WO2013047455A1 - 液晶パネル - Google Patents

液晶パネル Download PDF

Info

Publication number
WO2013047455A1
WO2013047455A1 PCT/JP2012/074434 JP2012074434W WO2013047455A1 WO 2013047455 A1 WO2013047455 A1 WO 2013047455A1 JP 2012074434 W JP2012074434 W JP 2012074434W WO 2013047455 A1 WO2013047455 A1 WO 2013047455A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal panel
sub
spacer
insulating film
Prior art date
Application number
PCT/JP2012/074434
Other languages
English (en)
French (fr)
Inventor
香織 齋藤
由瑞 守屋
登 中西
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013047455A1 publication Critical patent/WO2013047455A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13396Spacers having different sizes

Definitions

  • the present invention relates to a liquid crystal panel, and more particularly to a liquid crystal panel in which spacers having different distances from a color filter substrate are formed.
  • a liquid crystal panel having a structure in which a liquid crystal (LC) layer is sandwiched between a CF (color filter) substrate and a TFT (thin film transistor) substrate is used in many electronic devices.
  • a main PS Photo Spacer
  • a sub-PS having a height lower than that of the main PS are formed.
  • FIG. 7 is a diagram schematically showing a cross section of a conventional liquid crystal panel.
  • the liquid crystal panel 90 includes a CF substrate 91 and a TFT substrate 92 that are arranged to face each other, and has a structure in which a liquid crystal layer 93 is sandwiched between these substrates.
  • a main PS 94 for making the distance between the CF substrate 91 and the TFT substrate 92 uniform is formed on the liquid crystal layer 93 side on the TFT substrate 92.
  • a sub PS 95 having a height different from that of the main PS 94 is formed on the liquid crystal layer 93 side on the TFT substrate 92.
  • the height of the sub PS 95 is formed to be about 0.1 ⁇ m to 0.5 ⁇ m lower than the height of the main PS 94.
  • Patent Document 1 discloses that a first spacer disposed on any of a signal line, a scanning line, and an auxiliary capacitance line, a switching element (TFT), a pixel electrode, and an auxiliary capacitance layer are connected to each other.
  • a liquid crystal display device including a second spacer provided in a contact hole is described.
  • Patent Document 2 describes a liquid crystal display device including a second substrate on which columnar spacers are formed, and a first substrate on which a pedestal pattern is formed in a region facing the top of the spacer. ing.
  • Patent Document 3 discloses a liquid crystal display including a spacer formed of a protrusion provided on one or both of the first substrate and the second substrate and disposed on the common electrode wiring. An apparatus is described.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2008-309857 (published December 25, 2008)” Japanese Patent Publication “Japanese Unexamined Patent Application Publication No. 2009-282267 (Released on Dec. 3, 2009)” Japanese Patent Gazette “Patent No. 3339456 (issued on Oct. 28, 2002)”
  • the position where the second spacer (sub-PS) is arranged is determined as the position of the contact hole.
  • the position where the first spacer (main PS) is generated differs from the position where the second spacer is generated in the sub-pixel.
  • the diameter of the second spacer must be smaller than the diameter of the contact hole.
  • FIG. 8 is a diagram schematically showing a cross section of the liquid crystal panel.
  • the liquid crystal panel 100 includes a CF substrate 101 and a TFT substrate 102 arranged to face each other, and has a structure in which a liquid crystal layer 103 is sandwiched between these substrates.
  • a main PS 104 is formed on the liquid crystal layer 103 side on the TFT substrate 102.
  • a contact hole 108 for electrically connecting the thin film transistor (TFT) 106 and the pixel electrode 107 is formed in the TFT substrate 102.
  • a sub PS 105 is formed in the contact hole 108.
  • the sub-PS 105 has the same height as the main PS 104, but is formed in the contact hole 108, so that the sub-PS 105 is located at a low position by a predetermined distance (for example, 0.1 ⁇ m to 0.5 ⁇ m) from the main PS 104. Is formed.
  • the sub-PS 105 is the position of the contact hole 108.
  • the diameter of the sub PS 105 is smaller than the diameter of the contact hole 108, which affects the improvement of the pressing strength and the prevention of low temperature bubbles.
  • the present invention has been made in view of the above-mentioned problems, and its main object is to provide a liquid crystal panel that improves low-cost and suppresses low-temperature bubbles at low cost.
  • a liquid crystal panel includes a color filter substrate, an array substrate that is disposed to face the color filter substrate, and has an insulating film on a surface on the color filter substrate side, A liquid crystal layer sandwiched between the color filter substrate and the array substrate, a first spacer formed between the color filter substrate and the insulating film, and the same height as the first spacer.
  • a liquid crystal panel comprising: a second spacer having an opening formed in the insulating film; and the second spacer is formed in the opening.
  • the first spacer is formed between the color filter substrate and the insulating film, and the second spacer is formed in the opening formed in the insulating film. Since the first spacer and the second spacer have the same height, the second spacer is formed at a position away from the color filter substrate by the depth of the opening from the first spacer. That is, the liquid crystal panel has two types of spacers with different distances from the color filter substrate.
  • the opening may be of a size that does not cause a decrease in the aperture ratio or obstruct orientation, and may be a size that allows the second spacer to be formed. Therefore, the second spacer formed in the opening is not limited in the size of the diameter of the second spacer.
  • the diameter of the second spacer can be formed to a size that can suitably improve the pressing strength of the liquid crystal panel. Therefore, it is possible to improve the pressing strength of the liquid crystal panel and suppress the generation of vacuum bubbles (low temperature bubbles) inside the liquid crystal layer.
  • first spacer and the second spacer have the same height
  • the first spacer and the second spacer can be formed in the same process. Therefore, the number of steps can be reduced and the manufacturing cost can be reduced as compared with the case where spacers having different heights are formed by multiple application of resist or multiple exposure after application.
  • a liquid crystal panel according to the present invention includes a color filter substrate, an array substrate disposed opposite to the color filter substrate and having an insulating film on a surface on the color filter substrate side, the color filter substrate, and the array substrate.
  • an opening is formed in the insulating film, and the second spacer is formed in the opening.
  • FIG. 2 is an enlarged cross-sectional view of a liquid crystal panel in Embodiment 1.
  • FIG. It is the figure which looked at the liquid crystal panel in Embodiment 1 from the CF substrate side.
  • FIG. 3 is a cross-sectional view of a surface indicated by A-A ′ in FIG. 2.
  • 6 is an enlarged cross-sectional view showing another example of the liquid crystal panel in Embodiment 1.
  • FIG. It is the figure which looked at the liquid crystal panel in Embodiment 2 from the CF substrate side.
  • FIG. 6 is a cross-sectional view of a plane indicated by B-B ′ in FIG. 5. It is a figure which shows typically an example of the cross section of the conventional liquid crystal panel. It is a figure which shows typically the other example of the cross section of the conventional liquid crystal panel.
  • Embodiment 1 Hereinafter, it will be as follows if one Embodiment (Embodiment 1) of this invention is described with reference to drawings.
  • FIG. 2 is a view of the liquid crystal panel 10 as viewed from the CF substrate 11 side.
  • 3 is a cross-sectional view taken along one-dot chain line AA ′ in FIG.
  • the CF substrate 11 and the liquid crystal (LC) layer 13 are omitted for convenience of explanation.
  • the liquid crystal panel 10 includes a CF substrate (color filter substrate) 11 and a TFT substrate (array substrate) 12 that are arranged to face each other, and a structure in which a liquid crystal layer 13 is sandwiched between these substrates. have. Further, a main PS (first spacer) 14 for making the distance between the CF substrate 11 and the TFT substrate 12 uniform is formed on the liquid crystal layer 13 side on the TFT substrate 12.
  • the liquid crystal panel 10 is an IPS (In-Plane Switching) mode (IPS system) liquid crystal panel.
  • the CF substrate 11 has a glass substrate 111 and a color filter (CF) 112 formed on the glass substrate 111 on the liquid crystal layer 13 side.
  • An alignment film (not shown) for arranging the molecules of the liquid crystal layer 13 in a certain direction is formed on the surface where the color filter 112 is in contact with the liquid crystal layer 13.
  • the material of the alignment film is, for example, polyimide, but is not limited to this.
  • the glass substrate 111 is amorphous and light transmissive.
  • the color filter 112 is a filter that emits light of different colors (for example, R, G, B) for each sub-pixel.
  • FIG. 1 is an enlarged view of the cross-sectional view of FIG.
  • a base coat (BC) layer 122 is provided on the glass substrate 121 constituting the TFT substrate 12.
  • a base coat (BC) layer 122 is provided on the glass substrate 121 constituting the TFT substrate 12.
  • As the glass substrate 121 an amorphous and light transmissive one is used.
  • the base coat layer 122 is made of a silicon dioxide insulating material.
  • a gate insulating film (GI) 124 is formed on the base coat layer 122.
  • the material of the gate insulating film 124 is, for example, SiNx, but is not limited thereto.
  • a thin film transistor (TFT) 125 is formed on the base coat layer 122.
  • the thin film transistor 125 is, for example, silicon (Si), but is not limited thereto.
  • a gate bus line (GL) 123 as a scanning signal line extending in the left-right direction in FIG. 2 is provided on the gate insulating film 124.
  • the TFT substrate 12 has a top gate structure.
  • the present invention is not limited to this, and the gate bus line 123 may have a bottom gate structure formed between the base coat layer 122 and the gate insulating film 124.
  • an interlayer insulating film 126 is formed so as to cover the laminated pattern so far.
  • the material of the interlayer insulating film 126 is, for example, SiNx, but is not limited to this.
  • a source bus line (SL) 127 and a drain electrode 128 are formed on the interlayer insulating film 126.
  • the source bus line 127 is used as a data signal line and is provided so as to be orthogonal to the gate bus line 123.
  • a transparent insulating film (JAS) 129 is formed so as to cover them.
  • the thickness of the transparent insulating film 129 is about 2.0 ⁇ m to 3.0 ⁇ m, but is not limited thereto.
  • the portion other than the contact hole 132 is flat, and the common electrode 130 is formed on the flat portion.
  • the common electrode 130 controls the orientation of the liquid crystal panel 10.
  • the common electrode 130 is a transparent conductive material such as ITO, but is not limited thereto.
  • the common electrode 130 has a thickness of about 0.05 ⁇ m, but is not limited thereto.
  • the common electrode 130 is covered with a protective insulating film 131.
  • the material of the protective insulating film 131 is, for example, SiNx, but is not limited to this.
  • the thickness of the protective insulating film 131 is 0.1 ⁇ m to 0.5 ⁇ m, but is not limited to this.
  • a pixel electrode 133 is formed on the protective insulating film 131. Further, the TFT substrate 12 has a contact hole 132 formed through the protective insulating film 131 and the transparent insulating film 129 above the drain electrode 128. The pixel electrode 133 is electrically connected to the thin film transistor 125 through the contact hole 132.
  • the pixel electrode 133 is a transparent conductive material such as ITO, but is not limited to this.
  • the portion of the pixel electrode 133, the protective insulating film 131, and the transparent insulating film 129 in which the contact hole 132 is formed is referred to as a contact portion.
  • the contact portion is formed using, for example, a photophysography method. Note that the method for forming the contact portion is not limited to this, and may be a laser processing method, an etching method, or the like.
  • the protective insulating film 131 has an opening 151.
  • a sub-PS (second spacer) 15 is formed in the opening 151.
  • the opening 151 is formed by using, for example, a photophysography method.
  • the opening 151 is formed in the same process as the contact portion.
  • a method for forming the opening 151 is not limited to this, and a laser processing method, an etching method, or the like may be used.
  • An alignment film (not shown) is formed so as to cover these.
  • the material of the alignment film is, for example, polyimide, but is not limited to this.
  • the main PS 14 and the sub PS 15 are spacers having the same height.
  • the material of the main PS 14 and the sub PS 15 is, for example, an acrylic resin, but is not limited thereto.
  • the main PS 14 is formed between the CF substrate 11 and the protective insulating film 131 and above the source bus line 127.
  • the main PS 14 is formed at the boundary with the adjacent sub-pixel among the sub-pixels partitioned by the source bus line 127 and the gate bus line 123.
  • the main PS 14 is formed between subpixels adjacent to the left and right (parallel to the gate bus line 123).
  • the sub-PS 15 is formed in the opening 151 above the source bus line 127 and on the common electrode 130. As shown in FIGS. 2 and 3, the position between the sub-pixels where the main PS 14 is formed and the position between the other sub-pixels where the sub-PS 15 is formed are the same position.
  • the formation positions of the main PS 14 and the sub PS 15 are not limited to this.
  • the main PS 14 and the sub PS 15 may be formed between vertically adjacent sub-pixels (parallel to the source bus line 127), or may be formed inside the sub-pixels.
  • the formation positions of the main PS 14 and the sub PS 15 may be the same position in the sub pixel or in the periphery.
  • the density of all PSs (main PS 14 and sub PS 15) within the unit of several pixels or within the display area of the liquid crystal panel 10 is reduced. It can be arranged uniformly. Therefore, it is possible to minimize the influence of finishing variation due to the PS base, and to stably ensure the intended cell thickness and pressing strength.
  • the formation positions of the main PS 14 and the sub PS 15 are not particularly limited. Therefore, the pressing strength of the liquid crystal panel 10 is more preferably improved, and generation of vacuum bubbles (low temperature bubbles) in the liquid crystal layer 13 is suppressed.
  • the main PS 14 and the sub PS 15 can be formed at positions where the
  • the diameters of the main PS 14 and the sub PS 15 are 9.0 ⁇ m to 12.0 ⁇ m, but are not limited thereto.
  • the main PS 14 and the sub PS 15 have the same diameter, but the present invention is not limited to this.
  • the diameter of the main PS 14 and the diameter of the sub PS 15 may be different.
  • the diameters of the main PS 14 and the sub PS 15 only need to be large enough to improve the pressing strength of the liquid crystal panel 10.
  • the main PS 14 and the sub PS 15 have a columnar shape.
  • the shapes of the bottom surfaces of the main PS 14 and the sub PS are not particularly limited, and may be, for example, a circle or a square.
  • the shapes of the bottom surfaces of the main PS 14 and the sub PS 15 may be the same, or may be different to identify the main PS 14 and the sub PS 15.
  • the main PS 14 and the sub PS 15 have the same shape, it is possible to form the PS more easily.
  • main PS 14 and the sub PS 15 have the same height, they can be simultaneously formed by one photomask process.
  • the formation method of the main PS 14 and the sub PS 15 is not limited to this.
  • the sub PS 15 is lower than the main PS 14 by a thickness (depth of the opening 151) of the protective insulating film 131 (from the CF substrate 11). Formed at a distant position). As a result, a gap of 0.1 ⁇ m to 0.5 ⁇ m is formed between the sub PS 15 and the CF substrate 11.
  • the liquid crystal panel 10 has two types of spacers having different heights from the surface of the TFT substrate 12 (the surface where the protective insulating film 131 and the liquid crystal layer 13 are in contact). Therefore, it is possible to improve the pressing strength of the liquid crystal panel 10 and suppress the generation of vacuum bubbles (low temperature bubbles) inside the liquid crystal layer 13.
  • the opening 151 may be of a size that does not cause a decrease in the aperture ratio or obstruct orientation, and may be a size that allows the sub-PS 15 to be formed.
  • the size of the opening 151 is, for example, the same size as the diameter of the sub-PS 15 (9.0 ⁇ m to 12.0 ⁇ m), but is not limited thereto.
  • the opening 151 may have a size necessary for forming the sub-PS 15 having an optimum diameter and shape. Accordingly, it is possible to form the main PS 14 and the sub PS 15 that can more suitably improve the pressing strength of the liquid crystal panel 10 and suppress the generation of vacuum bubbles (low temperature bubbles) inside the liquid crystal layer 13.
  • the liquid crystal panel 10 includes the CF substrate 11, the TFT substrate 12 that is disposed to face the CF substrate 11, and has the protective insulating film 131 on the surface on the CF substrate 11 side, and the CF substrate 11. And a liquid crystal layer 13 sandwiched between the TFT substrate 12, a main PS 14 formed between the CF substrate 11 and the protective insulating film 131, and a sub-PS 15 having the same height as the main PS 14. Yes.
  • an opening 151 is formed in the protective insulating film 131, and the sub-PS 15 is formed in the opening 151.
  • the main PS 14 is formed on the protective insulating film 131, and the sub PS 15 is formed in the opening 151 formed in the protective insulating film 131. Since the main PS 14 and the sub PS 15 have the same height, the sub PS 15 is formed at a position away from the CF substrate 11 by the depth of the opening 151 (the thickness of the protective insulating film 131) from the main PS 14. That is, the liquid crystal panel 10 has two types of spacers with different distances from the CF substrate 11.
  • the opening 151 may have a size that does not cause a decrease in the aperture ratio or obstruct orientation, and may have a size that allows the sub-PS 15 to be formed.
  • the diameter of the sub PS 15 formed in the opening can be formed to a size that can suitably improve the pressing strength of the liquid crystal panel 10. Therefore, it is possible to improve the pressing strength of the liquid crystal panel 10 and suppress the generation of vacuum bubbles (low temperature bubbles) inside the liquid crystal layer 13.
  • the main PS 14 and the sub PS 15 have the same height, the main PS 14 and the sub PS 15 can be formed in the same process. Therefore, the number of manufacturing steps can be reduced and manufacturing costs can be reduced as compared with the case where spacers having different heights are formed by multiple application of resist or multiple exposure after application.
  • FIG. 4 is an enlarged cross-sectional view showing another example of the liquid crystal panel 10 in the present embodiment.
  • the common electrode 130 in the liquid crystal panel 10 of FIG. 4 is not formed below the main PS 14 and the sub PS 15.
  • the sub-PS 15 is formed on the transparent insulating film 129 as shown in FIG. As described above, the bottom surface of the sub PS 15 may be in contact with the transparent insulating film 129. That is, the sub PS 15 can be formed at a position where the pressure strength of the liquid crystal panel 10 can be improved more appropriately and the generation of low temperature bubbles can be suppressed inside the liquid crystal layer 13 regardless of the position of the common electrode 130. it can.
  • FIG. 5 is a view of the liquid crystal panel 50 as viewed from the CF substrate 51 side.
  • 6 is a cross-sectional view taken along one-dot chain line BB ′ in FIG.
  • the CF substrate 51 and the liquid crystal layer 53 are omitted.
  • the liquid crystal panel 50 includes a CF substrate 51 and a TFT substrate 52 that are arranged to face each other, and has a structure in which a liquid crystal layer 53 is sandwiched between these substrates. Further, a main PS (first spacer) 54 for making the distance between the CF substrate 51 and the TFT substrate 52 uniform is formed on the liquid crystal layer 53 side on the TFT substrate 52.
  • the CF substrate 51 includes a glass substrate 511, a color filter 512 formed on the liquid crystal layer 53 side of the glass substrate 511, and a counter electrode 513 formed on the liquid crystal layer 53 side of the color filter 512.
  • an alignment film (not shown) for arranging molecules of the liquid crystal layer 53 in a certain direction is formed on the surface where the counter electrode 513 is in contact with the liquid crystal layer 53.
  • the material of the alignment film is, for example, polyimide, but is not limited to this.
  • the glass substrate 511 is made of an amorphous and light transmissive material.
  • the color filter 512 is a filter that emits light of different colors (for example, R, G, B) for each sub-pixel.
  • the counter electrode 513 is a transparent conductive material such as ITO, but is not limited thereto.
  • a base coat layer 522 is provided on a glass substrate 521 constituting the TFT substrate 52.
  • a glass substrate 521 an amorphous and light transmissive one is used.
  • a silicon dioxide insulating material is used for the base coat layer 522.
  • a thin film transistor 525 is formed on the base coat layer 522.
  • the thin film transistor 525 is, for example, silicon (Si), but is not limited thereto.
  • a gate insulating film 523 is formed on the base coat layer 522.
  • a gate bus line 524 as a scanning signal line extending in the left-right direction in FIG. 5 is provided.
  • the material of the gate insulating film 523 is, for example, SiNx, but is not limited thereto.
  • the TFT substrate 52 has a top gate structure.
  • the present invention is not limited to this, and the gate bus line 524 is a bottom gate formed between the base coat layer 522 and the gate insulating film 523. It may be a structure.
  • an interlayer insulating film 526 is formed so as to cover the stacked pattern so far.
  • the material of the interlayer insulating film 526 is, for example, SiNx, but is not limited to this.
  • a source bus line 527 is formed on the interlayer insulating film 526.
  • the source bus line 527 is used as a data signal line and is provided so as to be orthogonal to the gate bus line 524.
  • a transparent insulating film 528 is formed so as to cover these.
  • the thickness of the transparent insulating film 528 is about 2.0 ⁇ m to 3.0 ⁇ m, but is not limited thereto.
  • a common electrode 529 is formed on the transparent insulating film 528.
  • the common electrode 529 is a transparent conductive material such as ITO, but is not limited thereto. Further, the thickness of the common electrode 529 is about 0.05 ⁇ m, but is not limited thereto.
  • the common electrode 529 generates an auxiliary capacitance with the pixel electrode 532. Further, the common electrode 529 is covered with a protective insulating film 530.
  • the material of the protective insulating film 530 is, for example, SiNx, but is not limited thereto.
  • the thickness of the protective insulating film 530 is 0.1 ⁇ m to 0.5 ⁇ m, but is not limited to this.
  • a contact hole 531 and a pixel electrode 532 are formed in the sub-pixel. Since the contact hole 531 and the pixel electrode 532 are the same as the contact hole 132 and the pixel electrode 133 of Embodiment 1 except where they are formed, description thereof is omitted.
  • the protective insulating film 530 has an opening 551.
  • a sub-PS (second spacer) 55 is formed in the opening 551.
  • the opening 551 is formed using, for example, a photophysography method.
  • the opening 551 is formed in the same process as the contact portion.
  • the formation method of the opening 551 is not limited thereto, and a laser processing method, an etching method, or the like may be used.
  • An alignment film (not shown) is formed so as to cover these.
  • the material of the alignment film is, for example, polyimide, but is not limited to this.
  • the main PS 54 and the sub PS 55 are spacers having the same height.
  • the material of the main PS 54 and the sub PS 55 is, for example, an acrylic resin, but is not limited to this.
  • the main PS 54 is formed between the CF substrate 51 and the protective insulating film 530 and above the orthogonal portion between the source bus line 527 and the gate bus line 524.
  • the main PS 54 is formed at the boundary with the adjacent sub pixel among the sub pixels defined by the source bus line 527 and the gate bus line 524.
  • the main PS 54 is formed between the sub-pixels adjacent to the left and right (parallel to the gate bus line 524).
  • the sub PS 55 is formed on the common electrode 529 in the opening 551 above the orthogonal portion of the source bus line 527 and the gate bus line 524. As shown in FIGS. 5 and 6, the position between the sub-pixels where the main PS 54 is formed and the position between the other sub-pixels where the sub-PS 55 is formed are the same position.
  • the formation positions of the main PS 54 and the sub PS 55 are not limited to this.
  • the formation positions of the main PS 54 and the sub PS 55 may be on the source bus line 527 or on the gate bus line 524. In this way, by being formed on the direct portion of the source bus line 527 and the gate bus line 524, on the source bus line 527, or on the gate bus line 524, a decrease in the aperture ratio of the liquid crystal panel 50 can be suppressed. it can. In addition, since the alignment of the liquid crystal is stabilized, good display quality can be obtained.
  • main PS 54 and the sub PS 55 may be formed between sub pixels adjacent in the vertical direction (parallel to the source bus line 527), or may be formed inside the sub pixel.
  • the formation position of the main PS 54 and the sub PS 55 may be the same position in the sub pixel or in the periphery.
  • the density of all PSs (the main PS 54 and the sub PS 55) within the unit of several pixels or within the display area of the liquid crystal panel 50 is reduced. It can be arranged uniformly. Therefore, it is possible to minimize the influence of finishing variation due to the PS base, and to stably ensure the intended cell thickness and pressing strength.
  • the formation positions of the main PS 54 and the sub PS 55 are not particularly limited, so that the pressing strength of the liquid crystal panel 50 is more preferably improved, and generation of vacuum bubbles (low temperature bubbles) inside the liquid crystal layer 53 is suppressed.
  • the main PS 54 and the sub PS 55 can be formed at positions where the
  • the main PS 54 and the sub PS 55 have a diameter of 9.0 ⁇ m to 12.0 ⁇ m, but are not limited thereto.
  • the main PS 54 and the sub PS 55 have the same diameter, but the present invention is not limited to this.
  • the diameter of the main PS 54 and the diameter of the sub PS 55 may be different.
  • the diameters of the main PS 54 and the sub PS 55 only need to be large enough to improve the pressing strength of the liquid crystal panel 50.
  • the main PS 54 and the sub PS 55 have a columnar shape.
  • the shapes of the bottom surfaces of the main PS 54 and the sub PS are not particularly limited, and may be, for example, a circle or a square.
  • the shapes of the bottom surfaces of the main PS 54 and the sub PS 55 may be the same, or may be different to identify the main PS 54 and the sub PS 55.
  • the main PS 54 and the sub PS 55 have the same shape, it is possible to form the PS more easily.
  • main PS 54 and the sub PS 55 have the same height, they can be simultaneously formed by one photomask process. Thereby, compared with the case where the spacer from which height differs is formed, the number of manufacturing processes can be decreased and manufacturing cost can be held down.
  • the formation method of the main PS 54 and the sub PS 55 is not limited to this.
  • the sub PS 55 is lower than the main PS 54 by a thickness of the protective insulating film 530 (depth of the opening 551) (from the CF substrate 51). Formed at a distant position). As a result, a gap of 0.1 ⁇ m to 0.5 ⁇ m is formed between the sub PS 55 and the CF substrate 51.
  • the liquid crystal panel 50 has two types of spacers having different heights from the TFT substrate 52. In other words, the liquid crystal panel 50 has two types of spacers with different distances from the CF substrate 51. Therefore, it is possible to improve the pressing strength of the liquid crystal panel 50 and suppress the generation of vacuum bubbles (low temperature bubbles) inside the liquid crystal layer 53.
  • the opening 551 may have a size that does not cause a decrease in the aperture ratio or orientation inhibition, and may have a size that allows the sub-PS 55 to be formed.
  • the size of the opening 551 is, for example, the same size as the diameter of the sub PS 55 (9.0 ⁇ m to 12.0 ⁇ m), but is not limited thereto.
  • the opening 551 may be of a size necessary for forming the sub-PS 55 having an optimal diameter and shape. Thereby, the main PS 54 and the sub PS 55 that can improve the pressing strength of the liquid crystal panel 50 and suppress the generation of vacuum bubbles (low temperature bubbles) in the liquid crystal layer 53 can be formed.
  • the IPS mode liquid crystal panel or the VA mode liquid crystal panel has been described.
  • the liquid crystal panel according to the embodiment of the present invention is not limited to this, and TN (TwistedistNematic) ) Mode liquid crystal panel.
  • the liquid crystal panel according to the present invention is arranged to face the color filter substrate and the color filter substrate, and has an insulating film on the surface on the color filter substrate side.
  • the first spacer is formed between the color filter substrate and the insulating film, and the second spacer is formed in the opening formed in the insulating film. Since the first spacer and the second spacer have the same height, the second spacer is formed at a position away from the color filter substrate by the depth of the opening from the first spacer. That is, the liquid crystal panel has two types of spacers with different distances from the color filter substrate.
  • the opening may be of a size that does not cause a decrease in the aperture ratio or obstruct orientation, and may be a size that allows the second spacer to be formed. Therefore, the second spacer formed in the opening is not limited in the size of the diameter of the second spacer.
  • the diameter of the second spacer can be formed to a size that can suitably improve the pressing strength of the liquid crystal panel. Therefore, it is possible to improve the pressing strength of the liquid crystal panel and suppress the generation of vacuum bubbles (low temperature bubbles) inside the liquid crystal layer.
  • first spacer and the second spacer have the same height
  • the first spacer and the second spacer can be formed in the same process. Therefore, the number of steps can be reduced and the manufacturing cost can be reduced as compared with the case where spacers having different heights are formed by multiple application of resist or multiple exposure after application.
  • the first spacer is formed inside or around one of the adjacent subpixels, and the second spacer is the other subpixel. It is preferable that the first spacer is formed at a position corresponding to the position at which the first spacer is formed.
  • the first spacer or the second spacer can be formed at the same position with respect to each sub-pixel.
  • all the spacers first spacer and 2 spacers
  • the array substrate of the liquid crystal panel according to one embodiment of the present invention preferably includes a contact portion formed through the insulating film, and the opening is formed in the same process as the contact portion. .
  • the opening for forming the second spacer in the inside and the contact portion in the same process, the number of processes can be reduced compared with the case of forming in a separate process, and more manufacturing is possible. Cost can be reduced.
  • the thickness of the insulating film of the liquid crystal panel according to one embodiment of the present invention is preferably 0.1 ⁇ m to 0.5 ⁇ m.
  • the depth of the opening formed in the insulating film is 0.1 ⁇ m to 0.5 ⁇ m. Therefore, a gap of 0.1 ⁇ m to 0.5 ⁇ m is formed between the second spacer formed in the opening and the CF substrate.
  • the liquid crystal panel can more suitably improve the pressing strength and suppress the generation of vacuum bubbles (low temperature bubbles) inside the liquid crystal layer.
  • the liquid crystal panel may be an IPS liquid crystal panel or a VA liquid crystal panel. Even a liquid crystal panel of this type can include a first spacer and a second spacer formed in the opening.
  • the present invention can be suitably used in the field of manufacturing liquid crystal panels.
  • Liquid crystal panel 11 CF substrate (color filter substrate) 111 Glass substrate 112 Color filter 12 TFT substrate (array substrate) 121 glass substrate 122 base coat layer 123 gate bus line 124 gate insulating film 125 thin film transistor 126 interlayer insulating film 127 source bus line 128 drain electrode 129 transparent insulating film 130 common electrode 131 protective insulating film (insulating film) 132 Contact hole (contact part) 133 Pixel electrode 151 Opening 13 Liquid crystal layer 14 Main PS (first spacer) 15 Sub PS (second spacer) 50 Liquid crystal panel 51 CF substrate (color filter substrate) 511 Glass substrate 512 Color filter 513 Counter electrode 52 TFT substrate (array substrate) 521 Glass substrate 522 Base coat layer 523 Gate insulating film 524 Gate bus line 525 Thin film transistor 526 Interlayer insulating film 527 Source bus line 528 Transparent insulating film 529 Common electrode 530 Protective insulating film (insulating film) 531 Contact hole 532 Pixel electrode 551 Opening 53 Liquid crystal layer 54 Main PS

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

 対向して配置されたCF基板(11)およびTFT基板(12)と、両基板に挟持された液晶層(13)と、CF基板(11)と開口(151)が形成された保護絶縁膜(131)との間に形成されたメインPS(14)と、メインPS(14)と同じ高さを有し、開口(151)内に形成されたサブPS(15)と、を備えた液晶パネル(10)。

Description

液晶パネル
 本発明は、液晶パネルに関し、特にカラーフィルタ基板からの距離が異なるスペーサが形成された液晶パネルに関する。
 近年、CF(Color Filter:カラーフィルタ)基板およびTFT(Thin Film Transistor:薄膜トランジスタ)基板の間に液晶(LC)層を挟持した構造を有した液晶パネルが多くの電子機器に使用されている。このような液晶パネルでは、CF基板とTFT基板との距離を均一にするためのメインPS(Photo Spacer:フォトスペーサ)と、メインPSより高さが低いサブPSとが形成されている。
 これを、図面を用いて説明すれば、以下の通りである。図7は、従来の液晶パネルの断面を模式的に示す図である。図7に示すように、液晶パネル90は、対向して配置されたCF基板91およびTFT基板92を備え、これらの基板の間に液晶層93を挟持した構造を有している。
 図7に示す液晶パネル90には、CF基板91とTFT基板92との距離を均一にするためのメインPS94がTFT基板92上の液晶層93側に形成されている。また、TFT基板92上の液晶層93側には、更に、メインPS94とは高さが異なるサブPS95が形成されている。サブPS95の高さは、メインPS94の高さより、0.1μm~0.5μm程度低く形成されている。液晶パネルに対する荷重押圧時にCF基板91がたわむと、サブPS95もCF基板と接触して荷重押圧を緩衝できるため耐押圧荷重性が高められる。
 また、メインPSのみで形成された液晶パネルの場合、低温雰囲気下では、液晶パネルを構成する部材、特に液晶層は収縮しようとする状態にある。このとき、液晶パネルに対する荷重押圧に、液晶層の体積が収縮する変化量に対しメインPSの弾性変形が追随しないため、液晶パネル内に空洞(低温気泡)が発生してしまう。しかし、メインPS94とサブPS95とが形成されていることにより、メインPS94のみが液晶層の収縮に追随すればよいので、メインPSのみで形成された場合と比べ、低温気泡の発生を防止できる。このように高さが異なる2種類のPSを作成することによって、押圧に対する高い耐久性と低温気泡の発生の防止を両立できる。
 しかし、上述のように、TFT基板92上に高さが異なる2種類のPSを形成する場合、フォトマスク工程を少なくとも2回行う必要があり、工程数およびフォトマスク数が増加してしまう。また、グレートーンマスクやハーフトーンマスクを使用して、一回で2種類のPSを形成する方法では、高さと形状との両立およびこれらの制御が困難であり、マスクのコストも高いため、製造コストが高くなってしまう。
 そこで、特許文献1には、信号線、走査線、補助容量配線上の何れかに配置される第1のスペーサと、スイッチング素子(TFT)と画素電極および補助容量層のそれぞれに接続するためのコンタクトホール内に設けられた第2のスペーサとを備えた液晶表示装置が記載されている。
 また、特許文献2には、柱状のスペーサが形成される第2の基板と、上記スペーサの頂部に対向する領域に台座パターンが形成される第1の基板とを備えた液晶表示装置が記載されている。
 また、特許文献3には、第1の基板および第2の基板の双方、あるいは、一方に設けられた突起部からなるスペーサであって、共通電極配線上に配置されたスペーサを備えた液晶表示装置が記載されている。
日本国公開特許公報「特開2008-309857号公報(2008年12月25日公開)」 日本国公開特許公報「特開2009-282267号公報(2009年12月3日公開)」 日本国特許公報「特許第3339456号公報(2002年10月28日発行)」
 しかしながら、特許文献1の技術では、第2のスペーサ(サブPS)を配置する位置がコンタクトホールの位置に決まってしまう。また、サブ画素内において、第1のスペーサ(メインPS)を生成する位置と、第2のスペーサを生成する位置とが異なってしまう。更に、第2のスペーサの径をコンタクトホールの径よりも小さくしなければならない。
 これを、図面を用いて説明すれば、以下の通りである。図8は、液晶パネルの断面を模式的に示す図である。
 図8に示すように、液晶パネル100は、対向して配置されたCF基板101およびTFT基板102を備え、これらの基板の間に液晶層103を挟持した構造を有している。
 図8に示す液晶パネル100には、TFT基板102上の液晶層103側にメインPS104が形成されている。また、TFT基板102には、薄膜トランジスタ(TFT)106と画素電極107とを電気的に接続するコンタクトホール108が形成されている。
 コンタクトホール108内には、サブPS105が形成されている。サブPS105は、メインPS104と同じ高さを有しているが、コンタクトホール108内に形成されているため、メインPS104から所定の距離(例えば、0.1μm~0.5μm)分、低い位置に形成されている。このように、図8に示す液晶パネル100では、サブPS105がコンタクトホール108の位置になる。
 このように、サブPS15をコンタクトホール内に形成する場合、サブPS105の径をコンタクトホール108の径より小さくする必要があるため、押圧強度の向上や低温気泡の防止に影響を与える。
 また、特許文献2および特許文献3の技術では、高さが異なるスペーサを形成しないため、十分な押圧強度を得られず、低温気泡が発生する虞がある。
 本発明は、上記課題に鑑みてなされたものであり、その主たる目的は、低コストで押圧強度を向上させ低温気泡を抑制する液晶パネルを提供することにある。
 上記の課題を解決するために、本発明に係る液晶パネルは、カラーフィルタ基板と、前記カラーフィルタ基板に対向して配置され、前記カラーフィルタ基板側の面に絶縁膜を有したアレイ基板と、前記カラーフィルタ基板と前記アレイ基板との間に挟持された液晶層と、前記カラーフィルタ基板と前記絶縁膜との間に形成された第1のスペーサと、前記第1のスペーサと同じ高さを有する第2のスペーサと、を備えた液晶パネルであって、前記絶縁膜には、開口が形成されており、前記第2のスペーサは、前記開口内に形成されていることを特徴としている。
 上記構成によれば、第1のスペーサがカラーフィルタ基板と前記絶縁膜との間に形成され、第2のスペーサが絶縁膜に形成された開口内に形成される。第1のスペーサと第2のスペーサとは同じ高さであるため、第2のスペーサは、第1のスペーサよりカラーフィルタ基板から開口の深さだけ離れた位置に形成される。つまり、液晶パネルは、カラーフィルタ基板からの距離が異なる2種類のスペーサを有する。また、前記開口は、開口率の低下や配向阻害を招来しない大きさであって、第2のスペーサが形成可能な大きさであればよい。そのため、当該開口内に形成される第2のスペーサは、当該第2のスペーサの径の大きさに制限がない。よって、第2のスペーサの径は、液晶パネルの押圧強度を好適に向上させることができる大きさに形成することができる。したがって、液晶パネルの押圧強度を向上させ、液晶層の内部に真空気泡(低温気泡)が発生することを抑制することができる。
 また、第1のスペーサと第2のスペーサとは同じ高さであるため、第1のスペーサと第2のスペーサとを同一工程で形成することができる。よって、レジスト複数回塗布や塗布後の複数露光などによる高さの異なるスペーサを形成する場合と比べ、工程数を少なくすることができ、製造コストを抑えることができる。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
 本発明に係る液晶パネルは、カラーフィルタ基板と、前記カラーフィルタ基板に対向して配置され、前記カラーフィルタ基板側の面に絶縁膜を有したアレイ基板と、前記カラーフィルタ基板と前記アレイ基板との間に挟持された液晶層と、前記カラーフィルタ基板と前記絶縁膜との間に形成された第1のスペーサと、前記第1のスペーサと同じ高さを有する第2のスペーサと、を備えた液晶パネルであって、前記絶縁膜には、開口が形成されており、前記第2のスペーサは、前記開口内に形成されていることを特徴としている。
 したがって、液晶パネルの押圧強度を向上させ、液晶層の内部に真空気泡(低温気泡)が発生することを抑制することができる。また、高さの異なるスペーサをレジスト複数回塗布や塗布後の複数露光などで形成する場合と比べ、工程数を少なくすることができ、製造コストを抑えることができる。
実施形態1における液晶パネルの拡大断面図である。 実施形態1における液晶パネルをCF基板側から見た図である。 図2のA-A’で示す面の断面図である。 実施形態1における液晶パネルの他の例を示す拡大断面図である。 実施形態2における液晶パネルをCF基板側から見た図である。 図5のB-B’で示す面の断面図である。 従来の液晶パネルの断面の一例を模式的に示す図である。 従来の液晶パネルの断面の他の例を模式的に示す図である。
 〔実施形態1〕
 以下、本発明の一実施形態(実施形態1)について、図面を参照して説明すれば、以下のとおりである。
 (液晶パネル10)
 図2は、液晶パネル10をCF基板11側から見た図である。また、図3は、図2の一点鎖線A-A’における断面図である。なお、図2においては、説明の便宜上、CF基板11および液晶(LC)層13を省略している。
 図3に示すように、液晶パネル10は、対向して配置されたCF基板(カラーフィルタ基板)11およびTFT基板(アレイ基板)12を備え、これらの基板の間に液晶層13を挟持した構造を有している。また、CF基板11とTFT基板12との距離を均一にするためのメインPS(第1のスペーサ)14がTFT基板12上の液晶層13側に形成されている。液晶パネル10はIPS(In-Plane Switching)モード(IPS方式)の液晶パネルである。
 (CF基板11)
 次に、図3を参照して、CF基板11の構成について説明を行う。CF基板11は、ガラス基板111と、ガラス基板111の液晶層13側に形成されたカラーフィルタ(CF)112とを有している。また、カラーフィルタ112が液晶層13と接する面には、液晶層13の分子を一定方向に並べるための配向膜(図示しない)が形成されている。配向膜の材料としては、例えば、ポリイミドであるが、これに限定されるものではない。
 ガラス基板111は、非晶質かつ光透過性のものが使用される。また、カラーフィルタ112は、サブ画素毎に異なる色の光(例えば、R、G、B)を投下するフィルタである。
 (TFT基板12)
 次に、図1から図3を参照して、TFT基板12の構成について説明を行う。図1は、図3の断面図を拡大した図である。
 図2および図3に示すように、TFT基板12を構成するガラス基板121上には、ベースコート(BC)層122が設けられている。ガラス基板121は、非晶質かつ光透過性のものが使用される。また、ベースコート層122は、二酸化ケイ素系絶縁材料が用いられる。
 更に、ベースコート層122上に、ゲート絶縁膜(GI)124が形成されている。ゲート絶縁膜124の材質は、例えば、SiNxであるが、これに限定されるものではない。
 また、ベースコート層122上には、薄膜トランジスタ(TFT)125が形成されている。薄膜トランジスタ125は、例えば、シリコン(Si)であるが、これに限定されるものではない。
 また、ゲート絶縁膜124上には、図2の左右方向に延在する走査信号線としてのゲートバスライン(GL)123が設けられている。このようにTFT基板12は、トップゲート構造を有している。なお、本発明はこれに限定されず、ゲートバスライン123は、ベースコート層122とゲート絶縁膜124との間に形成されるボトムゲート構造であってもよい。
 また、ここまでの積層パターンを覆って、層間絶縁膜126が形成されている。層間絶縁膜126の材質は、例えば、SiNxであるが、これに限定されるものではない。層間絶縁膜126上には、ソースバスライン(SL)127およびドレイン電極128が形成されている。ソースバスライン127は、データ信号線として用いられ、ゲートバスライン123と直交するように設けられている。
 また、これらを覆うように、透明絶縁膜(JAS)129が形成されている。透明絶縁膜129の厚さは、約2.0μm~3.0μmであるが、これに限定されるものではない。透明絶縁膜129の表面は、コンタクトホール132以外の部分が平坦であり、この平坦な部分に、共通電極130が形成されている。共通電極130は、液晶パネル10の配向を制御する。共通電極130は、例えばITOなどの透明導電材料であるが、これに限定されるものではない。また、共通電極130の厚さは、およそ0.05μmであるが、これに限定されるものではない。また、共通電極130は、保護絶縁膜131によって被覆されている。保護絶縁膜131の材質は、例えば、SiNxであるが、これに限定されるものではない。また、保護絶縁膜131の厚さは、0.1μm~0.5μmであるが、これに限定されるものではない。
 また、図1および図3に示すように、保護絶縁膜131上には画素電極133が形成されている。また、TFT基板12は、ドレイン電極128の上方部分の保護絶縁膜131および透明絶縁膜129を貫通して、コンタクトホール132が形成されている。画素電極133は、コンタクトホール132を介して、薄膜トランジスタ125と電気的に接続している。画素電極133は、例えばITOなどの透明導電材料であるが、これに限定されるものではない。
 なお、本実施形態において、コンタクトホール132が形成されている画素電極133、保護絶縁膜131および透明絶縁膜129の部分をコンタクト部と呼ぶ。
 コンタクト部は、例えばフォトフィソグラフィ法を用いて形成される。なお、コンタクト部の形成方法はこれに限定されず、レーザ加工法、エッチング法などであってもよい。
 また、保護絶縁膜131は、開口151を有している。また、開口151には、サブPS(第2のスペーサ)15が形成されている。
 開口151は、例えばフォトフィソグラフィ法を用いて形成される。開口151は、コンタクト部と同一工程で形成される。このように、開口151とコンタクト部とを同一工程で形成することにより、別工程で形成する場合と比べ、工程数を少なくすることができ、より製造コストを抑えることができる。なお、開口151の形成方法はこれに限定されず、レーザ加工法、エッチング法などであってもよい。
 また、これらを覆うように、配向膜(図示しない)が形成されている。配向膜の材料としては、例えば、ポリイミドであるが、これに限定されるものではない。
 (メインPS14およびサブPS15について)
 メインPS14およびサブPS15は、同じ高さのスペーサである。メインPS14およびサブPS15の材質は、例えば、アクリル樹脂であるが、これに限定されるものではない。
 メインPS14は、CF基板11と保護絶縁膜131との間であって、ソースバスライン127の上方部分に形成されている。このように、メインPS14は、ソースバスライン127およびゲートバスライン123によって区画されたサブ画素のうち、隣接するサブ画素との境界に形成されている。図2において、メインPS14は、左右(ゲートバスライン123に平行)に隣接するサブ画素間に形成されている。
 また、サブPS15は、ソースバスライン127の上方部分の開口151内であって、共通電極130上に形成されている。図2および図3に示すように、メインPS14が形成されたサブ画素間の位置と、サブPS15が形成された他のサブ画素間の位置とは同じ位置になるように形成されている。
 なお、メインPS14およびサブPS15の形成位置は、これに限定されない。メインPS14およびサブPS15は、上下(ソースバスライン127に平行)に隣接するサブ画素間に形成されてもよいし、サブ画素の内部に形成されてもよい。メインPS14およびサブPS15の形成位置は、サブ画素内部または周部の同じ位置であればよい。
 これにより、メインPS14とサブPS15とがサブ画素毎に異なる位置に形成される場合と比べ、数画素単位内または液晶パネル10の表示領域内ですべてのPS(メインPS14およびサブPS15)の密度を均一に配置することができる。そのため、PSの下地による仕上りバラツキの影響を最小化し、意図するセル厚や押圧強度を安定的に確保することができる。
 また、メインPS14およびサブPS15の形成位置は、特に制限されないため、より好適に液晶パネル10の押圧強度を向上させ、液晶層13の内部に真空気泡(低温気泡)が発生することを抑制することができる位置にメインPS14およびサブPS15を形成することができる。
 本実施形態においては、メインPS14およびサブPS15の直径は9.0μm~12.0μmとするが、これに限定されるものではない。また、本実施形態において、メインPS14およびサブPS15の直径は同じであるとするが、これに限定されるものではない。メインPS14の直径とサブPS15の直径とは異なっていてもよい。メインPS14およびサブPS15の直径は、液晶パネル10の押圧強度を好適に向上させることができる大きさであればよい。
 また、図1に示すように、メインPS14およびサブPS15は柱状の形状を有している。なお、メインPS14およびサブPSの底面の形状は特に限定されず、例えば、円であってもよいし、四角であってもよい。メインPS14およびサブPS15の底面の形状は、同じであってもよいし、メインPS14とサブPS15とを識別するために異なっていてもよい。メインPS14およびサブPS15が同じ形状を有している場合、より簡単にPSを形成することが可能である。
 また、メインPS14およびサブPS15は、同じ高さであるため、1回のフォトマスク工程によって同時に形成することができる。なお、メインPS14およびサブPS15の形成方法はこれに限定されるものではない。
 図1に示すように、サブPS15が開口151内に形成されることにより、サブPS15は、メインPS14より、保護絶縁膜131の厚さ(開口151の深さ)だけ低い位置(CF基板11から離れた位置)に形成される。これにより、サブPS15とCF基板11との間には、0.1μm~0.5μmの空隙が形成される。これにより、液晶パネル10は、TFT基板12の表面(保護絶縁膜131と液晶層13とが接する面)からの高さが異なる2種類のスペーサを有する。そのため、液晶パネル10の押圧強度を向上させ、液晶層13の内部に真空気泡(低温気泡)が発生することを抑制することができる。
 また、開口151は、開口率の低下や配向阻害を招来しない大きさであって、サブPS15が形成可能な大きさであればよい。開口151の大きさは、例えば、サブPS15の直径と同じ大きさ(9.0μm~12.0μm)であるとするが、これに限定されない。開口151は、最適な径や形状のサブPS15を形成するために必要な大きさであればよい。これにより、より好適に液晶パネル10の押圧強度を向上させ、液晶層13の内部に真空気泡(低温気泡)が発生することを抑制することができるメインPS14およびサブPS15を形成することができる。
 このように、本実施形態における液晶パネル10は、CF基板11と、CF基板11に対向して配置され、CF基板11側の面に保護絶縁膜131を有したTFT基板12と、CF基板11とTFT基板12との間に挟持された液晶層13と、CF基板11と保護絶縁膜131との間に形成されたメインPS14と、メインPS14と同じ高さを有するサブPS15と、を備えている。また、保護絶縁膜131には、開口151が形成されており、サブPS15は、開口151内に形成されている。
 上記構成によれば、メインPS14が保護絶縁膜131上に形成され、サブPS15が保護絶縁膜131に形成された開口151内に形成される。メインPS14とサブPS15とは同じ高さであるため、サブPS15は、メインPS14よりCF基板11から開口151の深さ(保護絶縁膜131の厚さ)だけ離れた位置に形成される。つまり、液晶パネル10は、CF基板11からの距離が異なる2種類のスペーサを有する。また、開口151は、開口率の低下や配向阻害を招来しない大きさであって、サブPS15が形成可能な大きさであればよい。そのため、開口内に形成されるサブPS15の直径の大きさには、制限がない。サブPS15の直径は、液晶パネル10の押圧強度を好適に向上させることができる大きさに形成することができる。したがって、液晶パネル10の押圧強度を向上させ、液晶層13の内部に真空気泡(低温気泡)が発生することを抑制することができる。
 また、メインPS14とサブPS15とは、同じ高さであるため、メインPS14とサブPS15とを同一工程で形成することができる。よって、レジスト複数回塗布や塗布後の複数露光などによる高さの異なるスペーサを形成する場合と比べ、製造工程数を少なくすることができ、製造コストを抑えることができる。
 (液晶パネル10の変形例)
 次に図4を参照して、液晶パネル10の変形例を説明する。図4は、本実施形態における液晶パネル10の他の例を示す拡大断面図である。図4の液晶パネル10における共通電極130は、メインPS14およびサブPS15の下方に形成されていない。
 よって、サブPS15は、図4に示すように、透明絶縁膜129上に形成される。このようにサブPS15の底面は、透明絶縁膜129に接する構成であってもよい。つまり、サブPS15は、共通電極130の位置に関わらず、より好適に液晶パネル10の押圧強度を向上させ、液晶層13の内部に低温気泡の発生を抑制することができる位置に形成することができる。
 〔実施形態2〕
 実施形態1では、IPSモードの液晶パネル10について説明を行ったが、液晶パネルのモードはこれに限定されない。本実施形態(実施形態2)では、VA(Vertical Alignment)モード(VA方式)の液晶パネル50について、図面を参照して説明を行う。
 (液晶パネル50)
 図5は、液晶パネル50をCF基板51側から見た図である。また、図6は、図5の一点鎖線B-B’における断面図である。なお、図5においては、説明の便宜上、CF基板51および液晶層53を省略している。
 図6に示すように、液晶パネル50は、対向して配置されたCF基板51およびTFT基板52を備え、これらの基板の間に液晶層53を挟持した構造を有している。また、CF基板51とTFT基板52との距離を均一にするためのメインPS(第1のスペーサ)54がTFT基板52上の液晶層53側に形成されている。
 (CF基板51)
 次に、図5を参照して、CF基板51の構成について説明を行う。CF基板51は、ガラス基板511と、ガラス基板511の液晶層53側に形成されたカラーフィルタ512と、カラーフィルタ512の液晶層53側に形成された対向電極513とを有している。また、対向電極513が液晶層53と接する面には、液晶層53の分子を一定方向に並べるための配向膜(図示しない)が形成されている。配向膜の材料としては、例えば、ポリイミドであるが、これに限定されるものではない。
 ガラス基板511は、非晶質かつ光透過性のものが使用される。また、カラーフィルタ512は、サブ画素毎に異なる色の光(例えば、R、G、B)を投下するフィルタである。対向電極513は、例えばITOなどの透明導電材料であるが、これに限定されるものではない。
 (TFT基板52)
 次に、図5および図6を参照して、TFT基板52の構成について説明を行う。図6に示すように、TFT基板52を構成するガラス基板521上には、ベースコート層522が設けられている。ガラス基板521は、非晶質かつ光透過性のものが使用される。また、ベースコート層522は、二酸化ケイ素系絶縁材料が用いられる。
 ベースコート層522上には、薄膜トランジスタ525が形成されている。薄膜トランジスタ525は、例えば、シリコン(Si)であるが、これに限定されるものではない。
 また、ベースコート層522上には、ゲート絶縁膜523が形成されている。また、ゲート絶縁膜523上には、図5の左右方向に延在する走査信号線としてのゲートバスライン524が設けられている。ゲート絶縁膜523の材質は、例えば、SiNxであるが、これに限定されるものではない。なお、本実施形態において、TFT基板52は、トップゲート構造を有しているがこれに限定されず、ゲートバスライン524は、ベースコート層522とゲート絶縁膜523との間に形成されるボトムゲート構造であってもよい。
 また、ここまでの積層パターンを覆って、層間絶縁膜526が形成されている。層間絶縁膜526の材質は、例えば、SiNxであるが、これに限定されるものではない。層間絶縁膜526上には、ソースバスライン527が形成されている。ソースバスライン527は、データ信号線として用いられ、ゲートバスライン524と直交するように設けられている。
 また、これらを覆うように、透明絶縁膜528が形成されている。透明絶縁膜528の厚さは、約2.0μm~3.0μmであるが、これに限定されるものではない。透明絶縁膜528上には、共通電極529が形成されている。共通電極529は、例えばITOなどの透明導電材料であるが、これに限定されるものではない。また、共通電極529の厚さは、およそ0.05μmであるが、これに限定されるものではない。共通電極529は、画素電極532との間で補助容量を生成する。また、共通電極529は、保護絶縁膜530によって被覆されている。保護絶縁膜530の材質は、例えば、SiNxであるが、これに限定されるものではない。また、保護絶縁膜530の厚さは、0.1μm~0.5μmであるが、これに限定されるものではない。
 また、図5に示すように、サブ画素内には、コンタクトホール531と、画素電極532とが形成されている。コンタクトホール531および画素電極532は、それぞれ、形成されている場所以外、実施形態1のコンタクトホール132および画素電極133と同様であるため、説明を省略する。
 また、保護絶縁膜530は、開口551を有している。また、開口551には、サブPS(第2のスペーサ)55が形成されている。
 開口551は、例えばフォトフィソグラフィ法を用いて形成される。開口551は、コンタクト部と同一工程で形成される。このように、開口551とコンタクト部とを同一工程で形成することにより、別工程で形成する場合と比べ、工程数を少なくすることができ、より製造コストを抑えることができる。なお、開口551の形成方法はこれに限定されず、レーザ加工法、エッチング法などであってもよい。
 また、これらを覆うように、配向膜(図示しない)が形成されている。配向膜の材料としては、例えば、ポリイミドであるが、これに限定されるものではない。
 (メインPS54およびサブPS55について)
 メインPS54およびサブPS55は、同じ高さのスペーサである。メインPS54およびサブPS55の材質は、例えば、アクリル樹脂であるが、これに限定されるものではない。
 図5に示すように、メインPS54は、CF基板51と保護絶縁膜530との間であって、ソースバスライン527とゲートバスライン524との直交部分の上方に形成されている。このように、メインPS54は、ソースバスライン527およびゲートバスライン524によって区画されたサブ画素のうち、隣接するサブ画素との境界に形成されている。図5において、メインPS54は、左右(ゲートバスライン524に平行)に隣接するサブ画素間に形成されている。
 また、サブPS55は、ソースバスライン527とゲートバスライン524との直交部分の上方の開口551内であって、共通電極529上に形成されている。図5および図6に示すように、メインPS54が形成されたサブ画素間の位置と、サブPS55が形成された他のサブ画素間の位置とは同じ位置になるように形成されている。
 なお、メインPS54およびサブPS55の形成位置は、これに限定されない。メインPS54およびサブPS55の形成位置は、ソースバスライン527上であってもよいし、ゲートバスライン524上であってもよい。このように、ソースバスライン527とゲートバスライン524の直行部分上、ソースバスライン527上、または、ゲートバスライン524上に形成されることにより、液晶パネル50の開口率の低下を抑えることができる。また、液晶の配向を安定させるため、良好な表示品位を得ることができる。
 また、メインPS54およびサブPS55は、上下(ソースバスライン527に平行)に隣接するサブ画素間に形成されてもよいし、サブ画素の内部に形成されてもよい。メインPS54およびサブPS55の形成位置は、サブ画素内部または周部の同じ位置であればよい。
 これにより、メインPS54とサブPS55とがサブ画素毎に異なる位置に形成される場合と比べ、数画素単位内または液晶パネル50の表示領域内ですべてのPS(メインPS54およびサブPS55)の密度を均一に配置することができる。そのため、PSの下地による仕上りバラツキの影響を最小化し、意図するセル厚や押圧強度を安定的に確保することができる。
 また、メインPS54およびサブPS55の形成位置は、特に制限されないため、より好適に液晶パネル50の押圧強度を向上させ、液晶層53の内部に真空気泡(低温気泡)が発生することを抑制することができる位置にメインPS54およびサブPS55を形成することができる。
 本実施形態においては、メインPS54およびサブPS55の直径は9.0μm~12.0μmとするが、これに限定されるものではない。また、本実施形態において、メインPS54およびサブPS55の直径は同じであるとするが、これに限定されるものではない。メインPS54の直径とサブPS55の直径とは異なっていてもよい。メインPS54およびサブPS55の直径は、液晶パネル50の押圧強度を好適に向上させることができる大きさであればよい。
 また、図6に示すように、メインPS54およびサブPS55は柱状の形状を有している。なお、メインPS54およびサブPSの底面の形状は特に限定されず、例えば、円であってもよいし、四角であってもよい。メインPS54およびサブPS55の底面の形状は、同じであってもよいし、メインPS54とサブPS55とを識別するために異なっていてもよい。メインPS54およびサブPS55が同じ形状を有している場合、より簡単にPSを形成することが可能である。
 また、メインPS54およびサブPS55は、同じ高さであるため、1回のフォトマスク工程によって同時に形成することができる。これにより、高さの異なるスペーサを形成する場合と比べ、製造工程数を少なくすることができ、製造コストを抑えることができる。なお、メインPS54およびサブPS55の形成方法はこれに限定されるものではない。
 図6に示すように、サブPS55が開口551内に形成されることにより、サブPS55は、メインPS54より、保護絶縁膜530の厚さ(開口551の深さ)だけ低い位置(CF基板51から離れた位置)に形成される。これにより、サブPS55とCF基板51との間には、0.1μm~0.5μmの空隙が形成される。これにより、液晶パネル50は、TFT基板52からの高さが異なる2種類のスペーサを有する。言い換えれば、液晶パネル50は、CF基板51からの距離が異なる2種類のスペーサを有する。したがって、液晶パネル50の押圧強度を向上させ、液晶層53の内部に真空気泡(低温気泡)が発生することを抑制することができる。
 また、開口551は、開口率の低下や配向阻害を招来しない大きさであって、サブPS55が形成可能な大きさであればよい。開口551の大きさは、例えば、サブPS55の直径と同じ大きさ(9.0μm~12.0μm)であるとするが、これに限定されない。開口551は、最適な径や形状のサブPS55を形成するために必要な大きさであればよい。これにより、より好適に液晶パネル50の押圧強度を向上させ、液晶層53の内部に真空気泡(低温気泡)が発生することを抑制することができるメインPS54およびサブPS55を形成することができる。
 なお、上述した実施形態1および2では、IPSモードの液晶パネルまたはVAモードの液晶パネルについて説明を行ったが、本発明の一実施形態に係る液晶パネルはこれに限定されず、TN(Twisted Nematic)モードの液晶パネルであってもよい。
 〔実施形態の総括〕
 以上のように、上記の課題を解決するために、本発明に係る液晶パネルは、カラーフィルタ基板と、前記カラーフィルタ基板に対向して配置され、前記カラーフィルタ基板側の面に絶縁膜を有したアレイ基板と、前記カラーフィルタ基板と前記アレイ基板との間に挟持された液晶層と、前記カラーフィルタ基板と前記絶縁膜との間に形成された第1のスペーサと、前記第1のスペーサと同じ高さを有する第2のスペーサと、を備えた液晶パネルであって、前記絶縁膜には、開口が形成されており、前記第2のスペーサは、前記開口内に形成されていることを特徴としている。
 上記構成によれば、第1のスペーサがカラーフィルタ基板と前記絶縁膜との間に形成され、第2のスペーサが絶縁膜に形成された開口内に形成される。第1のスペーサと第2のスペーサとは同じ高さであるため、第2のスペーサは、第1のスペーサよりカラーフィルタ基板から開口の深さだけ離れた位置に形成される。つまり、液晶パネルは、カラーフィルタ基板からの距離が異なる2種類のスペーサを有する。また、前記開口は、開口率の低下や配向阻害を招来しない大きさであって、第2のスペーサが形成可能な大きさであればよい。そのため、当該開口内に形成される第2のスペーサは、当該第2のスペーサの径の大きさに制限がない。よって、第2のスペーサの径は、液晶パネルの押圧強度を好適に向上させることができる大きさに形成することができる。したがって、液晶パネルの押圧強度を向上させ、液晶層の内部に真空気泡(低温気泡)が発生することを抑制することができる。
 また、第1のスペーサと第2のスペーサとは同じ高さであるため、第1のスペーサと第2のスペーサとを同一工程で形成することができる。よって、レジスト複数回塗布や塗布後の複数露光などによる高さの異なるスペーサを形成する場合と比べ、工程数を少なくすることができ、製造コストを抑えることができる。
 また、本発明の一態様に係る液晶パネルの前記第1のスペーサは、隣接するサブ画素のうち、一方のサブ画素の内部または周部に形成され、前記第2のスペーサは、他方のサブ画素における、前記第1のスペーサが形成された位置に対応する位置に形成されることが好ましい。
 上記構成によれば、第1のスペーサまたは第2のスペーサが形成される位置が、各サブ画素に対し、同じ位置になるように形成することができる。これにより、第1のスペーサと第2のスペーサとがサブ画素毎に異なる位置に形成される場合と比べ、数画素単位内または液晶パネルの表示領域内ですべてのスペーサ(第1のスペーサおよび第2のスペーサ)の密度を均一に配置することができる。そのため、スペーサの下地による仕上りバラツキの影響を最小化し、意図するセル厚や押圧強度を安定的に確保することができる。
 また、本発明の一態様に係る液晶パネルの前記アレイ基板は、前記絶縁膜を貫通して形成されたコンタクト部を有し、前記開口は、前記コンタクト部と同一工程で形成されることが好ましい。
 このように、内部に第2のスペーサを形成するための開口と前記コンタクト部とを同一工程で形成することにより、別工程で形成する場合と比べ、工程数を少なくすることができ、より製造コストを抑えることができる。
 また、本発明の一態様に係る液晶パネルの前記絶縁膜の厚さは、0.1μm~0.5μmであることが好ましい。
 上記構成によれば、絶縁膜に形成された開口の深さは、0.1μm~0.5μmとなる。そのため、開口内に形成される第2のスペーサとCF基板との間には、0.1μm~0.5μmの空隙が形成される。これにより、液晶パネルは、より好適に、押圧強度を向上させ、液晶層の内部に真空気泡(低温気泡)が発生することを抑制することができる。
 前記液晶パネルは、IPS方式の液晶パネルであってもよいし、VA方式の液晶パネルであってもよい。このような方式の液晶パネルであっても、第1のスペーサと、開口内に形成された第2のスペーサとを備えることができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、液晶パネルの製造分野において、好適に利用することができる。
 10 液晶パネル
 11 CF基板(カラーフィルタ基板)
 111 ガラス基板
 112 カラーフィルタ
 12 TFT基板(アレイ基板)
 121 ガラス基板
 122 ベースコート層
 123 ゲートバスライン
 124 ゲート絶縁膜
 125 薄膜トランジスタ
 126 層間絶縁膜
 127 ソースバスライン
 128 ドレイン電極
 129 透明絶縁膜
 130 共通電極
 131 保護絶縁膜(絶縁膜)
 132 コンタクトホール(コンタクト部)
 133 画素電極
 151 開口
 13 液晶層
 14 メインPS(第1のスペーサ)
 15 サブPS(第2のスペーサ)
 50 液晶パネル
 51 CF基板(カラーフィルタ基板)
 511 ガラス基板
 512 カラーフィルタ
 513 対向電極
 52 TFT基板(アレイ基板)
 521 ガラス基板
 522 ベースコート層
 523 ゲート絶縁膜
 524 ゲートバスライン
 525 薄膜トランジスタ
 526 層間絶縁膜
 527 ソースバスライン
 528 透明絶縁膜
 529 共通電極
 530 保護絶縁膜(絶縁膜)
 531 コンタクトホール
 532 画素電極
 551 開口
 53 液晶層
 54 メインPS(第1のスペーサ)
 55 サブPS(第2のスペーサ)
 

Claims (7)

  1.  カラーフィルタ基板と、
     前記カラーフィルタ基板に対向して配置され、前記カラーフィルタ基板側の面に絶縁膜を有したアレイ基板と、
     前記カラーフィルタ基板と前記アレイ基板との間に挟持された液晶層と、
     前記カラーフィルタ基板と前記絶縁膜との間に形成された第1のスペーサと、
     前記第1のスペーサと同じ高さを有する第2のスペーサと、を備えた液晶パネルであって、
     前記絶縁膜には、開口が形成されており、
     前記第2のスペーサは、前記開口内に形成されていることを特徴とする液晶パネル。
  2.  前記第1のスペーサは、隣接するサブ画素のうち、一方のサブ画素の内部または周部に形成され、
     前記第2のスペーサは、他方のサブ画素における、前記第1のスペーサが形成された位置に対応する位置に形成されることを特徴とする請求項1に記載の液晶パネル。
  3.  前記アレイ基板は、前記絶縁膜を貫通して形成されたコンタクト部を有し、
     前記開口は、前記コンタクト部と同一工程で形成されることを特徴とする請求項1または2に記載の液晶パネル。
  4.  前記絶縁膜の厚さは、0.1μm~0.5μmであることを特徴とする請求項1から3の何れか1項に記載の液晶パネル。
  5.  前記液晶パネルは、IPS方式の液晶パネルであることを特徴とする請求項1から4の何れか1項に記載の液晶パネル。
  6.  前記液晶パネルは、VA方式の液晶パネルであることを特徴とする請求項1から4の何れか1項に記載の液晶パネル。
  7.  カラーフィルタ基板と、
     前記カラーフィルタ基板に対向して配置され、前記カラーフィルタ基板側の面に絶縁膜を有したアレイ基板と、
     前記カラーフィルタ基板と前記アレイ基板との間に挟持された液晶層と、
     前記カラーフィルタ基板と前記絶縁膜との間に形成された第1のスペーサと、
     前記第1のスペーサと同じ高さを有する第2のスペーサと、を備えた液晶パネルであって、
     前記絶縁膜には、開口が形成されており、
     前記第1のスペーサは、隣接するサブ画素のうち、一方のサブ画素の内部または周部に形成され、
     前記第2のスペーサは、前記開口内の、他方のサブ画素における、前記第1のスペーサが形成された位置に対応する位置に形成され、
     前記絶縁膜の厚さは、0.1μm~0.5μmであることを特徴とする液晶パネル。
     
PCT/JP2012/074434 2011-09-27 2012-09-24 液晶パネル WO2013047455A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011211488 2011-09-27
JP2011-211488 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013047455A1 true WO2013047455A1 (ja) 2013-04-04

Family

ID=47995488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074434 WO2013047455A1 (ja) 2011-09-27 2012-09-24 液晶パネル

Country Status (1)

Country Link
WO (1) WO2013047455A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824876A (zh) * 2014-02-12 2014-05-28 京东方科技集团股份有限公司 一种三维显示面板、其制作方法及三维显示装置
US20170261795A1 (en) * 2015-06-24 2017-09-14 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for manufacturing liquid crystal display panel
CN109031766A (zh) * 2018-09-13 2018-12-18 惠科股份有限公司 彩色滤光片及其制作方法和显示面板
CN111158193A (zh) * 2020-03-10 2020-05-15 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
JP2022109264A (ja) * 2015-05-29 2022-07-27 株式会社半導体エネルギー研究所 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309857A (ja) * 2007-06-12 2008-12-25 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
JP2009139672A (ja) * 2007-12-07 2009-06-25 Sony Corp 液晶表示素子及び液晶表示素子の製造方法
JP2009258241A (ja) * 2008-04-14 2009-11-05 Toshiba Mobile Display Co Ltd 液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309857A (ja) * 2007-06-12 2008-12-25 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
JP2009139672A (ja) * 2007-12-07 2009-06-25 Sony Corp 液晶表示素子及び液晶表示素子の製造方法
JP2009258241A (ja) * 2008-04-14 2009-11-05 Toshiba Mobile Display Co Ltd 液晶表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824876A (zh) * 2014-02-12 2014-05-28 京东方科技集团股份有限公司 一种三维显示面板、其制作方法及三维显示装置
JP2022109264A (ja) * 2015-05-29 2022-07-27 株式会社半導体エネルギー研究所 半導体装置
JP7278455B2 (ja) 2015-05-29 2023-05-19 株式会社半導体エネルギー研究所 半導体装置
US20170261795A1 (en) * 2015-06-24 2017-09-14 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for manufacturing liquid crystal display panel
CN109031766A (zh) * 2018-09-13 2018-12-18 惠科股份有限公司 彩色滤光片及其制作方法和显示面板
CN111158193A (zh) * 2020-03-10 2020-05-15 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法

Similar Documents

Publication Publication Date Title
KR101552902B1 (ko) 곡면 액정표시장치
JP5888557B2 (ja) 液晶表示装置
JP5875001B2 (ja) 横電界方式の液晶表示装置
JP4134106B2 (ja) カラーフィルタ基板およびその製造方法ならびにそれを備えた表示装置
JP4952630B2 (ja) 液晶装置
KR20070063662A (ko) 액정표시장치 및 이의 제조방법
KR20100025367A (ko) 표시기판, 이를 갖는 액정표시패널 및 이 액정표시패널의 제조 방법
US9904096B2 (en) Liquid crystal panel and dual-vision liquid crystal display device
WO2013047455A1 (ja) 液晶パネル
US10466546B2 (en) Display panel and manufacturing method thereof
KR20090041337A (ko) 액정 디스플레이 패널
JP2017146449A (ja) 液晶表示装置
JP2018205358A (ja) 表示装置
JP2004318141A (ja) 液晶表示装置
JP2017010001A (ja) 表示パネル
KR20160001794A (ko) 액정표시패널
JP2011017887A (ja) 液晶表示パネル
WO2012124662A1 (ja) 液晶表示装置
JP2010014985A (ja) 液晶表示装置
US7683992B2 (en) Multi-domain liquid crystal display
JPWO2012124699A1 (ja) 液晶表示装置
JP2017076010A (ja) 表示装置
US20210405397A1 (en) Substrate for display apparatus, display apparatus, and method of manufacturing substrate for display apparatus
JP2010054552A (ja) 液晶表示装置
JP2022093274A (ja) 表示パネル、及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP