WO2013047016A1 - 非水電解質二次電池の負極及び非水電解質二次電池 - Google Patents

非水電解質二次電池の負極及び非水電解質二次電池 Download PDF

Info

Publication number
WO2013047016A1
WO2013047016A1 PCT/JP2012/071132 JP2012071132W WO2013047016A1 WO 2013047016 A1 WO2013047016 A1 WO 2013047016A1 JP 2012071132 W JP2012071132 W JP 2012071132W WO 2013047016 A1 WO2013047016 A1 WO 2013047016A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrolyte secondary
active material
nonaqueous electrolyte
electrode active
Prior art date
Application number
PCT/JP2012/071132
Other languages
English (en)
French (fr)
Inventor
博之 南
井町 直希
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013047016A1 publication Critical patent/WO2013047016A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode of a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery including the same.
  • Secondary batteries have been widely used in electronic devices such as mobile phones, notebook computers, and PDAs. Secondary batteries are used repeatedly. For this reason, the secondary battery is required to have high cycle characteristics.
  • Patent Document 1 and Patent Document 2 propose improving the cycle characteristics of a nonaqueous electrolyte secondary battery at a high temperature by disposing an inorganic particle layer between a positive electrode or a negative electrode and a separator. ing.
  • Patent Document 3 discloses that the cycle characteristics of a non-aqueous electrolyte secondary battery are improved by combining a positive electrode made of a positive electrode active material having an olivine crystal structure and a negative electrode to which inorganic oxide nanoparticles are added. Has been proposed.
  • the main object of the present invention is to provide a non-aqueous electrolyte secondary battery negative electrode and a non-aqueous electrolyte secondary battery having improved cycle characteristics.
  • the negative electrode of the nonaqueous electrolyte secondary battery of the present invention has a negative electrode active material layer containing at least one of hollow particles and porous particles.
  • the nonaqueous electrolyte secondary battery of the present invention includes the negative electrode, a positive electrode, a nonaqueous electrolyte, and a separator.
  • FIG. 1 is a schematic cross-sectional view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • the nonaqueous electrolyte secondary battery 1 includes a battery container 17.
  • the battery case 17 is a cylindrical shape.
  • the shape of the battery container is not limited to a cylindrical shape.
  • the shape of the battery container may be, for example, a flat shape.
  • an electrode body 10 impregnated with a nonaqueous electrolyte is accommodated.
  • non-aqueous electrolyte for example, a known non-aqueous electrolyte can be used.
  • the non-aqueous electrolyte includes a solute, a non-aqueous solvent, and the like.
  • LiXF y As the solute of the nonaqueous electrolyte, for example, LiXF y (wherein X is P, As, Sb, B, Bi, Al, Ga or In, and y is 6 when X is P, As or Sb)
  • X is B, Bi, the y when Al, Ga or in, a 4
  • LiPF 6 LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 and the like are preferable.
  • the nonaqueous electrolyte may contain one type of solute or may contain a plurality of types of solutes.
  • non-aqueous solvent for the non-aqueous electrolyte examples include cyclic carbonate, chain carbonate, or a mixed solvent of cyclic carbonate and chain carbonate.
  • cyclic carbonate examples include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and the like.
  • chain carbonate examples include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and the like.
  • a mixed solvent of a cyclic carbonate and a chain carbonate is preferably used as a non-aqueous solvent having a low viscosity, a low melting point, and a high lithium ion conductivity.
  • the mixing ratio of cyclic carbonate and chain carbonate should be in the range of 1: 9 to 5: 5 by volume ratio. Is preferred.
  • the non-aqueous solvent may be a mixed solvent of a cyclic carbonate and an ether solvent such as 1,2-dimetaxethane and 1,2-diethoxyethane.
  • an ionic liquid can be used as a nonaqueous solvent for the nonaqueous electrolyte.
  • the cation species and anion species of the ionic liquid are not particularly limited. From the viewpoint of low viscosity, electrochemical stability, and hydrophobicity, for example, a pyridinium cation, an imidazolium cation, or a quaternary ammonium cation is preferably used as the cation.
  • an ionic liquid containing a fluorine-containing imide anion is preferably used as the anion.
  • the non-aqueous electrolyte may be a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide or polyacrylonitrile with an electrolytic solution, or an inorganic solid electrolyte such as LiI or Li 3 N.
  • the amount of the nonaqueous electrolyte in the nonaqueous electrolyte secondary battery 1 is preferably 1.0 g / Ah or more and 3.0 g / Ah or less with respect to the design capacity.
  • the amount of the nonaqueous electrolyte with respect to the design capacity of the nonaqueous electrolyte secondary battery 1 is within this range, high charge / discharge cycle characteristics can be obtained.
  • the amount of the nonaqueous electrolyte relative to the design capacity of the nonaqueous electrolyte secondary battery 1 is too small, it is difficult to sufficiently supply the nonaqueous electrolyte into the negative electrode 11 and the positive electrode 12, and the charge / discharge cycle characteristics deteriorate. There is.
  • the nonaqueous electrolyte when the amount of the nonaqueous electrolyte with respect to the design capacity of the nonaqueous electrolyte secondary battery 1 is too large, the nonaqueous electrolyte is excessively held in the negative electrode 11 and the positive electrode 12, and the nonaqueous electrolyte in the negative electrode 11 and the positive electrode 12 is retained. It may be difficult to control the ratio. Furthermore, when the amount of the nonaqueous electrolyte with respect to the design capacity of the nonaqueous electrolyte secondary battery 1 is too large, the amount of gas generated due to decomposition of the nonaqueous electrolyte increases, and the storage characteristics of the nonaqueous electrolyte secondary battery 1 and the high temperature are increased. Cycle characteristics may be degraded.
  • the electrode body 10 is formed by winding a negative electrode 11, a positive electrode 12, and a separator 13 disposed between the negative electrode 11 and the positive electrode 12.
  • the separator 13 is not particularly limited as long as it can suppress a short circuit due to contact between the negative electrode 11 and the positive electrode 12 and can impregnate a nonaqueous electrolyte to obtain lithium ion conductivity.
  • Separator 13 can be constituted by a porous film made of resin, for example.
  • the resin porous film include a polypropylene or polyethylene porous film, a laminate of a polypropylene porous film and a polyethylene porous film, and the like.
  • the negative electrode 11 has a negative electrode current collector and a negative electrode active material layer disposed on at least one surface of the negative electrode current collector.
  • the negative electrode current collector can be composed of, for example, a foil made of a metal such as Cu or an alloy containing a metal such as Cu.
  • the negative electrode active material layer includes a negative electrode active material and at least one of hollow particles and porous particles.
  • the hollow particles mean primary particles having an internal space communicating with the outside of the particles. Hollow particles have surfaces on both the inside and the outside of the particle.
  • the negative electrode active material is not particularly limited as long as it can reversibly store and release lithium.
  • the negative electrode active material include a carbon material, a material alloyed with lithium, and a metal oxide such as tin oxide.
  • the material to be alloyed with lithium include one or more metals selected from the group consisting of silicon, germanium, tin, and aluminum, or one or more types selected from the group consisting of silicon, germanium, tin, and aluminum.
  • the thing which consists of an alloy containing a metal is mentioned.
  • Specific examples of the carbon material include natural graphite, artificial graphite, mesophase pitch-based carbon fiber (MCF), mesocarbon microbeads (MCMB), coke, hard carbon, fullerene, and carbon nanotube.
  • the hollow particles and the porous particles are preferably made of an inorganic material that does not react with the active material or the non-aqueous electrolyte.
  • the hollow particles and the porous particles can be made of at least one selected from the group consisting of silica, alumina, titania, and carbon.
  • hollow particles include hollow bodies such as silica and titania.
  • hollow bodies such as a silica and a titania
  • a well-known thing can be used and a commercial item can also be obtained easily.
  • porous particles include porous materials such as ketjen black and porous alumina oxide.
  • porous materials such as ketjen black and porous alumina oxide.
  • known materials can be used, and commercially available products are also readily available.
  • the average primary particle diameter of the hollow particles and the porous particles is preferably about 500 nm or less, more preferably about 300 nm or less, and further preferably about 150 nm or less.
  • a large aggregate composed of at least one of the hollow particles and the porous particles is hardly generated, and the hollow particles and the porous particles are uniformly dispersed in the negative electrode active material layer. Therefore, the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery 1 can be enhanced.
  • the average primary particle diameter of the hollow particles and porous particles is preferably about 10 nm or more, more preferably about 20 nm or more, and further preferably about 35 nm or more.
  • the average primary particle diameter (D 50) is that of cumulative 50% by volume diameter in the measured particle size distribution by a laser diffraction scattering method.
  • the content of at least one of hollow particles and porous particles in the negative electrode active material layer is preferably 0.5% by mass or less, more preferably about 0.001% by mass to 5% by mass, More preferably, it is in the range of about 0.01% by mass to 2% by mass.
  • the content of at least one of the hollow particles and the porous particles in the negative electrode active material layer is within this range, the effect of holding the nonaqueous electrolyte in the negative electrode active material layer is enhanced, and the negative electrode 11 and the positive electrode 12 are held.
  • the amount of non-aqueous electrolyte to be adjusted can be adjusted. Therefore, high charge / discharge cycle characteristics can be imparted to the nonaqueous electrolyte secondary battery 1.
  • the content of at least one of the hollow particles and the porous particles in the negative electrode active material layer is less than 0.001% by mass, the effect of holding the nonaqueous electrolyte in the negative electrode active material layer is reduced, and the charge is reduced. The effect of improving the discharge cycle characteristics may be reduced.
  • the content of at least one of the hollow particles and the porous particles in the negative electrode active material layer exceeds 5% by mass, the amount of the nonaqueous electrolyte retained in the negative electrode active material layer becomes excessive, and the positive electrode active material The layer may not be able to retain sufficient non-aqueous electrolyte.
  • the negative electrode active material layer may contain a known carbon conductive agent such as graphite and a known binder such as sodium carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR).
  • a known carbon conductive agent such as graphite
  • a known binder such as sodium carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR).
  • the positive electrode 12 has a positive electrode current collector and a positive electrode active material layer disposed on the positive electrode current collector.
  • the positive electrode current collector can be made of, for example, a metal such as Al or an alloy containing a metal such as Al.
  • the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode active material layer may contain appropriate materials such as a binder and a conductive agent in addition to the positive electrode active material.
  • a binder preferably used include, for example, polyvinylidene fluoride.
  • a conductive agent preferably used include carbon materials such as graphite and acetylene black.
  • the type of the positive electrode active material is not particularly limited, and a known positive electrode active material can be used.
  • the positive electrode active material preferably has a layered structure.
  • the positive electrode active material having a layered structure preferably used include a lithium-containing transition metal oxide having a layered structure.
  • lithium-containing transition metal oxides include lithium cobalt oxide, cobalt-nickel-manganese lithium composite oxide, aluminum-nickel-manganese lithium composite oxide, and aluminum-nickel-cobalt composite oxide.
  • lithium composite oxides containing at least one of cobalt and manganese may be composed of only one type or may be composed of two or more types.
  • An inorganic particle layer is disposed between the positive electrode active material layer and the separator.
  • the inorganic particle layer is preferably disposed on the surface of the positive electrode active material layer.
  • the inorganic particle layer refers to a layer composed of inorganic particles, a binder, a dispersant, and the like.
  • the material constituting the inorganic particles examples include rutile type titanium oxide (rutile type titania), aluminum oxide (alumina), zirconium oxide (zirconia), magnesium oxide (magnesia) and the like. From the viewpoint of the stability of the inorganic particle layer in the nonaqueous electrolyte secondary battery 1, the inorganic particles are preferably aluminum oxide, rutile titanium oxide, and the like.
  • the content of the inorganic particles in the inorganic particle layer is preferably about 70% by mass to 99.9% by mass, more preferably about 90% by mass to 99% by mass, and 95% by mass to 99% by mass. More preferably, it is about.
  • the average primary particle diameter of the inorganic particles is preferably about 1 ⁇ m or less, and more preferably about 0.1 ⁇ m to 0.8 ⁇ m.
  • the type of binder contained in the inorganic particle layer is not particularly limited.
  • the binder contained in the inorganic particle layer is preferably a binder that satisfies at least one of the following properties (1) to (4).
  • the dispersibility of the inorganic particles in the inorganic particle layer can be secured (re-aggregation prevention).
  • the adhesion between the positive electrode active material layer and the inorganic particle layer can be ensured.
  • the space between the inorganic particles due to swelling when the inorganic particle layer absorbs the nonaqueous electrolyte can be filled.
  • Suppressing elution of the non-aqueous electrolyte from the inorganic particle layer can be provided.
  • an aqueous binder is preferable.
  • the material constituting the binder include, for example, polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), modified products and derivatives thereof, copolymers containing acrylonitrile units, Examples include polyacrylic acid derivatives.
  • the binder may be composed of only one type, or may be composed of two or more types.
  • the binder is preferably a copolymer containing an acrylonitrile unit.
  • the amount of the binder contained in the inorganic particle layer is preferably about 30 parts by mass or less, more preferably about 10 parts by mass or less with respect to 100 parts by mass of the inorganic particles, and about 5 parts by mass or less. More preferably.
  • the lower limit of the amount of the binder contained in the inorganic particle layer is usually about 0.1 parts by mass with respect to 100 parts by mass of the inorganic particles.
  • the thickness of the inorganic particle layer is preferably about 4 ⁇ m or less, more preferably in the range of about 0.5 ⁇ m to 4 ⁇ m, and still more preferably in the range of about 0.5 ⁇ m to 2 ⁇ m. If the thickness of the inorganic particle layer is too thin, the effect obtained by forming the inorganic particle layer may be insufficient. Moreover, when the thickness of the inorganic particle layer is too thick, the load characteristics of the nonaqueous electrolyte secondary battery 1 may be reduced and the energy density may be reduced.
  • Examples of the method of arranging the inorganic particle layer on the surface of the positive electrode active material layer include a method of applying a slurry made of inorganic particles, a binder, a solvent, and the like on the surface of the positive electrode active material layer and drying it.
  • Specific examples of the slurry application method include coating methods such as a die coating method, a gravure coating method, a dip coating method, a curtain coating method, and a spray coating method. Among these, gravure coating method, die coating method and the like are preferable.
  • the solid content concentration in the slurry is preferably in the range of about 3% by mass to 30% by mass.
  • the solid content concentration in the slurry is preferably in the range of about 5 mass% to 70 mass%.
  • the solvent contained in the slurry water is preferable.
  • the binder in the slurry is difficult to move into the positive electrode active material layer in the coating process. Therefore, expansion of the positive electrode active material layer by the binder can be suppressed. As a result, it can suppress that the energy density of the nonaqueous electrolyte secondary battery 1 falls. Water is also preferable because of its low environmental load.
  • the dispersion method of the inorganic particles in the solvent it is preferable to employ a mechanical dispersion method such as a wet dispersion method using a prime mix, a bead mill, or the like.
  • a mechanical dispersion method such as a wet dispersion method using a prime mix, a bead mill, or the like.
  • the average primary particle diameter of the inorganic particles is small, and the inorganic particles are very likely to settle in the slurry. Therefore, unless a mechanical dispersion method is used, the inorganic particle layer may not be formed uniformly.
  • the charge capacity ratio of the negative electrode 11 to the charge capacity of the positive electrode 12 is preferably in the range of about 1.0 to 1.1.
  • the charge capacity ratio of the negative electrode 11 and the positive electrode 12 is preferably in the range of about 1.0 to 1.1.
  • the charge capacity ratio of the negative electrode 11 and the positive electrode 12 is preferably in the range of about 1.0 to 1.1.
  • the charge capacity ratio between the negative electrode 11 and the positive electrode 12 exceeds 1.1, the energy density per volume of the nonaqueous electrolyte secondary battery 1 may be reduced.
  • the charge capacity ratio between the negative electrode 11 and the positive electrode 12 may be set in accordance with the end-of-charge voltage of the nonaqueous electrolyte secondary battery 1.
  • Patent Document 1 in a nonaqueous electrolyte secondary battery, an inorganic particle layer composed of an aggregate of inorganic particles and a binder is disposed between a positive electrode and a separator, thereby charging the nonaqueous electrolyte secondary battery. It is disclosed that the discharge cycle characteristics are improved.
  • the non-aqueous electrolyte is sufficiently present on the surface of the positive electrode.
  • the amount of nonaqueous electrolyte on the surface of the negative electrode was small, and the degree of deterioration of the negative electrode was large. This is presumably because the non-aqueous electrolyte was insufficient in the negative electrode because the inorganic particle layer retained an excessive amount of the non-aqueous electrolyte.
  • the nonaqueous electrolyte secondary battery 1 includes at least one of hollow particles and porous particles in the negative electrode active material of the negative electrode 11.
  • Hollow particles and porous particles have an internal space within the particles. That is, the aggregate of at least one of the hollow particles and the porous particles has an internal space communicating not only with the gaps between the primary particles but also within the primary particles. For this reason, more nonaqueous electrolyte can be hold
  • the amount of the nonaqueous electrolyte held by the negative electrode 11 and the positive electrode 12 can be adjusted using the internal space of the hollow particles and porous particles contained in the negative electrode active material layer.
  • the nonaqueous electrolyte secondary battery 1 has improved charge / discharge cycle characteristics.
  • Example 1 As the positive electrode active material, lithium cobaltate containing 1.0 mol% of Al and Mg and 0.05 mol% of Zr was prepared. In this lithium cobaltate, Zr is present in a state of adhering to the particle surface.
  • This positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder are mixed at a mass ratio of 95: 2.5: 2.5, and N-methylpyrrolidone (as a solvent) is mixed. NMP) was mixed to prepare a positive electrode mixture slurry. A mixer was used for mixing.
  • the prepared positive electrode mixture slurry was applied to both sides of an aluminum foil, dried and rolled to obtain a positive electrode active material layer.
  • the packing density of the positive electrode active material layer was 3.80 g / cm 3 .
  • aqueous slurry was prepared by using rubber (SBR) and carboxymethylcellulose (CMC) as a dispersant and mixing them with a disperser.
  • SBR rubber
  • CMC carboxymethylcellulose
  • the solid content concentration of the inorganic particles was 40% by mass.
  • the water-based binder was 3 parts by mass with respect to 100 parts by mass of the inorganic particles.
  • CMC was 0.2 mass part with respect to 100 mass parts of inorganic particles.
  • the disperser used was a mix made by Primix. Using this aqueous slurry, coating was performed on both surfaces of the positive electrode active material layer by a gravure method, and water as a solvent was dried and removed to form inorganic particle layers on both surfaces of the positive electrode active material layer.
  • the thickness of the inorganic particle layer was 2 ⁇ m, and the total thickness of both surfaces was 4 ⁇ m.
  • This slurry was applied on both sides of the copper foil, dried, and rolled to obtain a negative electrode active material.
  • the filling density of the negative electrode active material layer was 1.60 g / cm 3 .
  • LiPF 6 was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 so as to be 1 mol / L to prepare a nonaqueous electrolyte.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a lead terminal was attached to each of the positive electrode and the negative electrode, and a wound electrode body was produced in a spiral shape via a separator. After inserting this electrode body into a battery outer can, 4.5 g of the nonaqueous electrolyte was injected and sealed to obtain a test battery.
  • the design capacity of the battery was 2600 mAh, and the amount of the nonaqueous electrolyte relative to the design capacity was 1.73 g / Ah.
  • the battery was designed such that the end-of-charge voltage was 4.35 V, and the capacity ratio of the positive electrode and the negative electrode (initial charge capacity of the negative electrode / initial charge capacity of the positive electrode) was designed to be 1.08 at this potential.
  • the separator a microporous polyethylene film having an average pore diameter of 0.1 ⁇ m, a film thickness of 16 ⁇ m, and a porosity of 47% was used.
  • Example 2 Except that the negative electrode active material, hollow silica, CMC, and SBR were mixed so as to have a mass ratio of 98: 0.1: 1: 1 (amount of inorganic particles with respect to the amount of negative electrode active material: about 0.10% by mass). In the same manner as in Example 1, a nonaqueous electrolyte secondary battery was produced.
  • Example 3 Except that the negative electrode active material, hollow silica, CMC, and SBR were mixed so as to have a mass ratio of 98: 2.0: 1: 1 (amount of inorganic particles with respect to the amount of negative electrode active material: about 2.0% by mass). In the same manner as in Example 1, a nonaqueous electrolyte secondary battery was produced.
  • Example 4 A non-aqueous electrolyte secondary battery in the same manner as in Example 1 except that ketjen black (average primary particle size: 40 nm, surface porosity, trade name “EC300J” manufactured by Lion Corporation) was used instead of hollow silica. Was made.
  • Example 1 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the inorganic particle layer was not formed on the surface of the positive electrode active material layer and the hollow silica was not mixed in the negative electrode active material layer.
  • Example 2 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the hollow silica was not mixed in the negative electrode active material layer.
  • Example 3 Example 1 was used except that titanium oxide (TiO 2 , average primary particle size: 0.25 ⁇ m, no surface treatment layer, trade name “CR-EL” manufactured by Ishihara Sangyo Co., Ltd.) was used instead of hollow silica. Thus, a non-aqueous electrolyte secondary battery was produced.
  • titanium oxide TiO 2 , average primary particle size: 0.25 ⁇ m, no surface treatment layer, trade name “CR-EL” manufactured by Ishihara Sangyo Co., Ltd.
  • Example 4 Example 1 was used except that aluminum oxide (Al 2 O 3 , average primary particle size: 0.5 ⁇ m, no surface treatment layer, trade name “AKP3000” manufactured by Sumitomo Chemical Co., Ltd.) was used in place of hollow silica. A non-aqueous electrolyte secondary battery was produced.
  • aluminum oxide Al 2 O 3 , average primary particle size: 0.5 ⁇ m, no surface treatment layer, trade name “AKP3000” manufactured by Sumitomo Chemical Co., Ltd.
  • Capacity retention rate (%) [(discharge capacity at the 200th cycle) / (discharge capacity at the first cycle)] ⁇ 100
  • the comparative example 2 in which the inorganic particle layer was formed on the surface of the positive electrode active material layer was not formed with the inorganic particle layer. It can be seen that the charge / discharge cycle characteristics are improved as compared with the nonaqueous electrolyte secondary battery of Example 1. However, in the nonaqueous electrolyte secondary battery of Comparative Example 2, the nonaqueous electrolyte is biased toward the positive electrode due to the action of the inorganic particle layer, and the nonaqueous electrolyte is sufficiently retained in the negative electrode after a long cycle. The capacity decreased.
  • an inorganic particle layer is formed on the surface of the positive electrode active material layer, and further, spherical particles or tetras not having a hollow structure or a porous structure in the negative electrode active material layer. It can be seen that when the pot-type particles are added, the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery are improved as compared with Comparative Example 2 in which the inorganic particle layer is formed on the surface of the positive electrode active material layer. However, the improvement of the charge / discharge cycle characteristics is not sufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

改善されたサイクル特性を有する非水電解質二次電池の負極を提供する。 非水電解質二次電池1の負極11は、中空粒子及び多孔質粒子の少なくとも一方を含む負極活物質層を有する。

Description

非水電解質二次電池の負極及び非水電解質二次電池
 本発明は、非水電解質二次電池の負極及びこれを備える非水電解質二次電池に関する。
 従来、携帯電話、ノートパソコン、PDAなどの電子デバイスに、二次電池が広く使用されている。二次電池は、繰り返し使用される。このため、二次電池には、高いサイクル特性を有することが求められる。
 例えば、特許文献1及び特許文献2には、正極または負極とセパレータとの間に無機粒子層を配することにより、非水電解質二次電池の高温下でのサイクル特性を向上することが提案されている。
 また、特許文献3には、オリビン型結晶構造を持つ正極活物質からなる正極と、無機酸化物ナノ粒子を添加した負極とを組み合わせることにより、非水電解質二次電池のサイクル特性を向上することが提案されている。
特開2007-280917号公報 特開2007-280918号公報 特開2009-54469号公報
 近年、さらに改善されたサイクル特性を有する非水電解質二次電池が求められている。
 本発明は、改善されたサイクル特性を有する非水電解質二次電池の負極及び非水電解質二次電池を提供することを主な目的とする。
 本発明の非水電解質二次電池の負極は、中空粒子及び多孔質粒子の少なくとも一方を含む負極活物質層を有する。
 本発明の非水電解質二次電池は、上記負極と、正極と、非水電解質と、セパレータとを備える。
 本発明によれば、改善されたサイクル特性を有する非水電解質二次電池の負極及び非水電解質二次電池を提供することができる。
図1は、本発明の一実施形態に係る非水電解質二次電池の略図的断面図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態などにおいて参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率などが異なる場合がある。具体的な物体の寸法比率などは、以下の説明を参酌して判断されるべきである。
 図1に示されるように、非水電解質二次電池1は、電池容器17を備えている。本実施形態では、電池容器17は、円筒型である。但し、本発明において、電池容器の形状は、円筒型に限定されない。電池容器の形状は、例えば、扁平形状であってもよい。
 電池容器17内には、非水電解質を含浸した電極体10が収納されている。
 非水電解質としては、例えば、公知の非水電解質を用いることができる。非水電解質は、溶質、非水系溶媒などを含む。
 非水電解質の溶質としては、例えば、LiXF(式中、Xは、P、As、Sb、B、Bi、Al、GaまたはInであり、XがP、AsまたはSbのときyは6であり、XがB、Bi、Al、Ga、またはInのときyは4である)、リチウムペルフルオロアルキルスルホン酸イミドLiN(C2m+1SO)(C2n+1SO)(式中、m及びnはそれぞれ独立して1~4の整数である)、リチウムペルフルオロアルキルスルホン酸メチドLiC(C2p+1SO)(C2q+1SO)(C2r+1SO)(式中、p、q及びrはそれぞれ独立して1~4の整数である)、LiCFSO、LiClO4、Li10Cl10、及びLi12Cl12などが挙げられる。溶質としては、これらの中でも、LiPF、LiBF、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSOなどが好ましい。
 非水電解質は、1種類の溶質を含んでいてもよいし、複数種類の溶質を含んでいてもよい。
 非水電解質の非水系溶媒としては、例えば、環状カーボネート、鎖状カーボネートまたは環状カーボネートと鎖状カーボネートとの混合溶媒などが挙げられる。環状カーボネートの具体例としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどが挙げられる。鎖状カーボネートの具体例としては、例えば、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどが挙げられる。なかでも、低粘度且つ低融点でリチウムイオン伝導度の高い非水系溶媒として、環状カーボネートと鎖状カーボネートとの混合溶媒が好ましく用いられる。環状カーボネートと鎖状カーボネートとの混合溶媒においては、環状カーボネートと鎖状カーボネートとの混合比(環状カーボネート:鎖状カーボネート)は、体積比で、1:9~5:5の範囲内にあることが好ましい。
 非水系溶媒は、環状カーボネートと、1,2-ジメタキシエタン、1,2-ジエトキシエタンなどのエーテル系溶媒との混合溶媒であってもよい。
 また、非水電解質の非水系溶媒としてイオン性液体を用いることもできる。イオン性液体のカチオン種、アニオン種は、特に限定されない。低粘度、電気化学的安定性、疎水性の観点から、カチオンとしては、例えばピリジニウムカチオン、イミダゾリウムカチオン、4級アンモニウムカチオンが好ましく用いられる。アニオンとしては、例えばフッ素含有イミド系アニオンを含むイオン性液体が好ましく用いられる。
 また、非水電解質は、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質、LiI、LiNなどの無機固体電解質などであってもよい。
 非水電解質二次電池1における非水電解質の量は、設計容量に対して、1.0g/Ah以上、3.0g/Ah以下であることが好ましい。非水電解質二次電池1の設計容量に対する非水電解質の量がこの範囲内にある場合、高い充放電サイクル特性が得られる。非水電解質二次電池1の設計容量に対する非水電解質の量が少なすぎる場合には、負極11及び正極12内に十分に非水電解質を供給することが難しく、充放電サイクル特性が低下する場合がある。また、非水電解質二次電池1の設計容量に対する非水電解質の量が多すぎる場合には、負極11及び正極12に非水電解質が過剰に保持され、負極11及び正極12における非水電解質の割合を制御することが難しくなる場合がある。さらに、非水電解質二次電池1の設計容量に対する非水電解質の量が多すぎる場合には、非水電解質の分解によるガス発生量が多くなり、非水電解質二次電池1の保存特性、高温サイクル特性などが低下する場合がある。
 電極体10は、負極11と、正極12と、負極11及び正極12の間に配置されているセパレータ13とが巻回されてなる。
 セパレータ13は、負極11と正極12との接触による短絡を抑制でき、かつ非水電解質を含浸して、リチウムイオン伝導性が得られるものであれば特に限定されない。セパレータ13は、例えば、樹脂製の多孔膜により構成することができる。樹脂製の多孔膜の具体例としては、例えば、ポリプロピレン製やポリエチレン製の多孔膜、ポリプロピレン製の多孔膜とポリエチレン製の多孔膜との積層体などが挙げられる。
 負極11は、負極集電体と、負極集電体の少なくとも一方の表面の上に配された負極活物質層とを有する。負極集電体は、例えば、Cuなどの金属や、Cuなどの金属を含む合金からなる箔により構成することができる。
 負極活物質層には、負極活物質と、中空粒子及び多孔質粒子の少なくとも一方とが含まれる。
 なお、本発明において、中空粒子とは、粒子の外部に連通する内部空間を有する一次粒子をいう。中空粒子は、粒子の内側と外側との両方に表面を有する。
 負極活物質は、リチウムを可逆的に吸蔵・放出できるものであれば特に限定されない。負極活物質としては、例えば、炭素材料、リチウムと合金化する材料、酸化スズなどの金属酸化物などが挙げられる。リチウムと合金化する材料としては、例えば、シリコン、ゲルマニウム、スズ及びアルミニウムからなる群から選ばれた1種以上の金属、またはシリコン、ゲルマニウム、スズ及びアルミニウムからなる群から選ばれた1種以上の金属を含む合金からなるものが挙げられる。炭素材料の具体例としては、例えば、天然黒鉛、人造黒鉛、メソフェーズピッチ系炭素繊維(MCF)、メソカーボンマイクロビーズ(MCMB)、コークス、ハードカーボン、フラーレン、カーボンナノチューブなどが挙げられる。
 中空粒子及び多孔質粒子は、活物質や非水電解質と反応しない無機材料からなることが好ましい。具体的には、中空粒子及び多孔質粒子は、シリカ、アルミナ及びチタニア、炭素からなる群から選ばれる少なくとも1種からなるものとすることができる。
 中空粒子の具体例としては、シリカ、チタニアなどの中空体が挙げられる。シリカ、チタニアなどの中空体としては、公知のものが使用でき、市販品も容易に入手可能である。
 多孔質粒子の具体例としては、ケッチェンブラック、多孔質酸化アルミナなどの多孔体が挙げられる。ケッチェンブラック、多孔質酸化アルミナなどの多孔体としては、公知のものが使用でき、市販品も容易に入手可能である。
 中空粒子及び多孔質粒子の平均一次粒子径は、500nm以下程度であることが好ましく、300nm以下程度であることがより好ましく、150nm以下程度であることがさらに好ましい。この場合、中空粒子及び多孔質粒子のうち少なくとも一方からなる大きな凝集塊が生じにくく、中空粒子及び多孔質粒子が負極活物質層内に均一に分散される。従って、非水電解質二次電池1の充放電サイクル特性を高めることができる。
 但し、中空粒子及び多孔質粒子の平均一次粒子径が小さすぎると、スラリーの分散性が低下する場合がある。従って、中空粒子及び多孔質粒子の平均一次粒子径は、10nm以上程度であることが好ましく、20nm以上程度であることがより好ましく、35nm以上程度であることがさらに好ましい。
 なお、平均一次粒子径(D50)とは、レーザー回折散乱法で測定された粒度分布における累積50体積%径のことである。
 負極活物質層中の中空粒子及び多孔質粒子の少なくとも一方の含有量は、0.5質量%以下であることが好ましく、0.001質量%~5質量%程度であることがより好ましく、0.01質量%~2質量%程度の範囲内であることがさらに好ましい。負極活物質層中の中空粒子及び多孔質粒子の少なくとも一方の含有量がこの範囲内にある場合、負極活物質層内に非水電解質を保持する効果が高まり、負極11と正極12に保持される非水電解質の量を調整できる。従って、非水電解質二次電池1に高い充放電サイクル特性を付与できる。
 なお、負極活物質層中の中空粒子及び多孔質粒子の少なくとも一方の含有量が、0.001質量%未満であると、負極活物質層内に非水電解質を保持する効果が小さくなり、充放電サイクル特性の改善効果が小さくなる場合がある。また、負極活物質層中の中空粒子及び多孔質粒子の少なくとも一方の含有量が、5質量%を越えると、負極活物質層に保持される非水電解質の量が多くなり過ぎ、正極活物質層に十分な非水電解質を保持させることができなくなる場合がある。
 負極活物質層には、グラファイトなどの公知の炭素導電剤、カルボキシメチルセルロースナトリウム(CMC)、スチレンブタジエンゴム(SBR)などの公知の結着剤などが含まれていてもよい。
 正極12は、正極集電体と、正極集電体の上に配された正極活物質層とを有する。正極集電体は、例えば、Alなどの金属、Alなどの金属を含む合金により構成することができる。
 正極活物質層は、正極活物質を含む。正極活物質層は、正極活物質に加えて、結着剤、導電剤などの適宜の材料を含んでいてもよい。好ましく用いられる結着剤の具体例としては、例えばポリフッ化ビニリデンなどが挙げられる。好ましく用いられる導電剤の具体例としては、例えば、黒鉛、アセチレンブラックなどの炭素材料などが挙げられる。
 正極活物質の種類は、特に限定されず、公知の正極活物質を用いることができる。正極活物質は、例えば、層状構造を有することが好ましい。好ましく用いられる層状構造を有する正極活物質としては、層状構造を有するリチウム含有遷移金属酸化物が挙げられる。このようなリチウム含有遷移金属酸化物としては、例えば、コバルト酸リチウム、コバルト-ニッケル-マンガンのリチウム複合酸化物、アルミニウム-ニッケル-マンガンのリチウム複合酸化物、アルミニウム-ニッケル-コバルトの複合酸化物などのコバルト及びマンガンの少なくとも1種を含むリチウム複合酸化物などが挙げられる。正極活物質は、1種類のみから構成されていてもよいし、2種類以上により構成されていてもよい。
 正極活物質層とセパレータとの間には、無機粒子層が配されている。無機粒子層は、正極活物質層の表面の上に配されていることが好ましい。ここで、無機粒子層とは、無機粒子、バインダー、分散剤などにより構成される層をいう。
 無機粒子を構成する材料としては、例えば、ルチル型酸化チタン(ルチル型チタニア)、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)、酸化マグネシウム(マグネシア)などが挙げられる。非水電解質二次電池1内における無機粒子層の安定性の観点からは、無機粒子としては、酸化アルミニウム、ルチル型酸化チタンなどが好ましい。
 無機粒子層中の無機粒子の含有量は、70質量%~99.9質量%程度であることが好ましく、90質量%~99質量%程度であることがより好ましく、95質量%~99質量%程度であることがさらに好ましい。
 無機粒子の平均一次粒子径は、1μm以下程度であることが好ましく、0.1μm~0.8μm程度であることがより好ましい。
 無機粒子層に含まれるバインダーの種類は、特に限定されない。無機粒子層に含まれるバインダーは、以下の(1)~(4)の特性のうち、少なくとも1つの特性を充足するバインダーであることが好ましい。
 (1)無機粒子層中における無機粒子の分散性を確保(再凝集防止)できる。(2)非水電解質二次電池1の製造工程において、正極活物質層と無機粒子層との密着性を確保できる。(3)無機粒子層が非水電解質を吸収した際の膨潤による無機粒子間の隙間を充填できる。(4)無機粒子層からの非水電解質の溶出を抑制する。
 バインダーとしては、水系のバインダーが好ましい。バインダーを構成する材料の具体例としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)、こられの変性体及び誘導体、アクリロニトリル単位を含む共重合体、ポリアクリル酸誘導体などが挙げられる。バインダーは、1種類のみから構成されていてもよいし、2種類以上により構成されていてもよい。
 例えば、無機粒子層中にバインダーを少量添加することによって、上記(1)及び(3)の特性を発揮させたい場合などには、バインダーは、アクリロニトリル単位を含む共重合体であることが好ましい。
 無機粒子層中に含まれるバインダーの量は、無機粒子100質量部に対して30質量部以下程度であることが好ましく、10質量部以下程度であることがより好ましく、5質量部以下程度であることがさらに好ましい。無機粒子層中に含まれるバインダーの量の下限値は、無機粒子100質量部に対して、通常0.1質量部程度である。
 無機粒子層の厚みは、4μm以下程度であることが好ましく、0.5μm~4μm程度の範囲内であることがより好ましく、0.5μm~2μm程度の範囲内であることがさらに好ましい。無機粒子層の厚みが薄すぎると、無機粒子層を形成することにより得られる効果が不十分となる場合がある。また、無機粒子層の厚みが厚すぎると、非水電解質二次電池1の負荷特性の低下、エネルギー密度の低下を招く場合がある。
 正極活物質層の表面の上に無機粒子層を配する方法としては、無機粒子、バインダー、溶媒などからなるスラリーを正極活物質層の表面の上に塗布し、乾燥させる方法などが挙げられる。スラリーの塗布方法の具体例としては、ダイコート法、グラビアコート法、ディップコート法、カーテンコート法、スプレーコート法などの塗工方法が挙げられる。これらの中でも、グラビアコート法、ダイコート法などが好ましい。
 スプレーコート法、ディップコート法、カーテンコート法などを採用する場合、スラリー中の固形分濃度は、3質量%~30質量%程度の範囲内であることが好ましい。また、ダイコート法、グラビアコート法などを採用する場合、スラリー中の固形分濃度は、5質量%~70質量%程度の範囲内であることが好ましい。
 スラリー中に含まれる溶媒としては、水が好ましい。スラリー中の溶媒が水である場合、塗工工程において、スラリー中のバインダーが正極活物質層中に移動しにくい。よって、バインダーによって正極活物質層が膨張することを抑制することができる。その結果、非水電解質二次電池1のエネルギー密度が低下することを抑制することができる。また、水は、環境負荷が低い点でも好ましい。
 無機粒子の溶媒への分散方法としては、プライミクス製フィルミックス、ビーズミルなどを用いた湿式分散法など、機械的な分散方法を採用することが好ましい。無機粒子の平均一次粒子径は小さく、スラリー中において、無機粒子は非常に沈降しやすい。よって、機械的な分散方法を用いなければ、無機粒子層が均質に形成されない場合がある。
 非水電解質二次電池1において、正極12の充電容量に対する負極11の充電容量比(負極充電容量/正極充電容量)は、1.0~1.1程度の範囲であることが好ましい。負極11と正極12の充電容量比を1.0以上に設定しておくことにより、負極11の表面に金属リチウムが析出することを抑制することができる。これにより、非水電解質二次電池1のサイクル特性及び安全性を高めることができる。なお、負極11と正極12の充電容量比が1.1を越えると、非水電解質二次電池1の体積当りのエネルギー密度が低下する場合がある。負極11と正極12の充電容量比は、非水電解質二次電池1の充電終止電圧に対応して設定すればよい。
 例えば特許文献1には、非水電解質二次電池において、正極とセパレータとの間に、無機粒子の凝集体とバインダーとからなる無機粒子層を配することにより、非水電解質二次電池の充放電サイクル特性が向上することが開示されている。
 しかしながら、このような非水電解質二次電池について、充放電サイクル試験を長期間行った後の電極状態を本発明者が観察した結果、正極の表面には非水電解質が十分に存在しているのに対して、負極の表面の非水電解質は少なく、負極の劣化程度も大きかった。これは、無機粒子層が非水電解質を過剰に保持したため、負極において非水電解質が不足したためであると考えられる。
 これに対して、本実施形態に係る非水電解質二次電池1は、負極11の負極活物質に中空粒子及び多孔質粒子の少なくとも一方を含む。中空粒子及び多孔質粒子は、粒子内に内部空間を有する。すなわち、中空粒子及び多孔質粒子の少なくとも一方の集合体は、一次粒子間の隙間だけでなく、一次粒子内にも外部に連通する内部空間を有する。このため、一次粒子内に外部に連通する内部空間をほとんど有しない粒子に比べて、非水電解質をより多く保持することができる。さらに、負極活物質層内に含まれる中空粒子及び多孔質粒子の内部空間を利用して、負極11と正極12に保持される非水電解質の量を調整することができる。これらにより、長期間の充放電サイクルを行ったときに生じる負極11と正極12における非水電解質の保持量の偏りを効果的に抑制することができる。よって、非水電解質二次電池1は、改善された充放電サイクル特性を有する。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。但し、本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 (実施例1)
 正極活物質として、Al及びMgがそれぞれ1.0モル%固溶されており、Zrが0.05モル%含有されているコバルト酸リチウムを作製した。なお、このコバルト酸リチウムにおいて、Zrは、粒子の表面に付着した状態で存在している。この正極活物質と、導電剤としてアセチレンブラックと、結着剤としてポリフッ化ビニリデン(PVDF)とを、95:2.5:2.5の質量比で混合し、さらに溶媒としてN-メチルピロリドン(NMP)を混合し、正極合剤スラリーを調製した。混合には、混合機を用いた。
 次に、調製した正極合剤スラリーをアルミニウム箔の両面に塗布し、乾燥後、圧延して正極活物質層とした。なお、正極活物質層の充填密度は、3.80g/cmとした。
 〔無機粒子層の形成〕
 溶媒として水を用い、無機粒子として酸化チタン(TiO、平均一次粒子径:0.25μm、表面処理層無、石原産業社製の商品名「CR-EL」)を用い、水系バインダーとしてスチレンブタジエンゴム(SBR)を用い、分散剤としてカルボキシメチルセルロース(CMC)を用い、これらを分散機で混合して水系スラリーを調製した。水系スラリーにおいて、無機粒子の固形分濃度は40質量%とした。また、水系バインダーは、無機粒子100質量部に対して3質量部となるようにした。CMCは、無機粒子100質量部に対して0.2質量部となるようにした。分散機には、プライミクス製フィルミックスを用いた。この水系スラリーを用いて、正極活物質層の両面上にグラビア方式で塗工し、溶媒である水を乾燥・除去して、正極活物質層の両面上に無機粒子層を形成した。無機粒子層の厚みは、2μmとし、両面の合計で4μmとなるように形成した。
 〔負極の作製〕
 負極活物質として炭素材料(黒鉛)、無機粒子として中空シリカ(平均一次粒子径:80nm~130nm、日鉱工業社製の商品名「シリナックス」(登録商標))、カルボキシメチルセルロースナトリウム(CMC)、スチレンブタジエンゴム(SBR)を用いて、負極活物質、中空シリカ、CMC及びSBRが、98:0.5:1:1の質量比(負極活物質層中の中空シリカの量:約0.5質量%)となるように混合し、負極活物質層形成用のスラリーを調製した。
 このスラリーを、銅箔の両面上に塗布した後乾燥し、圧延して負極活物質とした。なお、負極活物質層の充填密度は1.60g/cmとした。
 〔非水電解質の調製〕
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)を3:7の体積比で混合した溶媒に、LiPFを1mol/Lとなるように溶解して、非水電解質を調製した。
 〔非水電解質二次電池の組立〕
 上記正極及び上記負極にそれぞれリード端子を取り付け、セパレータを介して渦巻状に巻取り電極体を作製した。この電極体を、電池外装缶内に挿入した後、上記非水電解質を4.5g注入し、封止して試験用電池とした。
 なお、電池の設計容量は2600mAhであり、設計容量に対する非水電解質の量は、1.73g/Ahであった。また、充電終止電圧が4.35Vとなるように電池設計を行い、この電位で正極及び負極の容量比(負極の初回充電容量/正極の初回充電容量)が1.08となるように設計した。セパレータとしては、平均孔径が0.1μmで、膜厚が16μm、空孔率が47%である微多孔質ポリエチレン膜を用いた。
 (実施例2)
 負極活物質、中空シリカ、CMC及びSBRが、98:0.1:1:1の質量比(負極活物質量に対する無機粒子量:約0.10質量%)となるように混合したこと以外は、実施例1と同様にして非水電解質二次電池を作製した。
 (実施例3)
 負極活物質、中空シリカ、CMC及びSBRが、98:2.0:1:1の質量比(負極活物質量に対する無機粒子量:約2.0質量%)となるように混合したこと以外は、実施例1と同様にして非水電解質二次電池を作製した。
 (実施例4)
 中空シリカの代わりにケッチェンブラック(平均一次粒子径:40nm、表面多孔性、ライオン社製の商品名「EC300J」)を用いたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。
 (比較例1)
 正極活物質層の表面上に無機粒子層を形成せず、負極活物質層中に中空シリカを混合しなかったこと以外は、実施例1と同様にして非水電解質二次電池を作製した。
 (比較例2)
 負極活物質層中に中空シリカを混合しなかったこと以外は、実施例1と同様にして非水電解質二次電池を作製した。
 (比較例3)
 中空シリカの代わりに酸化チタン(TiO、平均一次粒子径:0.25μm、表面処理層無、石原産業社製商品名「CR-EL」)を用いたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。
 (比較例4)
 中空シリカの代わりに酸化アルミ(Al、平均一次粒子径:0.5μm、表面処理層無、住友化学製商品名「AKP3000」)を用いたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。
 〔電池における充放電サイクル特性の評価〕
 実施例1~4及び比較例1~4で得られた非水電解質二次電池の充放電サイクル試験を以下の充放電条件で行い、200サイクル目の容量維持率を次式から算出した。
 <充電条件>
 0.5C(1300mA)の電流で4.35Vまで定電流充電を行い、定電圧で電流52(mA)になるまで充電した。
 <放電条件>
 0.5C(1300mA)の電流で2.75Vまで定電流放電を行った。
 <休止>
 上記充電と上記放電の間に10分間休止させた。
 容量維持率(%)=〔(200サイクル目の放電容量)/(1サイクル目の放電容量)〕×100
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、比較例1及び比較例2の結果の比較から、正極活物質層の表面に無機粒子層を形成した比較例2の方が、無機粒子層を形成しなかった比較例1の非水電解質二次電池よりも充放電サイクル特性が改善されていることがわかる。しかしながら、比較例2の非水電解質二次電池では、無機粒子層の作用により、非水電解質が正極側に偏っており、長期間のサイクル後には、負極中に非水電解質が十分に保持されておらず、容量が低下した。
 また、比較例3及び比較例4の結果から明らかなように、正極活物質層の表面に無機粒子層を形成し、さらに負極活物質層中に中空構造や多孔構造を有しない球状粒子またはテトラポット型粒子を添加した場合、正極活物質層の表面に無機粒子層を形成した比較例2に比して、非水電解質二次電池の充放電サイクル特性が改善されていることがわかる。しかしながら、充放電サイクル特性の改善は、十分ではない。
 これに対して、正極活物質層の表面に無機粒子層を形成し、さらに負極活物質層中に中空構造や多孔構造を有する無機粒子を添加した実施例1~4では、正極活物質層の表面に無機粒子層を形成した比較例2に比して、非水電解質二次電池の充放電サイクル特性が大幅に改善されていることがわかる。
1…非水電解質二次電池
10…電極体
11…負極
12…正極
13…セパレータ
17…電池容器

Claims (6)

  1.  中空粒子及び多孔質粒子の少なくとも一方を含む負極活物質層を有する、非水電解質二次電池の負極。
  2.  前記中空粒子及び多孔質粒子の少なくとも一方の平均一次粒子径は、500nm以下である、請求項1に記載の非水電解質二次電池の負極。
  3.  前記中空粒子及び多孔質粒子の少なくとも一方は、シリカ、アルミナ及びチタニアからなる群から選ばれる少なくとも1種からなる、請求項1または2に記載の非水電解質二次電池の負極。
  4.  前記負極活物質層は、負極活物質を含み、
     前記負極活物質層中の前記中空粒子及び多孔質粒子の少なくとも一方の含有量は、5質量%以下である、請求項1~3のいずれか一項に記載の非水電解質二次電池の負極。
  5.  請求項1~4のいずれか一項に記載の負極と、正極と、非水電解質と、セパレータとを備える、非水電解質二次電池。
  6.  前記正極は、正極活物質層と、前記正極活物質層の上に配された無機粒子層とを有する、請求項5に記載の非水電解質二次電池。
PCT/JP2012/071132 2011-09-27 2012-08-22 非水電解質二次電池の負極及び非水電解質二次電池 WO2013047016A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-210766 2011-09-27
JP2011210766 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013047016A1 true WO2013047016A1 (ja) 2013-04-04

Family

ID=47995066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071132 WO2013047016A1 (ja) 2011-09-27 2012-08-22 非水電解質二次電池の負極及び非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2013047016A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098586A1 (ja) * 2013-12-26 2015-07-02 松本油脂製薬株式会社 熱膨張性微小球の製造方法およびその利用
CN107735891A (zh) * 2015-06-26 2018-02-23 松本油脂制药株式会社 非水电解质二次电池负极用浆料组合物及其利用
WO2018079585A1 (ja) * 2016-10-28 2018-05-03 日本電気株式会社 リチウムイオン二次電池用電極、及びそれを用いたリチウムイオン二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250124A (ja) * 1995-03-07 1996-09-27 Japan Synthetic Rubber Co Ltd 電池電極
JPH0922739A (ja) * 1995-07-07 1997-01-21 Haibaru:Kk 非水電解液二次電池
JPH10188957A (ja) * 1996-12-20 1998-07-21 Sanyo Electric Co Ltd リチウム二次電池
JP2007234458A (ja) * 2006-03-02 2007-09-13 Hitachi Maxell Ltd 非水電解液二次電池
JP2007280917A (ja) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd 非水電解質電池
JP2011018575A (ja) * 2009-07-09 2011-01-27 Mie Univ リチウムイオン二次電池用の負極材料及びリチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250124A (ja) * 1995-03-07 1996-09-27 Japan Synthetic Rubber Co Ltd 電池電極
JPH0922739A (ja) * 1995-07-07 1997-01-21 Haibaru:Kk 非水電解液二次電池
JPH10188957A (ja) * 1996-12-20 1998-07-21 Sanyo Electric Co Ltd リチウム二次電池
JP2007234458A (ja) * 2006-03-02 2007-09-13 Hitachi Maxell Ltd 非水電解液二次電池
JP2007280917A (ja) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd 非水電解質電池
JP2011018575A (ja) * 2009-07-09 2011-01-27 Mie Univ リチウムイオン二次電池用の負極材料及びリチウムイオン二次電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098586A1 (ja) * 2013-12-26 2015-07-02 松本油脂製薬株式会社 熱膨張性微小球の製造方法およびその利用
JPWO2015098586A1 (ja) * 2013-12-26 2017-03-23 松本油脂製薬株式会社 熱膨張性微小球の製造方法およびその利用
US10130928B2 (en) 2013-12-26 2018-11-20 Matsumoto Yushi-Seiyaku Co., Ltd. Process for producing heat-expandable microspheres and application thereof
CN107735891A (zh) * 2015-06-26 2018-02-23 松本油脂制药株式会社 非水电解质二次电池负极用浆料组合物及其利用
WO2018079585A1 (ja) * 2016-10-28 2018-05-03 日本電気株式会社 リチウムイオン二次電池用電極、及びそれを用いたリチウムイオン二次電池
JPWO2018079585A1 (ja) * 2016-10-28 2019-09-19 日本電気株式会社 リチウムイオン二次電池用電極、及びそれを用いたリチウムイオン二次電池
US10944111B2 (en) 2016-10-28 2021-03-09 Nec Corporation Electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP7006614B2 (ja) 2016-10-28 2022-01-24 日本電気株式会社 リチウムイオン二次電池用電極、及びそれを用いたリチウムイオン二次電池

Similar Documents

Publication Publication Date Title
JP5882516B2 (ja) リチウム二次電池
JP4519685B2 (ja) 非水電解質電池
JP5219387B2 (ja) 非水電解質二次電池
JP4834030B2 (ja) リチウム二次電池用正極及びこれを用いたリチウム二次電池
JP5289735B2 (ja) リチウム二次電池
US9172083B2 (en) Lithium ion secondary battery
JP5219621B2 (ja) 非水電解質電池
JP5991718B2 (ja) 非水電解質二次電池の正極活物質及び非水電解質二次電池
JP6805374B2 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
US20120052394A1 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electroylte secondary battery using the positive electrode
CN108933276B (zh) 锂二次电池
CN106716684A (zh) 非水电解质蓄电元件用负极、非水电解质蓄电元件和蓄电装置
JP2008166047A (ja) 負極およびそれを用いた電池
US20120107682A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
EP3255708B1 (en) Lithium-ion secondary battery
KR20240040713A (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
US20170179473A1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2013047016A1 (ja) 非水電解質二次電池の負極及び非水電解質二次電池
US20120189916A1 (en) Non-aqueous electrolyte secondary battery
WO2012128071A1 (ja) 非水電解質二次電池
JP5050349B2 (ja) 負極およびそれを用いた電池
US20120319655A1 (en) Method for reducing activation of lithium secondary battery and lithium secondary battery having reduced activation
JP2008071746A (ja) 非水電解質二次電池
US20110076559A1 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2015018820A (ja) 非水電解質電池用セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP