチロラクトン、メチルエチルケトン、N‐メチルピロリドン、N‐ジメチルホルムアミド、N‐メチルアセトアミド、N,N‐ジメチルアセトアミド、ブチルカルビトール、テレピン油、α―テルピネオール、タービネオール等の一般的なものが適用でき、特には、α―テルピネオールのようなものが好適である。
 導電粒子の混合量は、ペースト全体に対して4.0~40容積%とするのが好ましい。4.0容積%未満では、電極膜が薄くなりすぎ、40容積%を超えるとペースト化が困難となるからである。
 また、金属ペーストに粘度やチクソトロピーを持たせるために通常使用されている樹脂を添加しても良い。この樹脂としては、天然樹脂、アミノ系樹脂、アルキド樹脂等が一般的である。特には、エチルセルロースのようなものが好適である。
 そして、この電極形成用ペーストにより電極を製造する場合、焼成温度は、1300~1600℃とするのが好ましい。十分に焼結して抵抗値の低いものが得られるからである。このようにして形成される電極膜は、微細なセラミック粒子(Al粒子、ZrO粒子)が分散した状態となり、具体的には、半数以上のセラミック粒子が300nm以下のものとなっている。
 以上説明したように、本発明に係る導電粒子は、金属ペーストに適用し、これを焼成することで、微細なセラミック粒子が分散した低抵抗かつ耐久性に優れた電極膜を形成することができる。本願発明に係る金属ペーストは、厚膜・薄膜いずれの電極膜にも対応可能であり、また、低抵抗化により従来と同じ耐久性の電極膜についての薄膜化が可能となるため、Pt等の貴金属使用量の低減、電子機器のコストダウンにも繋がる。
第1実施形態:以下、本発明の実施形態について説明する。本実施形態では、Ptを貴金属粒子とし、セラミック粒子としてAlが分散・担持された導電粒子を製造し、これを金属ペーストとして焼成した電極の抵抗値を測定した。また、電極膜の耐久性も評価した。
(A)導電粒子の製造
(i)複合粒子の製造
 平均粒径10nmのPt粉末と、平均粒径10nmのAl粉末とを、V型混合機で混合して均一な混合粉末を用意した(混合粉末全体に対するセラミック量15容積%)。このときの混合比は、複合粒子粉末のAlシェルの添加量に相当する。そして、これを高周波誘導熱プラズマ装置にてアルゴン雰囲気でプラズマ雰囲気中に放出した。発生した微粉末をフィルターにて回収した。以上の工程により、Ptを貴金属粒子とし、Alをシェルとするコア/シェル構造の複合粒子粉末を得た。このとき複合粒子粉末について、TEM写真から粒子の寸法(最大寸法)を読み取ったところ、貴金属粒子の粒径は25nmであり、複合粒子全体の粒径は30nmであった。
(ii)導電粒子の製造(熱処理)
 上記で製造したコア/シェル構造の複合粒子粉末を熱処理して導電粒子を製造した。熱処理温度を950℃とし、熱処理時間を1時間とした。この熱処理により、Pt粒子中にAl粒子が分散すると共に、Pt粒子外周にAl粒子が担持された導電粒子が製造された。この導電粒子について、SEMにより断面観察を行ったところ、Pt粒子の平均粒径としては100nm、Pt粒子外周のAl粒子の平均粒径として25nm、Pt粒子内部に分散するAl粒子の平均粒径として15nmと算出された。また、断面の面積換算からPt粒子中に分散するAl粒子の含有量は、1.5容積%と算出された。
(B)電極形成用ペーストの作製
 上記で製造した導電粒子を、有機溶剤であるエステルアルコールに投入し、更に、ジアミン系界面活性剤及びエチルセルロースを混合して、3本ロールミルにて混合・混練してペースト化した。導電粒子の混合量は、25容積%とした。
(C)電極の作製
 上記で製造した金属ペーストを、99重量%アルミナグリーンシート上にスクリーン印刷にて塗布形成した。その後80℃で20分乾燥し、1500℃で1時間焼成処理し、電極膜を作製した(膜厚15μm)。
 また、上記に加えて、セラミック量を変更して導電粒子を製造して電極膜を製造した。導電粒子の製造方法としては、基本的に上記と同様であり、Pt粉末と共に混合するAl粉末の量を変更して気相反応法にて複合粒子粉末を得た。そして、この複合粒子粉末を熱処理して導電粒子を製造した。そして、上記と同様にして金属ペーストを製造し、電極を作製した。
 更に、従来の金属ペーストとして、Pt粉末とセラミック粉末とを別々に混合したものを製造した(従来例1~3)。Pt粉末として粒径0.7μmのPt粉末と、セラミック粉末として粒径0.3μmのAl粉末を用い、その他の溶剤等は上記と同様にしてセラミック混合を変更しつつ金属ペーストを製造し、電極を作製した。
 以上の工程で製造した電極膜について、その抵抗値をデジタルマルチメーターを用い4端子法にて測定した。また、電極の耐久性を評価するための耐久試験を行った。耐久試験は基板上の電極に通電して基板を1200℃まで発熱させ、断線が生じるまでの時間を計測することで行った。これらの試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
表から、各実施例に係る導電粒子を適用した金属ペーストにより作製される電極膜は、従来の金属ペーストから製造されるものに対し、セラミック量を同じくした場合、高温耐久性の著しい改善がみられ、従来技術に対し数倍の耐久時間を示すことがわかる。このことは、耐久性を基準にセラミック量を規定する場合、例えば、従来は40容積%のセラミックが必要であったもの(従来例3)を、セラミック量を5容積%に低減したもの(実施例1)に替えても、十分な耐久性を示し、さらに抵抗値も低くなることを意味する。
第2実施形態:ここでは、貴金属粒子としてPt-Pd合金(Pd25重量%)を適用する導電粒子を製造した。製造方法としては、基本的に第1実施形態と同様であり、原料粉末としてPt粉末をPt-Pd合金粉末(平均粒径10nm)に変えて、その他は第1実施形態と同様にして気相反応法にて、Pt-Pd合金を貴金属粒子とし、Alをシェルとするコア/シェル構造の複合粒子粉末を得た。そして、この複合粒子粉末を熱処理して導電粒子を製造した(熱処理温度を950℃、熱処理時間を1時間)。この熱処理により、Pt-Pd粒子を貴金属粒子とし、その内部及び外周にAl粒子が分散・担持された導電粒子を製造した。そして、これらの導電粒子を用いて、第1実施形態と同様にして金属ペーストを製造し、電極を作製した(電極膜の膜厚:15μm)。また、これらと対比するため、従来の金属ペーストとしてPt-Pd合金粉末とセラミック粉末とを別々に混合したものを製造した(従来例4)。そして、各電極膜についての抵抗値測定、耐久試験を行った。この試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、貴金属粒子をPt-Pd合金としても、抵抗値低減と耐久性向上の効果について第1実施形態と同様の傾向があることがわかる。
第3実施形態:ここでは、第1実施形態の導電粒子について、セラミック粒子としてZrO(YSZ)を適用したものを製造した。この製造方法は、基本的に第1実施形態と同様の条件を適用し、Pt粉末とZrO(YSZ)粉末との混合粉末をプラズマ気相中に放出してコア/シェル構造の複合粒子粉末を製造した。そして、第1実施形態と同様の熱処理を施し、導電粒子を製造した。そして、金属ペーストを製造して、ジルコニアグリーンシートに塗布・焼成して電極膜とし、その抵抗値測定を行った。また、比較として、Pt粉末とZrO(YSZ)粉末とを別々に混合した金属ペーストの電極膜の特性も評価した(従来例5、6)。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表からわかるように、セラミック粒子をZrO(YSZ)とした導電粒子についても、従来例の金属ペーストに対して耐久性の向上が認められた。
第4実施形態:ここでは、導電粒子のセラミック量(総量)について、その下限値を明確にする検討を行った。導電粒子の製造は、第1実施形態と同様であり、セラミック量は、混合粉末中のAl粉末の量を調整することにより行なった。そして、第1実施形態と同様に導電粒子、金属ペーストを製造して、アルミナシートに、0.5×20mm(1mm間隔で3本)、0.1×5.0mm(0.1から0.5mm間隔で11本)、5×5mmの3種のパターンで塗布・焼成した。焼成後、電極膜の剥がれ、反りの有無を目視にて確認した。この結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から、セラミック量が少ない場合、焼成後に剥がれや変形が生じやすくなることがわかる。そして、実用上で許容されるセラミック量としては、2容積%が下限であることが確認できる。尚、上記結果は、セラミックとしてAlを適用したものであるが、ZrOを用いた場合においても同様の結果が得られた。
 本発明によれば、低抵抗の電極を形成可能な電極形成用ペーストを提供することができる。また、本発明により製造される電極は、耐久性にも優れる。

Claims (11)

  1.  電極形成用の導電粒子であって、
     Pt又はPt合金からなる平均粒径50~150nmの貴金属粒子と、
     前記貴金属粒子中に分散するAl又はZrOからなる平均粒径5~50nmの第1のセラミック粒子と、
     前記貴金属粒子の外周に結合するAl又はZrOからなる平均粒径5~50nmの第2のセラミック粒子と、からなる電極形成用の導電粒子。
  2.  第1のセラミック粒子の容積と、第2のセラミック粒子の容積との合計が、導電粒子全体基準で2~40容積%の割合である請求項1記載の電極形成用の導電粒子。
  3.  第1のセラミック粒子は、導電粒子全体基準で0.5~15容積%の割合で貴金属粒子中に分散する請求項1又は請求項2記載の電極形成用の導電粒子。
  4.  貴金属粒子は、Ptである請求項1~請求項3のいずれかに記載の電極形成用の導電粒子。
  5.  貴金属粒子は、30重量%以下のPdを含むPt-Pd合金である請求項1~請求項3のいずれかに記載の電極形成用の導電粒子。
  6.  請求項1~請求項5のいずれかに記載の電極形成用の導電粒子の製造方法であって、
     Pt又はPt合金からなる貴金属粒子と、前記貴金属粒子の少なくとも一部を覆うAl又はZrOからなるシェル状セラミックと、からなるコア/シェル構造を有する複合粒子を製造し、
     前記複合粒子を650~1200℃に加熱する、導電粒子の製造方法。
  7.  複合粒子の平均粒径は、30~100nmである請求項6記載の導電粒子の製造方法。
  8.  シェル状セラミックは、複合粒子全体基準で2~40容積%の割合で貴金属粒子を被覆するものである請求項6又は請求項7に記載の電極形成用の導電粒子の製造方法。
  9.  電極形成用の金属ペーストにおいて、
     請求項1~請求項5のいずれかに記載の電極形成用の導電粒子と溶剤とからなることを特徴とする金属ペースト。
  10.  導電粒子の混合量は、ペースト全体に対して4~40容積%である請求項9記載の電極形成用ペースト。
  11.  請求項9又は請求項10記載の電極形成用ペーストを焼成してなる電極。
PCT/JP2012/074469 2011-09-27 2012-09-25 導電粒子及び金属ペースト並びに電極 WO2013047465A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/238,200 US9245660B2 (en) 2011-09-27 2012-09-25 Electroconductive particle and metal paste, and electrode
KR1020147010785A KR101581602B1 (ko) 2011-09-27 2012-09-25 도전 입자 및 금속 페이스트 및 전극
EP12835424.8A EP2763143B1 (en) 2011-09-27 2012-09-25 Conductive particles, metal paste, and electrode
ES12835424.8T ES2676021T3 (es) 2011-09-27 2012-09-25 Partículas conductoras, pasta metálica y electrodo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011210381A JP5140187B1 (ja) 2011-09-27 2011-09-27 導電粒子及び金属ペースト並びに電極
JP2011-210381 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013047465A1 true WO2013047465A1 (ja) 2013-04-04

Family

ID=47789843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074469 WO2013047465A1 (ja) 2011-09-27 2012-09-25 導電粒子及び金属ペースト並びに電極

Country Status (7)

Country Link
US (1) US9245660B2 (ja)
EP (1) EP2763143B1 (ja)
JP (1) JP5140187B1 (ja)
KR (1) KR101581602B1 (ja)
ES (1) ES2676021T3 (ja)
TW (1) TWI464751B (ja)
WO (1) WO2013047465A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5576843B2 (ja) 2010-12-15 2014-08-20 日本特殊陶業株式会社 導体パターン印刷用インク
CN104143374A (zh) * 2014-07-30 2014-11-12 安徽状元郎电子科技有限公司 一种添加钢渣的导电银浆及其制作方法
CN104143386A (zh) * 2014-07-30 2014-11-12 安徽状元郎电子科技有限公司 一种三氧化二铁强导电性导电银浆及其制作方法
CN104157322A (zh) * 2014-07-30 2014-11-19 安徽状元郎电子科技有限公司 一种铝粉/绢云母粉复合的导电银浆及其制作方法
JP6652513B2 (ja) * 2016-03-03 2020-02-26 信越化学工業株式会社 生体電極の製造方法
JP6549517B2 (ja) * 2016-05-09 2019-07-24 信越化学工業株式会社 生体電極及びその製造方法
JP6433948B2 (ja) * 2016-07-20 2018-12-05 株式会社ノリタケカンパニーリミテド ガスセンサの電極形成用材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193796A (ja) * 2005-01-14 2006-07-27 Ishifuku Metal Ind Co Ltd 導電ペースト用貴金属粉末及びその製造方法
JP2006302848A (ja) * 2005-04-25 2006-11-02 Noritake Co Ltd 白金ペースト
JP2006310340A (ja) * 2005-04-26 2006-11-09 Kyocera Corp 導体ペーストおよび成形体並びに配線基板
JP2011162879A (ja) * 2010-02-04 2011-08-25 Robert Bosch Gmbh 導電性材料
JP4834170B1 (ja) * 2010-07-12 2011-12-14 田中貴金属工業株式会社 電極形成用の導電微粒子及び金属ペースト並びに電極

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002503A (en) * 1970-09-29 1977-01-11 Johnson, Matthey & Co., Limited Treatment of metals and alloy
JP2715710B2 (ja) 1991-07-01 1998-02-18 株式会社大林組 制振機能を持つ偏心ブレース構造
JP3510050B2 (ja) 1996-07-10 2004-03-22 日本特殊陶業株式会社 酸素センサ用電極
DE19932545A1 (de) * 1999-07-13 2001-01-18 Bosch Gmbh Robert Heizleiter, insbesondere für einen Meßfühler, und ein Verfahren zur Herstellung des Heizleiters
JP3778338B2 (ja) * 2000-06-28 2006-05-24 田中貴金属工業株式会社 酸化物分散強化型白金材料の製造方法
JP2005097642A (ja) * 2003-09-22 2005-04-14 Tanaka Kikinzoku Kogyo Kk 貴金属−金属酸化物複合クラスター
BRPI0514280A (pt) * 2004-08-26 2008-06-10 Umicore Ag & Co Kg processos para a produção de material reforçado por dispersóide
JP5451074B2 (ja) * 2005-12-06 2014-03-26 エルジー・ケム・リミテッド コアシェル型のナノ粒子及びその製造方法
FR2894986B1 (fr) * 2005-12-16 2008-05-02 Centre Nat Rech Scient Preparation d'un materiau comprenant un melange de nanoparticules de metal noble et de nanoparticules d'oxyde de terres rare
EP2059361B1 (en) * 2006-08-30 2020-02-26 Umicore AG & Co. KG Core/shell-type catalyst particles comprising ceramic core materials
DE102009015470A1 (de) * 2008-12-12 2010-06-17 Byk-Chemie Gmbh Verfahren zur Herstellung von Metallnanopartikeln und auf diese Weise erhaltene Metallnanopartikel und ihre Verwendung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193796A (ja) * 2005-01-14 2006-07-27 Ishifuku Metal Ind Co Ltd 導電ペースト用貴金属粉末及びその製造方法
JP2006302848A (ja) * 2005-04-25 2006-11-02 Noritake Co Ltd 白金ペースト
JP2006310340A (ja) * 2005-04-26 2006-11-09 Kyocera Corp 導体ペーストおよび成形体並びに配線基板
JP2011162879A (ja) * 2010-02-04 2011-08-25 Robert Bosch Gmbh 導電性材料
JP4834170B1 (ja) * 2010-07-12 2011-12-14 田中貴金属工業株式会社 電極形成用の導電微粒子及び金属ペースト並びに電極

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2763143A4 *

Also Published As

Publication number Publication date
US9245660B2 (en) 2016-01-26
JP5140187B1 (ja) 2013-02-06
US20140203224A1 (en) 2014-07-24
TWI464751B (zh) 2014-12-11
EP2763143B1 (en) 2018-06-06
TW201324537A (zh) 2013-06-16
JP2013073713A (ja) 2013-04-22
ES2676021T3 (es) 2018-07-16
EP2763143A4 (en) 2016-01-27
KR20140069229A (ko) 2014-06-09
KR101581602B1 (ko) 2015-12-30
EP2763143A1 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP4834170B1 (ja) 電極形成用の導電微粒子及び金属ペースト並びに電極
JP5189705B1 (ja) センサー電極及びその製造方法、並びに、電極形成用の金属ペースト
JP5140187B1 (ja) 導電粒子及び金属ペースト並びに電極
JP2014145607A (ja) ガスセンサー電極形成用の金属ペースト
WO2017146120A1 (ja) ガスセンサー電極形成用の金属ペースト
JP6212328B2 (ja) ガスセンサー電極形成用の金属ペースト
JP2010225627A (ja) 抵抗体膜の製造方法、抵抗体膜、及び抵抗器
WO2017146121A1 (ja) ガスセンサー電極及びその製造方法
JP5281375B2 (ja) 抵抗体ペースト、抵抗体膜及び抵抗器
JP2021134367A (ja) 貴金属ペースト
JPH10195509A (ja) レニウム粉末及びその製造方法並びに金属抵抗体を備えるセラミック焼結体及びその製造方法
JP5899912B2 (ja) 電極焼結体、積層電子部品、内部電極ペースト、電極焼結体の製造方法、積層電子部品の製造方法
JP2020155344A (ja) 導電性ペースト及び電極
JP2009109286A (ja) 測定電極形成用のペースト、及びそれを用いて形成した測定電極を有するガスセンサ、並びにそのガスセンサの製造方法
Jeong et al. EFFECT OF NANOSIZED TiO 2 POWDER ON PREPARATION AND PROPERTIES OF Ag-BASED ELECTRODE MATERIALS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14238200

Country of ref document: US

Ref document number: 2012835424

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147010785

Country of ref document: KR

Kind code of ref document: A