WO2013046284A1 - 光信号処理装置、及び光信号処理方法 - Google Patents

光信号処理装置、及び光信号処理方法 Download PDF

Info

Publication number
WO2013046284A1
WO2013046284A1 PCT/JP2011/007233 JP2011007233W WO2013046284A1 WO 2013046284 A1 WO2013046284 A1 WO 2013046284A1 JP 2011007233 W JP2011007233 W JP 2011007233W WO 2013046284 A1 WO2013046284 A1 WO 2013046284A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
signal
component
transistor
signal processing
Prior art date
Application number
PCT/JP2011/007233
Other languages
English (en)
French (fr)
Inventor
鈴木 康之
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012519838A priority Critical patent/JP5246381B1/ja
Priority to US13/980,851 priority patent/US9071365B2/en
Publication of WO2013046284A1 publication Critical patent/WO2013046284A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6165Estimation of the phase of the received optical signal, phase error estimation or phase error correction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/087Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with IC amplifier blocks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/336A I/Q, i.e. phase quadrature, modulator or demodulator being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45702Indexing scheme relating to differential amplifiers the LC comprising two resistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45722Indexing scheme relating to differential amplifiers the LC comprising one or more source followers, as post buffer or driver stages, in cascade in the LC

Definitions

  • the present invention relates to an optical signal processing apparatus and an optical signal processing method for processing an optical signal.
  • optical communication systems are increasing with the spread of the Internet.
  • trunk systems research is being conducted to transmit signals at a speed exceeding 40 Gbit / s per wavelength.
  • the bit rate per wavelength is increased, the signal quality deteriorates due to a decrease in the optical signal-to-noise ratio (OSNR) tolerance and waveform distortion caused by the chromatic dispersion, polarization mode dispersion, and nonlinear effects of the transmission line. Becomes larger.
  • OSNR optical signal-to-noise ratio
  • CMRR common mode noise rejection ratio
  • the first optical signal generating means for generating the first optical signal by causing the received optical signal received from the outside and the local optical signal to interfere with each other with the first phase difference;
  • Second optical signal generation means for generating a second optical signal by causing the received optical signal and the local optical signal to interfere with each other with a second phase difference shifted by ⁇ from the first phase difference;
  • a first photoelectric conversion element that converts the first optical signal into a first electrical signal;
  • DC component correction means for reducing the difference between the magnitude of the DC component of the first electrical signal and the magnitude of the DC component of the second electrical signal;
  • a differential transimpedance circuit to which the first electric signal and the second electric signal after being corrected by the DC component correcting means are input;
  • An optical signal processing device is provided.
  • first optical signal processing means for generating a first digital signal by causing interference between a received optical signal received from the outside and a local optical signal under a first condition
  • Second optical signal processing means for generating a second digital signal by causing the received optical signal and the local optical signal to interfere with each other under a second condition
  • Digital processing means for processing the first digital signal and the second digital signal to extract a signal included in the received optical signal
  • the first optical signal processing means includes First optical signal generating means for generating a first optical signal by causing the received optical signal and the local optical signal to interfere with each other in phase;
  • Second optical signal generation means for generating a second optical signal by causing the received optical signal and the local optical signal to interfere with each other with a phase difference of ⁇ ;
  • a first photoelectric conversion element that converts the first optical signal into a first electrical signal
  • a second photoelectric conversion element that converts the second optical signal into a second electrical signal;
  • First DC component correction means for reducing the difference between the DC component of the first electrical signal and the DC component
  • the received optical signal received from the outside and the local optical signal output from the light source on the receiving side are caused to interfere with the first phase difference to generate the first optical signal, Causing the received optical signal and the local optical signal to interfere with each other with a second phase difference shifted by ⁇ from the first phase difference to generate a second optical signal; Converting the first optical signal into a first electrical signal; Converting the second optical signal into a second electrical signal; An optical signal that reduces the difference between the direct current component of the first electrical signal and the direct current component of the second electrical signal and then inputs the first electrical signal and the second electrical signal to a differential transimpedance circuit.
  • a processing method is provided.
  • the first optical signal generating means for generating the first optical signal by causing the received optical signal received from the outside and the local optical signal to interfere with each other with the first phase difference;
  • Second optical signal generation means for generating a second optical signal by causing the received optical signal and the local optical signal to interfere with each other with a second phase difference shifted by ⁇ from the first phase difference;
  • a first photoelectric conversion element that converts the first optical signal into a first electrical signal;
  • DC component correcting means for reducing the DC component of the first electric signal and the DC component of the second electric signal;
  • a differential transimpedance circuit to which the first electric signal and the second electric signal after being corrected by the DC component correcting means are input;
  • An optical signal processing device is provided.
  • DC component correction means for reducing the difference between the magnitude of the DC component of the first electrical signal and the magnitude of the DC component of the second electrical signal;
  • a differential transimpedance circuit to which the first electric signal and the second electric signal after being corrected by the DC component correcting means are input;
  • a transimpedance amplifier is provided.
  • first optical signal processing means for generating a first digital signal by causing interference between a received optical signal received from the outside and a local optical signal under a first condition
  • Second optical signal processing means for generating a second digital signal by causing the received optical signal and the local optical signal to interfere with each other under a second condition
  • Digital processing means for processing the first digital signal and the second digital signal to extract a signal included in the received optical signal
  • the first optical signal processing means includes First optical signal generating means for generating a first optical signal by causing the received optical signal and the local optical signal to interfere with each other in phase;
  • Second optical signal generation means for generating a second optical signal by causing the received optical signal and the local optical signal to interfere with each other with a phase difference of ⁇ ;
  • a first photoelectric conversion element that converts the first optical signal into a first electrical signal
  • a second photoelectric conversion element that converts the second optical signal into a second electrical signal;
  • First DC component correction means for reducing the DC component of the first electric signal and reducing the DC component of
  • the present invention it is possible to suppress an increase in CMRR of the optical signal processing device. Further, according to the present invention, the dynamic range of the optical signal processing device can be increased.
  • FIG. 1 is a block diagram illustrating a configuration of an optical signal processing device 10 according to the first embodiment.
  • the optical signal processing device 10 is a device that receives an optical signal by, for example, a digital coherent method.
  • the optical signal processing apparatus 10 includes an optical hybrid 100, four photoelectric conversion elements 150, differential transimpedance amplifiers 200 and 202, two AD conversion units 300, and a digital signal processing unit 400.
  • the received optical signal received from the outside is separated into X polarization and Y polarization by the polarization beam splitter before being input to the optical signal processing device 10.
  • One of the X polarization and the Y polarization is input to the optical signal processing device 10.
  • the optical signal processing device 10 separates the X polarization or Y polarization of the input received optical signal into an in-phase baseband signal (I) optical signal and a quadrature baseband signal (Q) optical signal.
  • the optical signal for the in-phase baseband signal (I) and the optical signal for the quadrature baseband signal (Q) are both polarized, and the directions of the polarization are orthogonal to each other.
  • the differential transimpedance amplifiers 200 and 202 and the AD converter 300 perform coherent detection (for example, homodyne detection or heterodyne detection) on the optical signal for the in-phase baseband signal (I) and the optical signal for the quadrature baseband signal (Q). ) To convert into in-phase baseband signal (I) and quadrature baseband signal (Q).
  • the digital signal processing unit 400 reproduces the transmitted multilevel modulated optical signal from the in-phase baseband signal and the quadrature baseband signal, and performs demodulation processing on the multilevel modulated optical signal.
  • the optical hybrid 100 generates the first optical signal by causing the local light to interfere with the X polarization (or Y polarization) of the received optical signal received from the outside with the first phase difference.
  • the optical hybrid 100 also generates a second optical signal by causing local light to interfere with the X polarization (or Y polarization) of the received optical signal with a second phase difference that is shifted by ⁇ from the first phase difference. To do.
  • the optical hybrid 100 includes an optical mixer 112 (first optical signal generation unit), 114 (second optical signal generation unit), 122 (third optical signal generation unit), and 124 (fourth optical signal generation unit). , And optical phase shifters 116, 126, and 128.
  • the X polarization (or Y polarization) of the received optical signal is input to each of the optical mixers 112, 114, 122, and 124.
  • Local light is input to the optical mixer 112 without passing through any phase shifter.
  • Local light is input to the optical mixer 114 via the optical phase shifter 116.
  • the optical phase shifter 116 shifts the phase of the local light by ⁇ .
  • Local light is input to the optical mixer 122 via the optical phase shifter 126.
  • the optical phase shifter 126 shifts the phase of the local light by ⁇ / 2 in the same direction as the optical phase shifter 116.
  • Local light is input to the optical mixer 124 via the optical phase shifter 126 and the optical phase shifter 126.
  • the optical phase shifter 128 shifts the phase of the local light by ⁇ in the same direction as the optical phase shifter 126.
  • the optical mixer 112 generates the first optical signal by causing the X polarization (or Y polarization) of the received optical signal to interfere with the local light in the same phase, and the optical mixer 114 performs the X polarization ( (Or Y polarization) and local light are interfered with each other by a phase difference ⁇ to generate a second optical signal.
  • the optical mixer 122 generates a third optical signal by causing X-polarization (or Y-polarization) of the received optical signal to interfere with the local light with a phase difference of ⁇ / 2, and the optical mixer 124 performs X of the received optical signal.
  • the fourth optical signal is generated by causing the polarization (or Y polarization) and the local light to interfere with each other with a phase difference of 3 ⁇ / 2.
  • the first optical signal and the second optical signal form a set of signals, and the third optical signal and the fourth optical signal also form a set of signals.
  • the four photoelectric conversion elements 150 photoelectrically convert the first optical signal, the second optical signal, the third optical signal, and the fourth optical signal, respectively, to obtain a first electrical signal, a second electrical signal, a third electrical signal, And a fourth electrical signal is generated.
  • the photoelectric conversion element 150 is, for example, a photodiode.
  • the first electric signal and the second electric signal are input to the differential transimpedance amplifier 200, and the third electric signal and the fourth electric signal are input to the differential transimpedance amplifier 202.
  • the differential transimpedance amplifier 200 includes a DC component correction unit 210, a transimpedance circuit 240, and a variable gain amplifier 250.
  • the DC component correction unit 210 reduces the difference between the magnitude of the DC component of the first electric signal and the magnitude of the DC component of the second electric signal. Details of the configuration of the DC component correction unit 210 will be described later.
  • the transimpedance circuit 240 receives the first electric signal and the second electric signal after the DC component is corrected by the DC component correction unit 210.
  • the variable gain amplifier 250 amplifies the magnitude of the output of the transimpedance circuit 240 and outputs it to the AD conversion unit 300.
  • the differential transimpedance amplifier 202 also includes a DC component correction unit 210, a transimpedance circuit 240, and a variable gain amplifier 250.
  • the differential transimpedance amplifier 202 is different from the differential transimpedance amplifier 200 except that a third electrical signal is input instead of the first electrical signal and a fourth electrical signal is input instead of the second electrical signal. It has the same function.
  • the AD converter 300 converts the two analog signals output from the differential transimpedance amplifier 200 into digital signals.
  • This digital signal is an in-phase baseband signal.
  • the AD converter 302 converts the two analog signals output from the differential transimpedance amplifier 202 into digital signals.
  • This digital signal is an orthogonal baseband signal.
  • CMRR common mode rejection ratio
  • CMRR quadrature phase shift keying
  • the received optical signal input to the first input unit 102 is converted into the first optical signal, the second optical signal, the third optical signal, and the fourth optical signal in the optical hybrid 100.
  • the received optical signal input to the first input unit 102 is expressed by the following equation (2), and the local light is expressed by the following equation (3).
  • ⁇ 1 is the frequency of the received optical signal
  • is the frequency of the local light
  • is the phase.
  • 0 in the generation of the first optical signal
  • ⁇ in the generation of the second optical signal
  • ⁇ / 2 in the generation of the third optical signal
  • 3 ⁇ / 2.
  • the first optical signal is represented by the following equation (4)
  • the second optical signal is represented by the following equation (5)
  • the third optical signal is represented by the following (6)
  • the fourth optical signal is expressed by the following expression (7).
  • A, b, c, d are coefficients resulting from the quantum efficiency of the photoelectric conversion element 150 and the loss of the optical hybrid 100.
  • the first and second terms are DC components (offset components), and the third term is signal phase information.
  • the output of the transimpedance circuit 240 of the differential transimpedance amplifier 200 is expressed by the following equations (8) and (9).
  • the output of the transimpedance circuit 240 of the differential transimpedance amplifier 202 is expressed by the following equations (10) and (11).
  • the differential signals (8) and (9) are input to the variable gain amplifier 250 of the differential transimpedance amplifier 200.
  • the differential signals (10) and (11) are input to the variable gain amplifier 250 of the differential transimpedance amplifier 200.
  • the light intensity B 2 of the local light is 10 times or more the intensity A 2 of the received optical signal, B 2 is dominant in (8) to (11). Therefore, when a difference occurs between the coefficients a and b in (8) and (9), the DC level of the output signal of the transimpedance circuit 240 of the differential transimpedance amplifier 200 changes greatly. Further, when a difference occurs between the coefficients c and d in (10) and (11), the DC level of the output signal of the transimpedance circuit 240 of the differential transimpedance amplifier 202 changes greatly. For this reason, when CMRR is insufficient, the accuracy of waveform distortion equalization by the variable gain amplifier 250 and the digital signal processing unit 400 is lowered.
  • the DC component correction unit 210 performs the difference between the magnitude of the DC component of the first electrical signal and the magnitude of the DC component of the second electrical signal (or the magnitude of the DC component of the third electrical signal).
  • the difference in the magnitude of the DC component of the fourth electric signal is reduced. Therefore, it is possible to suppress an increase in CMRR and suppress a decrease in signal processing accuracy by the optical signal processing device 10.
  • FIG. 2 is a diagram showing details of the configuration of the DC component correction unit 210 in the differential transimpedance amplifier 200 together with the optical hybrid 100 and the transimpedance circuit 240.
  • the optical hybrid 100 is simplified compared to FIG.
  • the DC component correction unit 210 includes a first transistor 222, a second transistor 224, and a constant current source 230.
  • the first transistor 222 and the second transistor 224 are bipolar transistors, but may be field effect transistors such as MOS transistors.
  • the first transistor 222 and the second transistor 224 constitute a differential circuit 220.
  • the first transistor 222 has a collector (a drain in the case of a field effect transistor) connected to a wiring for inputting the first electric signal to the DC component correction unit 210, and an emitter (a source in the case of a field effect transistor) is defined. It is connected to the input side of the current source 230.
  • the second transistor 224 has a collector connected to a wiring for inputting the second electric signal to the DC component correction unit 210, and an emitter connected to the input side of the constant current source 230.
  • the output side of the constant current source 230 is grounded through, for example, a resistor (not shown).
  • the above connection example shows the case where the first transistor 222 and the second transistor 224 are NPN bipolar transistors. However, the first transistor 222 and the second transistor 224 may be PNP-type bipolar transistors. In this case, the same effect as the above-described example can be obtained by appropriately changing the design.
  • the DC component correction unit 210 of the differential transimpedance amplifier 202 also has the exception that the third electric signal is input to the collector of the first transistor 222 and the fourth electric signal is input to the collector of the second transistor 224.
  • the DC component correction unit 210 of the differential transimpedance amplifier 200 has the same configuration.
  • the transimpedance circuit 240 has a differential amplifier, two emitter follower circuits, and two feedback resistors.
  • the DC component I PD1 of the first electrical signal is a direct current component I PD2 of the second electric signal equal to the input control voltage to the first transistor 222 (base) V 1 and the input control voltage to the second transistor 224 (base) V 2 is set to the same potential using the control unit 228.
  • the current I c1 flowing through the first transistor 222 is equal to the current I c2 flowing through the second transistor 224.
  • the direct current component (I PD1 -I c1 ) of the first electric signal input to the transimpedance circuit 240 is equal to the direct current component (I PD2 -I c2 ) of the second electric signal.
  • the control voltage is applied to the first transistor 222 using the control unit 228 ( Base) V 1 is set larger than the input control voltage (base) V 2 to the second transistor 224.
  • the current I c1 flowing through the first transistor 222 becomes larger than the current I c2 flowing through the second transistor 224 (I C1 > I C2 ).
  • a control unit 228 may be provided as shown in FIG.
  • the control unit 228 controls the input control voltage of the first transistor 222 and the input control voltage of the second transistor 224 based on the potentials of the two output signals (differential signals) of the transimpedance circuit 240.
  • the control unit 228 controls the control voltage of the first transistor 222 based on the potential of the first output (P signal) of the transimpedance circuit 240, and the second output (N
  • the control voltage of the second transistor 224 is controlled based on the potential of the signal.
  • the operation of the DC component correction unit 210 is not limited to the food back control from the output of the transimpedance circuit 240 only.
  • the first transistor 222 and the second transistor 224 may operate through the control unit 228 in accordance with a detection value by another detection method or an external input.
  • details of the control by the control unit 228 are as described with reference to FIG.
  • FIG. 3 shows an example of the waveform of the output signal after demodulation of the transimpedance circuit 240 when the received optical signal is 31.78911 Gb / s QPSK.
  • FIG. 4 shows an example of an output waveform of the transimpedance circuit 240 when the DC component correction unit 210 is not provided. Comparing these, it can be seen that by providing the DC component correction unit 210, the current difference is corrected and the output waveform of the transimpedance circuit 240 is improved accordingly.
  • the direct current components of the first electric signal and the second electric signal are reduced by controlling the first transistor 222 and the second transistor 224. (0 is also possible depending on the configuration of the DC component correction unit 210). Thereby, the input dynamic range required for the transimpedance circuit 240 can be reduced.
  • FIG. 18 shows a current signal output from the photoelectric conversion element 150 when the received optical signal is ⁇ 12 dBm and the local optical signal is 12 dBm.
  • the modulation signal is 0.4 mApp.
  • the direct current component is 1.8 mA, which is large with respect to the modulation signal. Even if such a current signal is input to the transimpedance circuit 240, it is extremely difficult to maintain the linearity of the transimpedance circuit 240. As a result, the demodulated signal is distorted.
  • FIG. 17 shows the relationship between the currents I c1 and I c2 flowing through the first transistor 222 and the second transistor 224. To compensate for the difference in DC current I PD1 and I PD2 in I c1 and I c2 difference, suppresses excessive DC current of the PD with the same current value I c1 and I c2.
  • FIG. 7 shows the relationship between the received optical signal and the optical power of the local light determined by the standardization committee of OIF (Optical Internetwoking Forum). It can be seen that the optical power of the local light is 10 times or more larger than the received optical signal. Since the coherent receiver requires high linearity, the differential transimpedance amplifier requires a wide input dynamic range. In the present embodiment, as described above, the dynamic range required for the transimpedance circuit 240 can be reduced.
  • FIG. 8 is a diagram illustrating a configuration of the DC component correction unit 210 used in the optical signal processing device 10 according to the second embodiment.
  • the optical signal processing apparatus 10 according to the present embodiment has the DC component correction unit according to the first embodiment shown in FIG. 2 except that the constant current source 230 of the DC component correction unit 210 is a current mirror circuit.
  • the configuration is the same as 210.
  • This current mirror circuit includes transistors 232 and 234.
  • the transistors 232 and 234 are, for example, bipolar transistors, but may be field effect transistors.
  • the base of the transistor 234 is connected to the collector.
  • the collector of the transistor 232 is connected to the emitters of the first transistor 222 and the second transistor 224, and the collector of the transistor 234 is connected to the outside.
  • the same effect as that of the first embodiment can be obtained.
  • the direct current components of the first electric signal and the second electric signal can be reduced by controlling the input to the collector of the transistor 234 of the current mirror circuit. Accordingly, the dynamic range required for the transimpedance circuit 240 can be particularly reduced.
  • FIG. 9 is a diagram illustrating the configuration of the control unit 228 of the optical signal processing device 10 according to the third embodiment, together with another configuration of the DC component correction unit 210 and the transimpedance circuit 240.
  • the optical signal processing apparatus 10 according to the present embodiment has the same configuration as that of the optical signal processing apparatus 10 according to the second embodiment except for the configuration of the control unit 228.
  • the control unit 228 includes an integration unit 270 and a level conversion unit 280.
  • the integration unit 270 has two integration circuits. These two integrating circuits integrate each of the two output signals of the transimpedance circuit 240 and detect the potential of each output signal.
  • the level converter 280 converts the output levels of the two integrating circuits. The two outputs of the level converter 280 are input to the collector of the first transistor 222 and the collector of the second transistor 224, respectively.
  • the outputs OUTP and OUTN of the transimpedance circuit 240 have the same level of compensation. A signal is output. Therefore, the input control voltage (base) to the first transistor 222 and the input control voltage (base) to the second transistor 224 are set to the same potential through the level conversion circuit 280. As a result, the current I c1 flowing through the first transistor 222 is equal to the current I c2 flowing through the second transistor 224. In this case, the direct current component (I PD1 -I c1 ) of the first electric signal input to the transimpedance circuit 240 is equal to the direct current component (I PD2 -I c2 ) of the second electric signal.
  • adjusting the voltage terminal V CM of the current mirror circuit 230 can be reduced DC component of the first electrical signal and the second electrical signal inputted to the transimpedance circuit 11 to zero. In this way, a sufficient input dynamic range of the transimpedance circuit 240 can be secured.
  • the outputs OUTP and OUTN of the transimpedance circuit 240 Outputs a complementary signal having a different level. This is detected by the integrating circuit 20.
  • the level difference detected by the integration circuit 270 is converted into an appropriate voltage range through the level conversion circuit 280.
  • the input control voltage (base) to the first transistor 222 and the input control voltage (base) to the second transistor 224 are set to appropriate values.
  • the current I c1 flowing through the first transistor 222 and the current I c2 flowing through the second transistor 224 satisfy I c1 > I c2 .
  • the above operation is repeated until the levels of the outputs OUTP and OUTN of the transimpedance circuit 240 become the same.
  • FIG. 10 is a diagram illustrating a configuration of the differential transimpedance amplifier 200 of the optical signal processing device 10 according to the fourth embodiment.
  • the differential transimpedance amplifier 200 according to the present embodiment is the same as the optical signal processing device 10 according to the third embodiment except that the constant current source 230 of the DC component correction unit 210 is the third transistor 290. It is a configuration.
  • the bipolar transistor can be replaced with a field effect transistor.
  • the differential transimpedance amplifier 202 shown in FIG. 1 has the same configuration as that of the differential transimpedance amplifier 200. According to this embodiment, the same effect as that of the third embodiment can be obtained.
  • FIG. 11 is a diagram illustrating the configuration of the DC component correction unit 210 of the optical signal processing device 10 according to the fifth embodiment, together with the transimpedance circuit 240.
  • the optical signal processing apparatus 10 according to the present embodiment is an optical signal according to the first embodiment, except that the differential transimpedance amplifier 200 does not include the control unit 228 and the configuration of the DC component correction unit 210.
  • the configuration is the same as that of the signal processing device 10.
  • the DC component correction unit 210 includes a first transistor 222, a second transistor 224, and a fourth transistor 226.
  • the same signal is input from the control unit 228 to the base of the first transistor 222 and the base of the second transistor 224.
  • the fourth transistor 226 has a base and a collector connected to the base of the second transistor 224.
  • the emitters of the first transistor 222, the second transistor 224, and the fourth transistor 226 are all grounded via a resistor (not shown), for example.
  • FIG. 12 is a diagram illustrating the configuration of the DC component correction unit 210 of the optical signal processing device 10 according to the sixth embodiment, together with the transimpedance circuit 240.
  • the differential transimpedance amplifier 200 does not include the control unit 228, and the DC component correction unit 210 does not include the fourth transistor 226.
  • the configuration is the same as that of the optical signal processing apparatus 10 according to the fifth embodiment. Also in this embodiment, the same effect as that of the fifth embodiment can be obtained.
  • FIG. 15 is a diagram illustrating a configuration of an optical signal processing device according to the seventh embodiment.
  • the optical signal processing unit according to the present embodiment is an optical signal processing unit that receives an optical signal by a digital coherent method.
  • the optical signal processing unit includes an optical signal processing device 12, an electrical signal processing device 20, and a local light source 500.
  • the optical signal processing device 12 has two signal processing units 14.
  • Each of the signal processing units 14 includes an optical hybrid 100, four photoelectric conversion elements 150, and differential transimpedance amplifiers 200 and 202.
  • the optical hybrid 100, the four photoelectric conversion elements 150, and the differential transimpedance amplifiers 200 and 202 of the signal processing unit 14 are the same as the optical hybrid 100, the four photoelectric conversion elements 150, and the difference shown in the first to sixth embodiments.
  • the configuration is the same as that of the dynamic transimpedance amplifiers 200 and 202.
  • the received signal light input to the first input unit 102 of the optical signal processing device 12 is separated into X polarization and Y polarization by the polarization beam splitter 600.
  • the X polarization and the Y polarization are input to different signal processing units 14.
  • a local light source 500 is connected to the second input unit 104 of the optical signal processing device 12.
  • the local light source 500 inputs local light to the second input unit 104.
  • the local light input to 140 is separated into two lights by the beam splitter 602. The two lights are input to different signal processing units 14.
  • the electric signal processing device 20 has two AD conversion groups 304 and a digital signal processing unit 400.
  • Each AD conversion group 304 includes AD conversion units 300 and 302.
  • the first AD conversion group 304 receives a signal from the first signal processing unit 14 included in the optical signal processing device 12, and the second AD conversion group 304 includes second signal processing included in the optical signal processing device 12.
  • a signal is input from the unit 14.
  • the digital signal processing unit 400 processes the outputs from the two AD conversion groups 304 and generates a demodulated signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Optical Communication System (AREA)

Abstract

 光ハイブリッド(100)は、外部から受信した受信光信号にローカル光を第1の位相差で干渉させることにより、第1光信号を生成する。また光ハイブリッド(100)は、受信光信号にローカル光を、第1の位相差からπずれた第2の位相差で干渉させることにより、第2光信号を生成する。2つの光電変換素子(150)は、それぞれ第1光信号及び第2光信号を光電変換して、第1電気信号及び第2電気信号を生成する。差動トランスインピーダンスアンプ(200)は、直流成分補正部(210)、トランスインピーダンス回路(240)、及び可変利得アンプ(250)を備えている。直流成分補正部(210)は、第1電気信号の直流成分の大きさと、第2電気信号の直流成分の大きさの差を小さくする。

Description

光信号処理装置、及び光信号処理方法
 本発明は、光信号を処理する光信号処理装置、及び光信号処理方法に関する。
 インターネットの普及に伴って、光通信システムの大容量化が進められている。たとえば、幹線系では、1波長当たり、40Gbit/sを越える速度で信号を伝送するための研究が行われている。1波長当たりビットレートを高くすると、光信号対雑音比(OSNR)耐力の低下、並びに、伝送路の波長分散、偏波モード分散、及び非線形効果などに起因する波形歪みなどにより、信号品質の劣化が大きくなる。
 このため、近年、OSNR耐力および波形歪み耐力の高いデジタルコヒーレント受信方式が注目されている(例えば特許文献1,2参照)。デジタルコヒーレント受信方式では、受信信号から光強度情報および位相情報が抽出され、デジタル信号処理回路により復調が行われる。デジタルコヒーレント受信方式では、コヒーレント受信によるOSNR耐力の改善、およびデジタル信号処理回路による波形歪みの補正が実現されるので、40Gbit/sを越える速度で信号を伝送しても、高い信頼性が得られる。
国際公開第09/069814号パンフレット 特開2010-028795号公報
 デジタルコヒーレントの受信装置においては、フォトダイオードの、光入力に対する同相雑音成分除去比(Common Mode Rejection ratio:CMRR)が、性能を左右する最も重要な要因の1つである。また光信号の受信装置において、ダイナミックレンジを大きくすることも重要である。
 本発明の目的は、CMRRが増加することを抑制できる光信号処理装置及び光信号処理方法を提供することにある。また本発明の他の目的は、ダイナミックレンジを大きくすることができる光信号処理装置を提供することにある。
 本発明によれば、外部から受信した受信光信号とローカル光信号とを第1の位相差で干渉させて第1光信号を生成する第1光信号生成手段と、
 前記受信光信号と前記ローカル光信号とを、前記第1の位相差からπずれた第2の位相差で干渉させて第2光信号を生成する第2光信号生成手段と、
 前記第1光信号を第1電気信号に変換する第1光電変換素子と、
 前記第2光信号を第2電気信号に変換する第2光電変換素子と、
 前記第1電気信号の直流成分の大きさと、前記第2電気信号の直流成分の大きさの差を小さくする直流成分補正手段と、
 前記直流成分補正手段が補正した後の前記第1電気信号及び前記第2電気信号が入力される差動型のトランスインピーダンス回路と、
を備える光信号処理装置が提供される。
 本発明によれば、外部から受信した受信光信号とローカル光信号とを、第1の条件で干渉させることにより第1デジタル信号を生成する第1光信号処理手段と、
 前記受信光信号と前記ローカル光信号とを、第2の条件で干渉させることにより第2デジタル信号を生成する第2光信号処理手段と、
 前記第1デジタル信号及び前記第2デジタル信号を処理して前記受信光信号に含まれる信号を取り出すデジタル処理手段と、
を備え、
 前記第1光信号処理手段は、
  前記受信光信号と前記ローカル光信号とを同相で干渉させて第1光信号を生成する第1光信号生成手段と、
  前記受信光信号と前記ローカル光信号とを位相差πで干渉させて第2光信号を生成する第2光信号生成手段と、
  前記第1光信号を第1電気信号に変換する第1光電変換素子と、
  前記第2光信号を第2電気信号に変換する第2光電変換素子と、
  前記第1電気信号の直流成分及び前記第2電気信号の直流成分の差を小さくする第1直流成分補正手段と、
  前記直流成分補正手段が補正した後の前記第1電気信号及び前記第2電気信号が入力される差動型の第1トランスインピーダンスアンプと、
 前記第1トランスインピーダンスアンプの出力を前記第1デジタル信号に変換する第1AD変換手段と、
を有し、
 前記第2光信号処理手段は、
  前記受信光信号と前記ローカル光信号とを位相差π/2で干渉させて第3光信号を生成する第3光信号生成手段と、
  前記受信光信号と前記ローカル光信号とを位相差3π/2で干渉させて第4光信号を生成する第4光信号生成手段と、
  前記第3光信号を第3電気信号に変換する第3光電変換素子と、
  前記第4光信号を第4電気信号に変換する第4光電変換素子と、
  前記第3電気信号の直流成分及び前記第4電気信号の直流成分の差を小さくする第2直流成分補正手段と、
  前記直流成分補正手段が補正した後の前記第3電気信号及び前記第4電気信号が入力される差動型の第2トランスインピーダンスアンプと、
 前記第2トランスインピーダンスアンプの出力を前記第2デジタル信号に変換する第2AD変換手段と、
を有する光信号処理装置が提供される。
 本発明によれば、外部から受信した受信光信号と、受信側の光源から出力されたローカル光信号とを、第1の位相差で干渉させて第1光信号を生成し、
 前記受信光信号と前記ローカル光信号とを、前記第1の位相差からπずれた第2の位相差で干渉させて第2光信号を生成し、
 前記第1光信号を第1電気信号に変換し、
 前記第2光信号を第2電気信号に変換し、
 前記第1電気信号の直流成分及び前記第2電気信号の直流成分の差を小さくした上で、前記第1電気信号及び前記第2電気信号を差動型のトランスインピーダンス回路に入力する、光信号処理方法が提供される。
 本発明によれば、外部から受信した受信光信号とローカル光信号とを第1の位相差で干渉させて第1光信号を生成する第1光信号生成手段と、
 前記受信光信号と前記ローカル光信号とを、前記第1の位相差からπずれた第2の位相差で干渉させて第2光信号を生成する第2光信号生成手段と、
 前記第1光信号を第1電気信号に変換する第1光電変換素子と、
 前記第2光信号を第2電気信号に変換する第2光電変換素子と、
 前記第1電気信号の直流成分、及び前記第2電気信号の直流成分を小さくする直流成分補正手段と、
 前記直流成分補正手段が補正した後の前記第1電気信号及び前記第2電気信号が入力される差動型のトランスインピーダンス回路と、
を備える光信号処理装置が提供される。
 本発明によれば、第1電気信号の直流成分の大きさと、前記第2電気信号の直流成分の大きさの差を小さくする直流成分補正手段と、
 前記直流成分補正手段が補正した後の前記第1電気信号及び前記第2電気信号が入力される差動型のトランスインピーダンス回路と、
を有するトランスインピーダンスアンプが提供される。
 本発明によれば、外部から受信した受信光信号とローカル光信号とを、第1の条件で干渉させることにより第1デジタル信号を生成する第1光信号処理手段と、
 前記受信光信号と前記ローカル光信号とを、第2の条件で干渉させることにより第2デジタル信号を生成する第2光信号処理手段と、
 前記第1デジタル信号及び前記第2デジタル信号を処理して前記受信光信号に含まれる信号を取り出すデジタル処理手段と、
を備え、
 前記第1光信号処理手段は、
  前記受信光信号と前記ローカル光信号とを同相で干渉させて第1光信号を生成する第1光信号生成手段と、
  前記受信光信号と前記ローカル光信号とを位相差πで干渉させて第2光信号を生成する第2光信号生成手段と、
  前記第1光信号を第1電気信号に変換する第1光電変換素子と、
  前記第2光信号を第2電気信号に変換する第2光電変換素子と、
  前記第1電気信号の直流成分を小さくするとともに、前記第2電気信号の直流成分を小さくする第1直流成分補正手段と、
  前記直流成分補正手段が補正した後の前記第1電気信号及び前記第2電気信号が入力される差動型の第1トランスインピーダンスアンプと、
 前記第1トランスインピーダンスアンプの出力を前記第1デジタル信号に変換する第1AD変換手段と、
を有し、
 前記第2光信号処理手段は、
  前記受信光信号と前記ローカル光信号とを位相差π/2で干渉させて第3光信号を生成する第3光信号生成手段と、
  前記受信光信号と前記ローカル光信号とを位相差3π/2で干渉させて第4光信号を生成する第4光信号生成手段と、
  前記第3光信号を第3電気信号に変換する第3光電変換素子と、
  前記第4光信号を第4電気信号に変換する第4光電変換素子と、
  前記第3電気信号の直流成分を小さくするとともに、前記第4電気信号の直流成分を小さくする第2直流成分補正手段と、
  前記直流成分補正手段が補正した後の前記第3電気信号及び前記第4電気信号が入力される差動型の第2トランスインピーダンスアンプと、
 前記第2トランスインピーダンスアンプの出力を前記第2デジタル信号に変換する第2AD変換手段と、
を有する光信号処理装置が提供される。
 本発明によれば、光信号処理装置のCMRRが増加することを抑制できる。また本発明によれば、光信号処理装置のダイナミックレンジを大きくすることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1の実施形態に係る光信号処理装置の構成を示すブロック図である。 直流成分補正部の構成の詳細を示す図である。 直流成分補正部の第1の効果を説明するための図である。 直流成分補正部の第1の効果を説明するための図である。 直流成分補正部の第2の効果を説明するための図である。 直流成分補正部の第2の効果を説明するための図である。 OIFの標準化委員会によって定められた、受信光信号とローカル光の光パワーの関係を示す図である。 第2の実施形態に係る直流成分補正部の構成を示す図である。 第3の実施形態に係る直流成分補正部の構成を示す図である。 第4の実施形態に係る直流成分補正部の構成を示す図である。 第5の実施形態に係る直流成分補正部の構成を示す図である。 第6の実施形態に係る直流成分補正部の構成を示す図である。 第1の実施形態に係る直流成分補正部の変形例の構成を示す図である。 第2の実施形態に係る直流成分補正部の変形例の構成を示す図である。 第7の実施形態に係る光信号処理装置の構成を示す図である。 第1の実施形態の作用を説明するための図である。 第1の実施形態の作用を説明するための図である。 第1の実施形態の効果を説明するための図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施形態)
 図1は、第1の実施形態に係る光信号処理装置10の構成を示すブロック図である。光信号処理装置10は、例えばデジタルコヒーレント方式で光信号を受信する装置である。光信号処理装置10は、光ハイブリッド100、4つの光電変換素子150、差動トランスインピーダンスアンプ200,202、2つのAD変換部300、及びデジタル信号処理部400を備えている。
 外部から受信した受信光信号は、光信号処理装置10に入力される前に、偏光ビームスプリッタにより、X偏波及びY偏波に分離される。光信号処理装置10には、X偏波及びY偏波の一方が入力される。光信号処理装置10は、入力された受信光信号のX偏波又はY偏波を、同相ベースバンド信号(I)用の光信号及び直交ベースバンド信号(Q)用の光信号に分離する。同相ベースバンド信号(I)用の光信号及び直交ベースバンド信号(Q)用の光信号は、いずれも偏光しており、その偏波の方向が互いに直交している。差動トランスインピーダンスアンプ200,202、及びAD変換部300は、同相ベースバンド信号(I)用の光信号及び直交ベースバンド信号(Q)用の光信号をコヒーレント検波(例えば、ホモダイン検波もしくはヘテロダイン検波)して、同相ベースバンド信号(I)及び直交ベースバンド信号(Q)に変換する。デジタル信号処理部400は、同相ベースバンド信号及び直交ベースバンド信号から、送信された多値変調光信号を再生し、この多値変調光信号の復調処理を行う。
 光ハイブリッド100は、外部から受信した受信光信号のX偏波(又はY偏波)にローカル光を第1の位相差で干渉させることにより、第1光信号を生成する。また光ハイブリッド100は、受信光信号のX偏波(又はY偏波)にローカル光を、第1の位相差からπずれた第2の位相差で干渉させることにより、第2光信号を生成する。
 詳細には、光ハイブリッド100は、光ミキサ112(第1光信号生成部),114(第2光信号生成部),122(第3光信号生成部),124(第4光信号生成部)、及び光位相器116,126,128を有している。受信光信号のX偏波(又はY偏波)は、光ミキサ112,114,122,124それぞれに入力される。光ミキサ112には、ローカル光が、いずれの位相器も介さずに入力される。光ミキサ114には、ローカル光が、光位相器116を介して入力される。光位相器116は、ローカル光の位相をπずらす。光ミキサ122には、ローカル光が、光位相器126を介して入力される。光位相器126は、ローカル光の位相を、光位相器116と同一方向にπ/2ずらす。光ミキサ124には、ローカル光が、光位相器126及び光位相器126を介して入力される。光位相器128は、ローカル光の位相を、光位相器126と同一方向にπずらす。
 そして光ミキサ112は、受信光信号のX偏波(又はY偏波)とローカル光とを同相で干渉させて第1光信号を生成し、光ミキサ114は、受信光信号のX偏波(又はY偏波)とローカル光とを位相差πで干渉させて第2光信号を生成する。光ミキサ122は、受信光信号のX偏波(又はY偏波)とローカル光とを位相差π/2で干渉させて第3光信号を生成し、光ミキサ124は、受信光信号のX偏波(又はY偏波)とローカル光とを位相差3π/2で干渉させて第4光信号を生成する。第1光信号及び第2光信号は、一組の信号を形成し、また第3光信号及び第4光信号も、一組の信号を形成する。
 4つの光電変換素子150は、それぞれ第1光信号、第2光信号、第3光信号、及び第4光信号を光電変換して、第1電気信号、第2電気信号、第3電気信号、及び第4電気信号を生成する。光電変換素子150は、例えばフォトダイオードである。第1電気信号及び第2電気信号は、差動トランスインピーダンスアンプ200に入力され、第3電気信号及び第4電気信号は、差動トランスインピーダンスアンプ202に入力される。
 差動トランスインピーダンスアンプ200は、直流成分補正部210、トランスインピーダンス回路240、及び可変利得アンプ250を備えている。直流成分補正部210は、第1電気信号の直流成分の大きさと、第2電気信号の直流成分の大きさの差を小さくする。直流成分補正部210の構成の詳細は、後述する。トランスインピーダンス回路240は、直流成分補正部210によって直流成分が補正された後の第1電気信号及び第2電気信号が入力される。可変利得アンプ250は、トランスインピーダンス回路240の出力の大きさを増幅し、AD変換部300に出力する。
 なお、差動トランスインピーダンスアンプ202も、直流成分補正部210、トランスインピーダンス回路240、及び可変利得アンプ250を備えている。差動トランスインピーダンスアンプ202は、第1電気信号の代わりに第3電気信号が入力され、第2電気信号の代わりに第4電気信号が入力される点を除いて、差動トランスインピーダンスアンプ200と同様の機能を有している。
 AD変換部300は、差動トランスインピーダンスアンプ200から出力される2つのアナログ信号をデジタル信号に変換する。このデジタル信号は、同相ベースバンド信号である。
 AD変換部302は、差動トランスインピーダンスアンプ202から出力される2つのアナログ信号をデジタル信号に変換する。このデジタル信号は、直交ベースバンド信号である。
 なお、2つの光電変換素子150の光電流をI、Iとすると、同相雑音成分除去比(Common Mode Rejection ratio:CMRR)は、以下の(1)式で示される。
Figure JPOXMLDOC01-appb-I000001
・・・(1)
 ここで、CMRRがデジタルコヒーレント方式の信号処理の精度に影響を与える理由について、四位相偏移変調(QPSK)光信号を例に挙げて、説明する。上記したように、第1入力部102に入力される受信光信号は、光ハイブリッド100において、第1光信号、第2光信号、第3光信号、及び第4光信号に変換される。第1入力部102に入力される受信光信号は、以下の(2)式で表され、ローカル光は、以下の(3)式で表される。
Figure JPOXMLDOC01-appb-I000002
・・・(2)
Figure JPOXMLDOC01-appb-I000003
・・・(3)
 なお、ωはそれぞれ受信光信号の周波数であり、ωはローカル光の周波数である。φは位相である。QPSKの場合、第1光信号の生成においてはφ=0であり、第2光信号の生成においてはφ=πであり、第3光信号の生成においてはφ=π/2であり、第4光信号の生成においてはφ=3π/2である。
 ここでω=ωであるため、第1光信号は以下の(4)式で表され、第2光信号は以下の(5)式で表され、第3光信号は以下の(6)式で表され、第4光信号は以下の(7)式で表される。
Figure JPOXMLDOC01-appb-I000004
・・・(4)
Figure JPOXMLDOC01-appb-I000005
・・・(5)
Figure JPOXMLDOC01-appb-I000006
・・・(6)
Figure JPOXMLDOC01-appb-I000007
・・・(7)
 a、b、c、dは光電変換素子150の量子効率や光ハイブリッド100の損失に起因する係数である。そして、式(4)~(7)それぞれにおいて、第1項と第2項はDC成分(オフセット成分)であり、第3項は信号の位相情報である。
 そして、差動トランスインピーダンスアンプ200のトランスインピーダンス回路240出力は、以下の(8)式及び(9)式で表される。また差動トランスインピーダンスアンプ202のトランスインピーダンス回路240出力は、以下の(10)式及び(11)式で表される。
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
 (8)と(9)の差動信号は、差動トランスインピーダンスアンプ200の可変利得アンプ250に入力される。また(10)と(11)の差動信号は、差動トランスインピーダンスアンプ200の可変利得アンプ250へ入力される。
 ここで、ローカル光の光強度Bは受信光信号の強度Aの10倍以上であるため、(8)~(11)においては、Bが支配的になる。そのため、(8)及び(9)の係数a,bの間に差が生じると、差動トランスインピーダンスアンプ200のトランスインピーダンス回路240の出力信号のDCレベルが大きく変化する。また、(10)及び(11)の係数c,dの間に差が生じると、差動トランスインピーダンスアンプ202のトランスインピーダンス回路240の出力信号のDCレベルが大きく変化する。このため、CMRRが不足すると、可変利得アンプ250やデジタル信号処理部400による波形歪等化の精度が低くなってしまう。
 これに対して本実施形態では、直流成分補正部210が、第1電気信号の直流成分の大きさと第2電気信号の直流成分の大きさの差(又は第3電気信号の直流成分の大きさと第4電気信号の直流成分の大きさの差)を小さくする。従って、CMRRが増加することを抑制して、光信号処理装置10による信号処理の精度が低下することを抑制できる。
 図2は、差動トランスインピーダンスアンプ200における直流成分補正部210の構成の詳細を、光ハイブリッド100、及びトランスインピーダンス回路240とともに示す図である。なお本図において、光ハイブリッド100は、図1と比較して簡略化されている。
 直流成分補正部210は、第1トランジスタ222、第2トランジスタ224、及び定電流源230を備えている。本図に示す例において、第1トランジスタ222及び第2トランジスタ224はバイポーラトランジスタであるが、MOSトランジスタなどの電界効果トランジスタであっても良い。第1トランジスタ222及び第2トランジスタ224は、差動回路220を構成している。
 第1トランジスタ222は、コレクタ(電界効果トランジスタの場合はドレイン)が、第1電気信号を直流成分補正部210に入力する配線に接続しており、エミッタ(電界効果トランジスタの場合はソース)が定電流源230の入力側に接続している。第2トランジスタ224は、コレクタが、第2電気信号を直流成分補正部210に入力する配線に接続しており、エミッタが定電流源230の入力側に接続している。定電流源230の出力側は、例えば抵抗(図示せず)を介して接地されている。なお、上記した接続の例は、第1トランジスタ222及び第2トランジスタ224がNPN型のバイポーラトランジスタの場合を示している。ただし、第1トランジスタ222及び第2トランジスタ224は、PNP型のバイポーラトランジスタであってもよい。この場合、適宜設計を変更することにより、上記した例と同様の効果が得られる。
 なお、差動トランスインピーダンスアンプ202の直流成分補正部210も、第1トランジスタ222のコレクタに第3電気信号が入力され、第2トランジスタ224のコレクタに第4電気信号が入力される点を除いて、差動トランスインピーダンスアンプ200の直流成分補正部210と同様の構成を有している。
 また、トランスインピーダンス回路240は、差動アンプと、2つのエミッタフォロワ回路と、2つの帰還抵抗を有している。
 次に、直流成分補正部210の動作を、図16を用いて説明する。
 第1電気信号の直流成分IPD1と第2電気信号の直流成分IPD2が等しい場合、第1トランジスタ222への入力制御電圧(ベース)Vと第2トランジスタ224への入力制御電圧(ベース)Vとを、制御部228を用いて同電位に設定する。これにより、第1トランジスタ222を流れる電流Ic1と、第2トランジスタ224を流れる電流Ic2は等しくなる。この場合、トランスインピーダンス回路240に入力される第1電気信号の直流成分(IPD1-Ic1)と第2電気信号の直流成分(IPD2-Ic2)は等しくなる。
 一方、第1電気信号の直流成分IPD1と第2電気信号の直流成分IPD2が異なる場合(例えばIPD1>IPD2)、制御部228を用いて、第1トランジスタ222への入力制御電圧(ベース)Vを第2トランジスタ224への入力制御電圧(ベース)Vよりも大きく設定する。これにより、第1トランジスタ222を流れる電流Ic1は、第2トランジスタ224を流れる電流Ic2よりも大きくなる(IC1>IC2)。これにより、トランスインピーダンス回路240に入力される第1電気信号の直流成分(IPD1-Ic1)と第2電気信号の直流成(IPD2-Ic2)の差は小さくなる。
 なお、本実施形態において、図13に示すように制御部228を有していても良い。制御部228は、トランスインピーダンス回路240の2つの出力信号(差動信号)の電位に基づいて、第1トランジスタ222の入力制御電圧及び第2トランジスタ224の入力制御電圧を制御する。具体的には、制御部228は、トランスインピーダンス回路240の第1の出力(P信号)の電位に基づいて第1トランジスタ222の制御電圧を制御し、トランスインピーダンス回路240の第2の出力(N信号)の電位に基づいて第2トランジスタ224の制御電圧を制御する。
 ただし、本実施形態に係る直流成分補正部210の動作は、トランスインピーダンス回路240の出力からのフードバック制御のみに限定されない。第1トランジスタ222及び第2トランジスタ224は、他の検出方法による検出値や外部からの入力に従って、制御部228を通して、動作してもよい。ただし、この場合においても、制御部228による制御の詳細は、図16を用いて説明したとおりである。
 図3は、受信光信号が31.78911Gb/sのQPSK方式の場合における、トランスインピーダンス回路240の復調後の出力信号の波形の一例を示す。図4は、直流成分補正部210がない場合におけるトランスインピーダンス回路240の出力波形の一例を示す。これらを比較すると、直流成分補正部210を設けることにより、電流差が補正されること、及び、これに伴ってトランスインピーダンス回路240の出力波形が良好になることが分かる。
 また、図5に示すように、電気信号の直流成分が大きいと、その電気信号のトランスインピーダンス回路240に大きな入力ダイナミックレンジが必要になってしまう。これに対して本実施形態によれば、図6に示すように、第1トランジスタ222及び第2トランジスタ224を制御することにより、第1電気信号及び第2電気信号それぞれの直流成分を小さくすること(直流成分補正部210の構成によっては0も可能である)ができる。これにより、トランスインピーダンス回路240に要求される入力ダイナミックレンジを、小さくすることができる。
 この効果を、図18を用いて詳細に説明する。図18は、受信光信号が-12dBmで、ローカル光信号が12dBmの場合における、光電変換素子150の出力の電流信号を示す。この電流信号において、変調信号が0.4mAppである。一方、直流成分は、1.8mAと、変調信号に対して大きい。このような電流信号をトランスインピーダンス回路240に入力しても、トランスインピーダンス回路240のリニアリティを維持することは極めて難しく、その結果、復調される信号に歪が生じてしまう。
 これに対して本実施形態によれば、図18における直流成分を小さくして、直流成分に対する変調信号の比を大きくすることができる。従って、トランスインピーダンス回路240のリニアリティを維持することができる。これらの効果を表すために、図17に、第1トランジスタ222及び第2トランジスタ224に流れる電流Ic1とIc2の関係を示す。Ic1とIc2差でIPD1とIPD2のDC電流の差を補償し、Ic1とIc2の同じ電流値でPDの過剰なDC電流を抑制する。
 図7は、OIF(Optical Internetwoking Forum)の標準化委員会によって定められた、受信光信号とローカル光の光パワーの関係を示す。受信光信号に対して、ローカル光の光パワーが10倍以上に大きいことが分る。コヒーレント受信器には高いリニアリティが必要であるために、差動トランスインピーダンスアンプには、広い入力ダイナミックレンジが要求される。本実施形態では、上記したようにトランスインピーダンス回路240に要求されるダイナミックレンジを、小さくすることができる。
(第2の実施形態)
 図8は、第2の実施形態に係る光信号処理装置10に用いられる直流成分補正部210の構成を示す図である。本実施形態に係る光信号処理装置10は、直流成分補正部210の定電流源230が、カレントミラー回路である点を除いて、図2に示した第1の実施形態に係る直流成分補正部210と同様の構成である。
 このカレントミラー回路は、トランジスタ232,234を備えている。トランジスタ232,234は、例えばバイポーラトランジスタであるが、電界効果型トランジスタであっても良い。トランジスタ234は、ベースがコレクタに接続している。そしてトランジスタ232のコレクタは、第1トランジスタ222及び第2トランジスタ224のエミッタに接続しており、トランジスタ234のコレクタは外部に接続している。
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また本実施形態では、カレントミラー回路のトランジスタ234のコレクタへの入力を制御することにより、第1電気信号及び第2電気信号の直流成分を小さくすることができる。従って、トランスインピーダンス回路240に要求されるダイナミックレンジの大きさを、特に小さくすることができる。
 なお、本実施形態においても、図に示すように、制御部228を有していても良い。ただし、直流成分補正部210では、第1の実施形態に係る直流成分補正部210と同様に、トランスインピーダンス回路240の出力からのフィードバック制御のみではなく、他の検出方法や外部から制御部228を通して、第1トランジスタ222及び第2トランジスタ224が動作してもよい。この制御の詳細は、図16及び図17を用いて説明したとおりである。
(第3の実施形態)
 図9は、第3の実施形態に係る光信号処理装置10の制御部228の構成を、直流成分補正部210の他の構成及びトランスインピーダンス回路240とともに示す図である。本実施形態に係る光信号処理装置10は、制御部228の構成を除いて第2の実施形態に係る光信号処理装置10と同様の構成である。
 本実施形態に係る制御部228は、積分部270及びレベル変換部280を備えている。積分部270は、2つの積分回路を有している。これら2つの積分回路は、トランスインピーダンス回路240の2つの出力信号それぞれを積分し、それぞれの出力信号の電位を検出する。レベル変換部280は、2つの積分回路それぞれの出力レベルを変換する。レベル変換部280の2つの出力は、それぞれ第1トランジスタ222のコレクタ及び第2トランジスタ224のコレクタに入力される。
 本実施形態に係る光信号処理装置10の効果を説明する。第1電気信号の直流成分IPD1と第2電気信号の直流成分IPD2が等しい場合(IPD1=IPD2)には、トランスインピーダンス回路240の出力OUTP、OUTNには、レベルが同一な正補信号が出力される。そのため、レベル変換回路280を通して、第1トランジスタ222への入力制御電圧(ベース)と第2トランジスタ224への入力制御電圧(ベース)が同電位に設定される。これにより、第1トランジスタ222を流れる電流Ic1と、第2トランジスタ224を流れる電流Ic2は等しくなる。この場合、トランスインピーダンス回路240に入力される第1電気信号の直流成分(IPD1-Ic1)と第2電気信号の直流成分(IPD2-Ic2)は等しくなる。
 さらにカレントミラー回路230の電圧端子VCMを調整することによって、トランスインピーダンス回路11に入力される第1電気信号およびの第2電気信号の直流成分を0まで低減できる。このようにすると、トランスインピーダンス回路240の入力ダイナミックレンジを十分確保できる。
 一方、第1電気信号の直流成分IPD1と第2電気信号の直流成分IPD2に差が生じた場合(例えば、IPD1>IPD2)、通常では、トランスインピーダンス回路240の出力OUTP、OUTNには、レベルが異なる正補信号が出力される。これは、積分回路20で検出される。
 積分回路270で検出されたレベルの差は、レベル変換回路280を通して適切な電圧範囲に変換される。変換後のレベル差によって、第1トランジスタ222への入力制御電圧(ベース)と第2トランジスタ224への入力制御電圧(ベース)が、それぞれ適切な値に設定される。第1トランジスタ222に流れる電流Ic1と第2トランジスタ224に流れる電流Ic2は、Ic1>Ic2となる。上記した動作は、トランスインピーダンス回路240の出力OUTP、OUTNのレベルが同一になるまで繰り返される。その結果、自動的に、トランスインピーダンス回路240には、第1電気信号の直流成分(IPD1-Ic1)と第2電気信号の直流成分(IPD2-Ic2)が同じ信号が入力される。
 本実施形態によっても、第2の実施形態と同様の効果を得ることができる。
(第4の実施形態)
 図10は、第4の実施形態に係る光信号処理装置10の差動トランスインピーダンスアンプ200の構成を示す図である。本実施形態に係る差動トランスインピーダンスアンプ200は、直流成分補正部210の定電流源230が第3トランジスタ290である点を除いて、第3の実施形態に係る光信号処理装置10と同様の構成である。なお、本実施形態及び他の実施形態のすべてにおいて、バイポーラトランジスタを電界効果トランジスタに置き換えることもできる。
 なお、図1に示した差動トランスインピーダンスアンプ202も差動トランスインピーダンスアンプ200と同様の構成を有している。
 本実施形態によっても、第3の実施形態と同様の効果を得ることができる。
(第5の実施形態)
 図11は、第5の実施形態に係る光信号処理装置10の直流成分補正部210の構成を、トランスインピーダンス回路240とともに示す図である。本実施形態に係る光信号処理装置10は、差動トランスインピーダンスアンプ200が制御部228を有していない点、及び、直流成分補正部210の構成を除いて、第1の実施形態に係る光信号処理装置10と同様の構成である。
 直流成分補正部210は、第1トランジスタ222、第2トランジスタ224、及び第4トランジスタ226を有している。本実施形態において第1トランジスタ222のベース及び第2トランジスタ224のベースは、制御部228から同一の信号が入力される。また第4トランジスタ226は、ベース及びコレクタが、第2トランジスタ224のベースに接続している。そして第1トランジスタ222、第2トランジスタ224、及び第4トランジスタ226は、いずれもエミッタが、例えば抵抗(図示せず)を介して接地されている。
 本実施形態によれば、第1トランジスタ222のベース、第2トランジスタ224のベース、及び第4トランジスタ226のコレクタへの入力を制御することにより、トランスインピーダンス回路240に入力される第1電気信号及び第2電気信号それぞれの直流成分を小さくすることができる。これにより、トランスインピーダンス回路240に要求されるダイナミックレンジを小さくすることができる。
(第6の実施形態)
 図12は、第6の実施形態に係る光信号処理装置10の直流成分補正部210の構成を、トランスインピーダンス回路240とともに示す図である。本実施形態に係る光信号処理装置10は、差動トランスインピーダンスアンプ200が制御部228を有していない点、及び、直流成分補正部210が第4トランジスタ226を有していない点を除いて、第5の実施形態に係る光信号処理装置10と同様の構成である。
 本実施形態によっても、第5の実施形態と同様の効果を得ることができる。
(第7の実施形態)
 図15は、第7の実施形態に係る光信号処理装置の構成を示す図である。本実施形態に係る光信号処理ユニットは、デジタルコヒーレント方式で光信号を受信する光信号処理ユニットである。この光信号処理ユニットは、光信号処理装置12、電気信号処理装置20、及びローカル光源500を有している。
 光信号処理装置12は、2つの信号処理部14を有している。信号処理部14は、いずれも光ハイブリッド100、4つの光電変換素子150、及び差動トランスインピーダンスアンプ200,202を有している。信号処理部14の光ハイブリッド100、4つの光電変換素子150、及び差動トランスインピーダンスアンプ200,202は、第1~6の実施形態に示した光ハイブリッド100、4つの光電変換素子150、及び差動トランスインピーダンスアンプ200,202と同様の構成である。
 光信号処理装置12の第1入力部102に入力された受信信号光は、偏光ビームスプリッタ600によってX偏波及びY偏波に分離される。X偏波及びY偏波は、互いに異なる信号処理部14に入力される。
 光信号処理装置12の第2入力部104には、ローカル光源500が接続されている。ローカル光源500は、第2入力部104にローカル光を入力する。140に入力されたローカル光は、ビームスプリッタ602によって2つの光に分離される。この2つの光は、互いに異なる信号処理部14に入力される。
 電気信号処理装置20は、2つのAD変換群304及びデジタル信号処理部400を有している。AD変換群304は、いずれもAD変換部300,302を有している。第1のAD変換群304は、光信号処理装置12が有する第1の信号処理部14から信号が入力され、第2のAD変換群304は、光信号処理装置12が有する第2の信号処理部14から信号が入力される。デジタル信号処理部400は、2つのAD変換群304からの出力を処理して、復調信号を生成する。
 本実施形態によっても、第1~6の実施形態と同様の効果を得ることができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 この出願は、2011年9月26日に出願された日本出願特願2011-208714号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (21)

  1.  外部から受信した受信光信号とローカル光信号とを第1の位相差で干渉させて第1光信号を生成する第1光信号生成手段と、
     前記受信光信号と前記ローカル光信号とを、前記第1の位相差からπずれた第2の位相差で干渉させて第2光信号を生成する第2光信号生成手段と、
     前記第1光信号を第1電気信号に変換する第1光電変換素子と、
     前記第2光信号を第2電気信号に変換する第2光電変換素子と、
     前記第1電気信号の直流成分の大きさと、前記第2電気信号の直流成分の大きさの差を小さくする直流成分補正手段と、
     前記直流成分補正手段が補正した後の前記第1電気信号及び前記第2電気信号が入力される差動型のトランスインピーダンス回路と、
    を備える光信号処理装置。
  2.  請求項1に記載の光信号処理装置において、
     前記直流成分補正手段は、
      前記第1光電変換素子と前記トランスインピーダンス回路の間に接続される第1トランジスタと、
      前記第2光電変換素子と前記トランスインピーダンス回路の間に接続される第2トランジスタと、
      前記第1トランジスタを介して第1光電変換素子と前記トランスインピーダンス回路の間に接続されるとともに、前記第2トランジスタを介して第2光電変換素子と前記トランスインピーダンス回路の間に接続される定電流源と、
    を備える光信号処理装置。
  3.  請求項2に記載の光信号処理装置において、
     前記第1トランジスタの制御電圧及び前記第2トランジスタの制御電圧を制御する制御手段を備え、
     前記制御手段は、
      前記トランスインピーダンス回路の2つの出力信号に基づいて、前記第1トランジスタの制御電圧及び前記第2トランジスタの制御電圧を制御する光信号処理装置。
  4.  請求項3に記載の光信号処理装置において、
     前記制御手段は、前記トランスインピーダンス回路の2つの出力信号それぞれを積分する2つの積分回路と、
     前記2つの積分回路それぞれの出力レベルを変換するレベル変換部と、
    を備え、
     前記レベル変換部の2つの出力が、前記第1トランジスタのゲート電圧及び前記第2トランジスタのゲート電圧として入力される光信号処理装置。
  5.  請求項2~4のいずれか一項に記載の光信号処理装置において、
     前記定電流源は、カレントミラー回路を有している光信号処理装置。
  6.  請求項3又は4に記載の光信号処理装置において、
     前記制御手段は、前記カレントミラー回路を制御する光信号処理装置。
  7.  請求項1に記載の光信号処理装置において、
     前記直流成分補正手段は、
      前記第1光電変換素子と前記トランスインピーダンス回路の間に接続される第1トランジスタと、
      前記第2光電変換素子と前記トランスインピーダンス回路の間に接続される第2トランジスタと、
      前記第1トランジスタを介して第1光電変換素子と前記トランスインピーダンス回路の間に接続されるとともに、前記第2トランジスタを介して第2光電変換素子と前記トランスインピーダンス回路の間に接続される第3トランジスタと、
      前記第1トランジスタの制御電圧及び前記第2トランジスタの制御電圧を制御する制御手段と、
    を備える光信号処理装置。
  8.  請求項1~7のいずれか一項に記載の光信号処理装置において、
     前記トランスインピーダンス回路の2つの出力信号をデジタル信号に変換するAD変換手段をさらに備える光信号処理装置。
  9.  請求項1~8のいずれか一項に記載の光信号処理装置において、
     前記直流成分補正手段は、前記第1電気信号及び前記第2電気信号それぞれの直流成分を小さくする光信号処理装置。
  10.  請求項1~9のいずれか一項に記載の光信号処理装置において、
     前記第1の位相差は0、又はπ/2である光信号処理装置。
  11.  外部から受信した受信光信号とローカル光信号とを、第1の条件で干渉させることにより第1デジタル信号を生成する第1光信号処理手段と、
     前記受信光信号と前記ローカル光信号とを、第2の条件で干渉させることにより第2デジタル信号を生成する第2光信号処理手段と、
     前記第1デジタル信号及び前記第2デジタル信号を処理して前記受信光信号に含まれる信号を取り出すデジタル処理手段と、
    を備え、
     前記第1光信号処理手段は、
      前記受信光信号と前記ローカル光信号とを同相で干渉させて第1光信号を生成する第1光信号生成手段と、
      前記受信光信号と前記ローカル光信号とを位相差πで干渉させて第2光信号を生成する第2光信号生成手段と、
      前記第1光信号を第1電気信号に変換する第1光電変換素子と、
      前記第2光信号を第2電気信号に変換する第2光電変換素子と、
      前記第1電気信号の直流成分及び前記第2電気信号の直流成分の差を小さくする第1直流成分補正手段と、
      前記直流成分補正手段が補正した後の前記第1電気信号及び前記第2電気信号が入力される差動型の第1トランスインピーダンスアンプと、
     前記第1トランスインピーダンスアンプの出力を前記第1デジタル信号に変換する第1AD変換手段と、
    を有し、
     前記第2光信号処理手段は、
      前記受信光信号と前記ローカル光信号とを位相差π/2で干渉させて第3光信号を生成する第3光信号生成手段と、
      前記受信光信号と前記ローカル光信号とを位相差3π/2で干渉させて第4光信号を生成する第4光信号生成手段と、
      前記第3光信号を第3電気信号に変換する第3光電変換素子と、
      前記第4光信号を第4電気信号に変換する第4光電変換素子と、
      前記第3電気信号の直流成分及び前記第4電気信号の直流成分の差を小さくする第2直流成分補正手段と、
      前記直流成分補正手段が補正した後の前記第3電気信号及び前記第4電気信号が入力される差動型の第2トランスインピーダンスアンプと、
     前記第2トランスインピーダンスアンプの出力を前記第2デジタル信号に変換する第2AD変換手段と、
    を有する光信号処理信装置。
  12.  請求項11に記載の光信号処理装置において、
     前記第1直流成分補正手段及び前記第2直流成分補正手段は、いずれも、
      前記第1光電変換素子と前記トランスインピーダンス回路の間に接続される第1トランジスタと、
      前記第2光電変換素子と前記トランスインピーダンス回路の間に接続される第2トランジスタと、
      前記第1トランジスタを介して第1光電変換素子と前記トランスインピーダンス回路の間に接続されるとともに、前記第2トランジスタを介して第2光電変換素子と前記トランスインピーダンス回路の間に接続される定電流源と、
    を備える光信号処理装置。
  13.  請求項12に記載の光信号処理装置において、
      前記第1トランジスタの制御電圧及び前記第2トランジスタの制御電圧を制御する制御手段を備え、
     前記制御手段は、
      前記トランスインピーダンス回路の2つの出力信号に基づいて、前記第1トランジスタの制御電圧及び前記第2トランジスタの制御電圧を制御する光信号処理装置。
  14.  請求項13に記載の光信号処理装置において、
     前記制御手段は、前記トランスインピーダンス回路の2つの出力信号それぞれを積分する2つの積分回路と、
     前記2つの積分回路それぞれの出力レベルを変換するレベル変換部と、
    を備え、
     前記レベル変換部の2つの出力が、前記第1トランジスタのゲート電圧及び前記第2トランジスタのゲート電圧として入力される光信号処理装置。
  15.  請求項12~14のいずれか一項に記載の光信号処理装置において、
     前記定電流源は、カレントミラー回路を有している光信号処理装置。
  16.  請求項15に記載の光信号処理装置において、
     前記カレントミラー回路を制御する第2制御手段を備える光信号処理装置。
  17.  請求項11~16のいずれか一項に記載の光信号処理装置において、
     前記第1直流成分補正手段は、前記第1電気信号及び前記第2電気信号それぞれの直流成分を小さくし、
      前記第2直流成分補正手段は、前記第3電気信号及び前記第4電気信号それぞれの直流成分を小さくする光信号処理装置。
  18.  第1電気信号の直流成分の大きさと、前記第2電気信号の直流成分の大きさの差を小さくする直流成分補正手段と、
     前記直流成分補正手段が補正した後の前記第1電気信号及び前記第2電気信号が入力される差動型のトランスインピーダンス回路と、
    を有するトランスインピーダンスアンプ。
  19.  外部から受信した受信光信号と、受信側の光源から出力されたローカル光信号とを、第1の位相差で干渉させて第1光信号を生成し、
     前記受信光信号と前記ローカル光信号とを、前記第1の位相差からπずれた第2の位相差で干渉させて第2光信号を生成し、
     前記第1光信号を第1電気信号に変換し、
     前記第2光信号を第2電気信号に変換し、
     前記第1電気信号の直流成分及び前記第2電気信号の直流成分の差を小さくした上で、前記第1電気信号及び前記第2電気信号を差動型のトランスインピーダンス回路に入力する、光信号処理方法。
  20.  外部から受信した受信光信号とローカル光信号とを第1の位相差で干渉させて第1光信号を生成する第1光信号生成手段と、
     前記受信光信号と前記ローカル光信号とを、前記第1の位相差からπずれた第2の位相差で干渉させて第2光信号を生成する第2光信号生成手段と、
     前記第1光信号を第1電気信号に変換する第1光電変換素子と、
     前記第2光信号を第2電気信号に変換する第2光電変換素子と、
     前記第1電気信号の直流成分、及び前記第2電気信号の直流成分を小さくする直流成分補正手段と、
     前記直流成分補正手段が補正した後の前記第1電気信号及び前記第2電気信号が入力される差動型のトランスインピーダンス回路と、
    を備える光信号処理装置。
  21.  外部から受信した受信光信号とローカル光信号とを、第1の条件で干渉させることにより第1デジタル信号を生成する第1光信号処理手段と、
     前記受信光信号と前記ローカル光信号とを、第2の条件で干渉させることにより第2デジタル信号を生成する第2光信号処理手段と、
     前記第1デジタル信号及び前記第2デジタル信号を処理して前記受信光信号に含まれる信号を取り出すデジタル処理手段と、
    を備え、
     前記第1光信号処理手段は、
      前記受信光信号と前記ローカル光信号とを同相で干渉させて第1光信号を生成する第1光信号生成手段と、
      前記受信光信号と前記ローカル光信号とを位相差πで干渉させて第2光信号を生成する第2光信号生成手段と、
      前記第1光信号を第1電気信号に変換する第1光電変換素子と、
      前記第2光信号を第2電気信号に変換する第2光電変換素子と、
      前記第1電気信号の直流成分を小さくするとともに、前記第2電気信号の直流成分を小さくする第1直流成分補正手段と、
      前記直流成分補正手段が補正した後の前記第1電気信号及び前記第2電気信号が入力される差動型の第1トランスインピーダンスアンプと、
     前記第1トランスインピーダンスアンプの出力を前記第1デジタル信号に変換する第1AD変換手段と、
    を有し、
     前記第2光信号処理手段は、
      前記受信光信号と前記ローカル光信号とを位相差π/2で干渉させて第3光信号を生成する第3光信号生成手段と、
      前記受信光信号と前記ローカル光信号とを位相差3π/2で干渉させて第4光信号を生成する第4光信号生成手段と、
      前記第3光信号を第3電気信号に変換する第3光電変換素子と、
      前記第4光信号を第4電気信号に変換する第4光電変換素子と、
      前記第3電気信号の直流成分を小さくするとともに、前記第4電気信号の直流成分を小さくする第2直流成分補正手段と、
      前記直流成分補正手段が補正した後の前記第3電気信号及び前記第4電気信号が入力される差動型の第2トランスインピーダンスアンプと、
     前記第2トランスインピーダンスアンプの出力を前記第2デジタル信号に変換する第2AD変換手段と、
    を有する光信号処理装置。
PCT/JP2011/007233 2011-09-26 2011-12-22 光信号処理装置、及び光信号処理方法 WO2013046284A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012519838A JP5246381B1 (ja) 2011-09-26 2011-12-22 光信号処理装置、及び光信号処理方法
US13/980,851 US9071365B2 (en) 2011-09-26 2011-12-22 Optical signal processing device and optical signal processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-208714 2011-09-26
JP2011208714 2011-09-26

Publications (1)

Publication Number Publication Date
WO2013046284A1 true WO2013046284A1 (ja) 2013-04-04

Family

ID=47994405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007233 WO2013046284A1 (ja) 2011-09-26 2011-12-22 光信号処理装置、及び光信号処理方法

Country Status (3)

Country Link
US (1) US9071365B2 (ja)
JP (1) JP5246381B1 (ja)
WO (1) WO2013046284A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015037276A (ja) * 2013-08-15 2015-02-23 日本電信電話株式会社 コヒーレント通信用光受信器およびその制御方法
JP2015154155A (ja) * 2014-02-12 2015-08-24 日本電信電話株式会社 光コヒーレント検波器及び光受信機
KR20160057893A (ko) * 2014-11-14 2016-05-24 한국전자통신연구원 선형 입력범위를 개선한 레귤레이티드 캐스코드 구조의 버스트 모드 광 전치증폭기

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958696B2 (en) * 2008-10-17 2015-02-17 Ciena Corporation Coherent augmented optical add-drop multiplexer
US9337937B2 (en) 2014-03-10 2016-05-10 Cisco Technology, Inc. Common mode rejection ratio control for coherent optical receivers
FR3026250A1 (fr) 2014-09-19 2016-03-25 St Microelectronics Sa Dispositif electronique pour une chaine de reception de signaux radiofrequence, comprenant un etage amplificateur transconducteur a faible bruit
JP6708344B2 (ja) * 2016-02-29 2020-06-10 国立研究開発法人情報通信研究機構 コヒーレント光受信器の同相除去比測定装置,及び測定方法
US9866184B1 (en) 2016-09-28 2018-01-09 International Business Machines Corporation Degenerated transimpedance amplifier with wire-bonded photodiode for reducing group delay distortion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215909A (ja) * 1985-07-15 1987-01-24 Hitachi Ltd 光受信回路
JP2000174567A (ja) * 1998-12-10 2000-06-23 Toshiba Corp 自動弁別型光受信回路および光送受信モジュール
JP2004179998A (ja) * 2002-11-27 2004-06-24 Mitsubishi Electric Corp 前置増幅器
WO2009069814A1 (ja) * 2007-11-30 2009-06-04 Nec Corporation 光受信回路および信号処理方法
JP2010251851A (ja) * 2009-04-10 2010-11-04 Fujitsu Ltd 光伝送システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5340004B2 (ja) 2008-06-18 2013-11-13 株式会社日立製作所 バランス補償型光バランスド受信器及び光iq受信器
WO2009153838A1 (ja) 2008-06-20 2009-12-23 富士通株式会社 受信装置
JP5459103B2 (ja) * 2010-06-25 2014-04-02 住友電気工業株式会社 増幅回路
JP2012013886A (ja) * 2010-06-30 2012-01-19 Fujitsu Ltd 光導波路素子、光ハイブリッド回路及び光受信機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215909A (ja) * 1985-07-15 1987-01-24 Hitachi Ltd 光受信回路
JP2000174567A (ja) * 1998-12-10 2000-06-23 Toshiba Corp 自動弁別型光受信回路および光送受信モジュール
JP2004179998A (ja) * 2002-11-27 2004-06-24 Mitsubishi Electric Corp 前置増幅器
WO2009069814A1 (ja) * 2007-11-30 2009-06-04 Nec Corporation 光受信回路および信号処理方法
JP2010251851A (ja) * 2009-04-10 2010-11-04 Fujitsu Ltd 光伝送システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015037276A (ja) * 2013-08-15 2015-02-23 日本電信電話株式会社 コヒーレント通信用光受信器およびその制御方法
JP2015154155A (ja) * 2014-02-12 2015-08-24 日本電信電話株式会社 光コヒーレント検波器及び光受信機
KR20160057893A (ko) * 2014-11-14 2016-05-24 한국전자통신연구원 선형 입력범위를 개선한 레귤레이티드 캐스코드 구조의 버스트 모드 광 전치증폭기
KR102286595B1 (ko) * 2014-11-14 2021-08-05 한국전자통신연구원 선형 입력범위를 개선한 레귤레이티드 캐스코드 구조의 버스트 모드 광 전치증폭기

Also Published As

Publication number Publication date
US9071365B2 (en) 2015-06-30
JPWO2013046284A1 (ja) 2015-03-26
US20130294784A1 (en) 2013-11-07
JP5246381B1 (ja) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5246381B1 (ja) 光信号処理装置、及び光信号処理方法
JP5339088B2 (ja) 光受信回路および信号処理方法
US8145072B2 (en) DQPSK optical receiver
JP5105005B2 (ja) 光受信器、光受信装置および光受信強度補正方法
US20170250758A1 (en) Optical communication system and optical transmitter
US7525391B2 (en) Linear transimpedance amplifier with multiplexed gain stage
US8463143B2 (en) Amplifier with offset compensator and optical receiver implemented with the same
Ahmed et al. 34-GBd linear transimpedance amplifier for 200-Gb/s DP-16-QAM optical coherent receivers
JP5630325B2 (ja) 利得可変差動増幅回路
JP5370133B2 (ja) 光受信機および受信方法
JP2013078051A (ja) 増幅装置
WO2012117951A1 (ja) 光受信器および光受信方法
WO2014068978A1 (ja) 光受信器、光受信装置および光受信強度補正方法
JP4452717B2 (ja) 受信信号強度インジケータを有するトランスインピーダンス増幅器
WO2013057967A1 (ja) 光受信器、光受信装置および光受信強度補正方法
GB2428097A (en) Error signal averaging circuit
Chen et al. An integrated CMOS transceiver for a 40Gb/s SCM optical communication system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012519838

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12013500604

Country of ref document: PH

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13980851

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873061

Country of ref document: EP

Kind code of ref document: A1