WO2013041796A1 - Support installe en mer equipe de reservoirs externes - Google Patents

Support installe en mer equipe de reservoirs externes Download PDF

Info

Publication number
WO2013041796A1
WO2013041796A1 PCT/FR2012/052028 FR2012052028W WO2013041796A1 WO 2013041796 A1 WO2013041796 A1 WO 2013041796A1 FR 2012052028 W FR2012052028 W FR 2012052028W WO 2013041796 A1 WO2013041796 A1 WO 2013041796A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
support
reservoir
lng
liquid
Prior art date
Application number
PCT/FR2012/052028
Other languages
English (en)
Inventor
Cyrille Fargier
Philippe MONTROCHER
Original Assignee
Saipem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem S.A. filed Critical Saipem S.A.
Priority to SG11201400295VA priority Critical patent/SG11201400295VA/en
Priority to KR1020147006687A priority patent/KR101653892B1/ko
Priority to AU2012311340A priority patent/AU2012311340B2/en
Priority to US14/345,573 priority patent/US9199700B2/en
Priority to BR112014006396-6A priority patent/BR112014006396B1/pt
Priority to JP2014527727A priority patent/JP5727676B2/ja
Priority to CN201280045533.0A priority patent/CN103813957B/zh
Priority to EP12767065.1A priority patent/EP2758302B1/fr
Publication of WO2013041796A1 publication Critical patent/WO2013041796A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/082Arrangements for minimizing pollution by accidents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/14Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed pressurised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/28Barges or lighters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • F17C13/082Mounting arrangements for vessels for large sea-borne storage vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/01Intermediate tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/037Handling leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/042Reducing risk of explosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/011Barges
    • F17C2270/0113Barges floating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0123Terminals

Definitions

  • the present invention relates to a support installed at sea, either at open sea or in a protected area, such as a port, in a fixed or floating manner, that is to say resting or respectively anchored at the bottom of the sea, comprising an installation treatment of dangerous and / or corrosive liquid, preferably liquefied natural gas (LNG), on the bridge of said support and at least one storage tank of said liquid integrated within the hull of said support under said bridge.
  • LNG liquefied natural gas
  • This type of support can be in particular an FPSO or FSRU type LNG storage and handling barge or a vessel, in particular with a hull and steel or concrete storage tanks as described in WO 01/30648, such as explained below.
  • Methane-based natural gas is either a by-product of oil fields, produced in small or medium quantities, usually associated with crude oil, or a major product in the case of gas fields, where it is then in combination with other gases, mainly C-2 to C-4 alkanes, CO 2, nitrogen, and traces of other gases. More generally, natural gas predominantly comprises methane, preferably at least 85% methane, the other main constituents being chosen from nitrogen and C-2 to C 4 alkanes, namely ethane and propane. , butane.
  • cryogenic liquid state -165 ° C
  • Specialized transport vessels called “LNG tankers” have tanks of very large dimensions and with extreme insulation so as to limit evaporation during the voyage.
  • Petroleum products such as oil or gas are generally recovered, processed and stored on board a floating support such as the so-called FPSO (Floating -Production- Storage-Offloading "), ie floating support of production, storage and unloading. Petroleum products such as oil and / or gas are then transferred to removal vessels that regularly come, for example every week, to recover the production of the field and export it to places of consumption.
  • FPSO Floating -Production- Storage-Offloading
  • the transfer devices comprise at least one forward link line for the liquefied gas, and a return link line, generally of greater diameter. low, to evacuate the gas from the vessels of the removing vessel as filling LNG, especially methane gas, so reliquefier aboard the FPSO as described below with reference to Figure 1A.
  • Another technical area is the offshore storage of LNG near a site of use, for example to ship the gas on the continent after regasification, or to transform it on site, on board the floating support, in electrical energy for forwarding said electricity to the onshore network.
  • the ship unloads its LNG cargo and the floating support is called "FSRU" (Floating Storage Regaseification Unit), ie floating storage unit and regasification as described below with reference to FIG. 1B.
  • FSRU Floating Storage Regaseification Unit
  • the term “treatment plant” is understood to mean any facility for liquefying natural gas in LNG, any LNG regasification facility and / or any LNG transfer facility between said support and a recovery vessel for LNG. storage of LNG of the LNG type arranged in pairs or in tandem beside said support.
  • Treatment plants of this type comprise means or components such as pumps, circulation lines, compressors, heat exchangers, expansion devices, in general decompression turbines, cryogenic exchangers, reservoirs and connecting lines and connecting elements. between these different devices.
  • Leaks of treated and stored liquid, in particular LNG liquefied gas where applicable may occur either at the level of valves, pumps, exchangers, tanks or pipes, or, more particularly, at the joints of the elements. connections or components, or by breaking one or more of these various components.
  • Spilled LNG gasifies rapidly in contact with air and solid surfaces, and mixing with ambient air creates a highly hazardous mixture as explosive in the presence of any spark or hot spot.
  • Equipment carrying or containing LNG (-165 ° C) is made of materials resistant to these cryogenic temperatures, generally nickel-based steels or invar. These special steels are very expensive and in general are not used for supporting elements or for the structure of the structure. FPSO for which general steel is used. But, these common steels become brittle in contact with very low temperatures and lose their mechanical strength, which may lead to the rupture of structural elements, or even the bridge of the FPSO in the event of a significant leak directly on said bridge if the critical areas are not protected by insulating materials, they are very resistant to cryogenic temperatures. 3.
  • the contact between LNG and seawater presents a great danger, because the brutal reheating of LNG (-165 ° C) by sea water at 10-20 ° C in the presence of air, so oxygen creates very significant risks of instant explosion.
  • the purpose of the present invention is to remedy the consequences related to these problems of liquid leakage, especially liquefied gas, on the deck of such supports at sea.
  • the present invention provides a support installed at sea, in a fixed or floating manner, comprising a dangerous and / or corrosive first liquid treatment plant, preferably liquefied natural gas (LNG), on the deck of said support, and at least one storage tank of said first liquid, preferably of integrated LNG within the shell of said support under said bridge, characterized in that it comprises at least one reservoir situated outside said support and located at least partly , preferably entirely below the bridge of said support on which said installation rests, said reservoir being fixed to said support, preferably in a reversible manner, said bridge comprising or supporting first transfer means able to allow the transfer to said reservoir, of leakage liquid flowing from at least part of said installation, especially in case of leakage.
  • LNG liquefied natural gas
  • These first transfer means may comprise gutter structures and possibly pipe elements and / or liquid pumping means.
  • said first leak fluid transfer means comprise at least one collection device for said leakage liquid extending from below said at least part of the installation to above a first upper orifice of said reservoir, said collecting device being able to collect said leakage liquid flowing from said part of the installation and direct it by simple gravity to said first upper orifice of said reservoir situated below said collecting device. It is understood that the implementation of said first transfer means avoids any contact of leakage liquid with the bridge of the support among other and more generally the entire structure of the support on the one hand and on the other hand avoids prolonged contact with the atmospheric air.
  • the present invention therefore advantageously consists essentially in collecting the leakage flows and directing them to external reservoirs, that is to say located outside the barge, and below, so that the flows are made naturally by simple gravity and as quickly as possible and without contact with the structure of the support, especially the bridge, and without prolonged contact with the base of the treatment installations, thereby limiting the amount of LNG that may vaporize by creating a gas mixture explosive in contact with the ambient air.
  • said reservoir is reversibly fixed against a plating of said support.
  • reversible attachment means of the tank on the hull may consist of simple hooks for suspending said tank eyelets against said plating.
  • said first transfer means may comprise a said inclined bridge sloping downward from the longitudinal median axis XX 'of said bridge towards the edge of said support against which is fixed said tank or inclined gutter.
  • the bridge is itself inclined gently downward from 1 to 2% down to the longitudinal lateral edges of the support and able to allow the flow of a liquid to an evacuation at the level of and above longitudinal edges side.
  • this slope may be insufficient to induce rapid flow.
  • said first leakage liquid transfer means comprise a liquid collecting device comprising at least one deck element attached over said deck, said deck element comprising a central plane inclined structure preferably laterally bordered by flanges. lateral, the inclination (oc2) of said central flat structure of said deck member being greater than that (a1) of said deck, if appropriate, preferably of an inclination (oc2) of 1 to 5%, preferably of 2 to 4%.
  • said planking element has an inclination with an uppermost point on the side of the decking closest to said median longitudinal axis XX 'of said support and the lowest point on the side. the decking closest to said plating.
  • the support according to the invention comprises:
  • each said decking element cooperating with at least one said reservoir.
  • deck member cooperating with a said tank is meant that said tank is able to collect said liquid flowing from said part of the installation located above said deck member, said deck member directing it by simple gravity toward said first upper orifice of said reservoir located below the lower end of said decking element, preferably via a first transfer conduit member.
  • a plurality of tanks can thus be installed on the walls of the port and starboard hull, and where appropriate on the rear and front walls, each of them collecting the liquid coming from one or more deck elements covering a limited deck area.
  • the walls or surfaces of said collecting device likely to be in contact with said leakage liquid which it collects are constituted or respectively covered with a layer of material resistant to cryogenic temperatures (less than or equal to -160 ° C.) of said leakage liquid such as LNG, in particular a composite material such as the Chartek®-Intertherm® 7050 sandwich marketed by the international company (UK) of the AKZO-NOBEL group, more particularly adapted to allow a cryogenic thermal insulation of LNG at -165 ° C.
  • said support according to the invention comprises hooking means able to fix a plurality of said tanks along its edges and each said reservoir has a volume of not more than 300 m 3 , preferably 50 to 300 m 3 .
  • Tanks of this volume can be manufactured with a relatively lighter structure than that of the internal tanks, because a high level of insulation is not sought, but rather a limited heat transfer through the wall allowing rapid vaporization of the recovered LNG, without however the metal structure of the tank or its supports does not fall below -20 to -40 ° C, which could lead to a brittle fracture of the metal of said structure.
  • said reservoir is of elongated cylindrical shape with a vertical longitudinal axis ( ⁇ ') with a portion only said submerged tank including horizontal cross section, square and rectangular or circular.
  • vertical axis is understood here to mean that said reservoir axis is substantially perpendicular to the horizontal longitudinal axis XX 'of the support and substantially perpendicular to the sea level when the sea is flat.
  • Said tank remains partially immersed even when it is empty and part of the tank remains above sea level when said tank is full.
  • the vertical elongated shape of the tanks is advantageous in comparison with tanks of larger horizontal dimension in that an emptying of the LNG by pumping will leave at the end of the pumping phase a balance of LNG proportional to the horizontal section of said reservoir, therefore lower than in the case of large horizontal dimension.
  • it will advantageously have a tank bottom slope, and the pumping device will be placed at the lowest point.
  • said reservoir comprises a bottom constituted by the upper surface of an internal float with a shaped reservoir fitted against the inner periphery of the cylindrical side wall of said reservoir, the lower end of said cylindrical lateral wall defining a lower opening so that said cylindrical side wall is filled with seawater below said float and able to move vertically relative to said float.
  • said float always remains at the surface of the water and therefore that the side wall of the tank moves vertically as a function of the level of the waterline of the support which is a function of the filling rate of said tanks and the said tanks.
  • This embodiment is advantageous in that it makes it possible to implement an even lighter tank structure because the side wall does not have to withstand the hydrostatic pressure of the surrounding sea water, nor to the Archimedes thrust exerted on a tank having a fixed and sealed bottom wall.
  • said reservoir comprises a sealed bottom fund wall at the lower end of its cylindrical side wall.
  • the walls of said tank are thermally insulated, preferably internally insulated, in particular with polyurethane foam.
  • This thermal insulation aims to limit the thermal transfer due to the heating of the LNG to maintain the temperature of the steel walls of the tank, including the side walls above sea level, at a temperature above the brittle fracture temperature said steel, especially at a temperature above -10 ° C. Otherwise, said heat transfer could cool the steel structural members of the tank below a temperature where the steel is at risk of brittle fracture, that is to say below -20 to -40 ° C.
  • said reservoir comprises or cooperates with second transfer means comprising a pump and a second connecting line capable of transferring said leakage liquid contained in said reservoir to a tank, preferably a said tank within the shell of said support.
  • second transfer means comprising a pump and a second connecting line capable of transferring said leakage liquid contained in said reservoir to a tank, preferably a said tank within the shell of said support.
  • said tank has an inner pipe descending to the bottom, the latter being connected to a pump for draining said tank and return the liquefied gas to a storage tank of the floating support.
  • said reservoir further comprises means for heating said liquid contained in said reservoir, preferably said heating means being joule heating means, preferably further said heating means being integrated in or against said cylindrical side wall of the tank or its thermal insulation layer.
  • a heating device is a device by electric heating or circulation of hot water or steam. In the case where the liquid phase is pumped out, said heating device is advantageously located in the lower part of the tank, and thus allows, after emptying, to finalize the complete purging of said tank, by vaporization of the residue and elimination of the methane gas. towards a flare, or simply in the open air.
  • said tank further comprises a second upper gas evacuation orifice, at the level of the upper part of a lateral wall or upper wall forming a reservoir cover, able to allow the evacuation outside the reservoir of the liquid which it contains after evaporation thereof, preferably with the aid of a third connecting pipe to a combustion flare or to the gas sky of a said tank within the hull, or to the air free.
  • said reservoir comprises or is capable of cooperating with a foaming agent injection device, preferably at a third upper orifice, at the level of the upper part of a side wall or upper wall forming a lid. of the tank.
  • This injection of foaming agent aims to create an inert medium inside the tank when the tank begins to fill with LNG. In other words, we inject said foaming agent when a leak is detected in said installation.
  • said reservoirs are initially filled with an inert gas such as nitrogen.
  • said support according to the invention is a floating support anchored at sea, or resting at the bottom of the sea, supporting an LNG liquefaction unit and / or LNG regasification and electricity production, said liquid being LNG .
  • FIG. 1A is a side view of an FPSO type floating support supporting a processing unit 1b on the bridge 1a, said processing unit 1b including LNG liquefaction equipment 1 2 and LNG transfer means between said support floating 1 and a catching vessel 15; and
  • FIG. 1B shows a side view of a support resting at the bottom of the sea 12 of the FSRU type comprising a processing unit 1b on its deck 1a, said processing unit comprising regasification and power generation equipment 1-3 and LNG transfer means 1-1 to a stripping vessel 15; and
  • FIG. 2 represents a top view of a FPSO floating support according to FIG. 1;
  • FIG. 3 represents a sectional view in a vertical transverse plane perpendicular to the longitudinal direction XX 'of said floating support at a decking 4-1 and reservoir 3 according to the present invention, said reservoir comprising, according to a first variant, a bottom fully sealed 3b, and - Figures 3A, 3B and 3C show a second alternative embodiment of a tank according to the invention comprising a lower opening 3-4 and an internal float 6 whose upper surface 6a delimits a variable internal volume of said tank; and - Figure 4 shows a sectional view along AA of a decking element 4-1 of Figure 3A.
  • the floating support of the FPSO type 1 is anchored to the seabed 12 by anchoring lines 10a. It receives natural gas extracted at the bottom of the seabed via the production bottom-surface connection lines 10b. It comprises LNG storage tanks 2a and transfer pipes 1-la here in unloading phase to a ship, here called LNG removal vessel 15, in a so-called tandem configuration.
  • Said FPSO 1 has natural gas treatment and liquefaction equipment 1-2 and LNG storage tanks 2 integrated within the shell.
  • the said FPSO is equipped with a storage and guide device 1-1 for the flexible transfer pipe 1-la for the unloading of the LNG to the removal vessel 15.
  • FIGS. 1 and 2 there is shown a floating support of the FPSO type comprising 4 cylindrical tanks 3 of vertical axis YY 'with a square horizontal cross-section on a first lateral edge of the shell, each of which is fixed in a reversible manner with means reversible hooking respectively 5 against each said bordered the. 3 tanks 3 on each plating collect leakage liquid 2a 'from the treatment facility lb resting on the bridge of the floating support. More specifically each of these 6 tanks 3 receives leakage liquid 2a 'collected at a decking element 4-1 collecting the leakage liquid from a portion of said installation 1b.
  • the portion of the bridge supporting the liquefaction unit 1-2 is here covered by a set of 6 decking elements 4-1 covering all said bridge surface portion capable of receiving leakage liquid from said unit 1-2 liquefaction with 3 decking elements 4-1 pouring the liquid to each of said lined the opposite so as to pour the leakage liquid 2a 'respectively in a tank 3 for each decking element 4-1.
  • a seventh decking element 4-1 covers the rear portion of the bridge surface supporting the storage and guide device 1-1 of transfer conduit 1-la disposed near the rear wall ld of the hull lg, apt discharging the leakage liquid from the installation 1-1 to one of the bordered the equipped with a fourth tank of similar shape.
  • the support 1 of the FSRU type rests on the bottom of the sea 12. It comprises a plant 1b comprising an LNG regasification unit and an electricity generating unit 1-3 including a transformer station for sending the electric current. to the earth.
  • the support 1 comprises storage tanks 2 of LNG. They are here in the loading phase from a LNG-type vessel 15, referred to herein as a supply vessel, in a so-called tandem configuration, said support 1 being also equipped with a storage and guide device 1-1 for flexible driving. 1-la transfer for loading LNG from a supply vessel 15.
  • the support 1 comprises 3 substantially parallelepipedal storage tanks 2 arranged side by side successively in the longitudinal direction XX 'and extending over the entire width of the floating support inside its shell in the cross direction perpendicular to the direction XX '.
  • the steel walls of the tanks 2 are covered with an inner thermal insulation layer 2a-1 made of polyurethane foam and an internal membrane in contact with the LNG in thin stainless steel, resistant at cryogenic temperatures, so that these tanks can be considered as cryogenic tanks capable of maintaining the LNG 2a they contain in the liquid state.
  • the external reservoirs 3 have steel walls equipped on their inside with the same thermal insulation material 3-5 so that said tanks can also be considered as cryogenic tanks capable of containing LNG in the liquid state. at -165 ° C with however a much lower level of insulation, so as to promote the vaporization of LNG, without however the structural elements of said tanks do not reach temperatures lower than -20 to -40 ° C, in order to avoid fragile breaks in said structural elements.
  • the lower portion of the tank (walls and bottom) in permanent contact with seawater may have a low level of insulation, because there will be no risk that the temperature of the structure lower does not fall below -20 ° C, due to direct and permanent contact with seawater at 10-20 ° C.
  • the upper portion emerged permanently or not (variations of draft depending on the load) is in contact with the ambient air, also at 10-20 ° C. Since heat exchange with air is lower than with contact with seawater, it will be necessary to have a more efficient insulation system so that the heat exchange through said water system. insulation do not lead to a cooling of the structural elements such that their temperature falls below -20 to -40 ° C, thereby avoiding the fragile fractures of the steel of said structures.
  • the outer side walls 1a and 1d and the bottom bottom wall 1c and the bridge defining the shell 1g form the "ship beam", ie the overall resistant structure 1f of the floating support.
  • the plane of the bridge is shown as being inclined downwardly from the horizontal median axis XX 'of the support and the bridge towards the plating constituting the side walls. longitudinal dimensions of the shell at an angle of about 1 degree.
  • the upper wall or lid 3c of the tanks is slightly against the bottom of the upper end of the plating.
  • the vertical cylindrical side walls 3a of the reservoirs 3 have a lateral face 3a-1 comprising 2 hooks 5-1 arranged in the upper part and in the lower part able to be suspended on parts having a hollow shape complementary to the said hooks or hinges 5-2 applied against the outer face of said planks 1a so that said reservoir can be suspended and thus hung reversibly when the hooks 5-1 cooperate with said parts 5-2.
  • Collection and transfer of the leakage liquid 2a 'from the treatment plant 1b to the interior of the tank 3 is done with the aid of a collection device consisting of a plurality of deck members 4-1. .
  • Each decking element 4-1 comprises a steel or grating bearing structure 4a covered with a layer of resistant and insulating composite material 4a-1, for example a Charterk®-Intertherm® 7050 sandwich from International (UK) AKZO-NOBEL group.
  • the central portion 4a-1 is inclined at an angle ⁇ 2 corresponding to a slope of 1 to 5%, preferably 2 to 4% relative to the horizontal. It is fixed over the bridge la, downhill from the end of the decking closest to the longitudinal median axis XX 'towards the end of the lowest deck reaching beyond the plating. that is, towards the outside of the floating support 1 to above a first upper opening 3-1 through the cover 3c of the reservoir 3.
  • the channeling of the leakage liquid flowing on the deck 4-1 to its lower end towards said first opening 3-1 of the tank is made using a device 4-2 comprising a small upper chamber 4-2a and a lower pipe element 4-2b allowing the leakage liquid 2a 'of flow inside the tank 3.
  • the tanks 3 are advantageously installed on the hull lg after launching the hull on the shipyard, but before towing on site at sea. In the case of towing on very long distances such as several thousand km, they can be advantageously installed only after arrival on site and be manufactured in a site closer to the site.
  • each decking member cooperating with at least one reservoir 3 has a trapezoidal shape with a narrowing of its lateral flanges 4b towards the portion 4-2 of the collection device and transfer to the reservoir 3. It is understood that the flanges 4b are intended to prevent the leakage liquid leaving the central part of the deck 4a and channel the flow of the leakage liquid to the tank 3 by narrowing the width of the central portion 4a towards the bordered.
  • FIG. 4 is a sectional view along the plane AA of FIG. 3A of a decking element 4-1 comprising a steel support structure 4a, a resistant and insulating composite material 4a-1 and raised edges 4b for channeling the LNG. to the reservoir below.
  • second transfer means 8 comprising a pump 8-1 for circulating the leakage liquid 2a 'inside a second connecting pipe 8-2 extending through from the proximity of the bottom 3b of the tank to and through the cover 3c and extending beyond for example in the direction and to the gas sky 2a-1 of a tank 2 of LNG storage.
  • the third driving element 3-6 thus allow the evacuation of the gas, either simply in the atmosphere or towards a combustion flare 14 installed at one end of the floating support as represented in FIG. 2, by way of pipes not shown.
  • the second opening 3- 2 and second pipe element 3-6 can evacuate the gas either in the open air or to the flare, as previously explained.
  • the reservoir 3 comprises a portion which remains always immersed, representing a height of 1 ⁇ 4 to 3 ⁇ 4 of the height H of the reservoir 3 from its bottom 3b, more particularly from 1/3 to Vi of the height H of the tank 3 from its bottom 3b, that is to say below the sea level 11.
  • the height H varies according to the height of the waterline of the hull which varies according to whether the tanks 2 are empty (water line at approximately 1 ⁇ 4 of the height of the tank above its bottom wall 3b) or that the tanks 2 are full of liquid 2a (water line at approximately 1 ⁇ 4 of the height the tank below its upper wall 3c or about 3 ⁇ 4 above the bottom wall 3b).
  • the buoyancy thrust is exerted on the entire immersed tank volume, and moreover, the structure of said tank must withstand the pressure, especially in its lower part.
  • the attachment points must withstand efforts mainly directed downwards in the case where the reservoir is full of leakage liquid and where the FPSO is partially or completely empty, and efforts directed upwards when the reservoir is empty and the FPSO is completely full.
  • FIGS. 3A, 3B and 3C there is shown a second embodiment of reservoir 3 in which the lower end of the cylindrical side wall 3a defines a lower opening 3-4 of the reservoir.
  • the tank 3 encloses a float 6 whose upper surface 6a delimits the bottom wall of the tank, it being understood however that the float 6 has a shape, in particular substantially parallelepipedal, and an outline, in particular substantially of square section, adjusted to that of the inner surface of the cylindrical side wall 3a so as to allow a vertical sliding of the tank 3 around the float 6 which float has a buoyancy so as to remain permanently substantially at the upper surface 11 of the sea
  • the height H of the immersed portion of the tank 3 varies as a function of the height of the floating line of the floating support, between a maximum value Hi corresponding to a FPSO whose tanks are full (FIG.
  • the float 6 is advantageously constituted in known manner of syntactic foams in view of their high mechanical strengths and their excellent behavior at cryogenic temperatures (-165 ° C). Because LNG has a negative temperature of about
  • the tanks 3 are provided with a third opening 3-3 in the upper part of their cylindrical side walls 3a allowing the introduction by a pipe element 3-7 inside the tank of inert foaming agent from of a foam generator not shown.
  • the foam generator is actuated so as to confine the LNG and limit the air introductions, the oxygen of the air having risks explosion or fire mixed with natural gas.
  • the presence of this foam does not interfere with the vaporization of the LNG or the evacuation of gas to the outside of the tank as described above.
  • Suitable foaming agents are of the fire-fighting foam type known to those skilled in the art (in English "fire fighting foam") marketed by ANGUS FIRE (UK).
  • first, second, third openings 3-1, 3-2 and 3-3 are advantageously equipped with an optional closure device such as a valve.
  • an optional closure device such as a valve.
  • each of said tanks is sized according to the volumes of LNG for the area covered by the collection devices connected to said tank.
  • each of the tanks will depend on its location relative to the installation, and may vary in significant proportions, for example from 50 to 300m 3 .
  • Tanks having a lid at the top have been disclosed through which LNG or foam feed lines, and gas discharge lines, pass; but, in a simplified version, said tank does not have a lid. It is then imperative, as soon as a leak occurs, to fill said tank with foam, so as to confine the LNG, the evaporation of said LNG being then directly in the open air, through the thickness of a layer of said foam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Transportation (AREA)
  • Architecture (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

La présente invention concerne un support (1) installé en mer, de manière fixe ou flottant, comprenant une installation de traitement (1b) de premier liquide dangereux et/ou corrosif (2a), de préférence du gaz naturel liquéfié (GNL), sur le pont (1a) dudit support, et au moins une cuve (2) de stockage de dit premier liquide (2a), de préférence de GNL intégrée au sein de la coque (1g) dudit support sous ledit pont (1a) caractérisé en ce qu'il comprend au moins un réservoir (3) situé à l'extérieur dudit support et situé au moins en partie, de préférence entièrement, en contrebas du pont (1a) dudit support sur lequel repose ladite installation, ledit réservoir étant fixé audit support, de préférence de manière réversible (5), ledit pont comprenant ou supportant des premiers moyens de transfert (4) aptes à permettre le transfert vers ledit réservoir, de liquide de fuite (2a') s'écoulant d'une partie au moins de ladite installation, notamment en cas de fuite.

Description

SUPPORT INSTALLE EN MER EQUIPE DE RESERVOIRS EXTERNES
La présente invention concerne un support installé en mer, soit en mer ouverte, soit en zone protégée, telle un port, de manière fixe ou flottant, c'est-à-dire reposant ou respectivement ancré au fond de la mer, comprenant une installation de traitement de liquide dangereux et/ou corrosif, de préférence du gaz naturel liquéfié (GNL), sur le pont dudit support et au moins une cuve de stockage de dit liquide intégré au sein de la coque dudit support sous ledit pont.
Ce type de support peut être en particulier une barge de traitement et de stockage de GNL de type FPSO ou FSRU ou un navire, notamment avec une coque et des cuves de stockage en acier ou en béton tel que décrit dans WO 01/30648, comme explicité ci-après.
Le gaz naturel à base de méthane est soit un sous-produit des champs pétroliers, produit en quantité faible ou moyenne, en général associé à du pétrole brut, soit un produit majeur dans le cas des champs de gaz, où il est alors en combinaison avec d'autres gaz, principalement des alcanes en C-2 à C-4, du C02, de l'azote, et des traces d'autres gaz. Plus généralement, le gaz naturel comporte majoritairement du méthane, de préférence au moins 85% de méthane, les autres principaux constituants étant choisis parmi l'azote et des alcanes en C-2 à C-4 à savoir de l'éthane, du propane, du butane.
Lorsque le gaz naturel est associé en faible quantité à du pétrole brut, il est en général traité et séparé, puis utilisé sur place comme carburant dans des chaudières, des turbines à gaz ou des moteurs à piston pour produire de l'énergie électrique et des calories utilisées dans les processus de séparation ou de production.
Lorsque les quantités de gaz naturel sont importantes, voire considérables, on cherche à le transporter de manière à pouvoir les utiliser dans des régions éloignées, en général sur d'autres continents et, pour ce faire, la méthode préférée est de le transporter à l'état de liquide cryogénique (-165°C) sensiblement à la pression atmosphérique ambiante. Des navires de transport spécialisés appelés « méthaniers » possèdent des cuves de très grandes dimensions et présentant une isolation extrême de manière à limiter l'évaporation pendant le voyage.
Sur les champs pétroliers en mer ouverte, situés à grande distance de la côte, les produits pétroliers tel que le pétrole ou le gaz sont en général récupérés, traités et stockés à bord d'un dit support flottant notamment du type appelé FPSO (« Floating-Production- Storage-Offloading »), c'est à dire support flottant de production, de stockage et de déchargement. Les produits pétroliers tel que pétrole et/ou gaz sont alors transférés vers des navires enleveurs qui viennent régulièrement, par exemple toutes les semaines, pour récupérer la production du champ et l'exporter vers les lieux de consommation.
Lorsqu'il s'agit de transfert de gaz liquéfié de type GNL à -165°C, les dispositifs de transfert comportent au moins une conduite de liaison aller pour le gaz liquéfié, et une conduite de liaison de retour, en général de diamètre plus faible, pour évacuer le gaz des cuves du navire enleveur au fur et à mesure du remplissage par le GNL, en particulier du gaz méthane, de manière à le reliquéfier à bord du FPSO comme décrit ci-après en référence à la figure 1A.
Un autre domaine technique est celui du stockage en mer de GNL près d'un site d'utilisation, par exemple pour expédier le gaz sur le continent après l'avoir regazéifié, ou encore le transformer sur place, à bord du support flottant, en énergie électrique pour réexpédier ladite électricité dans le réseau local à terre. Dans ce cas, le navire vient décharger sa cargaison de GNL et le support flottant est appelé « FSRU » (Floating Storage Regaseification Unit), c'est à dire unité flottante de stockage et de regazéification comme décrit ci- après en référence à la figure 1B. On entend ici plus particulièrement par « installation de traitement » s'agissant de GNL, toute installation de liquéfaction du gaz naturel en GNL, toute installation de régazéification du GNL et/ou toute installation de transfert de GNL entre ledit support et un navire enleveur de stockage de GNL de type méthanier disposé à couple ou en tandem à côté dudit support.
Des installations de traitement de ce type comportent des moyens ou composants tels que pompes, conduites de circulation, compresseurs, échangeurs de chaleur, dispositifs de détente, en général des turbines de décompression, échangeurs cryogénique, réservoirs et des conduites de liaison et éléments de raccordement entre ces différents dispositifs.
Des fuites du liquide traité et stocké, notamment de gaz liquéfié GNL le cas échéant, peuvent se produire soit au niveau de vannes, de pompes, d'échangeurs, de réservoirs ou de conduites, soit, plus particulièrement, au niveau des joints des éléments de raccordements ou desdits composants, soit encore par rupture d'un ou plusieurs de ces divers composants.
Les fuites de GNL sont particulièrement dangereuses pour trois raisons
1. Le GNL répandu se gazéifie rapidement au contact de l'air et des surfaces solides, et en se mélangeant à l'air ambiant crée un mélange hautement dangereux car explosible en présence de la moindre étincelle ou du moindre point chaud.
2. Les équipements véhiculant ou contenant du GNL (-165°C) sont réalisés dans des matériaux résistant à ces températures cryogéniques, en général des aciers à base de nickel ou encore de l'invar. Ces aciers spéciaux sont très coûteux et en général ne sont pas utilisés pour les éléments de supportage ou pour la structure du FPSO pour lesquels on utilise en général des aciers courants. Mais, ces aciers courants deviennent cassants au contact de très basses températures et perdent leurs résistance mécanique, ce qui risque de conduire à la rupture d'éléments de structure, voire du pont du FPSO dans le cas d'une fuite importante directement sur ledit pont, si les endroits critiques ne sont pas protégés par des matériaux isolants, qui eux résistent très bien aux températures cryogéniques. 3. Le contact entre le GNL et l'eau de mer présente un grand danger, car le réchauffage brutal du GNL (-165°C) par de l'eau de mer à 10-20°C en présence d'air, donc d'oxygène crée des risques très importants d'explosion instantanée.
Le but de la présente invention est de remédier aux conséquences liées à ces problèmes de fuites de liquide, notamment de gaz liquéfié, sur le pont de tels supports en mer.
Pour ce faire la présente invention fournit un support installé en mer, de manière fixe ou flottant, comprenant une installation de traitement de premier liquide dangereux et/ou corrosif, de préférence du gaz naturel liquéfié (GNL), sur le pont dudit support, et au moins une cuve de stockage de dit premier liquide, de préférence de GNL intégrée au sein de la coque dudit support sous ledit pont caractérisé en ce qu'il comprend au moins un réservoir situé à l'extérieur dudit support et situé au moins en partie, de préférence entièrement, en contrebas du pont dudit support sur lequel repose ladite installation, ledit réservoir étant fixé audit support, de préférence de manière réversible, ledit pont comprenant ou supportant des premiers moyens de transfert aptes à permettre le transfert vers ledit réservoir, de liquide de fuite s'écoulant d'une partie au moins de ladite installation, notamment en cas de fuite.
Ces premiers moyens de transfert peuvent comprendre des structures formant gouttières et éventuellement des éléments de conduites et/ou moyens de pompage de liquide.
Le positionnement et la fixation réversible de réservoirs à l'extérieur du support selon la présente invention présente les avantages de :
- pouvoir fabriquer ledit support dans une cale sèche de dimension standard en largeur ou longueur, c'est-à-dire sans nécessiter de cale sèche surdimensionnée ce qui est avantageux car la taille des cales sèches est un facteur très limitant pour la taille de supports et donc aussi les capacités de stockage des cuves qu'ils contiennent, et
- pouvoir fabriquer desdits réservoirs séparément, le cas échéant à plus grande proximité du site en mer que ladite cale sèche dans laquelle le support aura été fabriqué, et de fixer lesdits réservoirs sur ledit support avant remorquage sur site de celui-ci ou sur site après remorquage et ancrage ou dépose sur le fond marin, dudit support, et surtout
- améliorer la sécurité à bord dudit support au regard des risques d'incident et/ou explosion, notamment en évacuant rapidement le liquide de fuite en dehors dudit support, puis vidangeant ledit réservoir de manière à remettre le plus rapidement possible l'ensemble des installations en sécurité maximale.
Plus particulièrement, les dits premiers moyens de transfert de liquide de fuite comprennent au moins un dispositif collecteur de dit liquide de fuite s'étendant depuis dessous une dite partie au moins de l'installation jusqu'au-dessus d'un premier orifice supérieur dudit réservoir, ledit dispositif collecteur étant apte à recueillir ledit liquide de fuite s'écoulant de ladite partie de l'installation et le diriger par simple gravité vers ledit premier orifice supérieur dudit réservoir situé en contrebas dudit dispositif collecteur. On comprend que la mise en œuvre desdits premiers moyens de transfert évite tout contact de liquide de fuite avec le pont du support entre autre et plus généralement toute la structure du support d'une part et d'autre part évite un contact prolongé avec l'air atmosphérique.
La présente invention consiste donc avantageusement essentiellement à collecter les écoulements de fuite et les diriger vers des réservoirs externes, c'est-à-dire situés à l'extérieur de la barge, et en contrebas, de manière à ce que les écoulements se fassent naturellement par simple gravité et le plus rapidement possible et sans contact avec la structure du support notamment le pont et sans contact prolongé avec la base des installations de traitement, limitant de ce fait la quantité de GNL qui risque de se vaporiser en créant un mélange gazeux explosif au contact de l'air ambiant. Plus particulièrement encore, ledit réservoir est fixé de manière réversible contre un bordé dudit support.
On entend ici par « bordé dudit support », les parois latérales longitudinales, aussi bien que les parois transversales avant (proue) et arrière (poupe). Dans ce cas, des moyens de fixation réversible du réservoir sur la coque pourront être constitués de simples crochets permettant de suspendre ledit réservoir à des œillets contre ledit bordé. Et, lesdits premiers moyens de transfert peuvent comprendre un dit pont incliné en pente descendante depuis l'axe médian longitudinale XX' dudit pont vers le bordé dudit support contre lequel est fixé ledit réservoir ou une gouttière inclinée.
En effet, en général, le pont est lui-même incliné en pente douce de 1 à 2% descendante vers les bords longitudinaux latéraux du support et aptes à permettre l'écoulement d'un liquide vers une évacuation au niveau des et au-dessus des bordés longitudinaux latéraux. Toutefois cette pente peut être insuffisante pour induire un écoulement rapide.
De préférence, les dits premiers moyens de transfert de liquide de fuite comprennent un dispositif collecteur de liquide comprenant au moins un élément de platelage rapporté par-dessus ledit pont, ledit élément de platelage comprenant une structure plane centrale inclinée de préférence bordé latéralement par des rebords latéraux, l'inclinaison (oc2) de ladite structure plane centrale dudit élément de platelage étant supérieure à celle (al) dudit pont le cas échéant, de préférence d'une inclinaison (oc2) de 1 à 5%, de préférence de 2 à 4%.
Lorsque ledit réservoir est fixé contre un bordé du support, on comprend que ledit élément de platelage présente une inclinaison avec un point le plus haut du côté du platelage le plus proche dudit axe longitudinal médian XX' dudit support et le point le plus bas du côté du platelage le plus proche dudit bordé.
Plus particulièrement, le support selon l'invention comprend :
- une pluralité d'éléments de dit platelage, l'ensemble des dits éléments de platelage recouvrant de préférence toute la surface de la partie pont supportant une dite installation de traitement présentant des risques de fuite de GNL, et
- une pluralité de réservoirs, chaque dit élément de platelage coopérant avec au moins un dit réservoir.
On comprend que par « élément de platelage coopérant avec un dit réservoir », on entend que ledit réservoir est apte à recueillir dudit liquide de s'écoulant de ladite partie de l'installation située au-dessus dudit élément de platelage, ledit élément de platelage le dirigeant par simple gravité vers ledit premier orifice supérieur dudit réservoir situé en contrebas de l'extrémité inférieure dudit élément de platelage, de préférence par l'intermédiaire d'un premier élément de conduite de transfert.
Une pluralité de réservoirs peuvent ainsi être installés sur les parois de la coque de bâbord et tribord, et le cas échéant sur les parois arrière et avant, chacun d'entre eux collectant le liquide provenant d'un ou de plusieurs éléments de platelage recouvrant une surface restreinte de pontée.
Avantageusement, les parois ou les surfaces dudit dispositif collecteur susceptibles d'être en contact avec ledit liquide de fuite qu'il collecte, notamment la surface supérieure de la partie centrale dudit platelage, sont constituées ou respectivement recouvertes d'une couche de matériau résistant à des températures cryogéniques (inférieur ou égale à -160°C) dudit liquide de fuite tel que du GNL, notamment un matériau composite tel que le sandwich Chartek®- Intertherm® 7050 commercialisé par la société International (UK) du groupe AKZO-NOBEL, plus particulièrement apte à permettre une isolation thermique cryogénique du GNL à -165° C.
Plus particulièrement encore, ledit support selon l'invention comprend des moyens d'accrochage aptes à fixer une pluralité de dit réservoirs le long de ses bordés et chaque dit réservoir présente un volume de pas plus de 300 m3, de préférence de 50 à 300 m3.
Des réservoirs de ce volume peuvent être fabriqués avec une structure relativement plus légère que celle des cuves internes, car on ne recherche pas un niveau d'isolation élevé, mais plutôt un transfert thermique limité à travers la paroi autorisant une vaporisation rapide du GNL récupéré, sans toutefois que la structure métallique du réservoir ou de ses supports ne descende en dessous -20 à -40°C, ce qui risquerait de conduire à une rupture fragile du métal de ladite structure. Plus particulièrement encore, ledit réservoir est de forme cylindrique allongée d'axe longitudinal vertical (ΥΥ') avec une partie seulement dudit réservoir immergée notamment à section transversale horizontale, carrée et rectangulaire ou circulaire.
On entend ici par « axe vertical » que ledit axe du réservoir est sensiblement perpendiculaire à l'axe longitudinal horizontal XX' du support et sensiblement perpendiculaire au niveau de la mer lorsque la mer est plate.
Ledit réservoir reste en partie immergé même lorsqu'il est vide et une partie du réservoir reste au-dessus du niveau de la mer lorsque ledit réservoir est plein. La forme allongée verticale des réservoirs est avantageuse par comparaison avec des réservoirs de plus grande dimension horizontale en ce que une vidange du GNL par pompage laissera en fin de phase de pompage un reliquat de GNL proportionnel à la section horizontale dudit réservoir, donc plus faible que dans le cas de grande dimension horizontale. Dans le cas de grande dimension horizontale, on disposera avantageusement un fond de réservoir en pente, et l'on placera le dispositif de pompage au point le plus bas.
Dans une première variante de réalisation, ledit réservoir comprend un fonds constitué par la surface supérieure d'un flotteur interne au réservoir de forme ajustée contre le pourtour interne de la paroi latérale cylindrique dudit réservoir, l'extrémité inférieure de ladite paroi latérale cylindrique définissant une ouverture inférieure de telle sorte que ladite paroi latérale cylindrique est remplie d'eau de mer en dessous dudit flotteur et apte à se déplacer verticalement par rapport audit flotteur.
On comprend que ledit flotteur reste toujours au niveau de la surface de l'eau et donc que la paroi latérale du réservoir des déplace verticalement en fonction du niveau de la ligne de flottaison du support laquelle est fonction du taux de remplissage desdites cuves et du ou desdits réservoirs. Ce mode de réalisation est avantageux en ce qu'il permet de mettre en œuvre une structure de réservoir encore plus légère du fait que la paroi latérale n'a pas à résister à la pression hydrostatique de l'eau de mer environnant, ni à la poussée d'Archimède qui s'exerce sur un réservoir présentant une paroi de fond fixe et étanche.
Dans une deuxième variante de réalisation, ledit réservoir comprend une paroi de fonds fixe étanche à l'extrémité inférieure de sa paroi latérale cylindrique.
De préférence, les parois dudit réservoir sont isolées thermiquement, de préférence isolé intérieurement, notamment avec de la mousse de polyuréthanne. Cette isolation thermique vise à limiter le transfert thermique dû au réchauffement du GNL afin de maintenir la température des parois en acier du réservoir, notamment les parois latérales situées au-dessus du niveau de la mer, à une température supérieure à la température de rupture fragile dudit acier, notamment à une température supérieure à -10°C. A défaut, ledit transfert thermique risquerait de refroidir les éléments de structure en acier du réservoir en dessous d'une température où l'acier présente des risques de rupture fragile, c'est à dire en dessous de -20 à -40°C.
Avantageusement, ledit réservoir comprend ou coopère avec des seconds moyens de transfert comprenant une pompe et une deuxième conduite de liaison aptes à transférer ledit liquide de fuite contenu dans ledit réservoir vers une cuve, de préférence une dite cuve au sein de la coque dudit support.
En particulier, ledit réservoir possède une conduite interne descendant jusqu'au fond, cette dernière étant reliée à une pompe permettant de vidanger ledit réservoir et de renvoyer le gaz liquéfié vers une cuve de stockage du support flottant. Avantageusement encore, ledit réservoir comprend en outre des moyens de chauffage dudit liquide contenu dans ledit réservoir, de préférence les dits moyens de chauffage étant des moyens de chauffage par effet joule, de préférence encore lesdits moyens de chauffage étant intégrés dans ou contre ladite paroi latérale cylindrique du réservoir ou sa couche d'isolation thermique. Plus particulièrement, un dispositif de chauffage est un dispositif par chauffage électrique ou par circulation d'eau chaude ou de vapeur. Dans le cas où on vidange par pompage de la phase liquide, ledit dispositif de chauffage est avantageusement situé en partie basse du réservoir, et permet donc, après vidange, de finaliser la purge complète dudit réservoir, par vaporisation du reliquat et élimination du gaz méthane vers une torchère, ou simplement à l'air libre.
Dans le cas où il n'y a pas de dispositif de vidange par pompage, on dispose avantageusement ledit dispositif de chauffage sur toute ou partie de la hauteur de la paroi du réservoir, et le cas échéant sur le fond dudit réservoir.
Plus particulièrement, ledit réservoir comprend en outre un deuxième orifice supérieur d'évacuation de gaz, au niveau de la partie supérieure d'une paroi latérale ou paroi supérieure formant couvercle du réservoir, apte à permettre l'évacuation en dehors du réservoir du liquide qu'il contient après évaporation de celui-ci, de préférence à l'aide d'une troisième conduite de liaison vers une torchère de combustion ou vers le ciel de gaz d'une dite cuve au sein de la coque, ou à l'air libre. Plus particulièrement encore, ledit réservoir comprend ou est apte à coopérer avec un dispositif d'injection d'agent moussant, de préférence au niveau d'un troisième orifice supérieur, au niveau de la partie supérieure d'une paroi latérale ou paroi supérieure formant couvercle du réservoir. Cette injection d'agent moussant vise à créer un milieu inerte à l'intérieur du réservoir lorsque le réservoir commence à se remplir de GNL. En d'autres termes, on injecte ledit agent moussant lorsqu'ne fuite est détectée dans ladite installation. De préférence, lesdits réservoirs sont remplis initialement d'un gaz inerte tel que de l'azote.
De préférence, ledit support selon l'invention est un support flottant ancré en mer, ou reposant au fond de la mer, supportant une unité de liquéfaction de GNL et/ou de regazéification de GNL et production d'électricité, ledit liquide étant du GNL.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière de la description détaillée qui va suivre de un ou plusieurs modes de réalisation particuliers en référence aux figures suivantes dans lesquelles :
- La figure 1A représente en vue de côté un support flottant de type FPSO supportant une unité de traitement lb sur pont la, ladite unité de traitement lb comprenant des équipements de liquéfaction 1- 2 de GNL et des moyens de transfert de GNL entre ledit support flottant 1 et un navire enleveur 15 ; et
- La figure 1B représente en vue de côté un support reposant au fond de la mer 12 de type FSRU comprenant une unité de traitement lb sur son pont la, ladite unité de traitement comprenant des équipements de regazéification et de production d'électricité 1-3 et des moyens de transfert de GNL 1-1 vers un navire enleveur 15 ; et
- La figure 2 représente en vue de dessus un support flottant de type FPSO selon la figure 1 ; et
- La figure 3 représente une vue en coupe dans un plan transversal vertical perpendiculaire à la direction longitudinale XX' dudit support flottant au niveau d'un platelage 4-1 et réservoir 3 selon la présente invention, ledit réservoir comprenant selon une première variante un fond plein fermé de manière étanche 3b, et - Les figures 3A, 3B et 3C représentent une seconde variante de réalisation d'un réservoir selon l'invention comprenant une ouverture inférieure 3-4 et un flotteur interne 6 dont la surface supérieure 6a délimite un volume interne variable dudit réservoir ; et - La figure 4 représente une vue en coupe selon AA d'un élément de platelage 4-1 de la figure 3A.
Sur la figure 1A, le support flottant de type FPSO 1 est ancré au fonds de la mer 12 par des lignes d'ancrage 10a. Il reçoit du gaz naturel extrait au niveau de puits au fonds de mer par l'intermédiaire de conduites de liaison fond-surface 10b de production. Il comporte des cuves 2 de stockage de GNL 2a ainsi que des conduites de transfert 1-la ici en phase de déchargement vers un navire, dénommé ici navire enleveur 15 de type méthanier, en configuration dite en tandem. Ledit FPSO 1 possède des équipements de traitement et de liquéfaction de gaz naturel 1-2 et des cuves 2 de stockage de GNL intégrés au sein de la coque le. Ledit FPSO est équipé d'un dispositif de stockage et de guidage 1-1 de conduite flexible de transfert 1-la pour le déchargement du GNL vers le navire enleveur 15.
Sur les figures 1 et 2, on a représenté un support flottant de type FPSO comprenant 4 réservoirs 3 cylindriques d'axe vertical YY' à section transversale horizontale carrée sur un premier bordé latéral le de la coque le fixé chacun de manière réversible avec des moyens d'accrochage réversibles 5 respectivement contre chaque dit bordé le. 3 réservoirs 3 sur chaque bordé le recueillent du liquide de fuite 2a' provenant de l'installation de traitement lb reposant sur le pont la du support flottant. Plus précisément chacun de ces 6 réservoirs 3 reçoit du liquide de fuite 2a' récolté au niveau d'un élément de platelage 4-1 récoltant le liquide de fuite provenant d'une partie de ladite installation lb. La partie du pont la supportant l'unité de liquéfaction 1-2 est donc ici recouverte par un ensemble de 6 éléments de platelage 4-1 recouvrant toute ladite partie surface de pont susceptible de recevoir du liquide de fuite provenant de ladite unité de liquéfaction 1-2 avec 3 éléments de platelage 4-1 déversant le liquide vers chacun desdits bordés le opposés de manière à pouvoir déverser le liquide de fuite 2a' dans respectivement un réservoir 3 pour chaque élément de platelage 4-1. Un septième élément de platelage 4-1 recouvre la partie arrière de la surface du pont la supportant le dispositif de stockage et de guidage 1-1 de conduite de transfert 1-la disposé à proximité de la paroi arrière ld de la coque lg, apte à déverser le liquide de fuite provenant de l'installation 1-1 vers un des bordés le équipé d'une quatrième réservoir de forme similaire.
Sur la figure 1B, le support 1 de type FSRU repose sur fond de la mer 12. Il comporte une installation lb comprenant une unité de regazéification de GNL et de production d'électricité 1-3 incluant un poste de transformation pour expédition du courant électrique vers la terre. Le support 1 comporte des cuves de stockage 2 de GNL. Elles sont ici en phase de chargement depuis un navire de type méthanier 15, dénommé ici navire d'approvisionnement, en configuration dite en tandem, ledit support 1 étant équipé aussi d'un dispositif de stockage et de guidage 1-1 de conduite flexible de transfert 1-la pour le chargement du GNL depuis un navire d'approvisionnement 15.
Sur les figures 1A et 1B, le support 1 comprend 3 cuves de stockage 2 sensiblement parallélépipédiques disposées côte à côte successivement dans la direction longitudinale XX' et s'étendant sur toute la largeur du support flottant à l'intérieur de sa coque le dans la direction transversale perpendiculaire horizontalement à la direction XX'.
Sur la figure 3, les parois en acier des cuves 2 sont recouvertes d'une couche d'isolation thermique interne 2a-l constituée de mousse de polyuréthane et d'une membrane interne en contact avec le GNL en acier inox de faible épaisseur, résistant au températures cryogéniques, de sorte que ces cuves peuvent être considérées comme des cuves cryogéniques aptes à maintenir le GNL 2a qu'elles contiennent à l'état liquide. De même les réservoirs externes 3 se présentent des parois en acier équipées sur leur face interne de même matériau d'isolation thermique 3-5 de sorte que lesdits réservoirs peuvent également être considérés comme des réservoirs cryogéniques aptes à contenir du GNL à l'état liquide à -165° C avec cependant un niveau d'isolation beaucoup plus faible, de manière à favoriser la vaporisation du GNL, sans toutefois que les éléments de structure desdits réservoirs n'atteignent des températures plus basses que -20 à -40°C, de manière à éviter les ruptures fragiles desdits éléments de structure. Ainsi, dans cette même figure, la portion inférieure du réservoir (parois et fond) en contact permanent avec l'eau de mer pourra présenter un niveau d'isolation faible, car il n'y aura pas de risques que la température de la structure inférieure ne descende en dessous de -20°C, en raison du contact direct et permanent avec l'eau de mer à 10-20°C. Par contre la portion supérieure émergée de manière permanente ou non (variations de tirant d'eau en fonction du chargement) est en contact avec l'air ambiant, lui aussi à 10-20°C. Du fait que les échanges thermiques avec l'air sont plus faible qu'avec un contact avec de l'eau de mer, il conviendra de disposer un système d'isolation plus performant de manière à ce que les échanges thermiques à travers ledit système d'isolation ne conduisent pas à un refroidissement des éléments de structure tel que leur température descende en dessous de -20 à- 40°C, évitant de ce fait les ruptures fragiles de l'acier desdites structures.
Les parois externes latérales le et ld ainsi que la paroi inférieure de fond le et le pont la délimitant la coque lg constituent la « poutre navire », c'est à dire la structure résistante globale lf du support flottant. Sur la figure 3, le plan du pont la est montré comme étant incliné en pente descendante depuis l'axe médian horizontal XX' du support et du pont vers les bordés le constituant les parois latérales longitudinales de la coque d'un angle al d'environ 1 degré. La paroi supérieure ou couvercle 3c des réservoirs est légèrement en contre bas de l'extrémité supérieure des bordés le. Les parois latérales cylindriques 3a verticales des réservoirs 3 présentent une face latérale 3a-l comprenant 2 crochets 5-1 disposés en partie supérieure et en partie basse aptes à être suspendus à des pièces présentant une forme creuse complémentaire auxdits crochets ou gonds 5-2 appliqués contre la face externe desdits bordés le de manière à ce que ledit réservoir puisse y être suspendu et ainsi accroché de manière réversible lorsque les crochets 5-1 coopèrent avec lesdites pièces 5-2. La collecte et le transfert du liquide de fuite 2a' depuis l'installation de traitement lb vers l'intérieur du réservoir 3 se fait à l'aide d'un dispositif de collecte constitué d'une pluralité d'élément de platelage 4-1. Chaque élément de platelage 4-1 comprend une structure porteuse en acier ou en caillebotis 4a recouverte d'une couche de matériau composite résistant et isolant 4a-l, par exemple un sandwich Chartek®-Intertherm® 7050 de la société International (UK) du groupe AKZO-NOBEL. La partie centrale 4a-l est inclinée d'un angle oc2 correspondant à une pente de 1 à 5%, de préférence de 2 à 4% par rapport à l'horizontale. Elle est fixée par-dessus le pont la, en pente descendante depuis l'extrémité du platelage la plus proche de l'axe médian longitudinal XX' vers l'extrémité du platelage la plus basse arrivant au-delà du bordé le c'est-à-dire vers l'extérieur du support flottant 1 jusqu'au-dessus d'une première ouverture supérieure 3-1 à travers le couvercle 3c du réservoir 3. La canalisation du liquide de fuite s'écoulant sur le platelage 4-1 à son extrémité basse vers ladite première ouverture 3-1 du réservoir se fait à l'aide d'un dispositif 4-2 comprenant une petite chambre supérieure 4-2a et un élément de conduite inférieur 4-2b permettant au liquide de fuite 2a' de s'écouler à l'intérieur du réservoir 3.
Les réservoirs 3 sont avantageusement installés sur la coque lg après mise à l'eau de la coque sur le chantier naval, mais avant remorquage sur site en mer. Dans le cas de remorquage sur de très grandes distances tel que plusieurs milliers de km, ils peuvent être avantageusement installés seulement après l'arrivée sur site et être fabriqués dans un chantier à plus grande proximité du site.
En vue de dessus tel que représenté sur la figure 2 chaque élément de platelage coopérant avec au moins un réservoir 3 présente une forme trapézoïdale avec un rétrécissement de ses rebords latéraux 4b en direction de la partie 4-2 du dispositif de collecte et de transfert vers le réservoir 3. On comprend que les rebords 4b visent à empêcher que le liquide de fuite quitte la partie centrale du platelage 4a et canalise l'écoulement du liquide de fuite vers le réservoir 3 par le rétrécissement de la largeur de la partie centrale 4a vers le bordé.
Sur la figure 4 on a représenté en coupe selon le plan AA de la figure 3A un élément de platelage 4-1 comportant une structure support en acier 4a, un matériau composite résistant et isolant 4a-l et des bords relevés 4b pour canaliser le GNL vers le réservoir situé en contrebas.
Les éléments de platelage 4-1 forment donc des gouttières recueillant et canalisant les liquides de fuite de l'installation de traitement ld vers et jusque l'orifice supérieur 3-1 des réservoirs 3. Une fois la ou les fuites maîtrisées, les réservoirs 3 sont remplis de liquide de fuite 2a' à des niveaux variables, on cherche alors à les vider le plus rapidement possible, de manière à remettre l'ensemble des installations à un niveau de sécurité maximal. Plusieurs variantes sont possibles. Selon une première variante de réalisation, on met en œuvre des seconds moyens de transfert 8 comprenant une pompe 8-1 permettant de faire circuler le liquide de fuite 2a' à l'intérieur d'une seconde conduite de liaison 8-2 s'étendant depuis la proximité du fond 3b du réservoir jusque et à travers le couvercle 3c et s'étendant au- delà par exemple en direction et jusqu'au ciel de gaz 2a-l d'une cuve 2 de stockage de GNL.
Dans une seconde variante de réalisation, on regazéifie si nécessaire le liquide 2a' à l'aide d'un dispositif de chauffage 9 qui peut être immergé dans le liquide de fuite 2a' à l'intérieur du réservoir 3 ou incorporé contre la paroi latérale du réservoir 3 et/ou dans ou contre la couche d'isolation thermique interne 3-5 du réservoir 3. Une fois regazéifié, le GNL 2a' peut s'évacuer à travers un troisième élément de conduite 3-6 passant à travers une deuxième ouverture supérieure 3-2 du couvercle 3c du réservoir 3. Le troisième élément de conduite 3-6 permettre ainsi l'évacuation du gaz, soit simplement dans l'atmosphère, soit vers une torchère de combustion 14 installée à une extrémité du support flottant comme représenté sur la figure 2, par le biais de conduites non représentées. Même en l'absence de mise en œuvre du dispositif de chauffage 9, la deuxième ouverture 3- 2 et deuxième élément de conduite 3-6 permettent d'évacuer le gaz soit à l'air libre, soit vers la torchère, comme expliqué précédemment. Dans le mode de réalisation de la figure 3, le réservoir 3 comporte une partie qui reste toujours immergée représentant une hauteur de ¼ à ¾ de la hauteur H du réservoir 3 à partir de son fond 3b, plus particulièrement de 1/3 à Vi de la hauteur H du réservoir 3 à partir de son fond 3b, c'est-à-dire en dessous du niveau de la mer 11. On comprend que la hauteur H varie en fonction de la hauteur de la ligne de flottaison de la coque laquelle varie selon que les cuves 2 sont vides (ligne de flottaison à environ ¼ de la hauteur du réservoir au-dessus de sa paroi de fond 3b) ou que les cuves 2 sont pleines de liquide 2a (ligne de flottaison à environ ¼ de la hauteur du réservoir en dessous de sa paroi supérieure 3c ou environ ¾ au-dessus de la paroi de fond 3b). Dans ce mode de réalisation, la poussée d'Archimède s'exerce sur l'intégralité du volume de réservoir immergé, et de plus, la structure dudit réservoir doit résister à la pression, plus particulièrement dans sa partie basse. Ainsi, les points d'accrochage doivent résister à des efforts principalement dirigés vers le bas dans le cas où le réservoir est plein de liquide de fuites et où le FPSO est partiellement ou complètement vide, et à des efforts dirigés vers le haut lorsque le réservoir est vide et que le FPSO est complètement plein.
Sur les figures 3A, 3B et 3C, on a représenté un second mode de réalisation de réservoir 3 dans lequel l'extrémité inférieure de la paroi latérale cylindrique 3a définit une ouverture inférieure 3-4 du réservoir. Dans ce second mode de réalisation le réservoir 3 renferme un flotteur 6 dont la surface supérieure 6a délimite la paroi inférieure du réservoir, étant entendu toutefois que le flotteur 6 présente une forme, notamment sensiblement parallélépipédique, et un contour, notamment sensiblement de section carrée, ajusté à celui de la surface interne de la paroi latérale cylindrique 3a de manière à pouvoir autoriser un coulissement vertical du réservoir 3 autour du flotteur 6 lequel flotteur présente une flottabilité de manière à rester en permanence sensiblement au niveau de la surface supérieure 11 de la mer. Ainsi la hauteur H de la partie immergée du réservoir 3 varie en fonction de la hauteur de la ligne de flottaison du support flottant, entre une valeur maximale Hi correspondant à un FPSO dont les cuves sont pleines (figure 3B) et une valeur minimale H2 correspondant à un FPSO dont les cuves sont vides (figure 3C). La partie du réservoir entre la sous-face 6b du flotteur 6 et l'ouverture inférieure 3-4 du réservoir 3 est remplie d'une hauteur d'eau de mer 13 variable. Ce second mode de réalisation présente l'avantage que le volume vide éventuel du réservoir est toujours situé au-dessus du niveau de la mer 11 de sorte que la structure des parois latérales du réservoir peut présenter une résistance mécanique relativement réduite n'ayant pas à résister à la pression hydrostatique de l'eau de mer contrairement au premier mode de réalisation de la figure 3 dans lequel il peut se trouver qu'une partie du volume interne vide du réservoir 3 soit immergé et doivent résister à la pression hydrostatique. De même, les efforts sur les éléments de fixation ne sont plus alternés en fonction du remplissage du FPSO et l'on peut considérer que les efforts dans la structure du réservoir et de ses supports sont sensiblement constants. En pratique, quel que soit la forme de la section horizontale intérieure du réservoir, le contour extérieur du flotteur correspond à cette forme de la section interne du réservoir, étant entendu qu'un jeu, de préférence régulier, par exemple de quelques centimètres, existe entre ledit flotteur et ladite paroi interne dudit réservoir, sur toute la périphérie dudit flotteur. L'inconvénient de ce deuxième mode de réalisation des figures
3A à 3C est que le cas échéant, la partie disponible du volume interne du réservoir 3 a tendance à diminuer dans la mesure du vidage des cuves de stockage 2. Dans ce cas, la mise en œuvre des seconds moyens de transfert 8 ou moyens d'évacuation 3-6 est plus particulièrement avantageuse.
Le flotteur 6 est avantageusement constitué de façon connue de mousses syntactiques compte tenu de leurs résistances mécaniques importantes et de leur excellent comportement aux températures cryogéniques (-165°C). Du fait que le GNL présente une température négative d'environ
-165° C, lorsqu'il tombe sur la surface supérieure 6a du flotteur, l'anneau d'eau de mer situé entre la périphérie du flotteur 6 et la paroi du réservoir, gèle quasi instantanément et se transforme en glace et vient alors bloquer ledit flotteur 6 contre la paroi latérale cylindrique 3a du réservoir et de ce fait rend étanche le fond du réservoir, empêchant de ce fait ledit flotteur de s'enfoncer dessous le niveau de la mer 11 sous l'effet du poids de liquide de fuite 2a' qu'il supporte.
Avantageusement encore, les réservoirs 3 sont munis d'une troisième ouverture 3-3 en partie haute de leurs parois latérales cylindriques 3a permettant l'introduction par un élément de conduite 3-7 à l'intérieur du réservoir d'agent moussant inerte en provenance d'un générateur de mousse non représenté. Ainsi, en cas de fuite dans l'installation lb, dès que le réservoir commence à se remplir, on actionne le générateur de mousse de manière à confiner le GNL et limiter les introductions d'air, l'oxygène de l'air présentant des risques d'explosion ou d'incendie en mélange avec le gaz naturel. La présence de cette mousse ne gêne en rien la vaporisation du GNL ni l'évacuation du gaz vers l'extérieur du réservoir comme décrit précédemment. Des agents moussants appropriés sont du type mousse de lutte contre l'incendie connue de l'homme de l'Art (en anglais « fire fighting foam ») commercialisé par la Société ANGUS FIRE (UK).
On comprend que lesdites première, deuxième, troisième ouvertures 3-1, 3-2 et 3-3 sont avantageusement équipées d'un dispositif d'obturation à volonté tel qu'un clapet. Les dispositifs de transfert et de collecte des liquides de fuite
2a' décrits ci-dessus permettent de collecter et d'éliminer rapidement le liquide de fuite 2a', l'élimination pouvant se faire de manière contrôlée et à volonté dans les différents moyens de transfert et d'évacuation décrits ci-dessus sous forme liquide ou gazeuse de façon à éviter tous risques d'explosion ou d'incendie, et remettre le plus rapidement possible les installations en configuration de sécurité maximale.
Le volume de chacun desdits réservoirs est dimensionné en fonction des volumes de GNL concernant la zone couverte par les dispositifs de collecte reliés au dit réservoir. On considérera ainsi :
- d'une part le volume des contenants concernés (tuyauteries, réservoirs, pompes, ...) situé entre des vannes amont et des vannes aval, et
- d'autre part le volume de production courant durant une période de temps correspondant au début de l'incident de fuite et la fermeture effective de toutes les vannes amont et aval concernées, c'est à dire en général plusieurs minutes.
Ainsi, le volume de chacun des réservoirs sera fonction de sa localisation par rapport à l'installation, et pourra varier dans des proportions importantes, par exemple de 50 à 300m3. On a décrit des réservoirs présentant en partie haute un couvercle à travers lequel passent des conduites d'amenée de GNL ou de mousse, et des conduites d'évacuation de gaz ; mais, dans une version simplifiée, ledit réservoir ne présente pas de couvercle. Il est alors impératif, dès qu'une fuite se produit, de remplir de mousse ledit réservoir, de manière à confiner le GNL, l'évaporation dudit GNL se faisant alors directement à l'air libre, à travers l'épaisseur d'une couche de dite mousse.

Claims

REVENDICATIONS
1. Support (1) installé en mer, de manière fixe ou flottant, comprenant une installation de traitement (lb) de premier liquide dangereux et/ou corrosif (2a), de préférence du gaz naturel liquéfié (GNL), sur le pont (la) dudit support, et au moins une cuve (2) de stockage de dit premier liquide (2a), de préférence de GNL intégrée au sein de la coque (lg) dudit support sous ledit pont (la) caractérisé en ce qu'il comprend au moins un réservoir (3) situé à l'extérieur dudit support et situé au moins en partie, de préférence entièrement, en contrebas du pont (la ) dudit support sur lequel repose ladite installation, ledit réservoir étant fixé audit support, de préférence de manière réversible (5), ledit pont comprenant ou supportant des premiers moyens de transfert (4) aptes à permettre le transfert vers ledit réservoir, de liquide de fuite (2a') s'écoulant d'une partie au moins de ladite installation, notamment en cas de fuite.
2. Support selon la revendication 1, caractérisé en ce que les dits premiers moyens de transfert de liquide de fuite comprennent au moins un dispositif collecteur (4-1) de dit liquide de fuite s'étendant depuis dessous une dite partie au moins de l'installation (lb) jusqu'au-dessus d'un premier orifice supérieur (3-1) dudit réservoir, ledit dispositif collecteur étant apte à recueillir ledit liquide de fuite (2a') s'écoulant de ladite partie de l'installation et le diriger par simple gravité vers ledit premier orifice supérieur dudit réservoir situé en contrebas dudit dispositif collecteur.
3. Support selon l'une des revendications 1 ou 2, caractérisé en ce que ledit réservoir est fixé de manière réversible contre un bordé (le, ld) dudit support.
4. Support selon l'une des revendications 1 à 3, caractérisé en ce que lesdits premiers moyens de transfert (4) de liquide de fuite comprennent un dispositif collecteur de liquide comprenant au moins un élément de platelage (4-1) rapporté par-dessus ledit pont, ledit élément de platelage comprenant une structure plane centrale inclinée (4a) de préférence bordé latéralement par des rebords latéraux (4b), l'inclinaison (oc2) de ladite partie plane centrale (4a) dudit élément de platelage étant supérieure à celle (al) dudit pont le cas échéant, de préférence d'une inclinaison (oc2) de 1 à 5%, de préférence de 2 à 4%.
5. Support selon la revendication 2 et l'une des revendications 2 à 4, caractérisé en ce que les parois ou les surfaces dudit dispositif collecteur susceptibles d'être en contact avec ledit liquide de fuite qu'il collecte sont constituées ou respectivement recouvertes d'une couche de matériau résistant à des températures cryogéniques (4a-l), notamment un matériau composite.
6. Support selon la revendication 4 ou 5, caractérisé en ce qu'il comprend :
- une pluralité d'éléments de dit platelage (4-1), l'ensemble des dits éléments de platelage recouvrant au moins toute la surface de la partie pont supportant une dite installation de traitement (lb), et
- une pluralité de réservoirs (3), chaque dit élément de platelage (4-1) coopérant avec un dit réservoir.
7. Support selon l'une des revendications 1 à 6, caractérisé en ce qu'il comprend des moyens d'accrochage (5,51 - 52) aptes à fixer une pluralité de dit réservoirs le long de ses bordés (le) et lesdits réservoirs ont un volume de pas plus de 300 m3, de préférence de 50 à 300 m3.
8. Support selon l'une des revendications 1 à 7, caractérisé en ce que ledit réservoir est de forme cylindrique allongée d'axe longitudinal vertical (ΥΥ') avec une partie seulement dudit réservoir (3) immergée (13).
9. Support selon la revendications 1 à 8, caractérisé en ce que ledit réservoir comprend un fonds (3b) constitué par la surface supérieure (6a) d'un flotteur (6) interne au réservoir de forme ajustée contre le pourtour interne de la paroi latérale cylindrique (3a) dudit réservoir, l'extrémité inférieure de ladite paroi latérale cylindrique (3a) définissant une ouverture inférieure (3-4) de telle sorte que ladite paroi latérale cylindrique (3a) est remplie d'eau de mer (13) en dessous dudit flotteur et apte à se déplacer verticalement par rapport audit flotteur.
10. Support selon l'une des revendications 1 à 8, caractérisé en ce que ledit réservoir comprend une paroi de fonds (3b) fixe étanche à l'extrémité inférieure de sa paroi latérale cylindrique (3a).
11. Support selon l'une des revendications 1 à 10, caractérisé en ce que les parois dudit réservoir sont isolées thermiquement (3- 5), de préférence isolé intérieurement.
12. Support selon l'une des revendications 1 à 11, caractérisé en ce que ledit réservoir comprend ou coopère avec des seconds moyens de transfert (8) comprenant une pompe (8-1) et une deuxième conduite de liaison (8-2) aptes à transférer ledit liquide de fuite contenu dans ledit réservoir vers un cuve, de préférence une dite cuve (2 ) au sein de la coque dudit support.
13. Support selon l'une des revendications 1 à 12, caractérisé en ce que ledit réservoir comprend en outre des moyens de chauffage (9) dudit liquide contenu dans ledit réservoir, de préférence lesdits moyens de chauffage étant des moyens de chauffage par effet joule, de préférence encore lesdits moyens de chauffage étant intégrés dans ou contre ladite paroi latérale cylindrique (3a ) du réservoir ou sa couche d'isolation thermique (3-5).
14. Support selon l'une des revendications 1 à 13, caractérisé en ce que ledit réservoir comprend en outre un deuxième orifice supérieur d'évacuation de gaz (3-2), au niveau de la partie supérieure d'une paroi latérale (3a) ou paroi supérieure formant couvercle (3c) du réservoir, apte à permettre l'évacuation en dehors du réservoir du liquide qu'il contient après évaporation de celui-ci, de préférence à l'aide d'une troisième conduite de liaison (3-6) vers une torchère de combustion (14) ou vers le ciel de gaz (2-1) d'une dite cuve au sein de la coque ou à l'air libre.
15. Support selon l'une des revendications 1 à 14, caractérisé en ce que ledit réservoir comprend ou est apte à coopérer avec un dispositif d'injection d'agent moussant, de préférence au niveau d'un troisième orifice supérieur (3-3), au niveau de la partie supérieure d'une paroi latérale (3a) ou paroi supérieure formant couvercle (3c) du réservoir.
16. Support selon l'une des revendications 1 à 7, caractérisé en ce qu'il s'agit d'un support flottant ancré (10a) en mer ou reposant au fonds de la mer (12) supportant une unité de liquéfaction (1-2) de GNL et/ou de regazéification (1-3) de GNL et production d'électricité, ledit liquide (2a) étant du GNL.
PCT/FR2012/052028 2011-09-19 2012-09-11 Support installe en mer equipe de reservoirs externes WO2013041796A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
SG11201400295VA SG11201400295VA (en) 2011-09-19 2012-09-11 Sea platform having external containers
KR1020147006687A KR101653892B1 (ko) 2011-09-19 2012-09-11 외부 컨테이너들을 구비하는 해양에 설치된 지지체
AU2012311340A AU2012311340B2 (en) 2011-09-19 2012-09-11 Sea platform having external containers
US14/345,573 US9199700B2 (en) 2011-09-19 2012-09-11 Sea platform having external containers
BR112014006396-6A BR112014006396B1 (pt) 2011-09-19 2012-09-11 Suporte adequado para ser instalado no mar equipado comreservatórios externos
JP2014527727A JP5727676B2 (ja) 2011-09-19 2012-09-11 外側容器を有する海上プラットフォーム
CN201280045533.0A CN103813957B (zh) 2011-09-19 2012-09-11 具有外部容器的海上平台
EP12767065.1A EP2758302B1 (fr) 2011-09-19 2012-09-11 Support installe en mer equipe de reservoirs externes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158311 2011-09-19
FR1158311A FR2980164B1 (fr) 2011-09-19 2011-09-19 Support installe en mer equipe de reservoirs externes

Publications (1)

Publication Number Publication Date
WO2013041796A1 true WO2013041796A1 (fr) 2013-03-28

Family

ID=46968294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052028 WO2013041796A1 (fr) 2011-09-19 2012-09-11 Support installe en mer equipe de reservoirs externes

Country Status (10)

Country Link
US (1) US9199700B2 (fr)
EP (1) EP2758302B1 (fr)
JP (1) JP5727676B2 (fr)
KR (1) KR101653892B1 (fr)
CN (1) CN103813957B (fr)
AU (1) AU2012311340B2 (fr)
BR (1) BR112014006396B1 (fr)
FR (1) FR2980164B1 (fr)
SG (1) SG11201400295VA (fr)
WO (1) WO2013041796A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105822898A (zh) * 2016-04-07 2016-08-03 中国寰球工程公司 一种lng泄露收集系统及其泄露收集方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2981580B1 (fr) * 2011-10-20 2013-12-13 Saipem Sa Dispositif de collecte et de separation de liquides aqueux et/ou huileux et de liquide cryogenique
WO2013083167A1 (fr) * 2011-12-05 2013-06-13 Blue Wave Co S.A. Système et procédé de chargement, stockage et déchargement de gaz naturel à partir d'une barge
ES2952648T3 (es) * 2011-12-05 2023-11-02 Blue Wave Co Sa Sistema y método para carga, almacenamiento y descarga de gas natural de buques
WO2014076119A1 (fr) * 2012-11-13 2014-05-22 Nli Innovation As Ensemble support
FR3005933B1 (fr) 2013-05-23 2015-05-22 Gdf Suez Installation de stockage portuaire de combustible liquide
US10081412B2 (en) * 2013-12-06 2018-09-25 Gva Consultants Ab Floating vessel with tank trough deck
CN105862696B (zh) * 2016-04-06 2018-06-05 大连理工大学 一种自升式多功能海洋平台及其工作方法
GB2557872B (en) * 2016-04-26 2019-05-15 Aspin International Ltd A system for storing and/or transporting liquified natural gas
CN112512911A (zh) 2018-06-01 2021-03-16 斯蒂尔赫德液化天然气有限公司 液化设备、方法和系统
FR3083843B1 (fr) * 2018-07-16 2020-07-17 Gaztransport Et Technigaz Installation de stockage de fluide
GB201902467D0 (en) * 2019-02-22 2019-04-10 Techflow Marine Ltd Valve
CN111591396B (zh) * 2019-06-25 2021-07-20 南京蒽天捷能源科技有限公司 可移动串联式浮动液货过驳海工平台及过驳方法
JP2023042833A (ja) 2021-09-15 2023-03-28 三菱造船株式会社 浮体
CN115539826B (zh) * 2022-10-09 2023-04-11 湖南金航船舶制造有限公司 用于lng船的加注装置
KR102622387B1 (ko) 2022-12-19 2024-01-09 한국건설기술연구원 액체 수소 지하 저장탱크의 누설 수소 포집 및 자동 환기 시스템 및 그 제어 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE870508C (de) * 1951-09-28 1953-03-16 Norsk Hydro Elek Sk Kvaelstofa Einrichtung bei Tankern zur Befoerderung von unter Druck stehenden Fluessigkeiten
US4392449A (en) * 1981-05-01 1983-07-12 Dining Bruce F Below deck enclosure for pressurized, heavier than air gas
WO2001030648A1 (fr) 1999-10-27 2001-05-03 Bouygues Offshore Barge de stockage de gaz liquefie a structure flottante en beton

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100392U (fr) * 1972-12-19 1974-08-29
US4275679A (en) * 1976-07-31 1981-06-30 Dyckerhoff & Widmann Ag Floating platform with monolithically formed float members and platform
JPS5741598U (fr) * 1980-08-21 1982-03-06
JPS57150096U (fr) * 1981-03-17 1982-09-20
JPS6016100U (ja) * 1983-07-13 1985-02-02 三菱重工業株式会社 船舶マニホ−ルド部の低温液受装置
JPH0532194A (ja) * 1991-07-30 1993-02-09 Nkk Corp 油槽船
CN2201336Y (zh) * 1994-04-26 1995-06-21 梁宝璋 油水两用输送船
CA2130890C (fr) * 1994-08-25 2000-03-14 Ronald Logan Systeme de confinement contre les deversements
US5662149A (en) * 1995-04-10 1997-09-02 Armellino; Gary Fuel spill collector device
NO315194B1 (no) * 1998-01-30 2003-07-28 Navion As Fremgangsmåte og system for eksport av LNG og kondensat fra et flytende produksjons-, lagrings- og lossefartöy
US7137345B2 (en) * 2004-01-09 2006-11-21 Conocophillips Company High volume liquid containment system for ships
US20110182698A1 (en) * 2008-10-09 2011-07-28 Keppel Offshore & Marine Technology Centre Pte Ltd Systems and methods for offshore natural gas production, transportation and distribution
US20130084134A1 (en) * 2011-10-03 2013-04-04 Abdulreidha A. Alsaffar Oil recovery system
FR2981580B1 (fr) * 2011-10-20 2013-12-13 Saipem Sa Dispositif de collecte et de separation de liquides aqueux et/ou huileux et de liquide cryogenique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE870508C (de) * 1951-09-28 1953-03-16 Norsk Hydro Elek Sk Kvaelstofa Einrichtung bei Tankern zur Befoerderung von unter Druck stehenden Fluessigkeiten
US4392449A (en) * 1981-05-01 1983-07-12 Dining Bruce F Below deck enclosure for pressurized, heavier than air gas
WO2001030648A1 (fr) 1999-10-27 2001-05-03 Bouygues Offshore Barge de stockage de gaz liquefie a structure flottante en beton

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105822898A (zh) * 2016-04-07 2016-08-03 中国寰球工程公司 一种lng泄露收集系统及其泄露收集方法

Also Published As

Publication number Publication date
CN103813957A (zh) 2014-05-21
KR20140050100A (ko) 2014-04-28
SG11201400295VA (en) 2014-09-26
US9199700B2 (en) 2015-12-01
BR112014006396B1 (pt) 2021-02-23
BR112014006396A2 (pt) 2017-03-28
EP2758302B1 (fr) 2015-09-09
JP2014525366A (ja) 2014-09-29
KR101653892B1 (ko) 2016-09-02
EP2758302A1 (fr) 2014-07-30
FR2980164B1 (fr) 2014-07-11
AU2012311340A1 (en) 2014-03-13
FR2980164A1 (fr) 2013-03-22
JP5727676B2 (ja) 2015-06-03
CN103813957B (zh) 2016-08-24
AU2012311340B2 (en) 2015-07-09
US20140369765A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
EP2758302B1 (fr) Support installe en mer equipe de reservoirs externes
EP2768592B1 (fr) Dispositif de collecte et de separation de liquides aqueux et/ou huileux et de liquide cryogenique
EP3329172B1 (fr) Procédé de pilotage d'un dispositif de pompage raccorde à une barrière thermiquement isolante d'une cuve de stockage d'un gaz liquéfié
EP3271635B1 (fr) Procédé de refroidissement d'un gaz liquéfié
EP1224113B1 (fr) Barge de stockage de gaz liquefie a structure flottante en beton
FR2478260A1 (fr) Installation sous-marine de stockage au large des cotes pour des gaz liquefies fortement refroidis
WO2016128696A1 (fr) Gestion des fluides dans une cuve etanche et thermiquement isolante
WO2019162594A2 (fr) Installation de stockage et de transport d'un fluide cryogenique embarquee sur un navire
EP4098539B1 (fr) Navire pour le transport ou l'utilisation d'un fluide froid
EP4198375A1 (fr) Installation de stockage d'un gaz liquefie comportant une cuve et une structure de dome
FR3134616A1 (fr) Cuve étanche et thermiquement isolante et procédé de mise sous vide associé
FR3134615A1 (fr) Installation pour le stockage et/ou le transport de gaz liquéfié
BE566499A (fr)
BE584406A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527727

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147006687

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012311340

Country of ref document: AU

Date of ref document: 20120911

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14345573

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012767065

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014006396

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014006396

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140318