WO2013046932A1 - エンジン廃熱利用装置 - Google Patents

エンジン廃熱利用装置 Download PDF

Info

Publication number
WO2013046932A1
WO2013046932A1 PCT/JP2012/070011 JP2012070011W WO2013046932A1 WO 2013046932 A1 WO2013046932 A1 WO 2013046932A1 JP 2012070011 W JP2012070011 W JP 2012070011W WO 2013046932 A1 WO2013046932 A1 WO 2013046932A1
Authority
WO
WIPO (PCT)
Prior art keywords
expander
engine
refrigerant
waste heat
pump
Prior art date
Application number
PCT/JP2012/070011
Other languages
English (en)
French (fr)
Inventor
永井 宏幸
貴幸 石川
真一朗 溝口
利矢子 岩橋
中村 慎二
Original Assignee
日産自動車株式会社
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, サンデン株式会社 filed Critical 日産自動車株式会社
Priority to US14/237,961 priority Critical patent/US9291074B2/en
Priority to CN201280047337.7A priority patent/CN104011334B/zh
Priority to EP12837266.1A priority patent/EP2762686B1/en
Priority to JP2013536040A priority patent/JP5707500B2/ja
Publication of WO2013046932A1 publication Critical patent/WO2013046932A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/18Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids characterised by adaptation for specific use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/14Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/04Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the arrangement of an exhaust pipe, manifold or apparatus in relation to vehicle frame or particular vehicle parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to an engine waste heat utilization apparatus having a Rankine cycle.
  • JP2005-030386A does not describe at all where the sealing case is provided in the engine.
  • An object of the present invention is to provide an engine waste heat utilization device that is optimal for the thermal requirements of each component in a case.
  • An engine waste heat utilization device includes a heat exchanger that recovers engine waste heat into a refrigerant, an expander that generates power using the refrigerant that has been discharged from the heat exchanger, and a refrigerant that has exited the expander.
  • a Rankine cycle that includes a condenser to be condensed, a refrigerant pump that is driven by the expander and supplies the refrigerant discharged from the condenser to the heat exchanger, and when the power of the expander is sufficient even if the refrigerant pump is driven
  • a power transmission mechanism for transmitting surplus power to the engine; and a clutch for connecting and disconnecting power transmission by the power transmission mechanism.
  • the shaft of the expander and the shaft of the refrigerant pump are arranged coaxially, and the clutch, the refrigerant pump, and the expander are integrally accommodated in this order, and the high temperature of the engine is set so that the expander is at a higher temperature than the clutch.
  • FIG. 1 is a schematic configuration diagram showing the entire Rankine cycle system according to the first embodiment of the present invention.
  • FIG. 2A is a schematic cross-sectional view of an expander pump in which the pump and the expander are integrated.
  • FIG. 2B is a schematic cross-sectional view of the refrigerant pump.
  • FIG. 2C is a schematic cross-sectional view of the expander.
  • FIG. 3 is a schematic view showing the function of the refrigerant system valve.
  • FIG. 4 is a schematic configuration diagram of the hybrid vehicle.
  • FIG. 5 is a schematic perspective view of the engine.
  • FIG. 6 is a schematic view of the engine as viewed from below.
  • FIG. 7A is a characteristic diagram of a Rankine cycle operation region.
  • FIG. 7B is a characteristic diagram of a Rankine cycle operation region.
  • FIG. 8 is a timing chart showing a state when the hybrid vehicle 1 is accelerated while assisting the rotation of the engine output shaft by the expander torque.
  • FIG. 9 is a timing chart showing how the Rankine cycle is restarted after being stopped.
  • FIG. 10 is a schematic plan view of the engine 1 of the first embodiment.
  • FIG. 11 is a schematic plan view of another engine of the first embodiment.
  • FIG. 12 is a schematic front view of the engine of the second embodiment.
  • FIG. 13 is a schematic plan view of the engine of the third embodiment.
  • FIG. 14 is a schematic view showing two refrigerant passages connected to the expander pump and the expander of the third embodiment.
  • FIG. 1 is a schematic configuration diagram showing the entire Rankine cycle system as a premise of the present invention.
  • the Rankine cycle 31 and the refrigeration cycle 51 in FIG. 1 share the refrigerant and the condenser 38.
  • a cycle obtained by integrating the Rankine cycle 31 and the refrigeration cycle 51 is hereinafter expressed as an integrated cycle 30.
  • the integrated cycle 30 includes a passage through which the refrigerant of the Rankine cycle 31 and the refrigeration cycle 51 circulates and components such as a pump, an expander, and a condenser provided in the middle of the cycle, and also includes a cooling water and an exhaust passage. Refers to the entire system.
  • FIG. 4 is a schematic configuration diagram of the hybrid vehicle 1 on which the integrated cycle 30 is mounted.
  • the engine 2 In the hybrid vehicle 1, the engine 2, the motor generator 81, and the automatic transmission 82 are connected in series. The output of the automatic transmission 82 is transmitted to the drive wheels 85 via the propeller shaft 83 and the differential gear 84.
  • a first drive shaft clutch 86 is provided between the engine 2 and the motor generator 81.
  • the automatic transmission 82 is provided with a second drive shaft clutch 87.
  • the second drive shaft clutch 87 is one of friction engagement elements of the automatic transmission 82.
  • connection / disconnection (connection state) of the first drive shaft clutch 86 and the second drive shaft clutch 87 is controlled by a command from the engine controller 71 according to the driving conditions of the hybrid vehicle. As shown in FIG. 7B, when the hybrid vehicle 1 is in the EV region where the efficiency of the engine 2 is low, the hybrid vehicle 1 is stopped, the first drive shaft clutch 86 is disconnected, the second drive shaft clutch 87 is connected, and the motor The vehicle travels only with the driving force of the generator 81.
  • the exhaust passage 3 of the engine 2 includes an exhaust manifold 4, an exhaust pipe 5, and a bypass exhaust pipe 6.
  • the exhaust pipe 5 is connected to a collecting portion of the exhaust manifold 4.
  • the bypass exhaust pipe 6 once branches from the middle of the exhaust pipe 5 and joins again.
  • a waste heat recovery unit 22 is provided in the exhaust pipe 5 in a section bypassed by the bypass exhaust pipe 6.
  • the waste heat recovery unit 22 performs heat exchange between the exhaust gas and the cooling water.
  • a unit in which the waste heat recovery unit 22 and the bypass exhaust pipe 6 are integrated is referred to as a waste heat recovery unit 23.
  • the waste heat recovery unit 23 is disposed between the underfloor catalyst 88 and the sub-muffler 89.
  • the engine coolant passage includes a coolant passage 13 that passes through the radiator 11 and a bypass coolant passage 14 that bypasses the radiator 11.
  • the bypass cooling water passage 14 includes a first bypass cooling water passage 24 and a second bypass cooling water passage 25.
  • the first bypass cooling water passage 24 branches from the cooling water passage 13 and is directly connected to a heat exchanger 36 described later.
  • the second bypass cooling water passage 25 branches from the cooling water passage 13 and passes through the waste heat recovery device 22 and then is connected to the heat exchanger 36.
  • the cooling water leaving the engine 2 is about 80 to 90 ° C.
  • the cooling water flows separately into the cooling water passage 13 and the bypass cooling water passage 14. Thereafter, the two flows merge again at the thermostat valve 15.
  • the thermostat valve 15 determines the distribution of the flow rate of the cooling water flowing through the cooling water passage 13 and the bypass cooling water passage 14.
  • the merged cooling water returns to the engine 2 via the cooling water pump 16.
  • the cooling water pump 16 is driven by the engine 2.
  • the rotational speed of the cooling water pump 16 is synchronized with the engine rotational speed.
  • the thermostat valve 15 increases the valve opening on the coolant passage 13 side to relatively increase the amount of coolant passing through the radiator 11.
  • the thermostat valve 15 When the cooling water temperature is low, the thermostat valve 15 reduces the valve opening on the cooling water passage 13 side to relatively reduce the amount of cooling water passing through the radiator 11. When the coolant temperature is particularly low, such as before the engine 2 is warmed up, the thermostat valve 15 fully closes the coolant passage 13 side. As a result, the cooling water completely bypasses the radiator 11 and the entire amount of the cooling water flows into the bypass cooling water passage 14.
  • the thermostat valve 15 is configured not to be fully closed on the bypass cooling water passage 14 side. Therefore, even if the flow rate of the cooling water flowing through the radiator 11 increases, the flow of the cooling water flowing through the bypass cooling water passage 14 does not stop completely.
  • the heat exchanger 36 performs heat exchange between the refrigerant of the Rankine cycle 31 and the cooling water.
  • the heat exchanger 36 is an integrated heater and superheater.
  • the heat exchanger 36 is provided with a cooling water passage 36 a and a cooling water passage 36 b in a row and adjacent to the refrigerant passage 36 c of the Rankine cycle 31. Since it is such composition, heat exchange is possible for a refrigerant and cooling water.
  • the cooling water passage 36a, the cooling water passage 36b, and the refrigerant passage 36c are configured so that the refrigerant and the cooling water in the Rankine cycle 31 flow in opposite directions.
  • cooling water passage 36 a located upstream (left in FIG. 1) for the refrigerant of the Rankine cycle 31 is interposed in the first bypass cooling water passage 24. Cooling water discharged from the engine 2 is introduced into the left side portion of the heat exchanger that includes the cooling water passage 36a and the refrigerant passage portion adjacent to the cooling water passage 36a. This portion is a heater that heats the refrigerant flowing through the refrigerant passage 36c.
  • Cooling water that has passed through the waste heat recovery device 22 is introduced into the cooling water passage 36b that is located downstream (right in FIG. 1) for the refrigerant of the Rankine cycle 31 via the second bypass cooling water passage 25. Cooling water that has been discharged from the engine 2 and heated by exhaust gas is introduced into the right side portion of the heat exchanger (downstream side for the refrigerant of the Rankine cycle 31), which includes the cooling water passage 36b and the refrigerant passage portion adjacent to the cooling water passage 36b. Is done. This portion is a superheater that superheats the refrigerant flowing through the refrigerant passage 36c.
  • the cooling water passage 22 a of the waste heat recovery unit 22 is provided adjacent to the exhaust pipe 5.
  • the cooling water exiting the engine 2 and introduced into the cooling water passage 22a of the waste heat recovery unit 22 is heated to, for example, about 110 to 115 ° C. by high-temperature exhaust.
  • the cooling water passage 22a is configured such that exhaust gas and cooling water flow in opposite directions.
  • a control valve 26 is interposed in the second bypass cooling water passage 25.
  • a cooling water temperature sensor 74 is provided at the outlet of the engine 2. When the detected temperature of the cooling water temperature sensor 74 becomes higher than a predetermined value so that the engine water temperature does not exceed an allowable temperature (for example, 100 ° C.) for preventing deterioration of engine efficiency and knocking, for example, the control valve 26 is opened. The degree is reduced. When the engine water temperature approaches the allowable temperature, the amount of cooling water passing through the waste heat recovery device 22 is reduced, so that the engine water temperature is reliably prevented from exceeding the allowable temperature.
  • an allowable temperature for example, 100 ° C.
  • a thermostat valve 7 that controls the exhaust passage amount of the exhaust collector 22 and the exhaust passage amount of the bypass exhaust pipe 6 is provided at the branch portion of the bypass exhaust pipe 6. The valve opening of the thermostat valve 7 is based on the temperature of the cooling water exiting the waste heat recovery unit 22 so that the temperature of the cooling water exiting the waste heat recovery unit 22 does not exceed a predetermined temperature (for example, a boiling temperature of 120 ° C.). Adjusted.
  • the heat exchanger 36, the thermostat valve 7, and the waste heat recovery unit 22 are integrated as a waste heat recovery unit 23, and are disposed in the middle of the exhaust pipe under the floor at the approximate center in the vehicle width direction.
  • the thermostat valve 7 may be a relatively simple temperature sensitive valve using bimetal or the like.
  • the thermostat valve 7 may be a control valve controlled by a controller to which the temperature sensor output is input. Since the adjustment of the heat exchange amount from the exhaust gas to the cooling water by the thermostat valve 7 is accompanied by a relatively large delay, it is difficult to prevent the engine water temperature from exceeding the allowable temperature by adjusting the thermostat valve 7 alone.
  • the control valve 26 of the second bypass cooling water passage 25 is controlled based on the engine water temperature (exit temperature), the heat recovery amount can be quickly reduced and the engine water temperature can be surely exceeded the allowable temperature. Can be prevented. Further, if the engine water temperature has a margin to the allowable temperature, heat exchange is performed until the temperature of the cooling water exiting the waste heat recovery unit 22 becomes high enough to exceed the allowable temperature of the engine water temperature (for example, 110 to 115 ° C.). Thus, the amount of waste heat recovered can be increased.
  • the cooling water that has exited the cooling water passage 36 b joins the first bypass cooling water passage 24 via the second bypass cooling water passage 25.
  • the valve opening on the cooling water passage 13 side is reduced, and the amount of cooling water passing through the radiator 11 is relatively reduced.
  • the reason why the temperature of the cooling water is sufficiently lowered is considered to be that, for example, the temperature of the refrigerant in Rankine cycle 31 is low and heat exchange with this refrigerant is performed.
  • the valve opening on the cooling water passage 13 side is increased, and the amount of cooling water passing through the radiator 11 is relatively increased. It is conceivable that the temperature of the cooling water is increased when the Rankine cycle 31 is not operated. Based on such operation of the thermostat valve 15, the coolant temperature of the engine 2 is maintained at an appropriate temperature, and heat is appropriately supplied (recovered) to the Rankine cycle 31.
  • the integrated cycle 30 is obtained by integrating the Rankine cycle 31 and the refrigeration cycle 51 as described above.
  • the basic Rankine cycle 31 will be described first, and then the refrigeration cycle 51 will be described.
  • Rankine cycle 31 is a system that recovers waste heat of engine 2 to a refrigerant via cooling water of engine 2 and regenerates the recovered waste heat as power.
  • the Rankine cycle 31 includes a refrigerant pump 32, a heat exchanger 36 as a superheater, an expander 37, and a condenser (condenser) 38. These are connected by refrigerant passages 41 to 44 through which a refrigerant (R134a and the like) circulates.
  • the shaft of the refrigerant pump 32 is connected to the output shaft of the expander 37 on the same shaft (see FIG. 2A).
  • the refrigerant pump 32 shaft and the output shaft of the expander 37 are arranged in parallel with the output shaft of the engine 2.
  • a belt 34 is wound around the pump pulley 33 provided at the tip of the shaft of the refrigerant pump 32 and the crank pulley 2a (see FIG. 1). With this configuration, the output (power) generated by the expander 37 drives the refrigerant pump 32 and the output shaft (crankshaft) of the engine 2.
  • the refrigerant pump 32 of this embodiment is a gear type pump, as FIG. 2B shows.
  • the expander 37 is a scroll type expander.
  • an electromagnetic clutch 35 (hereinafter referred to as an “expander clutch”) 35 is provided between the pump pulley 33 and the refrigerant pump 32. Since it is such a structure, the refrigerant
  • the refrigerant from the refrigerant pump 32 is supplied to the heat exchanger 36 through the refrigerant passage 41.
  • the heat exchanger 36 is a heat exchanger that causes heat exchange between the coolant of the engine 2 and the refrigerant, vaporizes the refrigerant, and superheats the refrigerant.
  • the refrigerant from the heat exchanger 36 is supplied to the expander 37 through the refrigerant passage 42.
  • the expander 37 is a steam turbine that converts heat into rotational energy by expanding the vaporized and superheated refrigerant.
  • the power recovered by the expander 37 drives the refrigerant pump 32 and is transmitted to the engine 2 via the belt transmission mechanism to assist the rotation of the engine 2.
  • the refrigerant from the expander 37 is supplied to the condenser 38 via the refrigerant passage 43.
  • the condenser 38 is a heat exchanger that causes heat exchange between the outside air and the refrigerant to cool and liquefy the refrigerant.
  • the condenser 38 is arranged in parallel with the radiator 11 and is cooled by the radiator fan 12.
  • the refrigerant liquefied by the condenser 38 is returned to the refrigerant pump 32 through the refrigerant passage 44.
  • the refrigerant returned to the refrigerant pump 32 is sent again to the heat exchanger 36 by the refrigerant pump 32 and circulates through each component of the Rankine cycle 31.
  • the refrigeration cycle 51 Since the refrigerating cycle 51 shares the refrigerant circulating through the Rankine cycle 31, it is integrated with the Rankine cycle 31, and the configuration of the refrigerating cycle 51 itself is simplified.
  • the refrigeration cycle 51 includes a compressor (compressor) 52, a condenser 38, and an evaporator (evaporator) 55.
  • the compressor 52 is a fluid machine that compresses the refrigerant of the refrigeration cycle 51 to a high temperature and a high pressure.
  • the compressor 52 is driven by the engine 2.
  • a compressor pulley 53 is fixed to the drive shaft of the compressor 52.
  • the belt 34 is wound around the compressor pulley 53 and the crank pulley 2a.
  • the driving force of the engine 2 is transmitted to the compressor pulley 53 via the belt 34, and the compressor 52 is driven.
  • An electromagnetic clutch (hereinafter referred to as “compressor clutch”) 54 is provided between the compressor pulley 53 and the compressor 52. Since it is such a structure, the compressor 52 and the compressor pulley 53 can be connected / disconnected.
  • the refrigerant from the compressor 52 joins the refrigerant passage 43 via the refrigerant passage 56 and is then supplied to the condenser 38.
  • the condenser 38 is a heat exchanger that condenses and liquefies the refrigerant by heat exchange with the outside air.
  • the liquid refrigerant from the condenser 38 is supplied to an evaporator (evaporator) 55 through a refrigerant passage 57 branched from the refrigerant passage 44.
  • the evaporator 55 is disposed in the case of the air conditioner unit in the same manner as the heater core.
  • the evaporator 55 is a heat exchanger that evaporates the liquid refrigerant from the condenser 38 and cools the conditioned air from the blower fan by the latent heat of evaporation at that time.
  • the refrigerant evaporated by the evaporator 55 is returned to the compressor 52 through the refrigerant passage 58. Note that the mixing ratio of the conditioned air cooled by the evaporator 55 and the conditioned air heated by the heater core is adjusted to a temperature set by the occupant according to the opening of the air mix door.
  • the integrated cycle 30 includes the Rankine cycle 31 and the refrigeration cycle 51 as described above.
  • the integrated cycle 30 is appropriately provided with various valves in the middle in order to control the refrigerant flowing in the cycle.
  • a pump upstream valve 61 is provided in the refrigerant passage 44 connecting the refrigeration cycle branch point 45 and the refrigerant pump 32, and the heat exchanger 36 and the expander 37 Is connected to the refrigerant passage 42.
  • a check valve 63 is provided in the refrigerant passage 41 that connects the refrigerant pump 32 and the heat exchanger 36 in order to prevent the refrigerant from flowing backward from the heat exchanger 36 to the refrigerant pump 32.
  • a check valve 64 is provided in the refrigerant passage 43 connecting the expander 37 and the refrigeration cycle junction 46 in order to prevent the refrigerant from flowing back from the refrigeration cycle junction 46 to the expander 37. Further, an expander bypass passage 65 that bypasses the expander 37 from the upstream of the expander upstream valve 62 and merges upstream of the check valve 64 is provided, and a bypass valve 66 is provided in the expander bypass passage 65. Further, a pressure regulating valve 68 is provided in the passage 67 that bypasses the bypass valve 66. Also on the refrigeration cycle 51 side, an air conditioner expansion valve 69 is provided in the refrigerant passage 57 that connects the refrigeration cycle branch point 45 and the evaporator 55.
  • the pump upstream valve 61, the expander upstream valve 62, the bypass valve 66, and the air conditioner expansion valve 69 are all electromagnetic on-off valves.
  • An expander upstream pressure signal detected by the pressure sensor 72, a refrigerant pressure Pd signal at the outlet of the condenser 38 detected by the pressure sensor 73, a rotation speed signal of the expander 37, and the like are input to the engine controller 71. .
  • the engine controller 71 controls the compressor 52 of the refrigeration cycle 51 and the radiator fan 12 on the basis of these input signals according to predetermined operating conditions, as well as the pump upstream valve 61, the expander upstream valve 62, and the bypass. Control of opening and closing of the valve 66 and the air conditioner expansion valve 69 is performed.
  • the expander torque (regenerative power) is predicted based on the expander upstream pressure detected by the pressure sensor 72 and the expander rotation speed, and when the predicted expander torque is positive (assist rotation of the engine output shaft).
  • the expander clutch 35 is engaged (when it can) and the expander clutch 35 is released when the predicted expander torque is zero or negative.
  • the prediction based on the sensor detection pressure and the expander rotational speed is more accurate than the prediction based on the exhaust temperature. Therefore, the expander clutch 35 can be appropriately engaged and released according to the state of expansion machine torque generation (refer to JP2010-190185A for details).
  • the four on-off valves (pump upstream valve 61, expander upstream valve 62, bypass valve 66, air conditioner expansion valve 69) and the two check valves (check valve 63, check valve 64) are refrigerant systems. It is a valve. The functions of these refrigerant valves are shown again in FIG.
  • the pump upstream valve 61 is closed under a predetermined condition that the refrigerant tends to be biased to the Rankine cycle 31 as compared with the refrigeration cycle 51, and prevents the bias of the refrigerant (including the lubricating component) to the Rankine cycle 31.
  • the pump upstream valve 61 closes the Rankine cycle 31 in cooperation with a check valve 64 downstream of the expander 37, as will be described later.
  • the expander upstream valve 62 blocks the refrigerant passage 42 and holds it until the refrigerant from the heat exchanger 36 has a high pressure.
  • the heating of the refrigerant is promoted, and for example, the time until the Rankine cycle 31 is restarted, that is, the time until the regeneration is actually enabled can be shortened.
  • the bypass valve 66 is opened so that the refrigerant pump 32 can be operated after bypassing the expander 37 when the amount of refrigerant existing on the Rankine cycle 31 side is insufficient at the time of starting the Rankine cycle 31, etc.
  • the starting time of Rankine cycle 31 is shortened.
  • the refrigerant temperature at the outlet of the condenser 38 or the inlet of the refrigerant pump 32 has a predetermined temperature difference (subcool temperature SC) from the boiling point in consideration of the pressure at that portion. ) If the state lowered as described above is realized, the Rankine cycle 31 can be supplied with sufficient liquid refrigerant.
  • the check valve 63 upstream of the heat exchanger 36 holds the refrigerant supplied to the expander 37 at a high pressure in cooperation with the bypass valve 66, the pressure adjustment valve 68, and the expander upstream valve 62.
  • the operation of the Rankine cycle 31 is stopped, the front and rear sections of the heat exchanger 36 are closed, the refrigerant pressure during the stop is raised, and Rankine cycle is made using a high-pressure refrigerant.
  • the pressure regulating valve 68 functions as a relief valve that opens when the pressure of the refrigerant supplied to the expander 37 becomes too high and releases the refrigerant that has become too high.
  • the check valve 64 downstream of the expander 37 cooperates with the above-described pump upstream valve 61 to prevent the refrigerant from being biased to the Rankine cycle 31. If the engine 2 is not warmed immediately after the start of the operation of the hybrid vehicle 1, the Rankine cycle 31 has a lower temperature than the refrigeration cycle 51, and the refrigerant may be biased toward the Rankine cycle 31 side. The probability of being biased toward Rankine cycle 31 is not high. However, for example, immediately after the start of vehicle operation in summer, there is a situation where it is desired to cool the inside of the vehicle quickly, so that the cooling capacity is most required. In such a situation, it is desired to secure the refrigerant of the refrigeration cycle 51 by eliminating the slight uneven distribution of the refrigerant. Therefore, a check valve 64 is provided to prevent uneven distribution of refrigerant to the Rankine cycle 31 side.
  • the compressor 52 does not have a structure that allows the refrigerant to freely pass when driving is stopped.
  • the compressor 52 can prevent the bias of the refrigerant to the refrigeration cycle 51 in cooperation with the air conditioner expansion valve 69. This will be described.
  • the refrigerant may move from the relatively high temperature Rankine cycle 31 side during steady operation to the refrigeration cycle 51 side, and the refrigerant circulating through the Rankine cycle 31 may be insufficient.
  • the temperature of the evaporator 55 is low immediately after the cooling is stopped, and the refrigerant tends to accumulate in the evaporator 55 having a relatively large volume and a low temperature.
  • the movement of the refrigerant from the condenser 38 to the evaporator 55 is interrupted by stopping the driving of the compressor 52, and the air conditioner expansion valve 69 is closed to prevent the refrigerant from being biased to the refrigeration cycle 51.
  • FIG. 5 is a schematic perspective view of the engine 2 showing a package of the entire engine 2. 5 is characterized in that the heat exchanger 36 is arranged vertically above the exhaust manifold 4. By placing the heat exchanger 36 in the space vertically above the exhaust manifold 4, the mountability of the Rankine cycle 31 to the engine 2 is improved.
  • the engine 2 is provided with a tension pulley 8.
  • FIGS. 7A and 7B are operation region diagrams of Rankine cycle 31.
  • FIG. The horizontal axis in FIG. 7A is the outside air temperature, and the vertical axis is the engine water temperature (cooling water temperature).
  • the horizontal axis of FIG. 7B is the engine rotation speed, and the vertical axis is the engine torque (engine load).
  • Rankine cycle 31 is operated when both the conditions of FIG. 7A and FIG. 7B are satisfied.
  • the Rankine cycle 31 is stopped in a region on the low water temperature side where priority is given to warm-up of the engine 2 and a region on the high outside air temperature side where the load on the compressor 52 increases.
  • the Rankine cycle 31 is not operated, so that the coolant temperature is quickly raised.
  • the Rankine cycle 31 is stopped at a high outside air temperature where high cooling capacity is required, and sufficient refrigerant and cooling capacity of the condenser 38 are provided to the refrigeration cycle 51.
  • FIG. 7A the Rankine cycle 31 is stopped in a region on the low water temperature side where priority is given to warm-up of the engine 2 and a region on the high outside air temperature side where the load on the compressor 52 increases.
  • the Rankine cycle 31 is not operated, so that the coolant temperature is quickly raised.
  • the Rankine cycle 31 is stopped at a high outside air temperature where high cooling capacity is required, and sufficient refrigerant
  • the Rankine cycle 31 is stopped in the EV traveling region and the region on the high rotation speed side where the friction of the expander 37 increases. Since it is difficult to make the expander 37 have a high-efficiency structure with little friction at all rotation speeds, in the case of FIG. 7B, the expansion is performed so that the friction is small and the efficiency is high in the engine rotation speed range where the operation frequency is high.
  • the machine 37 is configured (the dimensions of each part of the expander 37 are set).
  • FIG. 8 is a timing chart showing a model when the hybrid vehicle 1 is accelerated while assisting the rotation of the engine output shaft with the expander torque. Note that, on the right side of FIG. 8, a state in which the operating state of the expander 37 changes at this time is shown on the expander torque map.
  • the expander torque tends to be the largest in the portion (upper left) where the expander rotational speed is low and the expander upstream pressure is high.
  • the expander torque tends to decrease as the rotation speed of the expander increases and the expander upstream pressure decreases (lower right).
  • the shaded area is a region where the expander torque becomes negative on the premise of driving the refrigerant pump and becomes a load on the engine.
  • the rotation speed of the expander 37 that is, the rotation speed of the refrigerant pump 32 increases in proportion to the engine rotation speed, while the increase in the exhaust gas temperature or the cooling water temperature is delayed with respect to the increase in the engine rotation speed. Therefore, the ratio of the recoverable heat amount to the refrigerant amount increased by the increase in the rotational speed of the refrigerant pump 32 is reduced.
  • the expander upstream valve 62 is switched from the open state to the closed state, and the regeneration efficiency is deteriorated. Avoided. That is, a phenomenon in which the expander 37 is dragged to the engine 2 conversely with an excessive decrease in the expander torque is avoided.
  • the expander clutch 35 After switching the expander upstream valve 62 from the open state to the closed state, the expander clutch 35 is switched from connection (engagement) to disconnection (release) at the timing of t3.
  • the refrigerant pressure upstream of the expander can be sufficiently reduced. This prevents the expander 37 from over-rotating when the expander clutch 35 is disconnected. Further, a large amount of refrigerant is supplied into the heat exchanger 36 by the refrigerant pump 32, and the Rankine cycle 31 can smoothly resume operation because the refrigerant is effectively heated even when the Rankine cycle 31 is stopped.
  • the expander upstream pressure rises again due to the increase in the heat dissipation of the engine 2.
  • the expander upstream valve 62 is switched from the closed state to the open state, and the supply of the refrigerant to the expander 37 is resumed.
  • the expander clutch 35 is connected again at t4. By reconnecting the expander clutch 35, rotation assist of the engine output shaft by the expander torque is resumed.
  • FIG. 9 shows how Rankine cycle 31 is restarted in a manner different from that in FIG. 8 (control of t4) from the stop of Rankine cycle operation in a state where expander upstream valve 62 is closed and expander clutch 35 is disconnected. It is the timing chart shown with the model.
  • the heat dissipation amount of the engine 2 increases. Due to the increase in the heat dissipation amount, the temperature of the coolant flowing into the heat exchanger 36 increases, and the temperature of the refrigerant in the heat exchanger 36 increases. To rise. Since the expander upstream valve 62 is closed, the refrigerant pressure upstream of the expander upstream valve 62, that is, the expander upstream pressure increases as the refrigerant temperature rises by the heat exchanger 36 (t11 to t12).
  • the expander 37 can be operated (driven) at the timing t12 when the differential pressure between the expander upstream pressure and the expander downstream pressure becomes greater than or equal to a predetermined pressure, and the expander upstream valve 62 is moved from the closed state. Switch to the open state. By switching the expander upstream valve 62 to the open state, a predetermined pressure of refrigerant is supplied to the expander 37, and the expander rotation speed is quickly increased from zero.
  • the expander clutch 35 is switched from the disconnected state to the connected state at timing t13 when the expander rotational speed reaches the engine rotational speed due to the increase in the expander rotational speed. If the expander clutch 35 is connected before the expander 37 sufficiently increases the rotational speed, the expander 37 becomes an engine load and torque shock may occur. On the other hand, when the expander clutch 35 is delayed and connected at t13 when the rotational speed difference from the engine output shaft disappears, the expander 37 becomes an engine load. Torque shock can also be prevented.
  • FIGS. 10 and 11 are schematic plan views (views as viewed from above) of the engine 2 according to the first embodiment.
  • the in-line 4-cylinder engine 2 is a so-called horizontal engine that is placed in a direction orthogonal to the vehicle traveling direction.
  • the exhaust manifold 4 is disposed on the vehicle front side and the intake manifold 91 is disposed on the vehicle rear side.
  • the exhaust manifold 4 is arranged on the vehicle rear side and the intake manifold 91 is arranged on the vehicle front side.
  • the engine 2 in FIG. 10 is the same as the engine 2 shown in FIG.
  • the expander clutch 35, the refrigerant pump 32, and the expander 37 are arranged in this order and accommodated in the case 96 integrally.
  • the expander pump 95 is formed.
  • the expander pump 95 is substantially columnar as a whole.
  • the shaft of the expander pump is arranged in parallel with the output shaft 2 b of the engine 2.
  • the shaft of the expander pump means the shaft of the expander clutch 35, the shaft of the refrigerant pump 32, and the output shaft of the expander 37.
  • the case 96 includes an expander housing 37a of the expander 37 and a pump housing 32a of the refrigerant pump 32 as shown in FIG. 2A.
  • the pump housing 32 a also serves as a clutch housing for the expander clutch 35.
  • the expander side end portion 96a (see FIG. 2A) of the case 96 is close to the left side surface 4a (see FIG. 5) of the exhaust manifold 4 when viewed from the engine front surface 2c in the case of FIG. Provided. In the case shown in FIG. 11, it is provided close to the right side surface of the exhaust manifold 4 as seen from the engine rear surface 2d.
  • the reason why the case 96 of the expander pump 95 is provided in this manner is that the thermal requirements for the two components (the expander clutch 35 and the expander 37) of the expander pump 95 are different.
  • the configuration becomes simple and the cost can be reduced.
  • the thermal requirements for the two parts are different.
  • the gas refrigerant at the outlet of the heat exchanger 36 is supplied to the expander 37 via the refrigerant passage 42.
  • the gas refrigerant flowing through the refrigerant passage 42 is preferably supplied to the inlet of the expander 37 without lowering the temperature. This is because the rotation speed of the expander depends on the temperature and pressure of the gas refrigerant at the inlet of the expander 37, and therefore, if the refrigerant cools down before reaching the inlet of the expander 37, the rotation speed of the expander decreases. is there.
  • the expander 37 is a so-called scroll expander in which two spirals of a fixed scroll 37c and a movable scroll 37d mesh.
  • the high-pressure gas refrigerant exiting from the heat exchanger 36 enters the suction port 37b provided at the center of the expander side end 96a (see FIG. 2A) of the case 96.
  • the suction port 37 b is a cylindrical space that is provided near the axis of the expander 37 and is parallel to the axis of the expander 37.
  • the high-pressure gas refrigerant that has entered the suction port 37b expands in a working chamber formed by meshing two spirals.
  • the movable scroll 37d is rotationally driven by the expansion energy.
  • the gas refrigerant moves to the outer peripheral side, passes through the discharge passage 37e, and exits from the discharge port 37f provided at the peripheral edge of the expander housing 37a.
  • the expander clutch 35 connects and disconnects the power transmission using the frictional force between the two members, so that frictional heat is generated between the two members when the power transmission is connected. In this case, the friction force decreases as the temperature of the two members increases. That is, in order for the expander clutch 35 to connect and disconnect the power transmission reliably, the expander clutch 35 is preferably provided in a place where it is not exposed to as much heat as possible.
  • the thermal requirements of the expander 37 and the expander clutch 35 are clearly different, so that the thermal requirements of the two components (the expander clutch 35 and the expander 37) in the expander pump 95 are met.
  • the expander pump 95 is provided at an optimal location of the engine 2.
  • the case 96 of the expander pump 95 is provided in the high temperature portion of the engine 2.
  • the expander 37 is relatively hotter than the expander clutch 35.
  • the case 96 is provided so that the suction port 37b of the expander 37 is close to the high temperature part of the engine. This makes it difficult for the heat of the gas refrigerant flowing through the refrigerant passage 42 to enter the refrigerant passage 42 before entering the suction port 37d of the expander.
  • the “high temperature portion of the engine” is the exhaust manifold 4 that first collects and exhausts the exhaust of each cylinder, and secondly is the manifold catalyst 92 that is connected to the exhaust manifold assembly.
  • the diagonally lower right is the vehicle front side.
  • An exhaust manifold 4 is provided on the vehicle front side, that is, on the engine front surface 2c.
  • the manifold catalyst 92 is connected in the vertical direction (vertical direction in FIG. 5) with respect to the gathering portion of the exhaust manifold 4 vertically above the engine front surface 2c.
  • the side of the exhaust manifold 4 that is visible in the foreground is the left side surface 4 a of the exhaust manifold 4.
  • the back side (the side that cannot be seen) is the right side surface of the exhaust manifold 4.
  • the expander side end portion 96a of the case 96 is provided so as to be close to the left side surface 4a.
  • the expander clutch 35, the refrigerant pump 32, and the expander 37 are integrally accommodated in this order by arranging the expander shaft and the refrigerant pump shaft coaxially. It is provided close to the exhaust manifold 4 (the high temperature part of the engine) so that the temperature of 37 is higher than that of the expander clutch 35. With this configuration, it is possible to prevent the heat from escaping from the refrigerant before entering the suction port 37b (expander inlet) of the expander 37, and to prevent the heat recovery efficiency of the expander 37 from being lowered. . Further, the frictional heat generated in the expander clutch 35 is easily escaped, and the reliability of the expander clutch 35 is improved.
  • the case 96 is provided so that the suction port 37b of the expander 37 is close to the exhaust manifold 4 (the high temperature part of the engine). With such a structure, it is difficult for heat to escape from the suction port 37b, and the heat recovery efficiency of the expander 37 is improved.
  • the engine 2 has four (plural) cylinders arranged in a straight line.
  • the engine 2 has an exhaust manifold 4 that collects and exhausts exhaust from the four cylinders.
  • the shaft of the expander pump 95 (coaxially disposed shaft) and the output shaft 2b of the engine 2 are disposed in parallel, and the case 69 is positioned so that the expander side end portion 96a of the case 96 is close to the exhaust manifold 4.
  • a power transmission mechanism crank pulley 2a, pump pulley 33, belt 34
  • the expander 37 can effectively receive heat by the radiant heat from the high temperature exhaust manifold 4 and the ambient temperature.
  • FIG. 12 is a schematic front view of the engine 2 according to the second embodiment viewed from the vehicle front side.
  • the in-line four-cylinder engine 2 of the second embodiment is the same engine as the engine 2 shown in FIG. That is, as shown in FIG. 5, the exhaust manifold 4 can be seen vertically above the engine front surface 2 c, and the manifold catalyst 92 extends in the vertical direction (vertical direction in FIG. 12) with respect to the collection portion of the exhaust manifold 4. Is connected.
  • the shaft of the expander pump 95 is arranged in parallel with the output shaft of the engine 2. Further, an expander side end portion 96 a of the expander pump case 96 is provided close to the left side surface 92 a of the manifold catalyst 92.
  • the configuration of the power transmission mechanism (crank pulley 2a, pump pulley 33, belt 34) that transmits the power regenerated by the expander 37 to the engine 2 is easy.
  • the expander 37 can effectively receive heat by the radiant heat from the high-temperature manifold catalyst 92 and the ambient temperature.
  • FIG. 13 is a schematic plan view (viewed from vertically above) of the engine 2 of the third embodiment, which replaces FIG. 10 of the first embodiment.
  • the same parts as those in FIG. 10 are denoted by the same reference numerals.
  • the shaft of the expander pump 95 is arranged in parallel with the output shaft 2b of the engine 2. Further, a case 96 of the expander pump 95 is provided vertically below the intake manifold 91 and along the engine rear surface 2d.
  • the engine is placed horizontally on the vehicle so that the exhaust manifold is on the vehicle front side and the intake manifold is on the vehicle rear side, and the case 96 is provided on the rear surface 2d of the engine.
  • traveling wind passes through the case 96 on the side of the expander clutch 35 (left side in FIG. 13), and the expander clutch 35 is cooled.
  • the traveling wind is blocked by the engine 2. Therefore, the expander 37 side is less likely to be cooled by traveling wind.
  • the expander 37 side of the case 96 can be at a relatively higher temperature than the expander clutch 35 side.
  • FIG. 14 is a schematic view showing the refrigerant passage 42 and the refrigerant passage 43 connected to the expander pump 95 and the expander 37 of the third embodiment.
  • the “hot part” in FIG. 14 is the exhaust manifold 4 and the manifold catalyst 92.
  • the case 96 is shown in a transparent manner so that the relationship with the refrigerant passage 43 becomes clear.
  • the first portion 42a adjacent to the suction port 37b is at the same position as the axis of the cylindrical suction port 37b.
  • the first portion 42a is provided so as to be aligned with the axis of the suction port 37b.
  • the second part 42b connected to the first part 42a is provided so as to be orthogonal to the first part 42a.
  • the expander side end portion 96a of the case 96 provided with the suction port 37b in which the refrigerant has the highest temperature in the expander 37 can be easily attached to the exhaust manifold 4 or the manifold catalyst 92 (the high temperature portion of the engine).
  • gas refrigerant can be linearly taken from the first portion 42a with respect to the suction port 37b, there is little pressure loss and the expander efficiency can be improved.
  • the engine 2 may be a gasoline engine or a diesel engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Exhaust Silencers (AREA)

Abstract

 エンジン廃熱利用装置は、エンジン廃熱を冷媒に回収する熱交換器、熱交換器から出た冷媒で動力を発生させる膨張機、膨張機を出た冷媒を凝縮させる凝縮器、膨張機によって駆動されて凝縮器から出た冷媒を熱交換器に供給する冷媒ポンプ、を備えるランキンサイクルと、冷媒ポンプを駆動しても膨張機の動力に余裕がある場合の余剰動力をエンジンに伝達する動力伝達機構(クランクプーリ(2a)、ポンププーリ(33)、ベルト(34))と、動力伝達機構の動力伝達を断接するクラッチと、膨張機の軸と冷媒ポンプの軸とを同軸で配置して、クラッチ、冷媒ポンプ及び膨張機をこの順に一体収容すると共に、膨張機がクラッチよりも高温となるようにエンジンの高温部(4)付近に設けられるケース(96)と、を含む。

Description

エンジン廃熱利用装置
 この発明は、ランキンサイクルを有するエンジン廃熱利用装置に関する。
 日本国特許庁が2005年に発行したJP2005-030386Aのランキンサイクルでは、冷媒ポンプ及び膨張機が一つの密閉ケースに収納されている。
 しかしながら、JP2005-030386Aでは、密閉ケースをエンジンのどの位置に設けるかについて一切記載されていない。
 本発明は、このような従来の問題点に着目してなされた。本発明の目的は、ケース内の各部品の熱的要求に最適なエンジン廃熱利用装置を提供することである。
 本発明のある態様のエンジン廃熱利用装置は、エンジンの廃熱を冷媒に回収する熱交換器、熱交換器から出た冷媒を用いて動力を発生させる膨張機、膨張機を出た冷媒を凝縮させる凝縮器、膨張機によって駆動されて凝縮器から出た冷媒を熱交換器に供給する冷媒ポンプ、を備えるランキンサイクルと、冷媒ポンプを駆動しても膨張機の動力に余裕がある場合の余剰動力をエンジンに伝達する動力伝達機構と、動力伝達機構による動力伝達を断接するクラッチと、を含む。そして、膨張機の軸と冷媒ポンプの軸とを同軸で配置して、クラッチ、冷媒ポンプ及び膨張機をこの順に一体的に収容するとともに、膨張機がクラッチよりも高温となるようにエンジンの高温部付近に設けられるケースを備える。
 本発明の実施形態、本発明の利点は、添付された図面とともに以下に詳細に説明される。
図1は、本発明の第1実施形態のランキンサイクルのシステム全体を表した概略構成図である。 図2Aは、ポンプ及び膨張機を一体化した膨張機ポンプの概略断面図である。 図2Bは、冷媒ポンプの概略断面図である。 図2Cは、膨張機の概略断面図である。 図3は、冷媒系バルブの機能を示す概略図である。 図4は、ハイブリッド車両の概略構成図である。 図5は、エンジンの概略斜視図である。 図6は、エンジンを下方から見た概略図である。 図7Aは、ランキンサイクル運転域の特性図である。 図7Bは、ランキンサイクル運転域の特性図である。 図8は、膨張機トルクによってエンジン出力軸の回転をアシストしている途中でハイブリッド車両1の加速が行われたときの様子を示したタイミングチャートである。 図9は、ランキンサイクルの運転停止からの再起動の様子を示したタイミングチャートである。 図10は、第1実施形態の1のエンジンの概略平面図である。 図11は、第1実施形態の他のエンジンの概略平面図である。 図12は、第2実施形態のエンジンの概略正面図である。 図13は、第3実施形態のエンジンの概略平面図である。 図14は、第3実施形態の膨張機ポンプ及び膨張機に接続される2つの冷媒通路を取り出して示す概略図である。
(第1実施形態)
 図1は本発明の前提となるランキンサイクルのシステム全体を表した概略構成図を示している。
 図1のランキンサイクル31及び冷凍サイクル51は、冷媒及び凝縮器38を共有する。ランキンサイクル31及び冷凍サイクル51を統合したサイクルは、これ以降統合サイクル30と表現される。統合サイクル30は、ランキンサイクル31と冷凍サイクル51の冷媒が循環する通路及びその途中に設けられたポンプ、膨張機、凝縮器等の構成要素に加え、冷却水や排気の通路等をも含めたシステム全体を指す。
 図4は、統合サイクル30が搭載されるハイブリッド車両1の概略構成図である。
 ハイブリッド車両1では、エンジン2、モータジェネレータ81、自動変速機82が直列に連結される。自動変速機82の出力はプロペラシャフト83、ディファレンシャルギヤ84を介して駆動輪85に伝達される。エンジン2とモータジェネレータ81の間には第1駆動軸クラッチ86が設けられる。また、自動変速機82には、第2駆動軸クラッチ87が設けられる。この第2駆動軸クラッチ87は、自動変速機82の摩擦締結要素の一つである。
 第1駆動軸クラッチ86及び第2駆動軸クラッチ87は、ハイブリッド車両の運転条件に応じたエンジンコントローラ71の指令によって断接(接続状態)が制御される。ハイブリッド車両1は、図7Bに示されるように、エンジン2の効率が悪いEV領域にあるときには、停止し、第1駆動軸クラッチ86を遮断し、第2駆動軸クラッチ87を接続して、モータジェネレータ81の駆動力だけで走行する。
 エンジン回転速度が上がってランキンサイクル運転域に移行したら、エンジン2を運転してランキンサイクル31(後述する)を運転する。
 図1に示されるように、エンジン2の排気通路3は、排気マニホールド4と、排気管5と、バイパス排気管6と、を含む。排気管5は、排気マニホールド4の集合部に接続される。バイパス排気管6は、排気管5の途中から一旦分岐し再び合流する。バイパス排気管6にバイパスされる区間の排気管5には、廃熱回収器22が備えられる。廃熱回収器22は、排気と冷却水との熱交換を行なう。廃熱回収器22及びバイパス排気管6が一体化されたユニットは、廃熱回収ユニット23と称される。図6に示されるように、廃熱回収ユニット23は、床下触媒88とサブマフラー89との間に配置される。
 次に図1に基づいて、エンジン冷却水通路について説明する。エンジン冷却水通路は、ラジエータ11を通る冷却水通路13と、ラジエータ11をバイパスするバイパス冷却水通路14と、を含む。バイパス冷却水通路14は、第1バイパス冷却水通路24と、第2バイパス冷却水通路25とを含む。第1バイパス冷却水通路24は、冷却水通路13から分岐して後述の熱交換器36に直接接続される。第2バイパス冷却水通路25は、冷却水通路13から分岐して廃熱回収器22を経た後に熱交換器36に接続される。
 次に図1に基づき、エンジン冷却水の流れについて説明する。エンジン2を出た冷却水は、80~90℃程度である。冷却水は、冷却水通路13と、バイパス冷却水通路14とに別れて流れる。その後、2つの流れは、サーモスタットバルブ15で再び合流する。サーモスタットバルブ15は、冷却水通路13及びバイパス冷却水通路14を流れる冷却水流量の配分を決める。合流した冷却水は、冷却水ポンプ16を経てエンジン2に戻る。冷却水ポンプ16はエンジン2によって駆動される。冷却水ポンプ16の回転速度はエンジン回転速度と同調している。冷却水温度が高い場合には、サーモスタットバルブ15は、冷却水通路13側のバルブ開度を大きくしてラジエータ11を通過する冷却水量を相対的に増やす。また冷却水温度が低い場合には、サーモスタットバルブ15は、冷却水通路13側のバルブ開度を小さくしてラジエータ11を通過する冷却水量を相対的に減らす。エンジン2の暖機前など特に冷却水温度が低い場合には、サーモスタットバルブ15は、冷却水通路13側を全閉する。この結果、冷却水が完全にラジエータ11をバイパスし、冷却水の全量がバイパス冷却水通路14に流れる。
 なおサーモスタットバルブ15は、バイパス冷却水通路14側は全閉しないように構成されている。したがって、ラジエータ11を流れる冷却水流量が多くなっても、バイパス冷却水通路14を流れる冷却水の流れが完全に停止することはない。
 次に熱交換器36について説明する。熱交換器36は、ランキンサイクル31の冷媒と冷却水との熱交換を行なう。熱交換器36は加熱器と過熱器とを統合したものである。すなわち、熱交換器36には、冷却水通路36a及び冷却水通路36bが、ほぼ一列、かつランキンサイクル31の冷媒通路36cに隣接して設けられる。このような構成であるので、冷媒と冷却水とが熱交換可能である。また冷却水通路36a及び冷却水通路36b並びに冷媒通路36cは、ランキンサイクル31の冷媒と冷却水が互いに流れ方向が逆向きとなるように、構成される。
 詳細には、ランキンサイクル31の冷媒にとって上流(図1の左)側に位置する冷却水通路36aは、第1バイパス冷却水通路24に介装される。冷却水通路36a及び冷却水通路36aに隣接する冷媒通路部分からなる熱交換器左側部分には、エンジン2から出た冷却水が導入される。この部分が、冷媒通路36cを流れる冷媒を加熱する加熱器である。
 ランキンサイクル31の冷媒にとって下流(図1の右)側に位置する冷却水通路36bには、第2バイパス冷却水通路25を介して廃熱回収器22を経た冷却水が導入される。冷却水通路36b及びこの冷却水通路36bに隣接する冷媒通路部分からなる熱交換器右側部分(ランキンサイクル31の冷媒にとって下流側)には、エンジン2から出て排気によって加熱された冷却水が導入される。この部分が、冷媒通路36cを流れる冷媒を過熱する過熱器である。
 廃熱回収器22の冷却水通路22aは排気管5に隣接して設けられる。エンジン2から出て、廃熱回収器22の冷却水通路22aに導入された冷却水は、高温の排気によって例えば110~115℃程度まで加熱される。なお、冷却水通路22aは、排気と冷却水とが互いに逆向きに流れるように構成されている。
 第2バイパス冷却水通路25には制御弁26が介装されている。またエンジン2の出口には、冷却水温度センサ74が設けられる。エンジン水温が、例えばエンジンの効率悪化やノックを発生させないための許容温度(例えば100℃)を超えないように、冷却水温度センサ74の検出温度が所定値よりも大きくなると、制御弁26の開度が減少させられる。エンジン水温が許容温度に近づくと、廃熱回収器22を通過する冷却水量が減少させられるので、エンジン水温が許容温度を超えることが確実に防止される。
 一方、第2バイパス冷却水通路25の流量が減少したことによって、廃熱回収器22で上昇する冷却水温度が上がりすぎて冷却水が蒸発(沸騰)してしまったのでは、熱交換器36での効率が落ちる。また、冷却水通路内の冷却水の流れが悪くなって温度が過剰に上昇してしまう恐れがある。これを避けるため、バイパス排気管6の分岐部には、排気回収器22の排気通過量とバイパス排気管6の排気通過量とをコントロールするサーモスタットバルブ7が設けられる。サーモスタットバルブ7のバルブ開度は、廃熱回収器22を出た冷却水温度が所定の温度(例えば沸騰温度120℃)を超えないように、廃熱回収器22を出た冷却水温度に基づいて調節される。
 熱交換器36とサーモスタットバルブ7と廃熱回収器22とは、廃熱回収ユニット23として一体化されて、車幅方向略中央の床下の排気管途中に配設される。サーモスタットバルブ7は、バイメタル等を用いた比較的簡易な感温弁を用いればよい。またサーモスタットバルブ7は、温度センサ出力が入力されるコントローラによって制御される制御弁を用いてもよい。サーモスタットバルブ7による排気から冷却水への熱交換量の調節は比較的大きな遅れを伴うため、サーモスタットバルブ7を単独で調節したのではエンジン水温が許容温度を超えないようにすることが難しい。しかしながら、第2バイパス冷却水通路25の制御弁26をエンジン水温(出口温度)に基づき制御するようにしてあるので、熱回収量を速やかに低減し、エンジン水温が許容温度を超えるのを確実に防ぐことができる。また、エンジン水温が許容温度まで余裕がある状態であれば、廃熱回収器22を出る冷却水温度がエンジン水温の許容温度を越えるほどの高温(例えば110~115℃)になるまで熱交換して、廃熱回収量を増加させることができる。冷却水通路36bを出た冷却水は、第2バイパス冷却水通路25を介して第1バイパス冷却水通路24に合流する。
 冷却水の温度が十分低下していれば、冷却水通路13側のバルブ開度が小さくされて、ラジエータ11を通過する冷却水量は相対的に減らされる。冷却水の温度が十分低下するのは、例えばランキンサイクル31の冷媒の温度が低く、この冷媒と熱交換したことが考えられる。冷却水の温度が高くなると、冷却水通路13側のバルブ開度が大きくされて、ラジエータ11を通過する冷却水量は相対的に増やされる。冷却水の温度が高くなるのは、ランキンサイクル31が運転されていない場合が考えられる。このようなサーモスタットバルブ15の動作に基づいて、エンジン2の冷却水温度が適温に保たれ、熱がランキンサイクル31へ適度に供給(回収)される。
 次に、統合サイクル30が説明される。統合サイクル30は、上述の通り、ランキンサイクル31及び冷凍サイクル51を統合したものである。以下では、基本となるランキンサイクル31が先に説明され、その後冷凍サイクル51が説明される。
 ランキンサイクル31は、エンジン2の冷却水を介してエンジン2の廃熱を冷媒に回収し、回収した廃熱を動力として回生するシステムである。ランキンサイクル31は、冷媒ポンプ32、過熱器としての熱交換器36、膨張機37及び凝縮器(コンデンサ)38を備える。これらは、冷媒(R134a等)が循環する冷媒通路41~44によって接続されている。
 冷媒ポンプ32の軸は、同一の軸上で膨張機37の出力軸と連結配置される(図2A参照)。冷媒ポンプ32軸及び膨張機37の出力軸は、エンジン2の出力軸と平行に配置される。冷媒ポンプ32の軸の先端に設けられたポンププーリ33と、クランクプーリ2aとの間にはベルト34が掛け回される(図1参照)。このような構成であるので、膨張機37の発生する出力(動力)は、冷媒ポンプ32を駆動すると共に、エンジン2の出力軸(クランク軸)を駆動する。なお、本実施形態の冷媒ポンプ32は、図2Bに示されるように、ギヤ式のポンプである。膨張機37は、図2Cに示されるように、スクロール式の膨張機である。
 また、ポンププーリ33と冷媒ポンプ32との間には、電磁式のクラッチ(このクラッチを以下「膨張機クラッチ」という)35が設けられる。このような構成であるので、冷媒ポンプ32及び膨張機37とが、エンジン2と断接可能である(図2A参照)。膨張機37の発生する出力が冷媒ポンプ32の駆動力及び回転体が有するフリクションを上回って余剰出力がある場合に(予測膨張機トルクが正の場合に)膨張機クラッチ35を接続すれば、膨張機37の余剰動力によってエンジン出力軸の回転をアシスト(補助)できる。このように廃熱回収によって得たエネルギを用いてエンジン出力軸の回転をアシストすることで、燃費を向上できる。また、冷媒を循環させる冷媒ポンプ32を駆動するためのエネルギも、回収した廃熱で賄うことができる。
 冷媒ポンプ32からの冷媒は冷媒通路41を介して熱交換器36に供給される。熱交換器36は、エンジン2の冷却水と冷媒との間で熱交換を行わせ、冷媒を気化し過熱する熱交換器である。
 熱交換器36からの冷媒は冷媒通路42を介して膨張機37に供給される。膨張機37は、気化し過熱された冷媒を膨張させることで熱を回転エネルギに変換する蒸気タービンである。膨張機37で回収された動力は冷媒ポンプ32を駆動し、ベルト伝動機構を介してエンジン2に伝達され、エンジン2の回転をアシストする。
 膨張機37からの冷媒は冷媒通路43を介して凝縮器38に供給される。凝縮器38は、外気と冷媒との間で熱交換を行わせ、冷媒を冷却し液化する熱交換器である。凝縮器38は、ラジエータ11と並列に配置され、ラジエータファン12によって冷却される。
 凝縮器38で液化された冷媒は、冷媒通路44を介して冷媒ポンプ32に戻される。冷媒ポンプ32に戻された冷媒は、冷媒ポンプ32で再び熱交換器36に送られ、ランキンサイクル31の各構成要素を循環する。
 次に、冷凍サイクル51について述べる。冷凍サイクル51は、ランキンサイクル31を循環する冷媒を共用するため、ランキンサイクル31と統合され、冷凍サイクル51の構成そのものは簡素になっている。冷凍サイクル51は、コンプレッサ(圧縮機)52、凝縮器38、エバポレータ(蒸発器)55を備える。
 コンプレッサ52は、冷凍サイクル51の冷媒を高温高圧に圧縮する流体機械である。コンプレッサ52は、エンジン2によって駆動される。図4に示されるように、コンプレッサ52の駆動軸にはコンプレッサプーリ53が固定される。このコンプレッサプーリ53とクランクプーリ2aとにベルト34が掛け回される。エンジン2の駆動力がこのベルト34を介してコンプレッサプーリ53に伝達され、コンプレッサ52が駆動される。また、コンプレッサプーリ53とコンプレッサ52との間には、電磁式のクラッチ(このクラッチを以下「コンプレッサクラッチ」という。)54が設けられる。このような構成であるので、コンプレッサ52とコンプレッサプーリ53とが断接可能である。
 図1に戻り、コンプレッサ52からの冷媒は冷媒通路56を介して冷媒通路43に合流した後、凝縮器38に供給される。凝縮器38は、外気との熱交換によって冷媒を凝縮し液化する熱交換器である。凝縮器38からの液状の冷媒は、冷媒通路44から分岐する冷媒通路57を介してエバポレータ(蒸発器)55に供給される。エバポレータ55は、ヒータコアと同様にエアコンディショナユニットのケース内に配設されている。エバポレータ55は、凝縮器38からの液状冷媒を蒸発させ、そのときの蒸発潜熱によってブロアファンからの空調空気を冷却する熱交換器である。
 エバポレータ55によって蒸発した冷媒は冷媒通路58を介してコンプレッサ52に戻される。なお、エバポレータ55によって冷却された空調空気とヒータコアによって加熱された空調空気は、エアミックスドアの開度に応じて混合比率が変更され、乗員の設定する温度に調節される。
 統合サイクル30は、上述のように、ランキンサイクル31と冷凍サイクル51とからなる。統合サイクル30には、サイクル内を流れる冷媒を制御するため、途中に各種の弁が適宜設けられる。例えば、ランキンサイクル31を循環する冷媒を制御するために、冷凍サイクル分岐点45と冷媒ポンプ32とを連絡する冷媒通路44にポンプ上流弁61が設けられるとともに、熱交換器36と膨張機37とを連絡する冷媒通路42に膨張機上流弁62が設けられる。また、冷媒ポンプ32と熱交換器36とを連絡する冷媒通路41には、熱交換器36から冷媒ポンプ32への冷媒の逆流を防止するために逆止弁63が設けられる。膨張機37と冷凍サイクル合流点46とを連絡する冷媒通路43には、冷凍サイクル合流点46から膨張機37への冷媒の逆流を防止するために、逆止弁64が設けられる。また、膨張機上流弁62上流から膨張機37をバイパスして逆止弁64上流に合流する膨張機バイパス通路65が設けられ、この膨張機バイパス通路65にバイパス弁66が設けられる。さらに、バイパス弁66をバイパスする通路67に圧力調整弁68が設けられる。冷凍サイクル51側についても、冷凍サイクル分岐点45とエバポレータ55とを接続する冷媒通路57にエアコンディショナ膨張弁69が設けられる。
 ポンプ上流弁61、膨張機上流弁62、バイパス弁66、エアコンディショナ膨張弁69はいずれも電磁式の開閉弁である。圧力センサ72で検出される膨張機上流圧力の信号、圧力センサ73で検出される凝縮器38の出口の冷媒圧力Pdの信号、膨張機37の回転速度信号等がエンジンコントローラ71に入力されている。エンジンコントローラ71では、所定の運転条件に応じ、これらの各入力信号に基づいて、冷凍サイクル51のコンプレッサ52や、ラジエータファン12の制御を行なうとともに、ポンプ上流弁61、膨張機上流弁62、バイパス弁66、エアコンディショナ膨張弁69の開閉を制御する。
 例えば、圧力センサ72で検出される膨張機上流側圧力及び膨張機回転速度に基づいて膨張機トルク(回生動力)を予測し、この予測膨張機トルクが正のとき(エンジン出力軸の回転をアシストすることができるとき)に膨張機クラッチ35を締結し、予測膨張機トルクがゼロ又は負のときに膨張機クラッチ35を解放する。センサ検出圧力と膨張機回転速度とに基づく予測は、排気温度に基づく予測にくらべ、精度が高い。したがって膨張機トルクの発生状況に応じて膨張機クラッチ35を適切に締結・解放できる(詳細は、JP2010-190185A参照)。
 上記4つの開閉弁(ポンプ上流弁61、膨張機上流弁62、バイパス弁66、エアコンディショナ膨張弁69)及び上記2つの逆止弁(逆止弁63、逆止弁64)は、冷媒系バルブである。これらの冷媒系バルブの機能を改めて図3に示す。
 ポンプ上流弁61は、冷凍サイクル51に比べてランキンサイクル31に冷媒が偏り易くなる所定の条件で閉じられて、ランキンサイクル31への冷媒(潤滑成分を含む)の偏りを防止する。ポンプ上流弁61は、後述するように、膨張機37下流の逆止弁64と協働してランキンサイクル31を閉塞させる。膨張機上流弁62は、熱交換器36からの冷媒圧力が相対的に低い場合に冷媒通路42を遮断し熱交換器36からの冷媒が高圧になるまで保持する。これによって、膨張機トルクが十分得られない場合でも冷媒の加熱を促し、例えばランキンサイクル31が再起動するまでの時間、すなわち実際に回生可能になるまでの時間を短縮できる。バイパス弁66は、ランキンサイクル31の始動時等にランキンサイクル31側に存在する冷媒量が十分でないときなどに、膨張機37をバイパスさせた上で冷媒ポンプ32が作動できるように開弁し、ランキンサイクル31の起動時間を短縮する。膨張機37をバイパスさせた上で冷媒ポンプ32を作動させることで、凝縮器38の出口又は冷媒ポンプ32の入口の冷媒温度が、その部位の圧力を考慮した沸点から所定温度差(サブクール温度SC)以上に低下した状態が実現されれば、ランキンサイクル31には十分な液体冷媒が供給できる状態になる。
 熱交換器36上流の逆止弁63は、バイパス弁66、圧力調整弁68、膨張機上流弁62と協働して膨張機37に供給される冷媒を高圧に保持する。ランキンサイクル31の回生効率が低い条件ではランキンサイクル31の運転を停止し、熱交換器36の前後区間を閉塞することで、停止中の冷媒圧力を上昇させておき、高圧冷媒を利用してランキンサイクル31が速やかに再起動できるようにする。圧力調整弁68は膨張機37に供給される冷媒の圧力が高くなり過ぎた場合に開いて、高くなり過ぎた冷媒を逃すリリーフ弁の役割を有する。
 膨張機37下流の逆止弁64は、上述のポンプ上流弁61と協働してランキンサイクル31への冷媒の偏りを防止する。ハイブリッド車両1の運転開始直後、エンジン2が暖まっていないとランキンサイクル31が冷凍サイクル51よりも低温となり、冷媒がランキンサイクル31側に偏ることがある。ランキンサイクル31側に偏る確率は高くはない。しかしながら、例えば夏場の車両運転開始直後には、車内を早く冷やしたい状況にあるのでえ、冷房能力が最も要求される。このような状況では、冷媒の僅かな偏在をも解消して冷凍サイクル51の冷媒を確保したい。そこで、ランキンサイクル31側への冷媒の偏在を防止するため逆止弁64が設けられる。
 コンプレッサ52は、駆動停止時に冷媒が自由通過できる構造ではない。コンプレッサ52は、エアコンディショナ膨張弁69と協働して冷凍サイクル51への冷媒の偏りを防止することができる。これについて説明する。冷凍サイクル51が停止したとき、定常運転中の比較的高い温度のランキンサイクル31側から冷凍サイクル51側へと冷媒が移動して、ランキンサイクル31を循環する冷媒が不足することがある。冷凍サイクル51の中で、冷房停止直後はエバポレータ55の温度が低くなっていて、比較的容積が大きく温度が低くなっているエバポレータ55に冷媒が溜まり易い。この場合に、コンプレッサ52の駆動停止によって凝縮器38からエバポレータ55への冷媒の動きを遮断するとともに、エアコンディショナ膨張弁69を閉じることで、冷凍サイクル51への冷媒の偏りを防止できる。
 次に、図5はエンジン2全体のパッケージを示すエンジン2の概略斜視図である。図5において特徴的なのは、熱交換器36が排気マニホールド4の鉛直上方に配置されていることである。排気マニホールド4の鉛直上方のスペースに熱交換器36を配置することによって、ランキンサイクル31のエンジン2への搭載性を向上させている。また、エンジン2にはテンションプーリ8が設けられている。
 次に、ランキンサイクル31の基本的な運転方法が、図7A及び図7Bに沿って説明される。
 まず、図7A及び図7Bはランキンサイクル31の運転領域図である。図7Aの横軸は外気温、縦軸はエンジン水温(冷却水温度)である。図7Bの横軸はエンジン回転速度、縦軸はエンジントルク(エンジン負荷)である。
 ランキンサイクル31は、図7A及び図7Bの両方の条件が満たされた場合に運転される。図7Aにおいては、エンジン2の暖機を優先する低水温側の領域と、コンプレッサ52の負荷が増大する高外気温側の領域でランキンサイクル31を停止している。排気温度が低く回収効率が悪い暖機時は、むしろランキンサイクル31を運転しないことで冷却水温度を速やかに上昇させる。高い冷房能力が要求される高外気温時はランキンサイクル31を止めて、冷凍サイクル51に十分な冷媒と凝縮器38の冷却能力を提供する。図7Bにおいては、ハイブリッド車両であるので、EV走行領域と、膨張機37のフリクションが増大する高回転速度側の領域でランキンサイクル31を停止している。膨張機37は全ての回転速度でフリクションが少ない高効率な構造とすることが難しいことから、図7Bの場合では、運転頻度の高いエンジン回転速度域でフリクションが小さく高効率となるように、膨張機37が構成(膨張機37各部のディメンジョン等が設定)さている。
 図8は膨張機トルクでエンジン出力軸の回転をアシストしている途中でハイブリッド車両1の加速が行われたときの様子をモデルで示したタイミングチャートである。なお、図8の右側には、このときに膨張機37の運転状態が推移する様子を膨張機トルクマップ上に表している。膨張機トルクマップの等高線で区切られた範囲のうち、膨張機回転速度が低く膨張機上流圧力が高い部分(左上)が膨張機トルクが最も大きくなる傾向である。膨張機回転速度が高く膨張機上流圧力が低くなるほど(右下に進むほど)膨張機トルクが小さくなる傾向である。特に斜線部の範囲は、冷媒ポンプを駆動する前提では膨張機トルクがマイナスになって、エンジンに対しては負荷となってしまう領域である。
 運転者がアクセルペダルを踏込むt1までは、定速走行が継続されて膨張機37が正のトルクを発生させており、膨張機トルクによるエンジン出力軸の回転アシストが行われている。
 t1以降、膨張機37の回転速度、すなわち冷媒ポンプ32の回転速度がエンジン回転速度に比例して上昇する一方で、排気温度又は冷却水温度の上昇は、エンジン回転速度の上昇に対して遅れる。そのため、冷媒ポンプ32の回転速度の上昇によって増大した冷媒量に対して回収可能な熱量の割合が低下する。
 従って、膨張機回転速度が上昇するにつれ、膨張機上流の冷媒圧力が低下し、膨張機トルクは低下する。
 この膨張機トルクの低下によって、膨張機トルクが十分得られなくなると(例えばゼロ付近になるt2のタイミングで)、膨張機上流弁62を開状態から閉状態へと切換えて、回生効率の悪化が回避される。すなわち、膨張機トルクの過度の低下に伴って膨張機37が逆にエンジン2に引き摺られる現象が回避される。
 膨張機上流弁62を開状態から閉状態へと切換えた後、t3のタイミングで膨張機クラッチ35が接続(締結)から切断(解放)へと切換えられる。この膨張機クラッチ35の切断時期を、膨張機上流弁62を開状態から閉状態へと切換えた時期よりも幾分遅らせることによって、膨張機上流の冷媒圧力を十分低下させられる。これによって、膨張機クラッチ35が切り離されたときに、膨張機37が過回転になることが防止される。また、冷媒ポンプ32によって多めの冷媒が熱交換器36内に供給され、ランキンサイクル31が停止中も冷媒が効果的に加熱されることで、ランキンサイクル31がスムーズに運転を再開できる。
 t3以降、エンジン2の放熱量の上昇によって膨張機上流圧力が再び上昇する。t4のタイミングで、膨張機上流弁62が閉状態から開状態へと切換えられ、膨張機37への冷媒の供給が再開される。また、t4で膨張機クラッチ35が再び接続される。この膨張機クラッチ35の再接続によって、膨張機トルクによるエンジン出力軸の回転アシストが再開される。
 図9は、膨張機上流弁62が閉じられ膨張機クラッチ35を切断した状態の、ランキンサイクルの運転停止から、図8(t4の制御)と異なる態様でランキンサイクル31の再起動を行なう様子をモデルで示したタイミングチャートである。
 t11のタイミングで運転者がアクセルペダルを踏込むとアクセル開度が増大する。t11では、ランキンサイクル31の運転は停止されている。このため、膨張機トルクはゼロを維持している。
 t11からのエンジン回転速度の上昇に伴ってエンジン2の放熱量が増大し、この放熱量の増大によって熱交換器36に流入する冷却水温度が高くなり、熱交換器36内の冷媒の温度が上昇する。膨張機上流弁62は閉じているので、この熱交換器36による冷媒温度の上昇によって、膨張機上流弁62の上流の冷媒圧力、つまり膨張機上流圧力が上昇していく(t11~t12)。
 この運転状態の変化によってランキンサイクル非運転域からランキンサイクル運転域へと切換わる。膨張機上流弁62がなく、ランキンサイクル運転域に移行したときに、即座に膨張機クラッチ35を切断状態から接続状態へと切換えて膨張機37をエンジン出力軸と連結したのでは、膨張機37がエンジン2の負荷となる上にトルクショックが生じてしまう。
 一方、図9では、ランキンサイクル運転域へと切換わったとき、即座に膨張機上流弁62を閉状態から開状態へと切換えることはしない。すなわち、ランキンサイクル運転域に移行した後も膨張機上流弁62の閉状態を続ける。
 やがて、膨張機上流圧力と膨張機下流圧力との差圧が大きくなって所定圧以上となるt12のタイミングで膨張機37を運転(駆動)できると判断し、膨張機上流弁62を閉状態から開状態に切換える。この膨張機上流弁62の開状態への切換によって膨張機37に所定圧の冷媒が供給され、膨張機回転速度がゼロから速やかに上昇する。
 この膨張機回転速度の上昇で膨張機回転速度がエンジン回転速度に到達するt13のタイミングで、膨張機クラッチ35を切断状態から接続状態へと切換える。膨張機37が十分に回転速度を増す前に膨張機クラッチ35を接続したのでは、膨張機37がエンジン負荷となるし、トルクショックも生じ得る。これに対して、エンジン出力軸との回転速度差がなくなるt13で膨張機クラッチ35を遅れて接続することで、膨張機37がエンジン負荷となることも、膨張機クラッチ35を締結することに伴うトルクショックも防止できる。
 図10、図11は第1実施形態のエンジン2の概略平面図(鉛直上方から見た図)である。直列4気筒のエンジン2は、車両進行方向に対して直交する方向に置かれる、いわゆる横置きエンジンである。このエンジン2では、図10に示されるように排気マニホールド4が車両フロント側に吸気マニホールド91が車両リヤ側に配置される。または図11に示されるように排気マニホールド4が車両リヤ側に吸気マニホールド91が車両フロント側に向けて配置される。なお、図10のエンジン2は、図5に示されるエンジン2と同じである。
 こうしたエンジン配置では、図1、図2A、図5、図10に示されるように、膨張機クラッチ35、冷媒ポンプ32及び膨張機37が、この順に並べられて一体的にケース96内に収容されて膨張機ポンプ95が形成される。膨張機ポンプ95は、全体がほぼ柱状である。膨張機ポンプの軸がエンジン2の出力軸2bと平行に配置される。
 ここで、「膨張機ポンプの軸」とは、膨張機クラッチ35の軸、冷媒ポンプ32軸及び膨張機37の出力軸のことである。ケース96には、図2Aに示されるように、膨張機37の膨張機ハウジング37a、冷媒ポンプ32のポンプハウジング32aを含む。ここで、ポンプハウジング32aは、膨張機クラッチ35のクラッチハウジングを兼ねる。
 第1実施形態では、さらにケース96の膨張機側端部96a(図2A参照)が、図10に示される場合にはエンジン前面2cからみて排気マニホールド4の左側面4a(図5参照)に近接させて設けられる。図11に示される場合にはエンジン後面2dからみて排気マニホールド4の右側面に近接させて設けられる。膨張機ポンプ95のケース96がこのように設けられる理由は膨張機ポンプ95の2つの部品(膨張機クラッチ35、膨張機37)に対する熱的要求が異なるためである。
 次に、膨張機ポンプ95の2つの部品(膨張機クラッチ35、膨張機37)に対する熱的要求が異なる点について、本発明者が改めて考慮した点を述べる。
 3つの部品(膨張機クラッチ35、冷媒ポンプ32、膨張機37)が一体的にケース96に収納されれば、構成が簡素となり、コストが抑えられる。しかしながら、2つの部品(膨張機クラッチ35、膨張機37)に対する熱的要求が異なる。
 熱交換器36の出口のガス冷媒は、冷媒通路42を介して膨張機37に供給される。冷媒通路42を流れるガス冷媒は、温度が低下せずに、膨張機37の入口に供給されることが好ましい。これは、膨張機回転速度は膨張機37の入口のガス冷媒の温度及び圧力に依存するので、膨張機37の入口に到達する前に冷媒が冷えては、膨張機回転速度が低下するためである。
 ここで、膨張機37は、図2A、図2Cにも示されるように、固定スクロール37cと可動スクロール37dとの二つの渦巻きが噛み合う、いわゆるスクロール式の膨張機である。熱交換器36から出た高圧ガス冷媒は、ケース96の膨張機側端部96a(図2A参照)の中央に設けられた吸入ポート37bに入る。吸入ポート37bは、膨張機37の軸の近くに設けられ、膨張機37の軸と平行な円柱状の空間である。この吸入ポート37bに入った高圧ガス冷媒は、二つの渦巻きが噛み合ってできる作動室の中で膨張する。その膨張エネルギによって可動スクロール37dが回転駆動させられる。そしてガス冷媒は、外周側へと移動し、吐出通路37eを通って、膨張機ハウジング37aの周縁に設けられている吐出ポート37fから外部へと出る。
 膨張機クラッチ35は、二つの部材の間の摩擦力を用いて動力伝達を断接するものであるので、動力伝達の接続時に二つの部材の間で摩擦熱が生じる。この場合に、二つの部材の温度が上昇するほど摩擦力が低下する。つまり、膨張機クラッチ35が動力伝達を確実に断接するには、膨張機クラッチ35は、できるだけ高熱に晒されない場所に設けられることが好ましい。
 このように、膨張機37と膨張機クラッチ35とで熱的要求が明らかに異なるのであるから、膨張機ポンプ95内における2つの部品(膨張機クラッチ35、膨張機37)の熱的要求に応じられるように、エンジン2の最適な場所に膨張機ポンプ95が設けられることが重要である。
 この場合、冷媒ポンプと膨張機とを一つの密閉ケース内に収納した従来装置がある。しかしながら、密閉ケースがエンジンのどの位置に設けられるかについては一切記載されていない。
 そこで本実施形態では、図10、図11に示されるように、膨張機ポンプ95のケース96がエンジン2の高温部に設けられる。この結果、膨張機37が膨張機クラッチ35よりも相対的に高温となる。詳述すると、膨張機37の吸入ポート37bがエンジンの高温部と近接するように、ケース96が設けられる。これによって、膨張機の吸入ポート37dに入る前に冷媒通路42を流れるガス冷媒の有する熱が冷媒通路42から逃げにくくなる。ここで、「エンジンの高温部」とは、第1に各気筒の排気を集合させて排出する排気マニホールド4であり、第2に排気マニホールド集合部に接続されるマニホールド触媒92である。
 これについて、図5が参照されて説明される。図5では、右斜め下方が車両フロント側である。車両フロント側つまりエンジン前面2cに排気マニホールド4が設けられる。エンジン前面2cの鉛直上方にある排気マニホールド4の集合部に対してマニホールド触媒92は鉛直方向(図5で上下方向)に接続される。そして、排気マニホールド4のうち手前に見える側が排気マニホールド4の左側面4aである。奥側(見えない側)が排気マニホールド4の右側面である。このうち左側面4aに近接するように、ケース96の膨張機側端部96aが設けられる。
 ここで、本実施形態の作用効果が説明される。
 本実施形態によれば、膨張機の軸と冷媒ポンプの軸とを同軸で配置して、膨張機クラッチ35、冷媒ポンプ32及び膨張機37をこの順に一体的に収容するケース96が、膨張機37が膨張機クラッチ35よりも高温となるように、排気マニホールド4(エンジンの高温部)に近くに設けられる。このような構成にしたので、膨張機37の吸入ポート37b(膨張機入口)に入る前に冷媒から熱が逃げることが抑制されて、膨張機37の熱回収効率が低下することが防止される。また、膨張機クラッチ35で発生する摩擦熱が逃げやすくなり膨張機クラッチ35の信頼性が向上する。
 つまり、本実施形態によれば、膨張機37の吸入ポート37bが排気マニホールド4(エンジンの高温部)近接するようにケース96が設けられる。このような構造であるので、吸入ポート37bから熱が逃げにくくなり膨張機37の熱回収効率が向上するのである。
 また比較的低温の流体が流れるポンプを膨張機とクラッチとの間に挟むため、膨張機からクラッチへの熱の流れが効果的に抑制される。
 エンジン2は、4つ(複数)の気筒が直線状に配置される。そして、エンジン2は、4つの気筒の排気を集合して排出する排気マニホールド4を有する。そして、膨張機ポンプ95の軸(同軸に配置した軸)とエンジン2の出力軸2bとが平行に配置され、ケース96の膨張機側端部96aが排気マニホールド4と近接するようにケース69が設けられる。このような構成であるので、膨張機37によって回生された動力がエンジン2に伝達する動力伝達機構(クランクプーリ2a、ポンププーリ33、ベルト34)が容易に構成される。また膨張機37は、高温の排気マニホールド4からの放射熱及び雰囲気温度によって効果的に熱を受け取ることができる。
 (第2実施形態)
 図12は車両フロント側から見た第2実施形態のエンジン2の概略正面図である。第2実施形態の直列4気筒エンジン2は、図10に示されるエンジン2と同じエンジンである。すなわち、図5にも示されたように、エンジン前面2cの鉛直上方に排気マニホールド4が見えており、この排気マニホールド4の集合部に対して鉛直方向(図12で上下方向)にマニホールド触媒92が接続されている。
 こうしたエンジン配置のときに、第2実施形態では、膨張機ポンプ95の軸がエンジン2の出力軸と平行に配置される。また膨張機ポンプのケース96の膨張機側端部96aがマニホールド触媒92の左側面92aに近接させて設けられる。
 第2実施形態によれば、膨張機37で回生された動力をエンジン2に伝達する動力伝達機構(クランクプーリ2a、ポンププーリ33、ベルト34)の構成が容易である。また膨張機37は、高温のマニホールド触媒92からの放射熱及び雰囲気温度によって効果的に熱を受け取ることができる。
 (第3実施形態)
 図13は第3実施形態のエンジン2の概略平面図(鉛直上方から見た図)で、第1実施形態の図10と置き換わるものである。図10と同一部分には同一の符号が付される。
 第3実施形態でも、膨張機ポンプ95の軸がエンジン2の出力軸2bと平行に配置される。さらに、膨張機ポンプ95のケース96が吸気マニホールド91の鉛直下方であって、エンジン後面2dに沿わせて設けられる。
 第3実施形態によれば、エンジンは、排気マニホールドが車両フロント側、吸気マニホールドが車両リヤ側となるように、車両に横置きされ、ケース96は、エンジンの後面2dに設けられる、このような構成であれば、車両1の走行時にケース96の膨張機クラッチ35側(図13で左側)には走行風が通って膨張機クラッチ35が冷却される。また、膨張機37側(図13で右側)は、エンジン2によって走行風が遮られる。したがって、膨張機37側は、走行風による冷却が生じにくくなる。これによって、ケース96のうち膨張機37側を膨張機クラッチ35側よりも相対的に高温とすることができる。
 (第4実施形態)
 図14は、第3実施形態の膨張機ポンプ95及び膨張機37に接続される冷媒通路42及び冷媒通路43を取り出して示す概略図である。図14の「高温部」は、排気マニホールド4やマニホールド触媒92である。なお、図14には冷媒通路43との関係が明確となるように、ケース96を透視して示す。
 第4実施形態は、膨張機37の吸入ポート37b(図2A参照)に接続する冷媒通路42のうち、吸入ポート37bに近接する第1部位42aが、円柱状の吸入ポート37bの軸と同じ位置になるように設ける。つまり、第1部位42aが、吸入ポート37bの軸と一直線上に並ぶように設ける。第1部位42aに接続する第2部位42bは、第1部位42aと直交するように設けられる。
 第4実施形態によれば、膨張機37のうち冷媒が最も高温となる吸入ポート37bが設けられるケース96の膨張機側端部96aが、容易に排気マニホールド4やマニホールド触媒92(エンジンの高温部)に近接する。
 また、吸入ポート37bに対して第1部位42aからガス冷媒を直線的に取り入れることができるので、圧力損失が少なく、膨張機効率を向上できる。
 以上、本発明の実施形態が説明されたが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲は、上記実施形態の具体的構成には限定されない。
 たとえば、実施形態では、ハイブリッド車両の場合で説明したが、これに限られるものでない。エンジン2のみを搭載した車両にも適用できる。エンジン2は、ガソリンエンジン、ディーゼルエンジンのいずれでもよい。
 本願は、2011年9月30日に日本国特許庁に出願された特願2011-216738に基づく優先権を主張し、これらの出願の全ての内容は参照によって本明細書に組み込まれる。

Claims (6)

  1.  エンジンの廃熱を冷媒に回収する熱交換器、熱交換器から出た冷媒を用いて動力を発生させる膨張機、膨張機を出た冷媒を凝縮させる凝縮器、膨張機によって駆動されて凝縮器から出た冷媒を熱交換器に供給する冷媒ポンプ、を備えるランキンサイクルと、
     冷媒ポンプを駆動しても膨張機の動力に余裕がある場合の余剰動力をエンジンに伝達する動力伝達機構と、
     動力伝達機構による動力伝達を断接するクラッチと、
     膨張機の軸と冷媒ポンプの軸とを同軸で配置して、クラッチ、冷媒ポンプ及び膨張機をこの順に一体的に収容するとともに、膨張機がクラッチよりも高温となるようにエンジンの高温部付近に設けられるケースと、
    を含むエンジン廃熱利用装置。
  2.  請求項1に記載のエンジン廃熱利用装置において、
     ケースは、膨張機の吸入ポートがエンジンの高温部と近接するように設けられる、
    エンジン廃熱利用装置。
  3.  請求項1に記載のエンジン廃熱利用装置において、
     エンジンは、複数の気筒が直線状に配置され、複数の気筒の排気を集合させて排出する排気マニホールドを有し、
     膨張機の軸及び冷媒ポンプの軸は、エンジンの出力軸と平行であり、
     ケースは、膨張機側端部が排気マニホールドと近接するように設けられる、
    エンジン廃熱利用装置。
  4.  請求項1に記載のエンジン廃熱利用装置において、
     エンジンは、複数の気筒が直線状に配置され、複数の気筒の排気を集合させて排出する排気マニホールドと、排気マニホールドの集合部に接続される触媒とを有し、
     膨張機の軸及び冷媒ポンプの軸は、エンジンの出力軸と平行であり、
     ケースは、膨張機側端部が触媒と近接するように設けられる、
    エンジン廃熱利用装置。
  5.  請求項1に記載のエンジン廃熱利用装置において、
     膨張機は、固定スクロールと可動スクロールとの二つの渦巻きが噛み合って中央側の吸入ポートから周縁側の吐出ポートに冷媒を流すスクロール式であり、
     熱交換器から出た冷媒を膨張機の吸入ポートに供給する冷媒通路は、膨張機の吸入ポートの軸と一直線上に並ぶように接続される第1部位と、第1部位と直交して接続される第2部位とを有する、
    エンジン廃熱利用装置。
  6.  請求項1に記載のエンジン廃熱利用装置において、
     エンジンは、排気マニホールドが車両フロント側、吸気マニホールドが車両リヤ側となるように、車両に横置きされ、
     ケースは、エンジンの後面に設けられる、
    エンジン廃熱利用装置。
PCT/JP2012/070011 2011-09-30 2012-08-06 エンジン廃熱利用装置 WO2013046932A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/237,961 US9291074B2 (en) 2011-09-30 2012-08-06 Engine waste-heat utilization device
CN201280047337.7A CN104011334B (zh) 2011-09-30 2012-08-06 发动机废热利用装置
EP12837266.1A EP2762686B1 (en) 2011-09-30 2012-08-06 Engine-waste-heat utilization device
JP2013536040A JP5707500B2 (ja) 2011-09-30 2012-08-06 エンジン廃熱利用装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011216738 2011-09-30
JP2011-216738 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013046932A1 true WO2013046932A1 (ja) 2013-04-04

Family

ID=47994984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070011 WO2013046932A1 (ja) 2011-09-30 2012-08-06 エンジン廃熱利用装置

Country Status (5)

Country Link
US (1) US9291074B2 (ja)
EP (1) EP2762686B1 (ja)
JP (1) JP5707500B2 (ja)
CN (1) CN104011334B (ja)
WO (1) WO2013046932A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2320058B1 (en) * 2008-08-26 2015-11-25 Sanden Corporation Waste heat utilization device for internal combustion engine
JP5804879B2 (ja) * 2011-09-30 2015-11-04 日産自動車株式会社 廃熱利用装置
JP6097115B2 (ja) * 2012-05-09 2017-03-15 サンデンホールディングス株式会社 排熱回収装置
US9732662B2 (en) * 2013-06-14 2017-08-15 GM Global Technology Operations LLC Coolant control systems and methods for transmission temperature regulation
FR3065254B1 (fr) * 2017-04-14 2019-06-14 IFP Energies Nouvelles Ensemble de turbopompe pour un circuit ferme, en particulier de type a cycle de rankine, associe a un moteur a combustion interne, notamment pour vehicule automobile
EP3404244B1 (de) * 2017-05-15 2021-02-24 Orcan Energy AG Vorrichtung und verfahren zur standardisierung und zum aufbau eines orc-containers
GB2567858B (en) 2017-10-27 2022-08-03 Spirax Sarco Ltd Heat engine
JP2020079004A (ja) * 2018-11-13 2020-05-28 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN109751884B (zh) * 2019-01-26 2020-07-28 福建省德化县新顺机械有限公司 一种陶瓷窑炉废热利用装置
RU2701819C1 (ru) * 2019-05-06 2019-10-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский автомобильно-дорожный государственный технический университет (МАДИ)" Гибридный тепловой двигатель

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399464A (ja) * 1986-10-15 1988-04-30 株式会社デンソー 内燃機関の排熱利用装置
JP2005030386A (ja) 2003-06-20 2005-02-03 Denso Corp 流体機械
JP2008274834A (ja) * 2007-04-27 2008-11-13 Sanden Corp 流体機械、該流体機械を用いたランキン回路及び車両の廃熱利用システム
JP2010190185A (ja) 2009-02-20 2010-09-02 Nissan Motor Co Ltd ランキンサイクルシステム搭載車両

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182504A (ja) * 1999-12-22 2001-07-06 Honda Motor Co Ltd 車載用ランキンサイクルシステム
EP1443201B1 (en) * 2003-01-28 2016-03-23 Denso Corporation Fluid machine operable in both pump mode and motor mode and waste heat recovering system having the same
US7748226B2 (en) * 2003-03-25 2010-07-06 Denso Corporation Waste heat utilizing system
JP4039320B2 (ja) * 2003-06-17 2008-01-30 株式会社デンソー 流体機械
DE102005032277B4 (de) * 2004-07-12 2019-08-14 Denso Corporation Dampfkompressionskälteerzeuger
JP4549941B2 (ja) * 2004-10-05 2010-09-22 株式会社デンソー 複合流体機械
GB0608796D0 (en) * 2006-05-04 2006-06-14 Graham Alan H Hybrid engine
JP5247551B2 (ja) * 2009-03-19 2013-07-24 サンデン株式会社 内燃機関の廃熱利用装置
JP5163620B2 (ja) * 2009-10-15 2013-03-13 株式会社豊田自動織機 廃熱回生システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399464A (ja) * 1986-10-15 1988-04-30 株式会社デンソー 内燃機関の排熱利用装置
JP2005030386A (ja) 2003-06-20 2005-02-03 Denso Corp 流体機械
JP2008274834A (ja) * 2007-04-27 2008-11-13 Sanden Corp 流体機械、該流体機械を用いたランキン回路及び車両の廃熱利用システム
JP2010190185A (ja) 2009-02-20 2010-09-02 Nissan Motor Co Ltd ランキンサイクルシステム搭載車両

Also Published As

Publication number Publication date
EP2762686A1 (en) 2014-08-06
CN104011334B (zh) 2016-01-20
US20140165567A1 (en) 2014-06-19
EP2762686B1 (en) 2020-02-12
JPWO2013046932A1 (ja) 2015-03-26
CN104011334A (zh) 2014-08-27
US9291074B2 (en) 2016-03-22
JP5707500B2 (ja) 2015-04-30
EP2762686A4 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5716837B2 (ja) エンジン廃熱利用装置
JP5761358B2 (ja) ランキンサイクル
JP5707500B2 (ja) エンジン廃熱利用装置
US9441503B2 (en) Waste heat utilization apparatus
JP5740273B2 (ja) ランキンサイクル
WO2013046885A1 (ja) ランキンサイクル
WO2013047139A1 (ja) ランキンサイクルシステム
JP6344020B2 (ja) 車両
JP5894756B2 (ja) ランキンサイクルシステム
JP2013076374A (ja) ランキンサイクル及びランキンサイクルに用いる熱交換器
WO2013047148A1 (ja) エンジンシステム、およびその制御方法
WO2013046925A1 (ja) エンジンの廃熱利用装置
JP2013076372A (ja) 廃熱利用装置
WO2013046936A1 (ja) エンジンの廃熱利用装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536040

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14237961

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012837266

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE