WO2013042196A1 - ターボチャージャー制御システム及び制御方法 - Google Patents

ターボチャージャー制御システム及び制御方法 Download PDF

Info

Publication number
WO2013042196A1
WO2013042196A1 PCT/JP2011/071360 JP2011071360W WO2013042196A1 WO 2013042196 A1 WO2013042196 A1 WO 2013042196A1 JP 2011071360 W JP2011071360 W JP 2011071360W WO 2013042196 A1 WO2013042196 A1 WO 2013042196A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
pressure
exhaust
turbocharger
target
Prior art date
Application number
PCT/JP2011/071360
Other languages
English (en)
French (fr)
Inventor
馬場 真二
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to CN201180073255.5A priority Critical patent/CN103782007B/zh
Priority to KR1020147005715A priority patent/KR101892427B1/ko
Priority to PCT/JP2011/071360 priority patent/WO2013042196A1/ja
Priority to KR1020187018885A priority patent/KR20180079472A/ko
Priority to EP11872602.5A priority patent/EP2759686B1/en
Priority to DK11872602.5T priority patent/DK2759686T3/en
Publication of WO2013042196A1 publication Critical patent/WO2013042196A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention is a turbocharger that is applied to an engine engine provided with a denitration reactor for reducing and removing nitrogen oxides (hereinafter referred to as “NOx”) in exhaust gas in an exhaust passage upstream of the turbine of the turbocharger.
  • NOx nitrogen oxides
  • the present invention relates to a control system and a control method.
  • the turbocharger 101 generally includes a turbine 101b and a compressor 101c at both ends of a rotating shaft 101a, and exhaust of high-temperature exhaust gas discharged from the exhaust port 103b of the engine 103 to the exhaust passage 104.
  • the turbine 101b is rotated by the flow, and the compressor 101c is driven by the power.
  • the air compressed by the compressor 101 c is supplied to the scavenging port 103 a of the engine 103 through the scavenging chamber 102.
  • the turbocharger 101 operates in synchronization with the increase or decrease of the load of the engine 103, and the engine 103 is overloaded at an appropriate timing. Pay is done.
  • a denitration reactor 106 may be provided in the exhaust passage 104 between the exhaust port 103b and the turbine 101b as shown in FIG. 4B (for example, Non-Patent Document 1). , P42 FIG. 1).
  • the denitration reactor 106 incorporates an SCR catalyst or the like that selectively reduces the NOx soot in the exhaust gas with a reducing agent such as ammonia gas to decompose it into nitrogen and water to render them harmless.
  • a reducing agent such as ammonia gas
  • FIG. 5A is an explanatory diagram when the operator reduces the engine load (rotation speed).
  • the first exhaust temperature Te1 at the exhaust port 103b immediately decreases as indicated by reference numeral X1, but the exhaust gas is generated by the heat stored in the SCR catalyst while passing through the denitration reactor 106. Since it is heated again, the second exhaust temperature Te2 at the outlet 106a of the denitration reactor 106 is delayed to fall as indicated by the symbol X1 ′.
  • the rotational speed of the turbocharger 101 is basically proportional to the temperature of the exhaust gas introduced into the turbine 101b. Therefore, while the second exhaust temperature Te2 does not decrease, the rotational speed of the turbocharger 101 is higher than the speed commensurate with the engine load even though the load of the engine 103 is decreasing. Since the amount of air fed is excessive, the scavenging air pressure Ps of the scavenging chamber 102 is maintained at a high state as indicated by the symbol X1 ′′. Therefore, more air than necessary is supplied to the scavenging port 103a via the scavenging chamber 102. Since it is introduced, the engine 103 becomes supercharged, and the first exhaust temperature Te1 further decreases.
  • the second exhaust temperature Te2 excessively decreases as indicated by the symbol Y1 ′ after a certain time delay, and accordingly, the rotational speed of the turbocharger 101 decreases.
  • the scavenging air pressure Ps also decreases excessively as indicated by the symbol Y1 ′′.
  • the amount of air sent from the compressor 101c is less than the amount commensurate with the engine load, and the first exhaust temperature Te1 rises as indicated by reference numeral Y1.
  • the above phenomenon occurs and is repeated for a while and takes time to converge.
  • FIG. 5 (b) is an explanatory diagram when the operator increases the load (rotation speed) of the engine, and a phenomenon opposite to (a) occurs.
  • the first exhaust temperature Te1 immediately rises as indicated by the symbol X2, but the SCR catalyst in the denitration reactor 106 has a large heat capacity and takes time to increase its temperature.
  • the rise in the second exhaust temperature Te2 is delayed as indicated by the symbol X2 ′.
  • the rotational speed of the turbocharger 101 is slower than the speed commensurate with the engine load even though the load of the engine 103 is increasing. Since the amount of air fed in is insufficient, the scavenging air pressure Ps in the scavenging chamber 102 is maintained at a low state as indicated by the symbol X2 ′′. Therefore, the necessary air is not introduced into the scavenging port 103a, and the engine 103 is excessive. Since the fuel supply is insufficient and a large amount of fuel is supplied, the first exhaust temperature Te1 further increases.
  • a bypass conduit 108 that can be opened and closed by a bypass valve 108a is provided so as to connect the upstream exhaust passage 104a and the downstream exhaust passage 104b of the denitration reactor 106
  • a turbocharger control system 100 is proposed in which the bypass valve 108a is opened to prevent a part of the exhaust gas from passing through the denitration reactor 106 when increasing the load of the engine (for example, see Non-Patent Document 1, p46). 8, Patent Document 1, FIG. 2).
  • a bypass conduit 109 that connects the upstream exhaust passage 104b and the downstream exhaust passage 107 of the turbine 101b is further provided, and when the engine load is reduced, the bypass valve 109a is opened to remove a part of the exhaust gas.
  • a configuration in which the turbine 101b is not supplied has also been proposed (for example, Non-Patent Document 1, FIG. 4 of p44, Patent Document 1, FIG. 1).
  • bypass valve 109a While the bypass valve 109a is open, the exhaust gas energy is lost because the exhaust gas flows to the exhaust passage 107 downstream of the turbine 101b without using a part of the exhaust flow.
  • the problems to be solved by the present invention are that the conventional turbocharger control system does not reduce and purify NOx soot in the exhaust gas when the denitration reactor is bypassed, and the exhaust flow energy is lost when the turbine is bypassed. It is a point to be done.
  • the present invention has been made in view of the above problems, and in a turbocharger control system and control method capable of preventing hunting, exhaust gas without bypassing the denitration reactor even when the engine is insufficiently supercharged.
  • An object of the present invention is to provide a control system and a control method that can always purify the entire amount and that can be effectively used without losing the energy of exhaust gas even when the engine is overcharged.
  • the turbocharger control system of the present invention is In an engine where a denitration reactor is arranged in the exhaust passage upstream of the turbine of the turbocharger, A pressure gauge that detects the scavenging pressure in the scavenging chamber; A motor capable of assisting or braking the drive of the turbocharger; Providing a generator capable of charging the power storage device with regenerative power of the motor, and A target scavenging pressure calculating means for accessing the scavenging pressure database to obtain a target scavenging pressure; a pressure comparing section for comparing the scavenging pressure detected by the pressure gauge with the target scavenging pressure determined by the target scavenging pressure calculating means;
  • the main feature is that a control device including a main command unit that controls the motor or the generator according to the comparison result of the comparison unit is provided.
  • the drive control of the turbocharger using the turbocharger control system of the present invention is as follows.
  • the pressure comparison unit compares a difference between the scavenging pressure and the target scavenging pressure at predetermined time intervals,
  • the main command unit When accelerating the engine, while the scavenging air pressure is smaller than the target scavenging air pressure, assist the drive of the turbocharger by instructing to accelerate the rotational speed of the motor,
  • the generator is instructed to charge the power storage device to brake the drive of the turbocharger. This is the turbocharger control method of the present invention.
  • the main command unit of the control device commands the motor to supply drive power, and the turbocharger is driven by the rotation of the motor. Assist driving. Therefore, lack of supercharging of the engine can be solved and hunting can be prevented without bypassing the denitration reactor.
  • the main command unit of the control device commands the generator to charge the regenerative power from the motor
  • the turbocharger drive is braked while converting the rotational torque of the turbocharger into electrical energy.
  • the electric power generated by the generator can be stored in a power storage device and used as motor driving power when the engine load is increased. Therefore, it is possible to prevent hunting while effectively utilizing exhaust gas energy without throwing it out of the system.
  • FIG. 8 is a diagram for explaining control for braking the turbocharger drive by instructing the generator to charge the power storage device while the scavenging air pressure is larger than the target scavenging air pressure.
  • FIG. 6 is a graph showing changes in the first exhaust temperature Te1 at the exhaust port, the second exhaust temperature Te2 at the outlet of the denitration reactor, and the scavenging air pressure Ps when the hunting phenomenon occurs.
  • FIG. When the load is lowered, (b) is an explanatory diagram when the engine load is raised. It is the schematic which showed the structure of the conventional turbocharger control system.
  • reference numeral 1 denotes a turbocharger control system according to the present invention applied to a marine diesel engine in which a denitration reactor 4 is disposed in an exhaust passage 3 upstream of a turbine 2a of a turbocharger 2.
  • the turbocharger control system 1 is provided on a pressure gauge 7 a provided in the scavenging chamber 6 for detecting the scavenging air pressure Ps in the scavenging chamber 6 connected to the scavenging port 5 a of the engine 5, and a rotating shaft 2 b of the turbocharger 2.
  • the motor / generator 8 having both the function of the motor 8a and the function of the generator 8b is used.
  • Reference numeral 10 denotes a rotation speed control device that controls the injection amount of fuel F supplied to the engine 5 and can transmit engine rotation speed data set by the operator to the control device 9, and 12 reduces and purifies NOxNO. It shows a chimney that emits exhaust gas afterwards.
  • the denitration reactor 4 incorporates an SCR catalyst that selectively reduces NOx soot in the exhaust gas with a reducing agent such as ammonia gas to decompose it into nitrogen and water to make it harmless.
  • a reducing agent such as ammonia gas
  • the exhaust passage 3a on the upstream side of the denitration reactor 4 is provided with a nozzle (not shown) that sprays a reducing agent precursor such as urea water that generates ammonia gas when hydrolyzed.
  • the control device 9 accesses a scavenging air pressure database 9 a 1, and a target scavenging air pressure calculating unit 9 a 2 that obtains a target scavenging air pressure tPs according to engine speed data acquired from the rotational speed control device 10.
  • a pressure comparison unit 9a3 that compares the scavenging pressure Ps of the scavenging chamber 6 detected by the pressure gauge 7a with the target scavenging pressure tPs obtained by the target scavenging pressure calculation unit 9a2, and the motor 8a according to the comparison result of the pressure comparison unit 9a3.
  • a main command unit 9a4 that controls the drive power to be supplied and commands the generator 8b to charge the regenerative power of the motor 8a to the power storage device 11 (first embodiment of the present invention). ).
  • the scavenging air pressure database 9a1 is a table in which the target scavenging air pressure tPs, which is an appropriate scavenging air pressure corresponding to the rotational speed of the engine 5, is obtained from the experimental data, and is searched using the engine rotational speed data set by the operator as a key. It is a possible database.
  • the contents of the data registered in advance in the scavenging air pressure database 9a1 differ depending on the type and scale of the engine engine.
  • the method for controlling the drive of the turbocharger using the first embodiment of the present invention will be described separately for increasing and decreasing the engine load.
  • the target scavenging air pressure calculation means 9a2 of the control device 9 acquires engine speed data set by the operator from the speed control device 10, refers to the scavenging air pressure database 9a1 using the data as a key, and from the table of the scavenging air pressure database 9a1. Data of the target scavenging air pressure tPs corresponding to the set rotational speed data is acquired.
  • the target scavenging pressure calculation means 9a2 of this embodiment uses the data registered in the scavenging pressure database 9a1 as it is, but the target scavenging pressure tPs uses the data registered in the scavenging pressure database 9a1 as basic data. A value with necessary corrections may be used.
  • Air A is compressed by the compressor 2 c and sent into the scavenging chamber 6.
  • a pressure gauge 7 a provided in the scavenging chamber 6 detects the scavenging air pressure Ps in the scavenging chamber 6.
  • the pressure comparison unit 9a3 of the control device 9 acquires the scavenging air pressure Ps data detected by the pressure gauge 7a every predetermined time, and obtains the difference from the target scavenging air pressure tPs obtained by the target scavenging air pressure calculating means 9a2. .
  • the main command unit 9a4 when accelerating the engine, while the scavenging air pressure Ps is smaller than the target scavenging air pressure tPs (in the example shown, from time 0 to time T)
  • the control circuit of the motor 8a is instructed to accelerate the rotational speed of the motor 8a, and the drive power of the motor 8a supplied from the power storage device 11 is increased to assist the drive of the turbocharger 2.
  • Such control is repeated while the scavenging air pressure Ps data is acquired every predetermined time and the scavenging air pressure Ps is determined to be smaller than the target scavenging air pressure tPs in the pressure comparison unit 9a3 (in the example shown in the figure). , Repeated at timings t1, t2, t3.
  • the main command unit 9a4 instructs the control circuit of the motor 8a not to further increase the rotational speed of the motor 8a.
  • the target scavenging air pressure calculation means 9a2 of the control device 9 acquires engine speed data set by the operator from the speed control device 10, refers to the scavenging air pressure database 9a1 using the data as a key, and from the table of the scavenging air pressure database 9a1. Data of the target scavenging air pressure tPs corresponding to the set rotational speed data is acquired.
  • the pressure comparison unit 9a3 acquires scavenging air pressure Ps data detected by the pressure gauge 7a every predetermined time, and obtains a difference from the target scavenging air pressure tPs obtained by the target scavenging air pressure calculating means 9a2.
  • the main command unit 9a4 is configured to decelerate the engine while the scavenging air pressure Ps is larger than the target scavenging air pressure tPs (in the example shown, from time 0 to time T).
  • the control circuit of the generator 8b is commanded to charge the regenerative power of the motor 8a to the power storage device 11, thereby braking the drive of the turbocharger 2.
  • Such control is repeated while the scavenging air pressure Ps data is acquired every predetermined time and the scavenging air pressure Ps is determined to be larger than the target scavenging air pressure tPs in the pressure comparison unit 9a3 (in the example shown in the figure). , Repeated at timings t1, t2, t3.
  • the main command unit 9a4 instructs the control circuit of the generator 8b not to further generate power so as not to decrease the rotation speed of the motor 8a. .
  • the rotational speed control device 10 does not detect an increase or decrease in the engine rotational speed, and therefore does not instruct the control device 9 to start the control method of the present invention.
  • the exhaust passage 3 a between the exhaust port 5 b of the engine 5 and the denitration reactor 4 is exhausted through a cycle of compression, combustion, expansion, and supply / exhaust (scavenging).
  • a first thermometer 7b that detects a first exhaust temperature Te1 that is the temperature of the exhaust gas G exhausted from the port 5b is provided.
  • the control device 9 includes a first temperature comparison unit 9b1 for obtaining a difference between the upper limit temperature uTe1 and the first exhaust temperature Te1 for preventing deterioration of the catalyst in the denitration reactor 4, and this A sub-command unit 9b2 that commands to accelerate the rotation speed of the motor 8a when the temperature difference obtained by the first temperature comparison unit 9b1 falls within a predetermined range.
  • the upper limit temperature uTe1 is an upper limit temperature at which the exhaust gas G does not deteriorate the catalyst when passing through the denitration reactor 4, and data is set in the controller 9 in advance.
  • the temperature range to be monitored with the upper limit temperature uTe1 as a reference is also set in advance in the control device 9 in accordance with the type and scale of the engine. Further, even when it is assumed that the first exhaust temperature Te1 exceeds the upper limit temperature uTe1 due to sea conditions such as during stormy weather, data is set in the control device 9 in advance.
  • the control device 9 monitors the first exhaust temperature Te1 of the exhaust gas G introduced into the denitration reactor 4, and enters a range in which there is a high risk that this exceeds the preset upper limit temperature uTe1.
  • the auxiliary command unit 9b2 can correct the rotation speed of the motor 8a so as to accelerate. Therefore, since the rotation speed of the turbocharger 2 is increased and the amount of scavenging supplied to the scavenging port 5a is increased, the first exhaust temperature Te1 can be lowered, which is preferable because the deterioration of the catalyst can be prevented.
  • the first temperature comparison unit 9b1 acquires the data of the first exhaust temperature Te1 detected by the first thermometer 7b at every predetermined time, and compares the difference with the upper limit temperature uTe1.
  • the control device 9 accelerates the rotation speed of the motor 8a by the acceleration commanded from the sub command unit 9b2.
  • the control device 9 gives an acceleration commanded from the main command unit 9a4. And the acceleration commanded from the sub command unit 9b2 are added to accelerate the rotational speed of the motor 8a.
  • the above control is repeated every predetermined time, and when the temperature difference between the first exhaust temperature Te1 and the upper limit temperature uTe1 is out of the predetermined range, the sub-command unit 9b2 stops the command to the control circuit of the motor 8a.
  • FIG. 1 the temperature of the exhaust gas after the NOx soot purification process discharged from the outlet 4a into the exhaust passage 3b between the outlet 4a of the denitration reactor 4 and the turbine 2a is shown.
  • a second thermometer 7c for detecting the second exhaust temperature Te2 is provided.
  • the control device 9 accesses the outlet temperature database 9c1 and sets the target first exhaust temperature tTe1 and the target second exhaust temperature tTe2 according to the engine speed data acquired from the speed control device 10.
  • a stop command unit 9c4 that commands to stop driving of the motor 8a or the generator 8b when both of the temperature differences obtained by the second temperature comparison unit 9c3 are within a predetermined range. It is composed.
  • the outlet temperature database 9c1 performs experiments on the target first exhaust temperature tTe1 that is an ideal outlet temperature at the exhaust port 5b corresponding to the rotational speed of the engine 5 and the target second exhaust temperature tTe2 at the outlet 4a of the denitration reactor 4.
  • This is a database obtained from data and made into a table, and is a database that can be searched by using the engine speed data set by the operator as a key.
  • the content of data registered in advance in the outlet temperature database 9c1 varies depending on the type and scale of the engine engine.
  • the control device 9 monitors the first exhaust temperature Te1 and the second exhaust temperature Te2, and when the difference between these temperatures falls within a preset range, the stop command unit 9c4 Control stop can be commanded to 8a and generator 8b. Therefore, at the timing when the temperature difference (difference between the first exhaust temperature Te1 and the second exhaust temperature Te2) due to the influence of the heat capacity of the SCR catalyst of the denitration reactor 4 disappears, the assist or braking for the turbocharger 2 is stopped and the normal operation is stopped. Since it can return to a driving
  • the second temperature comparison unit 9c3 acquires the data of the first exhaust temperature Te1 detected by the first thermometer 7b and the data of the second exhaust temperature Te2 detected by the second thermometer 7c for each predetermined time, and sets the target The difference from the first exhaust temperature tTe1 and the difference from the target second exhaust temperature tTe2 are respectively compared.
  • the stop command unit 9c4 stops driving the motor 8a or the generator 8b when the temperature difference obtained by the second temperature comparison unit 9c3 is both within a predetermined range for a certain period of time. Command.
  • the temperature difference due to the influence of the heat capacity of the SCR catalyst of the denitration reactor 4 is detected in real time at a predetermined time interval, the temperature difference is within an allowable range, and the state is maintained for a predetermined time. Since it is possible to return to normal operation without assisting or braking the turbocharger 2 at a proper timing, it is preferable that the drive of the motor 8a and the generator 8b can be limited to a necessary range.
  • the control method according to the third embodiment is started when the rotation speed control device 10 detects an increase or decrease in the rotation speed of the engine 5, and when the stop command unit 9c4 of the control device 9 issues a stop command. finish.
  • the main command unit of the control device commands the motor to supply driving power, and assists the turbocharger drive by the rotation of the motor. Therefore, insufficient supercharging of the engine can be solved without bypassing the denitration reactor. Therefore, there is no untreated gas, and exhaust gas can always be completely purified.
  • the main command unit of the control device commands the generator to charge the regenerative power from the motor, and brakes the drive of the turbocharger.
  • the electric power generated by the generator is stored in a power storage device and can be used as driving power for the motor. Therefore, the exhaust gas energy can be effectively used without being thrown out of the system.
  • the present invention prevents the hunting by connecting the motor / generator to the rotating shaft of the turbocharger, thereby preventing hunting, and the engine engine equipped with the denitration reactor in front of the turbocharger. Driving can be stabilized.
  • the target exhaust temperature calculation means 9c2 discloses an example in which data registered in the outlet temperature database 9c1 is used.
  • the target first exhaust temperature tTe1 and the target second exhaust temperature tTe2 are: A value obtained by adding necessary corrections using the data registered in the outlet temperature database 9c1 as basic data may be used.
  • the operator has not instructed to change the engine load, whether or not the threshold value preset in the control device 9 in each of the above embodiments is exceeded also in the case where the engine load fluctuates due to marine conditions such as in bad weather.
  • the operation or non-operation of the system of the present invention may be appropriately controlled. This is because sea hunting is also considered to be the same as the situation where the operator greatly changes the engine load when the hunting due to sea conditions becomes larger than a certain threshold.

Abstract

【課題】 タービンの上流側に脱硝反応装置を設けたエンジン機関において、バイパス経路を設けずにハンチングを防止する。 【解決手段】 掃気室6内の掃気圧Psを検出する圧力計7aと、ターボチャージャー2の駆動をアシスト又は制動可能なモータ8aと、モータ8aの回生電力を蓄電装置11に充電可能な発電機8bと、制御装置9とを設ける。制御装置9は、掃気圧データベース9a1と、目標掃気圧tPsを求める目標掃気圧計算手段9a2と、掃気圧Psと目標掃気圧tPsを比較する圧力比較部9a3と、この圧力比較部9a3の比較結果に応じてモータ8a又は発電機8bを制御する主指令部9a4と、を少なくとも備えた構成とする。 【効果】 排気ガスは常に全量浄化処理される。排気ガスのエネルギを損失することなくモータの駆動電力として有効に利用できる。

Description

ターボチャージャー制御システム及び制御方法
 本発明は、ターボチャージャーのタービンの上流側の排気通路に、排気ガス中の窒素酸化物(以下「NOx 」という。)を還元除去する脱硝反応装置を設けたエンジン機関に適用される、ターボチャージャー制御システム及び制御方法に関するものである。
 図4(a)に示すように、一般にターボチャージャー101は、回転軸101aの両端にタービン101bとコンプレッサー101cを備え、エンジン103の排気ポート103bから排気通路104に排出される高温の排気ガスの排気流でタービン101bを回転させ、その動力でコンプレッサー101cを駆動する。そして、コンプレッサー101cにより圧縮された空気は、掃気室102を介してエンジン103の掃気ポート103aに供給される。
 このように、排気ポート103bとタービン101bの間が排気通路104のみである場合、ターボチャージャー101は、エンジン103の負荷の増減に対してほぼ同期して作動し、エンジン103に適切なタイミングで過給が行われる。
 これに対し、例えば舶用ディーゼル機関では、図4(b)に示すように、排気ポート103bとタービン101bの間の排気通路104に、脱硝反応装置106を設ける場合がある(例えば、非特許文献1、p42の図1)。脱硝反応装置106には、排気ガス中のNOx をアンモニアガス等の還元剤と選択的に還元反応させて窒素と水に分解して無害化するSCR触媒等が組み込まれている。なお、NOx を除去した後の排気ガスは煙突105から放出される。
 ところが、このような、タービン101bの上流側に脱硝反応装置106を設けるエンジン機関の場合、大きな熱容量を有するSCR触媒が昇温又は冷却されるのにはある程度の時間を要するため、排気ポート103bから排出される排気ガスの温度(以下、第1排気温度Te1という。)はエンジンの負荷に応じて直ぐに変化しても、脱硝反応装置106の出口106aから排出される排気ガスの温度(以下、第2排気温度Te2という。)が変化するまでには時間の遅れが生じていた。
 そのため、脱硝反応装置106をタービン101bの上流側に設ける例えば舶用ディーゼル機関では、エンジン103の負荷を下げるときに掃気室102の掃気圧Psが必要以上に高くなって過給過剰となったり(非特許文献1、p43の図3参照)、エンジン103の負荷を上げるときに必要な掃気圧Psが得られずに過給不足となるハンチング現象が生じていた。以下、このハンチングが生じる原因について、図5を参照して詳細に説明する。
 図5(a)はオペレータがエンジンの負荷(回転数)を下げた場合の説明図である。エンジンの負荷が下がると、排気ポート103bにおける第1排気温度Te1は、符号X1で示すように直ぐに下降するが、脱硝反応装置106を通過する間にSCR触媒に蓄えられていた熱によって排気ガスが再び加熱されるので、脱硝反応装置106の出口106aにおける第2排気温度Te2は、符合X1’で示すように下降が遅れる。
 ターボチャージャー101の回転速度は、基本的にタービン101bに導入される排気ガスの温度に比例する。よって、第2排気温度Te2が下がらない間は、エンジン103の負荷が下降しているにも拘わらず、ターボチャージャー101の回転速度がエンジン負荷に見合う速度よりも速い状態となり、それに伴いコンプレッサー101cから送り込まれる空気量も過剰になるので、掃気室102の掃気圧Psは、符合X1”で示すように高い状態が維持される。よって、必要以上の空気が掃気室102を介して掃気ポート103aに導入されるため、エンジン103が過給過剰の状態となり、第1排気温度Te1がさらに低下する。
 このような過給過剰の状態がしばらく続くと、一定の時間遅れの後、第2排気温度Te2は符合Y1’で示すように過剰に低下し、それに伴いターボチャージャー101の回転速度が低下し、掃気圧Psも符合Y1”で示すように過剰に低下する。
 この結果、コンプレッサー101cから送られる空気量がエンジンの負荷に見合う量よりも少なくなり、符合Y1で示すように、第1排気温度Te1が上昇してしまう。エンジンの負荷を下げるときは、以上のような現象が起き、しばらく繰り返され、収束するまで時間を要する。
 図5(b)はオペレータがエンジンの負荷(回転数)を上げた場合の説明図であり、(a)とは逆の現象が生じる。先ず、エンジンの負荷が上がると、第1排気温度Te1は、符号X2で示すように直ぐに上昇するが、脱硝反応装置106内のSCR触媒は大きな熱容量を有し昇温するのに時間がかかるので、第2排気温度Te2は、符合X2’で示すように上昇が遅れる。
 よって、第2排気温度Te2が上がらない間は、エンジン103の負荷が上昇しているにも拘わらず、ターボチャージャー101の回転速度がエンジン負荷に見合う速度よりも遅い状態となり、それに伴いコンプレッサー101cから送り込まれる空気量も不足するので、掃気室102の掃気圧Psは、符合X2”で示すように低い状態が維持される。よって、必要な空気が掃気ポート103aに導入されず、エンジン103が過給不足の状態となり、燃料も多く投入されているため、第1排気温度Te1がさらに上昇する。
 このような過給不足の状態がしばらく続くと、一定の時間遅れの後、第2排気温度Te2は符合Y2’で示すように過剰に上昇し、それに伴いターボチャージャー101の回転速度が速くなり、掃気圧Psも符合Y2”で示すように過剰に上昇する。
 この結果、コンプレッサー101cから送られる空気量がエンジンの負荷に見合う量よりも多くなり、符合Y2で示すように、第1排気温度Te1が下降してしまう。エンジンの負荷を上げるときは、以上のような現象が繰り返される。
 このようなハンチング現象が起きている間は、ターボチャージャー101の本来の機能が十分に発揮されず、エンジン機関の運転に支障をきたすことになる。
 そこで、従来、例えば図6に示すように、バイパス弁108aにより開閉可能なバイパス導管108を、脱硝反応装置106の上流側の排気通路104aと下流側の排気通路104bを接続するように設け、エンジンの負荷を上げるときはバイパス弁108aを開いて排気ガスの一部が脱硝反応装置106を通過しないように構成したターボチャージャー制御システム100が提案されている(例えば、非特許文献1、p46の図8、特許文献1、第2図)。
 これは、エンジンの負荷を上げるときは、エンジン103が過給不足となるため、脱硝反応装置106に導入される排気ガスの一部をタービン101bの上流へバイパスして、タービン101bの回転速度を上昇させるものである。
 また、従来、タービン101bの上流側の排気通路104bと下流側の排気通路107を接続するバイパス導管109をさらに設け、エンジンの負荷を下げるときはバイパス弁109aを開放して排気ガスの一部をタービン101bに供給しない構成も提案されている(例えば、非特許文献1、p44の図4、特許文献1、第1図)。
 これは、エンジンの負荷を下げるときは、エンジン103が過給過剰となるため、タービン101bに供給される排気ガスの一部をタービン101bの下流へバイパスして、タービン101bの回転速度の上昇を抑制するものである。
 しかしながら、従来のターボチャージャー制御システム100は、バイパス弁108aを開いている間は、排気ガスの一部が脱硝反応装置106を通過しないため、NOx が還元浄化されていない未処理のガスが煙突105から大気中に放出され、環境を汚染するという問題があった。
 また、バイパス弁109aを開いている間は、排気流の一部を利用することなくタービン101bの下流の排気通路107に流すので、排気ガスのエネルギを損失していることになる。
本村 収、外5名、「脱硝装置付き低速ディーゼル機関の運転動特性」、日本舶用機関学会誌、1999年1月、第34巻、第1号、p41-47
日本特表平8-500170号公報
 本発明が解決しようとする問題点は、従来のターボチャージャー制御システムは、脱硝反応装置をバイパスさせると排気ガス中のNOx が還元浄化されない点、及び、タービンをバイパスさせると排気流のエネルギが損失される点である。
 本発明は、上記の問題点に鑑みてなされたものであり、ハンチングを防止可能なターボチャージャーの制御システム及び制御方法において、エンジンが過給不足のときでも脱硝反応装置をバイパスさせることなく排気ガスは常に全量浄化処理できると共に、エンジンが過給過剰のときでも排気ガスのエネルギを損失することなく有効に活用することができる制御システム及び制御方法を提供することを目的としている。
 本発明のターボチャージャー制御システムは、
 ターボチャージャーのタービンの上流側の排気通路に脱硝反応装置を配置したエンジン機関において、
 掃気室内の掃気圧を検出する圧力計と、
 前記ターボチャージャーの駆動をアシスト又は制動可能なモータと、
 前記モータの回生電力を蓄電装置に充電可能な発電機と、を設けると共に、
 掃気圧データベースにアクセスして目標掃気圧を求める目標掃気圧計算手段と、前記圧力計が検出した掃気圧と前記目標掃気圧計算手段が求めた目標掃気圧を比較する圧力比較部と、この圧力比較部の比較結果に応じて前記モータ又は前記発電機を制御する主指令部と、を備えた制御装置を設けたこと、を最も主要な特徴点としている。
 上記本発明のターボチャージャー制御システムを使用したターボチャージャーの駆動制御は、
 前記圧力比較部は、所定の時間毎に前記掃気圧と前記目標掃気圧の差を比較し、
 前記主指令部は、
 エンジンを加速時、前記掃気圧が前記目標掃気圧よりも小さい間は、前記モータの回転速度を加速するように指令して前記ターボチャージャーの駆動をアシストし、
 エンジンを減速時、前記掃気圧が前記目標掃気圧よりも大きい間は、前記発電機に前記蓄電装置への充電を指令して前記ターボチャージャーの駆動を制動する。これが本発明のターボチャージャー制御方法である。
 本発明によれば、オペレータがエンジンの負荷を上げて、エンジンが過給不足となるときは、制御装置の主指令部はモータに駆動電力を供給するように指令し、モータの回転によってターボチャージャーの駆動をアシストする。よって、脱硝反応装置をバイパスさせることなくエンジンの過給不足を解消し、ハンチングを防止することができる。
 また、本発明によれば、オペレータがエンジンの負荷を下げて、エンジンが過給過剰となるときは、制御装置の主指令部は発電機にモータからの回生電力を充電するように指令し、ターボチャージャーの回転トルクを電気エネルギに変換しながらターボチャージャーの駆動を制動する。また、発電機が発電した電力は、蓄電装置に蓄電しておき、エンジンの負荷を上げるときにモータの駆動電力として利用することができる。よって、排気ガスのエネルギを系外に捨てることなく有効利用を図りつつ、ハンチングを防止することができる。
本発明のターボチャージャー制御システムの構成を示した概略図である。 本発明のターボチャージャー制御システムの制御装置の構成を示したブロック図である。 (a)はエンジンを加速時、掃気圧が目標掃気圧よりも小さい間、モータの回転速度を加速するように指令してターボチャージャーの駆動をアシストする制御を、(b)は、エンジンを減速時、掃気圧が目標掃気圧よりも大きい間、発電機に蓄電装置への充電を指令してターボチャージャーの駆動を制動する制御を説明する図である。 (a)は一般的なターボチャージャーの説明図、(b)はタービンの上流側に脱硝反応装置を設けた舶用ディーゼル機関の説明図である。 ハンチング現象が発生しているときの、排気ポートにおける第1排気温度Te1、脱硝反応装置の出口における第2排気温度Te2、掃気室の掃気圧Psの変化を示したグラフで、(a)はエンジン負荷を下げたときの、(b)はエンジン負荷を上げたときの説明図である。 従来のターボチャージャー制御システムの構成を示した概略図である。
 以下、本発明を実施するための種々の形態を、図1~図3を用いて詳細に説明する。図1において、1は、ターボチャージャー2のタービン2aの上流側の排気通路3に脱硝反応装置4を配置した舶用ディーゼルエンジンに適用した本発明のターボチャージャー制御システムである。ターボチャージャー制御システム1は、エンジン5の掃気ポート5aと接続される掃気室6内の掃気圧Psを検出するため掃気室6に設けた圧力計7aと、ターボチャージャー2の回転軸2bに設けられ、ターボチャージャー2の駆動をアシスト又は制動可能なモータ8aと、このモータ8aに駆動電力を供給する蓄電装置11と、前記モータ8aの回生電力を前記蓄電装置11に充電可能な発電機8bを備えている。なお、本実施例では、モータ8aの機能と発電機8bの機能を兼ね備えたモータ兼発電機8を使用している。また、10は、エンジン5に供給する燃料Fの噴射量を制御すると共にオペレータが設定したエンジン回転数のデータを制御装置9に伝達可能な回転数制御装置を、12は、NOx を還元浄化した後の排気ガスを放出する煙突を示している。
 脱硝反応装置4には、排気ガス中のNOx をアンモニアガス等の還元剤と選択的に還元反応させて窒素と水に分解して無害化するSCR触媒が組み込まれている。脱硝反応装置4の上流側の排気通路3aには、加水分解されるとアンモニアガスを生成する尿素水等の還元剤前駆体を噴霧するノズル(不図示)が設けられている。
 制御装置9は、図2に示すように、掃気圧データベース9a1にアクセスし、回転数制御装置10から取得したエンジン回転数のデータに応じて目標掃気圧tPsを求める目標掃気圧計算手段9a2と、圧力計7aが検出した掃気室6の掃気圧Psと目標掃気圧計算手段9a2が求めた目標掃気圧tPsを比較する圧力比較部9a3と、この圧力比較部9a3の比較結果に応じてモータ8aに供給する駆動電力を制御すると共に発電機8bに対してモータ8aの回生電力を蓄電装置11に充電することを指令する主指令部9a4と、を少なくとも備えている(本発明の第1の実施形態)。
 掃気圧データベース9a1は、エンジン5の回転数に対応した適切な掃気圧である目標掃気圧tPsを実験データから求めてテーブルにしたものであり、オペレータが設定したエンジン回転数のデータをキーとして検索可能なデータベースである。掃気圧データベース9a1に予め登録しておくデータの内容は、エンジン機関の種類や規模等によって異なるものである。
 この本発明の第1の実施形態を用いてターボチャージャーの駆動を制御する方法を、エンジンの負荷を上げる場合と下げる場合に分けて説明する。
(1)エンジンの負荷を上げる場合の制御方法
 オペレータがエンジン5を加速するためエンジン回転数を上げるように設定すると、回転数制御装置10は設定されたエンジン回転数に対応する噴射量の燃料Fをエンジン5に供給する。また、回転数制御装置10は、エンジン5の回転数の増加を検知し、制御装置9に本発明の制御方法を開始することを指令する。
 制御装置9の目標掃気圧計算手段9a2は、回転数制御装置10からオペレータが設定したエンジン回転数のデータを取得し、それをキーとして掃気圧データベース9a1を参照し、掃気圧データベース9a1のテーブルから設定回転数のデータに対応する目標掃気圧tPsのデータを取得する。
 なお、本実施例の目標掃気圧計算手段9a2は、掃気圧データベース9a1に登録されているデータをそのまま使用するが、目標掃気圧tPsは、掃気圧データベース9a1に登録されているデータを基礎データとして必要な補正を加えた値を使用しても良い。
 空気Aは、コンプレッサー2cにより圧縮され、掃気室6に送り込まれる。掃気室6に設けた圧力計7aは、掃気室6内の掃気圧Psを検出する。
 制御装置9の圧力比較部9a3は、所定の時間毎に圧力計7aが検出した掃気圧Psのデータを取得し、目標掃気圧計算手段9a2が求めた目標掃気圧tPsの値との差を求める。
 主指令部9a4は、図3(a)に示すように、エンジンを加速時、掃気圧Psが目標掃気圧tPsよりも小さい間(図の例では、時間0から時間Tまでの間)は、モータ8aの制御回路にモータ8aの回転速度を加速するように指令し、蓄電装置11から供給するモータ8aの駆動電力を大きくして、ターボチャージャー2の駆動をアシストする。このような制御は、所定の時間毎に掃気圧Psのデータを取得し、圧力比較部9a3において掃気圧Psが目標掃気圧tPsよりも小さいと判定されている間、繰り返される(図の例では、時間t1、t2、t3…のタイミングで繰り返している)。
 そして、掃気圧Psが目標掃気圧tPsに達すると、主指令部9a4は、モータ8aの制御回路に対し、それ以上モータ8aの回転速度を上げないように指令する。
(2)エンジンの負荷を下げる場合の制御方法
 オペレータがエンジン5を減速するためエンジン回転数を下げるように設定した場合、回転数制御装置10は設定されたエンジン回転数に対応してエンジン5に供給する燃料Fの噴射量を減少させる。また、回転数制御装置10は、エンジン5の回転数の減少を検知し、制御装置9に本発明の制御方法を開始することを指令する。
 制御装置9の目標掃気圧計算手段9a2は、回転数制御装置10からオペレータが設定したエンジン回転数のデータを取得し、それをキーとして掃気圧データベース9a1を参照し、掃気圧データベース9a1のテーブルから設定回転数のデータに対応する目標掃気圧tPsのデータを取得する。
 圧力比較部9a3は、所定の時間毎に圧力計7aが検出した掃気圧Psのデータを取得し、目標掃気圧計算手段9a2が求めた目標掃気圧tPsの値との差を求める。
 主指令部9a4は、図3(b)に示すように、エンジンを減速時、掃気圧Psが目標掃気圧tPsよりも大きい間(図の例では、時間0から時間Tまでの間)は、発電機8bの制御回路にモータ8aの回生電力を蓄電装置11へ充電するように指令し、それによってターボチャージャー2の駆動を制動する。このような制御は、所定の時間毎に掃気圧Psのデータを取得し、圧力比較部9a3において掃気圧Psが目標掃気圧tPsよりも大きいと判定されている間、繰り返される(図の例では、時間t1、t2、t3…のタイミングで繰り返している)。
 そして、掃気圧Psが目標掃気圧tPsに達すると、主指令部9a4は、発電機8bの制御回路に対しそれ以上発電を行わないように指令し、モータ8aの回転速度を下げないようにする。
 なお、エンジン5の回転数が一定のときは、回転数制御装置10は、エンジン回転数の増加や減少を検知しないので、制御装置9に本発明の制御方法の開始を指令することはない。
 次に、本発明の他の実施形態について説明する。この第2の実施形態では、図1に示すように、エンジン5の排気ポート5bと脱硝反応装置4の間の排気通路3aに、圧縮、燃焼、膨張、給排気(掃気)のサイクルを経て排気ポート5bから排出された排気ガスGの温度である第1排気温度Te1を検出する第1温度計7bを設けている。
 そして、制御装置9は、図2に示すように、脱硝反応装置4内の触媒の劣化を防止するための上限温度uTe1と第1排気温度Te1の差を求める第1温度比較部9b1と、この第1温度比較部9b1で求めた温度差が所定の範囲内となったときにモータ8a回転速度を加速するように指令する副指令部9b2と、をさらに備えるように構成している。
 上限温度uTe1は、排気ガスGが脱硝反応装置4を通過する際、触媒を劣化させない上限の温度であり、制御装置9に予めデータを設定している。また、この上限温度uTe1を基準として監視すべき温度の範囲も、エンジンの種類や規模に応じて、制御装置9に予めデータを設定している。更に、荒天時などの海象によって、第1排気温度Te1が上限温度uTe1を超えることが想定される場合も、制御装置9に予めデータを設定している。
 このように構成する場合、制御装置9は、脱硝反応装置4に導入される排気ガスGの第1排気温度Te1を監視し、これが予め設定した上限温度uTe1を越える危険性が高い範囲に入ったときは、副指令部9b2がモータ8aの回転速度を加速するように補正することができる。よって、ターボチャージャー2の回転数が上昇し、掃気ポート5aに供給する掃気量を上げることで第1排気温度Te1を下げることができるので、触媒の劣化を防止できて、好適である。
 この本発明の第2の実施形態を用いてターボチャージャーの駆動を制御する方法について説明する。
 第1温度比較部9b1は、所定の時間毎に、第1温度計7bが検出した第1排気温度Te1のデータを取得し、上限温度uTe1との差を比較する。
 制御装置9は、第1排気温度Te1と上限温度uTe1の差が所定の範囲内であるときは、副指令部9b2から指令する加速度分だけモータ8aの回転速度を加速する。
 また、制御装置9は、第1排気温度Te1と上限温度uTe1の差が所定の範囲内であり、かつ、掃気圧Psが目標掃気圧tPsよりも小さいときは、主指令部9a4から指令する加速度分と副指令部9b2から指令する加速度分を足し合わせてモータ8aの回転速度を加速する。
 よって、エンジン5を加速中に第1排気温度Te1が上限温度uTe1を超える危険性が高い状況が発生した場合でも、主指令部9a4及び副指令部9b2から同時にモータ8aの回転数を上げるように指令し、両方を考慮した加速度分だけターボチャージャー2の回転軸2bの回転を加速するので、ハンチングの防止と触媒の劣化防止を共に図れて、好適である。
 上記のような制御を所定の時間毎に繰り返し、第1排気温度Te1と上限温度uTe1の温度差が所定の範囲外になると、副指令部9b2は、モータ8aの制御回路に対する指令を停止する。
 さらに、本発明の他の実施形態について説明する。この第3の実施形態は、図1に示すように、脱硝反応装置4の出口4aとタービン2aの間の排気通路3bに、出口4aから排出されたNOx 浄化処理後の排気ガスの温度である第2排気温度Te2を検出する第2温度計7cを設けている。
 制御装置9は、図2に示すように、出口温度データベース9c1にアクセスし、回転数制御装置10から取得したエンジン回転数のデータに応じて目標第1排気温度tTe1と目標第2排気温度tTe2を夫々求める目標排気温度計算手段9c2と、第1排気温度Te1と目標第1排気温度tTe1の差及び第2排気温度Te2と目標第2排気温度tTe2の差を夫々求める第2温度比較部9c3と、この第2温度比較部9c3で求めた温度差が共に所定の範囲内となったときは、モータ8a又は発電機8bの駆動を停止するように指令する停止指令部9c4と、をさらに備えるように構成している。
 出口温度データベース9c1は、エンジン5の回転数に対応した排気ポート5bにおける理想の出口温度である目標第1排気温度tTe1と、脱硝反応装置4の出口4aにおける目標第2排気温度tTe2を、夫々実験データから求めてテーブルにしたものであり、オペレータが設定したエンジン回転数のデータをキーとして検索可能なデータベースである。出口温度データベース9c1に予め登録しておくデータの内容は、エンジン機関の種類や規模等によって異なるものである。
 上記のように構成する場合、制御装置9は、第1排気温度Te1と第2排気温度Te2を監視し、これらの温度の差が予め設定した範囲内に収まるときは、停止指令部9c4がモータ8a及び発電機8bに対し、制御停止を指令することができる。よって、脱硝反応装置4のSCR触媒の熱容量の影響による温度差(第1排気温度Te1と第2排気温度Te2の差)がなくなったタイミングで、ターボチャージャー2に対するアシスト又は制動を中止して通常の運転に戻ることができるので、好適である。
 この本発明の第3の実施形態を用いてターボチャージャーの駆動を制御する方法について説明する。
 第2温度比較部9c3は、所定の時間毎に、第1温度計7bが検出した第1排気温度Te1のデータと第2温度計7cが検出した第2排気温度Te2のデータを取得し、目標第1排気温度tTe1との差及び目標第2排気温度tTe2との差を夫々比較する。
 停止指令部9c4は、第2温度比較部9c3で求めた温度差が共に所定の範囲内となっている状態が一定の時間継続したときは、モータ8a又は発電機8bの駆動を停止するように指令する。
 よって、脱硝反応装置4のSCR触媒の熱容量の影響による温度差を所定の時間間隔でリアルタイムに検知しながら、その温度差が許容範囲となり、かつ、その状態が所定の時間維持されている最も適切なタイミングで、ターボチャージャー2のアシスト又は制動を行わない通常運転へ戻すことができるので、モータ8a及び発電機8bの駆動を必要な範囲に限定できて、好適である。
 上記第3の実施形態による制御方法は、回転数制御装置10がエンジン5の回転数の増加又は減少を検知したときに開始され、制御装置9の停止指令部9c4が停止指令を行ったときに終了する。
 以上説明したように、本発明では、オペレータがエンジンの負荷を上げるときは、制御装置の主指令部がモータに駆動電力を供給するように指令し、モータの回転によってターボチャージャーの駆動をアシストするので、脱硝反応装置をバイパスすることなくエンジンの過給不足を解消できる。よって、未処理のガスはなく、排気ガスは常に全量浄化処理できる。
 また、本発明では、オペレータがエンジンの負荷を下げるときは、制御装置の主指令部が発電機にモータからの回生電力を充電するように指令し、ターボチャージャーの駆動を制動する。発電機が発電した電力は蓄電装置に蓄電し、モータの駆動電力として利用することができる。よって、排気ガスのエネルギを系外に捨てることなく、有効に利用することができる。
 このように、本発明は、ターボチャージャーの回転軸にモータ兼発電機を接続することでエネルギの供給と回収を行うことで、ハンチングを防止し、ターボ前置きの脱硝反応装置を備えたエンジン機関の運転を安定させることができる。
 本発明は、前記の実施例に限るものではなく、各請求項に記載の技術的思想の範囲内において、適宜実施の形態を変更しても良いことは言うまでもない。
 例えば、前記の実施例では、目標排気温度計算手段9c2は、出口温度データベース9c1に登録されているデータを使用する例を開示したが、目標第1排気温度tTe1と目標第2排気温度tTe2は、出口温度データベース9c1に登録されているデータを基礎データとして必要な補正を加えた値を使用しても良い。
 また、オペレータはエンジンの負荷を変えるように指令していないが、荒天時など海象によってエンジンの負荷が変動する場合についても、前記各実施例において制御装置9に予め設定する閾値を越えるか否かによって、本発明のシステムの作動または不作動を適宜制御すれば良い。海象によるハンチングも、一定の閾値以上に大きくなる場合は、オペレータがエンジンの負荷を大きく変えた状況と同じになると考えられるからである。
 1  ターボチャージャー制御システム
 2  ターボチャージャー
 2a タービン
 3,3a,3b 排気通路
 4  脱硝反応装置
 4a 出口
 5  エンジン
 5b 排気ポート
 6  掃気室
 7a 圧力計
 7b 第1温度計
 7c 第2温度計
 8a モータ
 8b 発電機
 9  制御装置
 9a1 掃気圧データベース
 9a2 目標掃気圧計算手段
 9a3 圧力比較部
 9a4 主指令部
 9b1 第1温度比較部
 9b2 副指令部
 9c1 出口温度データベース
 9c2 目標排気温度計算手段
 9c3 第2温度比較部
 9c4 停止指令部
 11 蓄電装置
 Ps 掃気圧
 tPs 目標掃気圧
 Te1 第1排気温度
 Te2 第2排気温度
 uTe1 上限温度
 tTe1 目標第1排気温度
 tTe2 目標第2排気温度
 G 排気ガス

Claims (6)

  1.  ターボチャージャーのタービンの上流側の排気通路に脱硝反応装置を配置したエンジン機関において、
     掃気室内の掃気圧を検出する圧力計と、
     前記ターボチャージャーの駆動をアシスト又は制動可能なモータと、
     前記モータの回生電力を蓄電装置に充電可能な発電機と、を設けると共に、
     掃気圧データベースにアクセスして目標掃気圧を求める目標掃気圧計算手段と、前記圧力計が検出した掃気圧と前記目標掃気圧計算手段が求めた目標掃気圧を比較する圧力比較部と、この圧力比較部の比較結果に応じて前記モータ又は前記発電機を制御する主指令部と、を備えた制御装置を設けたこと、
     を特徴とするターボチャージャー制御システム。
  2.  エンジンの排気ポートと前記脱硝反応装置の間の排気通路に、前記排気ポートから排出された排気ガスの温度である第1排気温度を検出する第1温度計を設けると共に、
     前記制御装置は、
     前記脱硝反応装置内の触媒の劣化を防止するための上限温度と前記第1排気温度の差を求める第1温度比較部と、この第1温度比較部で求めた温度差が所定の範囲内となったときに前記モータの回転速度を加速するように指令する副指令部と、をさらに備えたことを特徴とする請求項1に記載のターボチャージャー制御システム。
  3.  前記脱硝反応装置と前記タービンの間の排気通路に、前記脱硝反応装置の出口から排出された排気ガスの温度である第2排気温度を検出する第2温度計を設けると共に、
     前記制御装置は、
     出口温度データベースにアクセスして目標第1排気温度と目標第2排気温度を夫々求める目標排気温度計算手段と、前記第1排気温度と前記目標第1排気温度の差及び前記第2排気温度と前記目標第2排気温度の差を夫々求める第2温度比較部と、前記第2温度比較部で求めた温度差が共に所定の範囲内となったときは、前記モータ又は前記発電機の駆動を停止するように指令する停止指令部と、をさらに備えたことを特徴とする請求項2に記載のターボチャージャー制御システム。
  4.  請求項1に記載のターボチャージャー制御システムを用いてターボチャージャーの駆動を制御する方法であって、
     前記圧力比較部は、所定の時間毎に前記掃気圧と前記目標掃気圧の差を比較し、
     前記主指令部は、
     エンジンを加速時、前記掃気圧が前記目標掃気圧よりも小さい間は、前記モータの回転速度を加速するように指令して前記ターボチャージャーの駆動をアシストし、
     エンジンを減速時、前記掃気圧が前記目標掃気圧よりも大きい間は、前記発電機に前記蓄電装置への充電を指令して前記ターボチャージャーの駆動を制動すること、
     を特徴とするターボチャージャー制御方法。
  5.  請求項2に記載のターボチャージャー制御システムを用いてターボチャージャーの駆動を制御する方法であって、
     前記第1温度比較部は、所定の時間毎に前記第1排気温度と前記上限温度を比較し、
     前記第1排気温度と前記上限温度の差が所定の範囲内であるときは、前記副司令部から指令する加速度分だけ前記モータの回転速度を加速し、
     前記第1排気温度と前記上限温度の差が所定の範囲内であり、かつ、前記掃気圧が前記目標掃気圧よりも小さいときは、前記主指令部から指令する加速度分と前記副指令部から指令する加速度分を足し合わせて前記モータの回転速度を加速すること、
     を特徴とするターボチャージャー制御方法。
  6.  請求項3に記載のターボチャージャー制御システムを用いてターボチャージャーの駆動を制御する方法であって、
     前記第2温度比較部は、所定の時間毎に前記第1排気温度と前記目標第1排気温度の差及び前記第2排気温度と前記目標第2排気温度の差を夫々比較し、
     前記停止指令部は、前記第2温度比較部で求めた温度差が共に所定の範囲内となっている状態が一定の時間継続したときは、前記モータ又は前記発電機の駆動を停止するように指令すること、
     を特徴とするターボチャージャー制御方法。
PCT/JP2011/071360 2011-09-20 2011-09-20 ターボチャージャー制御システム及び制御方法 WO2013042196A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180073255.5A CN103782007B (zh) 2011-09-20 2011-09-20 涡轮增压器控制系统及其控制方法
KR1020147005715A KR101892427B1 (ko) 2011-09-20 2011-09-20 터보차저 제어시스템 및 제어방법
PCT/JP2011/071360 WO2013042196A1 (ja) 2011-09-20 2011-09-20 ターボチャージャー制御システム及び制御方法
KR1020187018885A KR20180079472A (ko) 2011-09-20 2011-09-20 터보차저 제어시스템 및 제어방법
EP11872602.5A EP2759686B1 (en) 2011-09-20 2011-09-20 Turbo charger control system and control method
DK11872602.5T DK2759686T3 (en) 2011-09-20 2011-09-20 TURBOLADER CONTROL SYSTEM AND STEERING PROCEDURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071360 WO2013042196A1 (ja) 2011-09-20 2011-09-20 ターボチャージャー制御システム及び制御方法

Publications (1)

Publication Number Publication Date
WO2013042196A1 true WO2013042196A1 (ja) 2013-03-28

Family

ID=47914009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071360 WO2013042196A1 (ja) 2011-09-20 2011-09-20 ターボチャージャー制御システム及び制御方法

Country Status (5)

Country Link
EP (1) EP2759686B1 (ja)
KR (2) KR101892427B1 (ja)
CN (1) CN103782007B (ja)
DK (1) DK2759686T3 (ja)
WO (1) WO2013042196A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264192A (zh) * 2013-06-03 2016-01-20 西门子公司 设备和包括这种设备的、尤其用于船舶的驱动系统
JPWO2016151810A1 (ja) * 2015-03-25 2017-04-27 日本郵船株式会社 出力装置、出力方法、プログラム及び記録媒体
JP2019173685A (ja) * 2018-03-29 2019-10-10 いすゞ自動車株式会社 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
US10985608B2 (en) 2016-12-13 2021-04-20 General Electric Company Back-up power system for a component and method of assembling same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2503713B (en) * 2012-07-05 2018-08-01 Ford Global Tech Llc Engine assembly with an Exhaust Driven Turbine
DE102014205878A1 (de) * 2014-03-28 2015-10-01 Mtu Friedrichshafen Gmbh Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine
AT517669A1 (de) * 2015-09-04 2017-03-15 Ge Jenbacher Gmbh & Co Og Brennkraftmaschine
CN106089407A (zh) * 2016-06-21 2016-11-09 张文斌 电动废气涡轮增压器装置
JP6900886B2 (ja) * 2017-11-29 2021-07-07 トヨタ自動車株式会社 車両制御装置
JP7241639B2 (ja) * 2018-09-03 2023-03-17 日立造船株式会社 内燃機関および制御システム
CN113242933A (zh) * 2018-12-13 2021-08-10 斗山英维高株式会社 涡轮复合系统
DE102019008357B3 (de) * 2019-12-02 2021-05-06 Ford Global Technologies, Llc Brennkraftmaschine mit Abgasturboaufladung und motornaher Abgasnachbehandlung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500170A (ja) 1992-08-13 1996-01-09 マーン・ベー・オグ・ドバルドヴェー・ディーゼール・アクティーゼルスカブ 大型2ストロークターボチャージエンジンの制御方法及びこの方法に使用するエンジン
JP2006233803A (ja) * 2005-02-23 2006-09-07 Toyota Motor Corp 電動機付き過給機を有する内燃機関
JP2006299892A (ja) * 2005-04-19 2006-11-02 Toyota Motor Corp 過給機付き内燃機関
JP2006307787A (ja) * 2005-04-28 2006-11-09 Toyota Motor Corp 電動機付き過給機を有する内燃機関の制御装置
JP2006316797A (ja) * 2002-02-18 2006-11-24 Toyota Motor Corp 過給圧制御装置
JP2011163269A (ja) * 2010-02-12 2011-08-25 Mitsubishi Heavy Ind Ltd 舶用内燃機関およびその運転方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6705084B2 (en) * 2001-07-03 2004-03-16 Honeywell International Inc. Control system for electric assisted turbocharger
JP4103539B2 (ja) 2002-10-23 2008-06-18 トヨタ自動車株式会社 発電機付ターボチャージャを備える内燃機関の制御装置
US7237381B2 (en) * 2005-04-25 2007-07-03 Honeywell International, Inc. Control of exhaust temperature for after-treatment process in an e-turbo system
US20090178407A1 (en) * 2006-07-11 2009-07-16 Borgwarner Inc. Enhanced engine air breathing system with after treatment device before the turbocharger
EP2006516A1 (de) 2007-06-22 2008-12-24 ABB Turbo Systems AG Abgasturbolader
US8347611B2 (en) * 2009-12-23 2013-01-08 Ford Global Technologies, Llc Methods and systems for emission system control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500170A (ja) 1992-08-13 1996-01-09 マーン・ベー・オグ・ドバルドヴェー・ディーゼール・アクティーゼルスカブ 大型2ストロークターボチャージエンジンの制御方法及びこの方法に使用するエンジン
JP2006316797A (ja) * 2002-02-18 2006-11-24 Toyota Motor Corp 過給圧制御装置
JP2006233803A (ja) * 2005-02-23 2006-09-07 Toyota Motor Corp 電動機付き過給機を有する内燃機関
JP2006299892A (ja) * 2005-04-19 2006-11-02 Toyota Motor Corp 過給機付き内燃機関
JP2006307787A (ja) * 2005-04-28 2006-11-09 Toyota Motor Corp 電動機付き過給機を有する内燃機関の制御装置
JP2011163269A (ja) * 2010-02-12 2011-08-25 Mitsubishi Heavy Ind Ltd 舶用内燃機関およびその運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OSAMU MOTOMURA: "Dynamic Characteristics of a Two-Stroke Slow-Speed Diesel Engine with De-Nox System", JOURNAL OF THE MARINE ENGINEERING SOCIETY OF JAPAN, vol. 34, no. 1, January 1999 (1999-01-01), pages 41 - 47

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264192A (zh) * 2013-06-03 2016-01-20 西门子公司 设备和包括这种设备的、尤其用于船舶的驱动系统
JPWO2016151810A1 (ja) * 2015-03-25 2017-04-27 日本郵船株式会社 出力装置、出力方法、プログラム及び記録媒体
US10985608B2 (en) 2016-12-13 2021-04-20 General Electric Company Back-up power system for a component and method of assembling same
JP2019173685A (ja) * 2018-03-29 2019-10-10 いすゞ自動車株式会社 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法

Also Published As

Publication number Publication date
CN103782007B (zh) 2016-04-13
EP2759686B1 (en) 2018-09-19
KR20140063664A (ko) 2014-05-27
DK2759686T3 (en) 2018-12-17
EP2759686A1 (en) 2014-07-30
CN103782007A (zh) 2014-05-07
EP2759686A4 (en) 2015-06-03
KR101892427B1 (ko) 2018-08-28
KR20180079472A (ko) 2018-07-10

Similar Documents

Publication Publication Date Title
WO2013042196A1 (ja) ターボチャージャー制御システム及び制御方法
CN107448261B (zh) 一种再生事件期间减少微粒过滤器发热的方法
US20020147530A1 (en) Control apparatus for electric motor and control apparatus for hybrid vehicle
RU2719087C2 (ru) Способ управления силовой установкой моторного транспортного средства во время события разгона и моторное транспортное средство
WO2015083493A1 (ja) ターボコンパウンドシステムの制御装置
US10914248B2 (en) Exhaust gas routing system having an actuable exhaust gas turbine
CN101680366A (zh) 内燃机排气控制系统和内燃机排气控制系统的控制方法
EP1481154A1 (en) System to improve after-treatment regeneration
US9470160B2 (en) Control apparatus for internal combustion engine
KR20180068186A (ko) 마일드 하이브리드 차량의 mhsg 제어 방법 및 장치
CN108952896A (zh) 在内燃机的排气系统中的颗粒过滤器或四元催化器的再生
JP5631650B2 (ja) ターボチャージャー制御システム及び制御方法
KR102626043B1 (ko) 내연 기관에서 엔진 브레이크를 작동시키기 위한 방법
JP2007262970A (ja) ターボチャージャの制御装置
JP5563052B2 (ja) 排熱回収システム及び排熱回収方法
US20090188252A1 (en) Method and apparatus for increasing the exhaust gas temperature of an internal combustion engine
JP2017136974A (ja) ハイブリッド車両の制御装置
JP2008190462A (ja) 車両
CN111425286A (zh) 一种燃气发动机尾气排放控制方法及系统
WO2020079463A1 (ja) ハイプリッド車両の制御方法及び制御装置
JP2011080398A (ja) 電動過給機の制御装置
JP2011001844A (ja) 内燃機関の制御装置
JP6554159B2 (ja) エンジンシステム
WO2013105221A1 (ja) 内燃機関の排気浄化装置
US20230082234A1 (en) Electric assist turbocharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147005715

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP