WO2013038778A1 - 車両駆動装置及び車両駆動方法 - Google Patents

車両駆動装置及び車両駆動方法 Download PDF

Info

Publication number
WO2013038778A1
WO2013038778A1 PCT/JP2012/066542 JP2012066542W WO2013038778A1 WO 2013038778 A1 WO2013038778 A1 WO 2013038778A1 JP 2012066542 W JP2012066542 W JP 2012066542W WO 2013038778 A1 WO2013038778 A1 WO 2013038778A1
Authority
WO
WIPO (PCT)
Prior art keywords
recovery
speed
automatic transmission
fuel
internal combustion
Prior art date
Application number
PCT/JP2012/066542
Other languages
English (en)
French (fr)
Other versions
WO2013038778A9 (ja
Inventor
佳延 川本
入山 正浩
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201280032315.3A priority Critical patent/CN103826953B/zh
Priority to US14/344,136 priority patent/US10024243B2/en
Publication of WO2013038778A1 publication Critical patent/WO2013038778A1/ja
Publication of WO2013038778A9 publication Critical patent/WO2013038778A9/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/02Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by hand, foot, or like operator controlled initiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • B60W2510/101Transmission neutral state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0627Fuel flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/023Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H2059/186Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed

Definitions

  • This invention relates to driving force control of a vehicle equipped with a stepped automatic transmission.
  • Japanese Patent Laid-Open No. 2006-15819 issued by the Japan Patent Office in 2006 proposes that a regenerative brake be operated during fuel recovery so that fuel recovery in the unlocked clutch release state does not generate torque shock.
  • the lock-up clutch is released and the automatic transmission switches to the high-speed gear, so-called foot release upshift may occur.
  • the fuel cut for stopping the fuel supply to the internal combustion engine is performed when the accelerator opening becomes zero.
  • An object of the present invention is to prevent the occurrence of a shock accompanying fuel recovery during a foot-off upshift without using a regenerative brake.
  • the present invention is applied to a vehicle drive device that transmits the rotation of an internal combustion engine that responds to the amount of depression of an accelerator pedal to drive wheels via a torque converter and an automatic transmission.
  • the vehicle drive device includes an accelerator pedal depletion sensor that detects the amount of depression of the accelerator pedal, an engine rotation speed sensor that detects the engine rotation speed, and a programmable controller.
  • the controller is programmed as follows. That is, when the accelerator pedal is released while the vehicle is running, the automatic transmission is upshifted, and the engine speed is equal to or higher than a predetermined recovery rotation speed when the accelerator pedal is released. When the engine rotation speed falls below the recovery rotation speed during fuel cut to the internal combustion engine, fuel recovery to the internal combustion engine was executed, and the fuel supply stop and upshift were performed in parallel. In the case where the fuel recovery to the internal combustion engine is predicted, the automatic transmission is in the inertia phase, and the fuel recovery to the internal combustion engine is predicted to be executed. Accelerate fuel recovery to the automatic transmission inertia phase.
  • FIG. 1 is a schematic configuration diagram of a vehicle drive device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a driving force control routine executed by the engine controller according to the embodiment of the present invention.
  • FIG. 3A to 3I are timing charts for explaining an example of the driving force control result when the driving force control routine is not executed.
  • FIG. 4A to 4I are timing charts for explaining the driving force control result by the execution of the driving force control routine.
  • FIG. 5A-5J is a timing chart for explaining another driving force control result by execution of the driving force control routine.
  • a vehicle drive apparatus includes an internal combustion engine 1 and a speed change unit 2 that shifts the rotational output of the internal combustion engine 1 and outputs it to the propeller shaft 3.
  • the internal combustion engine 1 includes an intake throttle 1A and a fuel injector 1B.
  • the transmission unit 2 includes a torque converter 2B, an automatic transmission 2A that changes the output rotation of the torque converter 2B, and a hydraulic lockup clutch 2C.
  • the torque converter 2B includes a pump impeller coupled to the rotating shaft of the internal combustion engine 1 and a turbine runner coupled to the input shaft of the automatic transmission 2A. Torque is supplied via hydraulic oil interposed between the pump impeller and the turbine runner. introduce.
  • the automatic transmission 2A includes a known planetary gear set having a high clutch and a low brake.
  • the engagement and release of the lock-up clutch 2C and the engagement and release of each of the high clutch and low brake of the automatic transmission 2A are performed using an automatic transmission controller using the discharge pressure of a hydraulic pump provided as an auxiliary machine of the internal combustion engine 1. (ATCU) 5.
  • the opening control of the intake throttle 1A for adjusting the intake air amount of the internal combustion engine 1 and the fuel injection control of the fuel injector 1B of the internal combustion engine 1 are performed by an engine controller (ECU) 4.
  • ECU engine controller
  • the ECU 4 and the ATCU 5 are each composed of a microcomputer having a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • I / O interface input / output interface
  • One or both of the ECU 4 and the ATCU 5 can be constituted by a plurality of microcomputers.
  • the ECU 4 and the ATCU 5 can be configured by a single microcomputer.
  • the ECU 4 includes an accelerator pedal depression amount sensor 6 that detects an accelerator pedal depression amount (accelerator opening) included in the vehicle, a vehicle speed sensor 7 that detects a vehicle traveling speed, and an engine rotation that detects the rotation speed of the internal combustion engine 1. Detection data is input from the speed sensor 8 through a signal circuit.
  • Detection data is input to the ATCU 5 from a shift sensor 9 that detects an operation position of a shift lever included in the vehicle via a signal circuit.
  • the ATCU 5 instructs the release of the lock-up clutch 2C according to the driving conditions such as the vehicle traveling speed. And a signal for instructing upshifting of the automatic transmission 2A.
  • an L / U OFF completion determination countdown timer for determining whether or not the release of the lockup clutch 2C is completed is set to a predetermined initial value.
  • the L / U OFF completion determination countdown timer is a timer that counts down at a constant speed from the initial value.
  • FIG. A driving force control routine executed by the ECU 4 will be described with reference to the flowchart of FIG. This routine is repeatedly executed by the ECU 4 at regular time intervals of, for example, 10 milliseconds while the vehicle is traveling.
  • step S1 the ECU 4 determines whether the accelerator opening is zero based on the input signal from the accelerator pedal depression amount sensor 6. If the accelerator opening is not zero, the routine is terminated after fuel injection control corresponding to the normal accelerator opening is performed in step S2.
  • step S3 If it is determined in step S1 that the accelerator opening is zero, the ECU 4 determines in step S3 whether or not the L / U ON / OFF determination flag is OFF.
  • the L / U ON / OFF determination flag is a flag indicating whether or not a release operation is instructed to the lockup clutch 2C.
  • the ATCU 5 is programmed in advance to instruct the lockup clutch 2C to be released at the same time as the accelerator opening becomes zero as described above.
  • step S3 If the L / U ON / OFF determination flag is not OFF in step S3, it means that the lockup clutch is engaged. In this case, the ECU 4 sets the recovery rotational speed for recovery at the recovery rotational speed in step S8, and then performs the processing from step S9. If the L / U ON / OFF determination flag is OFF in step S3, the ECU 4 performs the process of step S4.
  • the recovery rotation speed is an engine rotation speed that is a reference for fuel recovery, which means fuel cut and fuel resupply from a fuel supply stop state due to fuel cut.
  • the ECU 4 performs fuel cut when the accelerator opening is zero and the engine rotational speed exceeds the recovery rotational speed. Further, if the engine speed falls below the recovery speed during fuel cut, fuel recovery is executed.
  • the recovery rotational speed is set to a different value depending on the engagement state of the lockup clutch 2C. Specifically, when the lockup clutch 2C is released, the recovery rotational speed for L / U OFF is applied as the recovery rotational speed. In other cases, that is, when the lock-up clutch 2C is engaged or released, the recovery rotational speed for L / U ON is applied as the recovery rotational speed.
  • the recovery rotation speed for L / U ON is, for example, about 800 rotations / minute (rpm), and the recovery rotation speed for L / U OFF is, for example, about 1600 rotations / minute (rpm).
  • step S4 the ECU 4 determines whether the L / U OFF completion determination countdown timer is a value other than zero.
  • the L / U OFF countdown timer detects by counting down that a certain time has elapsed since the L / U ON / OFF determination flag turned OFF.
  • the ECU 4 considers that the release of the lockup clutch 2C has been completed.
  • the value of the L / U OFF completion determination countdown timer is not zero, it is considered that the release operation of the lockup clutch 2C is continuing.
  • step S4 If the L / U OFF completion determination countdown timer is a value other than zero in step S4, the ECU 4 performs the processing after step S5. When the L / U OFF completion determination countdown timer is zero, the ECU 4 performs the processing after step S8.
  • step S5 the ECU 4 determines whether the fuel recovery condition is satisfied.
  • the fuel recovery condition is satisfied only when all of the following conditions are satisfied. That is,
  • the internal clutch and brake are engaged or released.
  • the actual gear ratio is between the gear ratio corresponding to the N speed and the gear ratio corresponding to the N + 1 speed. Even if fuel recovery is performed in the inertia phase, only the engine rotational speed fluctuates and the influence on the output shaft torque of the automatic transmission 2A is small, so that the driver and passengers do not have to feel a shock.
  • the occurrence of shock can be prevented by performing fuel recovery during the inertia phase. Whether or not the automatic transmission 2A is in the inertia phase can be determined by various methods.
  • the actual input rotational speed C of 2A is detected or calculated.
  • the input rotational speed A of the automatic transmission 2A can be calculated from the vehicle speed detected by the vehicle speed sensor 7 and the gear ratio of the gear stage before shifting.
  • the input rotational speed B of the automatic transmission 2A can be calculated from the vehicle speed detected by the vehicle speed sensor 7 and the gear ratio of the gear stage after the shift.
  • the actual input rotational speed C of the automatic transmission 2A is equal to the rotational speed of the turbine runner detected by the turbine runner rotational speed sensor 10.
  • the automatic transmission 2A when the actual gear ratio calculated from the actual input rotation speed and the actual output rotation speed of the automatic transmission 2A is between the gear ratio before the shift and the gear ratio after the shift, the automatic transmission 2A It can be determined that it is in a phase.
  • the input rotational speed of the automatic transmission 2A is equal to the rotational speed of the turbine runner, and the output rotational speed of the automatic transmission 2A can be calculated from the vehicle speed detected by the vehicle speed sensor 7.
  • the inertia phase can be easily determined using the input / output rotation speed or gear ratio of the automatic transmission 2A as a threshold value.
  • the inertia phase can be determined by other methods.
  • the rotational speed Ne (N + 1) of the internal combustion engine 1 after the upshift is calculated as a product of the gear ratio of the speed stage (N + 1 speed) before and after the upshift and the current traveling speed (engine rotational speed). Equivalent to prediction means). Then, it is determined whether or not the rotational speed Ne (N + 1) ⁇ L / U OFF recovery rotational speed of the internal combustion engine 1 after the upshift.
  • step S5 has the following meaning.
  • the fuel cut and the upshift are performed when the accelerator opening becomes zero.
  • the rotational speed of the internal combustion engine 1 falls below the recovery rotational speed after the upshift, fuel recovery is executed. Execution of fuel recovery immediately after the upshift causes a sudden increase in torque transmitted to the drive wheels, and may cause the driver and passengers to feel a shock in the form of a change in acceleration in the longitudinal direction of the vehicle.
  • step S5 a condition for this is determined.
  • step S5 If the fuel recovery condition is satisfied in step S5, the ECU 4 resets the L / U OFF completion determination countdown timer to zero in step S6.
  • step S7 the recovery rotational speed is set to the recovery rotational speed for L / U OFF having a value larger than the recovery rotational speed for L / U ON.
  • step S5 If the fuel recovery condition is not satisfied in step S5, the ECU 4 sets the recovery rotational speed for L / U ON to the step S8 recovery rotational speed, and then performs the processes in and after step S9.
  • Steps S9-S11 are a normal fuel cut execution algorithm.
  • step S9 the ECU 4 determines whether the engine rotation speed is equal to or higher than the recovery rotation speed. If the determination is positive, a fuel cut is executed in step S10. If the determination is negative, fuel injection is executed in accordance with the accelerator opening zero by prohibiting fuel cut in step S11.
  • the process of step S10 means fuel recovery if the fuel cut is being performed, and means that the fuel cut is prohibited if the fuel cut is not being performed. After the process of step S10 or S11, the ECU 4 ends the routine.
  • the recovery rotational speed used for the determination in step S9 is the recovery rotational speed for L / U OFF when the process goes through the process in step S7, and the process goes through the process in step S8. If it is, it is the recovery rotation speed for L / U ON.
  • the process passes through step S7 only when the fuel recovery condition is satisfied in step S5.
  • the recovery rotational speed is set to the recovery rotational speed for L / U OFF of about 1600 rpm, fuel cut is not performed unless the engine rotational speed is about 1600 rpm or higher. That is, when the fuel recovery condition is satisfied, execution of fuel cut is greatly limited. Further, if the fuel recovery condition is satisfied in a state where the fuel cut has already been performed, the fuel recovery is always performed if the engine speed is less than about 1600 rpm.
  • the recovery rotational speed is set to the recovery rotational speed for L / U OFF in step S7, the value of the L / U OFF completion determination countdown timer is reset to zero in step S6. Therefore, in the routine execution after the next time, the determination in step S4 is negative.
  • the recovery speed is set to the L / U ON rehabilitation speed in step S8 because the accelerator pedal is stepped on and then the accelerator pedal is released and both the determinations in steps S1 and S3 are negative. Until the recovery rotational speed for L / U OFF is maintained.
  • the fuel recovery condition is satisfied when the accelerator pedal is released while the vehicle is running and the automatic transmission 2A is upshifted.
  • the automatic transmission 2A is in the inertia phase. Only when the rotational speed of the internal combustion engine 1 after the upshift is predicted to be lower than the recovery rotational speed.
  • FIG. 3A-3I, FIGS. 4A-4I, and FIG. 5A-5J FIG.
  • the change in engine torque and the occurrence of shock are compared when the driving force control routine 2 is executed and when it is not executed.
  • FIG. 3A-3I is shown in FIG.
  • the result of the foot release upshift when the driving force control routine of No. 2 is not executed is shown.
  • FIG. This corresponds to a case in which steps S5 and S6 are omitted from the driving force control routine of No. 2 and a routine in which the destination is set to step S8 when the determination of step S4 is affirmative is executed.
  • the recovery rotational speed for L / U OFF is applied to the recovery rotational speed, and in other cases, the recovery rotational speed is set to L / U.
  • Fuel cut and fuel recovery are performed by applying U ON recovery rotation speed.
  • the reset operation of the L / U OFF completion determination countdown timer according to the fuel recovery condition is not performed.
  • the L / U OFF completion judgment countdown timer is set to FIG. As shown in 3G, it is reset only by L / U OFF completion determination countdown.
  • FIG. 3A when the accelerator opening becomes zero at time t1, FIG. As shown in 3B, the L / U ON / OFF determination flag is turned OFF. As a result, a release command is issued to the lockup clutch 2C, and an upshift command is issued to the automatic transmission 2A. At the same time, FIG. As shown in 3G, the L / U OFF completion determination countdown timer starts.
  • FIG. As shown in 3D when the engine rotational speed exceeds the recovery rotational speed for L / U ON of about 800 rpm, the fuel cut is automatically executed. As a result, FIG. As shown in 3E, the engine torque decreases.
  • FIG. 3D when the engine speed falls below the recovery speed, fuel recovery is executed, and the engine torque is set to FIG. As shown in 3E, it rapidly increases from a temporary sudden decrease state. This variation is caused by the acceleration of FIG. This causes a vertical movement as shown in the circled portion of 3F, which causes a shock to the vehicle.
  • FIG. As shown in 3G after the L / U OFF completion determination countdown timer becomes zero at time t4 and the lockup OFF completion determination flag is switched to lockup OFF completion, FIG. As shown in 3I, the recovery rotational speed is switched to the recovery rotational speed for L / U OFF.
  • Fig. 4A-4I is shown in FIG. The result of the foot release upshift when the driving force control routine of No. 2 is executed is shown. This figure shows an example in which fuel cut is executed prior to the start of shifting of the automatic transmission 2A.
  • FIG. As shown in 4A-4C, when the accelerator pedal is released and the accelerator opening becomes zero at time t1, the release of the lockup clutch 2C and the upshift of the automatic transmission 2A are instructed. At this time, since the automatic transmission 2A is not in the inertia phase, the determination in step S5 is negative. Accordingly, in step S8, about 800 rpm, which is the recovery rotational speed for L / U ON, is set as the recovery rotational speed, and in step S9, it is determined whether or not to perform fuel cut.
  • FIG. As shown in 4D since the engine rotational speed exceeds the recovery rotational speed, fuel cut is performed in step S5. As a result, the engine torque is FIG. Decreases as shown in 4E.
  • the inertia phase determination of the automatic transmission 2A performed in step S5 is positively changed.
  • the fuel recovery condition in step S5 is satisfied.
  • EUC4 resets the L / U OFF completion determination countdown timer to zero in step S6, and in FIG.
  • the recovery rotational speed is set equal to about 1600 rpm of the recovery rotational speed for L / U OFF.
  • step S9 determines whether fuel recovery is performed in step S11 or not.
  • FIG. The engine torque increases as shown by 4E, but does not affect the output torque of the automatic transmission 2A. Therefore, FIG. As shown to 4F, it does not bring about the acceleration change of the front-back direction of a vehicle, and does not give a shock to a driver or a passenger.
  • FIG. 4I the recovery rotation speed is switched to a recovery rotation speed for L / U OFF that is larger than the recovery rotation speed for L / U ON, so that the fuel recovery execution timing is advanced, and during the inertia phase of the automatic transmission 2A Perform fuel recovery.
  • the fuel cut is greatly limited. Therefore, FIG. The shock of the vehicle due to fuel recovery immediately after the upshift that occurred in the case of 3A-3I is FIG. It does not occur as shown in 4F, and the driver and passengers do not feel uncomfortable.
  • FIG. 5A-5J is also shown in FIG.
  • the result of the foot release upshift when the driving force control routine of No. 2 is executed is shown.
  • FIG. 5A-5J is shown in FIG. In this case, the upshift of the automatic transmission 2A is started prior to the fuel cut when the foot release is performed while the engine speed is higher than in the case of 4A-4I.
  • step S6 the L / U OFF completion determination countdown timer is reset to zero.
  • step S7 the recovery rotational speed is increased to about 1600 rpm, which is the recovery rotational speed for L / U OFF.
  • FIG. As shown in 5D, since the engine rotational speed is still higher than the recovery rotational speed, the determination in step S9 at this point becomes affirmative, and the fuel cut is continued in step S10. *
  • step S3 In the routine execution after the next time, the determination in step S3 is affirmative and the determination in step S4 is negative. Therefore, the recovery rotation speed is maintained at about 1600 rpm, which is the recovery rotation speed for lockup OFF.
  • step S9 the determination in step S9 turns negative, and fuel recovery is performed in step S11.
  • the engine torque is increased by performing fuel recovery, but the output torque of the automatic transmission 2A is not affected. Therefore, fuel recovery is performed in FIG. As shown to 5F, it does not bring about the acceleration change of the vehicle front-back direction, and does not give a shock to a driver or a passenger.
  • the recovery rotational speed is maintained at the recovery rotational speed for lockup OFF of about 1600 rpm, so that the fuel cut is substantially prevented.
  • the accelerator pedal depression amount sensor 6 constitutes accelerator pedal release detection means
  • the engine rotation speed sensor 8 constitutes engine rotation speed detection means.
  • the ATCU 5 constitutes an upshift means
  • the ECU 4 constitutes a fuel cut execution means, a fuel recovery execution means, a fuel recovery prediction means, an inertia phase determination means, and a fuel recovery advancement means.
  • a time lag may occur until the engine torque actually increases due to fuel recovery.
  • the recovery rotational speed is increased to the recovery rotational speed for lockup OFF when the fuel recovery condition is satisfied by the foot-off upshift.
  • the fuel recovery can be controlled in association with the engagement / release of the lockup clutch 2C.
  • the recovery rotational speed does not necessarily have to be set equal to the lockup OFF rotational speed.
  • the recovery rotational speed may be increased and corrected so that the fuel recovery is carried forward.
  • the fuel recovery is advanced by correcting the recovery rotational speed to be increased.
  • fuel recovery in the inertia phase can be performed on the internal combustion engine 1 during fuel cut without changing the basic algorithm in steps S9 to S11 for performing fuel cut and fuel recovery of the fuel injector 1B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 車両が走行中にアクセラレータペダルが踏み込みから解放された場合に、自動変速機をアップシフトする。エンジン回転速度と自動変速機のアップシフト前後の変速比から、自動変速機のアップシフト直後のエンジン回転速度を予測し、アップシフト直後にフュエルリカバリが行われると予測される場合には、自動変速機のイナーシャフェーズでフュエルリカバリを行わせる。

Description

車両駆動装置及び車両駆動方法
 この発明は、有段式自動変速機を備えた車両の駆動力制御に関する。
 内燃エンジンの出力を、ロックアップクラッチを備えたトルクコンバータと、自動変速機とを介して駆動輪に伝達する車両においては、燃料消費を抑制するために、アクセラレータペダルが踏まれていないコースト走行中にロックアップクラッチを解放し、内燃エンジンへの燃料供給を停止することが知られている。
 燃料供給停止の結果、内燃エンジンの回転速度が低下すると、内燃エンジンへの燃料供給が再開される。内燃エンジンへの燃料供給停止はフュエルカット、内燃エンジンへの燃料供給の再開はフュエルリカバリあるいは単にリカバリと呼ばれる
 日本国特許庁が2006年に発行した特開2006ー15819号は、ロックアップクラッチ解放状態でのフュエルリカバリがトルクショックを発生させないよう、フュエルリカバリ時に回生ブレーキを作動させることを提案している。
 ロックアップクラッチが締結した状態で車両が走行中にドライバがアクセラレータペダルを離すと、ロックアップクラッチが解放され、自動変速機が高速側のギアに切り替わる、いわゆる足離しアップシフトが行われる場合がある。この場合も、アクセラレータ開度がゼロになることで、内燃エンジンへの燃料供給を停止するフュエルカットが行われる。
 足離しアップシフトにおいて、フュエルカットによりエンジン回転速度が低下し、ロックアップクラッチが解放された状態でフュエルリカバリが行われると、内燃エンジンの吹け上がりが生じる。その結果、トルクコンバータを介して駆動輪に伝達される駆動トルクが急増して、車両に前後方向のショックをもたらす。車両に加わる前後方向のショックはドライバや同乗者に違和感を与える可能性がある。
 この発明の目的は、足離しアップシフト中のフュエルリカバリに伴うショックの発生防止を、回生ブレーキを用いずに実現することである。
 以上の目的を達成するために、この発明はアクセラレータペダルの踏み込み量に応動する内燃エンジンの回転を、トルクコンバータと自動変速機とを介して駆動輪に伝達する車両駆動装置に適用される。
 この発明による車両駆動装置は、アクセラレータペダルの踏み込み量を検出するアクセラレータペダルデプレッションセンサと、エンジン回転速度を検出するエンジン回転速度センサと、プログラマブルコントローラと、を備えている。
 コントローラは次のようにプログラムされる。すなわち、車両が走行中にアクセラレータペダルが解放された場合に、自動変速機のアップシフトを実行し、アクセラレータペダルが解放された状態でエンジン回転速度が所定のリカバリ回転速度以上の場合に内燃エンジンへのフュエルカットを実行し、内燃エンジンへのフュエルカット中にエンジン回転速度がリカバリ回転速度を下回ると内燃エンジンへのフュエルリカバリを実行し、 燃料供給の停止とアップシフトとが並行して行われた場合に、内燃エンジンへのフュエルリカバリが実行されるかどうかを予測し、自動変速機がイナーシャフェーズにあるかどうかを判定し、内燃エンジンへのフュエルリカバリの実行が予測される場合に、内燃エンジンへのフュエルリカバリを早めて自動変速機のイナーシャフェーズで実行する。
 この発明の詳細並びに他の特徴や利点は、明細書の以下の記載の中で説明されるとともに、添付された図面に示される。
FIG.1はこの発明の実施形態による車両駆動装置の概略構成図である。 FIG.2はこの発明の実施形態によるエンジンコントローラが実行する駆動力制御ルーチンを説明するフローチャートである。 FIGS.3A-3Iは駆動力制御ルーチンを実行しない場合の駆動力制御結果の一例を説明するタイミングチャートである。 FIGS.4A-4Iは駆動力制御ルーチンの実行による駆動力制御結果を説明するタイミングチャートである。 FIGS.5A-5Jは駆動力制御ルーチンの実行による別の駆動力制御結果を説明するタイミングチャートである。
 図面のFIG.1を参照すると、この発明の実施形態による車両駆動装置は内燃エンジン1と、内燃エンジン1の回転出力を変速してプロペラシャフト3に出力する変速ユニット2とを備える。
 内燃エンジン1は吸気スロットル1Aと燃料インジェクタ1Bを備える
 変速ユニット2はトルクコンバータ2Bと、トルクコンバータ2Bの出力回転を変速する自動変速機2Aと、油圧式のロックアップクラッチ2Cと、を備える。
 トルクコンバータ2Bは内燃エンジン1の回転軸に結合するポンプインペラと、自動変速機2Aの入力軸に結合するタービンランナを備え、ポンプインペラとタービンランナとの間に介在する作動油を介してトルクを伝達する。自動変速機2Aはハイクラッチとローブレーキとを備えた公知のプラネタリギアセットで構成される。
 ロックアップクラッチ2Cは締結時にはポンプインペラとタービンランナを直接的に結合する。解放時にはポンプインペラとタービンランナの相対回転を許容する。
 ロックアップクラッチ2Cの締結と解放、及び自動変速機2Aのハイクラッチ及びローブレーキの各々の締結と解放は、内燃エンジン1の補機として設けられる油圧ポンプの吐出圧を用いて、自動変速機コントローラ(ATCU)5により行われる。
 内燃エンジン1の吸入空気量を調整する吸気スロットル1Aの開度制御、及び内燃エンジン1の燃料インジェクタ1Bの燃料噴射制御は、エンジンコントローラ(ECU)4により行われる。
 ECU4とATCU5は、それぞれ中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。ECU4とATCU5の一方または双方を複数のマイクロコンピュータで構成することも可能である。あるいは、ECU4とATCU5を単一のマイクロコンピュータで構成することも可能である。
 ECU4には、車両が備えるアクセラレータペダルの踏み込み量(アクセラレータ開度)を検出するアクセラレータペダル踏み込み量センサ6、車両の走行速度を検出する車速センサ7、及び内燃エンジン1の回転速度を検出するエンジン回転速度センサ8から検出データがそれぞれ信号回路を介して入力される。
 ATCU5には、車両が備えるシフトレバーの操作位置を検出するシフトセンサ9から検出データが信号回路を介して入力される。
 ATCU5は、以上の構成のもとで、ロックアップクラッチ2Cの締結状態で走行中にアクセラレータペダルが解放されると、車両の走行速度などの運転条件に応じて、ロックアップクラッチ2Cの解放を指示する信号と、自動変速機2Aのシフトアップを指示する信号とを出力する。同時にロックアップクラッチ2Cの解放が完了したかどうかを判定するL/U OFF完了判定カウントダウンタイマを所定の初期値に設定する。L/U OFF完了判定カウントダウンタイマは初期値から一定速度でカウントダウンを行うタイマである。
 次に、FIG.2のフローチャートを参照して、ECU4が実行する駆動力制御ルーチンを説明する。このルーチンは、車両走行中にECU4が例えば10ミリ秒といった一定時間間隔で繰り返し実行する。
 ステップS1で、ECU4はアクセラレータペダル踏み込み量センサ6からの入力信号に基づきアクセラレータ開度がゼロかどうかを判定する。アクセラレータ開度がゼロでない場合には、ステップS2で通常のアクセラレータ開度に応じた燃料噴射制御を行った後にルーチンを終了する。
 ステップS1の判定において、アクセラレータ開度がゼロの場合には、ECU4はステップS3でL/U ON/OFF判定フラグがOFFであるかどうかを判定する。L/U ON/OFF判定フラグはロックアップクラッチ2Cに解放動作が指示されたかどうかを示すフラグである。ATCU5は前述のようにアクセラレータ開度がゼロになると同時にロックアップクラッチ2Cへ解放を指示するように、あらかじめプログラムされている。
 ステップS3でL/U ON/OFF判定フラグがOFFでない場合には、ロックアップクラッチが締結されていることを意味する。この場合には、ECU4はステップS8でリカバリ回転速度にL/U ON用リカバリ回転速度を設定した後、ステップS9以降の処理を行なう。ステップS3でL/U ON/OFF判定フラグがOFFである場合には、ECU4はステップS4の処理を行なう。
 リカバリ回転速度は、フュエルカットと、フュエルカットによる燃料供給停止状態からの燃料の再供給を意味するフュエルリカバリの基準となるエンジン回転速度である。ECU4は、アクセラレータ開度がゼロでエンジン回転速度がリカバリ回転速度を上回る場合にフュエルカットを実行する。また、フュエルカット中にエンジン回転速度がリカバリ回転速度を下回るとフュエルリカバリを実行する。リカバリ回転速度はロックアップクラッチ2Cの締結状態に応じて異なる値に設定される。具体的には、ロックアップクラッチ2Cが解放されている場合には、リカバリ回転速度にL/U OFF用リカバリ回転速度が適用される。それ以外の場合、すなわち、ロックアップクラッチ2Cの締結状態、あるいは解放途上においては、リカバリ回転速度にL/U ON用リカバリ回転速度が適用される。L/U ON用リカバリ回転速度は例えば約800回転/分(rpm)とし、L/U OFF用リカバリ回転速度は例えば約1600回転/分(rpm)とする。
 ステップS4でECU4はL/U OFF完了判定カウントダウンタイマがゼロ以外の値かどうかを判定する。
 締結状態のロックアップクラッチ2Cに解放が指示されてから、ロックアップクラッチ2Cの解放が完了するまでには一定時間を要する。L/U OFFカウントダウンタイマはL/U ON/OFF判定フラグがOFFに転じてから一定時間が経過したことをカウントダウンによって検出する。ECU4はL/U OFF完了判定カウントダウンタイマの値がゼロになれば、ロックアップクラッチ2Cの解放が完了したと見なす。L/U OFF完了判定カウントダウンタイマの値がゼロでない場合には、ロックアップクラッチ2Cの解放動作が継続中であると見なす。
 ステップS4でL/U OFF完了判定カウントダウンタイマがゼロ以外の値である場合には、ECU4はステップS5以降の処理を行う。L/U OFF完了判定カウントダウンタイマがゼロの場合には、ECU4はステップS8以降の処理を行う。
 ステップS5で、ECU4はフュエルリカバリ条件が成立するかどうかを判定する。フュエルリカバリ条件は、次の条件がすべて成立する場合にのみ成立する。すなわち、
 a)アップシフト制御が実行中か否か? 
 b)自動変速機2Aはイナーシャフェーズか?
 c)アップシフト後の内燃エンジン1の回転速度がL/U OFF用リカバリ回転速度を下回るか?
 a)については、ATCU5からアップシフト指令が出力されているかどうかを判定する。b)の判定は次の意味を持つ。
 自動変速機2Aの変速動作においては内部のクラッチとブレーキの締結あるいは解放が行われる。この操作が開始されてから完了するまでの期間においては、実変速比はN速相当の変速比とN+1速相当の変速比の間にある。イナーシャフェーズではフュエルリカバリを行っても、エンジン回転速度が変動するのみで自動変速機2Aの出力軸トルクへの影響は少なく、したがって、ドライバや同乗者にショックを感じさせずに済む。
 したがって、フュエルカットが実行されている場合には、イナーシャフェーズ中にフュエルリカバリを行うことで、ショックの発生を防止することができる。自動変速機2Aがイナーシャフェーズにあるかどうかの判定は様々な方法で行うことができる。
 例えば、変速前のN速における自動変速機2Aの入力回転速度Aと、同じ出力回転速度のもとでの変速後のN+1速に対応する自動変速機2Aの入力回転速度Bと、自動変速機2Aの実入力回転速度Cと、を検出あるいは計算する。自動変速機2Aの入力回転速度Aは車速センサ7が検出した車速と、変速前のギア段の変速比から計算できる。自動変速機2Aの入力回転速度Bは、車速センサ7が検出した車速と、変速後のギア段の変速比から計算できる。自動変速機2Aの実入力回転速度Cはタービンランナ回転速度センサ10が検出するタービンランナの回転速度に等しい。実入力回転速度Cが入力回転速度Bより大きく入力回転速度Aより小さい場合に、自動変速機2Aはイナーシャフェーズにあると判定できる。
 また、自動変速機2Aの実入力回転速度と実出力回転速度とから計算される実ギア比が、変速前のギア比と変速後のギア比の間にある場合に、自動変速機2Aはイナーシャフェーズにあると判定できる。ここで、自動変速機2Aの入力回転速度はタービンランナの回転速度に等しく、自動変速機2Aの出力回転速度は車速センサ7が検出した車速から計算可能である。
 以上のように、自動変速機2Aの入出力回転速度またはギア比をしきい値として、イナーシャフェーズの判定を容易に行うことができる。イナーシャフェーズは他の方法によっても判定可能である。
 c)について、アップシフト後の内燃エンジン1の回転速度Ne(N+1)は、アップシフト前後の変速段(N+1速)の変速比と現在の走行速度との乗算値として計算される(エンジン回転速度予測手段に相当)。そして、アップシフト後の内燃エンジン1の回転速度Ne(N+1)<L/U OFF用リカバリ回転速度であるかどうかを判定する。
 ステップS5の判定は次の意味をもつ。
 すなわち、足離しアップシフトにおいて、アクセラレータ開度がゼロになることでフュエルカットとアップシフトが行われる。アップシフト後に内燃エンジン1の回転速度がリカバリ回転速度を下回ると、フュエルリカバリが実行される。アップシフト直後のフュエルリカバリの実行は、駆動輪に伝達されるトルクの急増をもたらし、車両の前後方向の加速度変化という形で、ドライバや同乗者にショックを感じさせる可能性がある。
 しかしながら、自動変速機2AがN速からN+1速への移行途上のイナーシャフェーズにある場合には、フュエルリカバリが行われてもプロペラシャフト3に出力される自動変速機2Aの出力トルクの変動は小さい。結果として、車両の前後方向の加速度変化も小さく、ドライバや同乗者にショックを感じさせることはない。
 そこで、足離しアップシフトにおいて、フュエルカットが行われていない場合はフュエルカットを抑制し、フュエルカットが既に行われている場合には、イナーシャフェーズ中にフュエルリカバリを行っておくことが、ショックの防止に好ましい。ステップS5ではこのための条件を判定している。
 ステップS5でフュエルリカバリ条件が成立する場合には、ECU4はステップS6でL/U OFF完了判定カウントダウンタイマをゼロにリセットする。そして、次のステップS7で、リカバリ回転速度にL/U ON用リカバリ回転速度より値の大きいL/U OFF用リカバリ回転速度を設定する。リカバリ回転速度をL/U OFF用リカバリ回転速度へと割り増すことで、以後のフュエルカットは大幅に制限される。また、既にフュエルカットが行われている場合のフュエルリカバリが促進される。
 ステップS5で、フュエルリカバリ条件が成立しない場合には、ECU4はステップS8リカバリ回転速度にL/U ON用リカバリ回転速度を設定した後、ステップS9以降の処理を行なう。
 ステップS9-S11は通常のフュエルカット実行アルゴリズムである。
 すなわち、ステップS9でECU4は、エンジン回転速度がリカバリ回転速度以上かどうかを判定する。そして、判定が肯定的な場合にはステップS10でフュエルカットを実行する。判定が否定的な場合にはステップS11でフュエルカットを禁止することで、アクセラレータ開度ゼロに応じた燃料噴射を実行する。ステップS10の処理は、フュエルカット中であればフュエルリカバリを意味し、フュエルカット中でなければフュエルカットの禁止を意味する。ステップS10またはS11の処理の後、ECU4はルーチンを終了する。
 ここで、ステップS9の判定に用いられるリカバリ回転速度は、プロセスがステップS7の処理を経由している場合にはL/U OFF用リカバリ回転速度であり、プロセスがステップS8の処理を経由している場合はL/U ON用リカバリ回転速度である。プロセスがステップS7を経由するのは、ステップS5でフュエルリカバリ条件が成立する場合に限られる。
 リカバリ回転速度をL/U OFF用リカバリ回転速度の約1600rpmに設定すると、エンジン回転速度が約1600rpm以上でないかぎりフュエルカットは行われない。つまり、フュエルリカバリ条件が成立する場合にはフュエルカットの実行が大幅に制限される。また、既にフュエルカットが行われている状態でフュエルリカバリ条件が成立すると、エンジン回転速度が約1600rpm未満であれば、必ずフュエルリカバリが行われる。
 このように、足離しアップシフトにおいてフュエルリカバリ条件が成立すると、リカバリ回転速度がL/U OFF用リカバリ回転速度へと割り増しされる。これにより、燃料インジェクタ1Bへの出力信号を直接操作することなく、フュエルカットの抑制と、イナーシャフェーズ中のフュエルリカバリの実施とを容易に実現することができる。 
 なお、ステップS7でリカバリ回転速度がL/U OFF用リカバリ回転速度に設定されるのに先立ち、ステップS6でL/U OFF完了判定カウントダウンタイマの値がゼロにリセットされる。そのため、次回以降のルーチン実行においては、ステップS4の判定が否定的に転じる。リカバリ回転速度はアクセラレータペダルが踏まれ、その後にアクセラレータペダルが解放され、ステップS1とS3の判定がともに否定的となってステップS8でリカバリ回転速度がL/U ON用リハガリ回転速度に設定されるまで、L/U OFF用リカバリ回転速度に維持される。
 足離しアップシフト中にフュエルカットが行われ、アップシフト後にフュエルリカバリが行われると、内燃エンジン1の吹け上がりによりプロペラシャフト3に出力される駆動輪の駆動トルクが大きく変動し、車両にショックを発生させて、ドライバや同乗者に違和感を与える可能性がある。この駆動力制御装置によれば、アップシフト後のエンジン回転速度がリカバリ回転速度を下回ると予測される場合、すなわちアップシフトに伴うフュエルリカバリが予測される場合には、イナーシャフェーズ中にフュエルリカバリ回転速度をL/U OFF用リカバリ回転速度へと割り増すことで、フュエルカットを抑制している。また、既にフュエルカットが開始されている場合には、イナーシャフェーズ中にフュエルリカバリを行わせる。したがって、足離しアップシフトに伴うフュエルリカバリがもたらすショックの防止に好ましい効果が得られる。
 なお、フュエルリカバリ条件が成立するのは、車両の走行中にアクセラレータペダルが解放され、自動変速機2Aのアップシフトが行われる、いわゆる足離しアップシフトにおいて、自動変速機2Aがイナーシャフェーズにあって、アップシフト後の内燃エンジン1の回転速度がリカバリ回転速度を下回ると予測される場合に限られる。フュエルカットの抑制とフュエルリカバリをこうした限定的条件でのみ実施することで、シフトアップ直後のフュエルリカバリによるショックの発生を防止できる一方で、不必要な燃料噴射による燃料消費の増大も防止できる。
 FIGS.3A-3I,FIGS.4A-4I,及びFIGS.5Aー5Jを参照して、FIG.2の駆動力制御ルーチンを実行する場合と実行しない場合とで、エンジントルクの変化とショックの発生を比較する。
 FIGS.3A-3Iは、FIG.2の駆動力制御ルーチンを実行しない場合の足離しアップシフトの結果を示す。FIG.2の駆動力制御ルーチンを実行しない場合でも、リカバリ回転速度はL/U OFF完了判定カウントダウンタイマに応じてL/U ON用リカバリ回転速度とL/U OFF用リカバリ回転速度の間で切り換えられる。言い換えれば、FIG.2の駆動力制御ルーチンからステップS5とS6を省略し、ステップS4の判定が肯定的な場合の行き先をステップS8にしたルーチンを実行する場合に相当する。その結果、FIGS.3A-3Iに示すように、ロックアップクラッチ2Cの解放が完了している場合にはリカバリ回転速度にL/U OFF用リカバリ回転速度を適用し、それ以外の場合にはリカバリ回転速度にL/U ON用リカバリ回転速度を適用して、フュエルカットとフュエルリカバリが行われる。しかし、ここではフュエルリカバリ条件に応じたL/U OFF完了判定カウントダウンタイマのリセット操作は行われない。L/U OFF完了判定カウントダウンタイマはFIG.3Gに示すように、L/U OFF完了判定カウントダウンによってのみリセットされる。
 FIG.3Aに示すように時刻t1にアクセラレータ開度がゼロになると、FIG.3Bに示すようにL/U ON/OFF判定フラグがOFFになる。これにより、ロックアップクラッチ2Cに解放指令が、自動変速機2Aにアップシフト指令がそれぞれ発せられる。同時に、FIG.3Gに示すようにL/U OFF完了判定カウントダウンタイマが始動する。一方、アクセラレータ開度がゼロであるため、FIG.3Dに示すようにエンジン回転速度がL/U ON用リカバリ回転速度の約800rpmを上回っていると、自動的にフュエルカットが実行される。その結果、FIG.3Eに示すようにエンジントルクが低下する。
 FIG.3Dに示すように、エンジン回転速度がリカバリ速度を下回ると、フュエルリカバリが実行され、エンジントルクはFIG.3Eに示すように一時的な急減状態から急増する。この変動は、車両の前後方向の加速度にFIG.3Fの円で囲った部分に示されるような上下動をもたらし、これが車両にショックを与える要因となる。なお、このケースにおいても、FIG.3Gに示すように、時刻t4にL/U OFF完了判定カウントダウンタイマがゼロになり、ロックアップOFF完了判定フラグがロックアップOFF完了に切り換わった後は、FIG.3Iに示すようにリカバリ回転速度がL/U OFF用リカバリ回転速度に切り換えられる。
 FIGS.4A-4Iは、FIG.2の駆動力制御ルーチンを実行した場合の足離しアップシフトの結果を示す。この図は、自動変速機2Aの変速開始に先立ってフュエルカットが実行される例を示す。
 ここでは、FIGS.4Aー4Cに示すように、アクセラレータアクセラレータペダルが解放され、時刻t1にアクセラレータ開度がゼロになると、ロックアップクラッチ2Cの解放と自動変速機2Aのアップシフトが指示される。この時点では、自動変速機2Aはイナーシャフェーズにないので、ステップS5の判定は否定的となる。そこで、ステップS8でL/U ON用リカバリ回転速度である約800rpmをリカバリ回転速度に設定して、ステップS9でフュエルカットを行なうかどうかの判定が行われる。ここでは、FIG.4Dに示すように、エンジン回転速度がリカバリ回転速度を上回っているので、ステップS5でフュエルカットが行われる。その結果、エンジントルクがFIG.4Eに示すように低下する。
 時刻t2にFIG.4Gに示すように、ステップS5で行われる自動変速機2Aのイナーシャフェーズ判定が肯定的に転じる。この時、前述の方法で計算したアップシフト後のエンジン回転速度がL/U OFF用リカバリ回転速度の1600rpmを下回っていれば、ステップS5のフュエルリカバリ条件が成立する。フュエルリカバリ条件が成立すると、EUC4はステップS6でL/U OFF完了判定カウントダウンタイマをゼロにリセットし、ステップS7でFIG.4Iに示すようにリカバリ回転速度をL/U OFF用リカバリ回転速度の約1600rpmに等しく設定する。
 その結果、次のステップS9の判定が否定的に転じ、ステップS11で直ちにフュエルリカバリが実施される。イナーシャフェーズの開始とともにフュエルリカバリが行われることでFIG.4Eに示すようにエンジントルクは増大するが、自動変速機2Aの出力トルクには影響しない。したがって、FIG.4Fに示すように、車両の前後方向の加速度変化をもたらさず、ドライバや同乗者にショックを与えることはない。
 このように、自動変速機2Aの足離しアップシフトが行われる場合であっても、アップシフト直後にフュエルリカバリが予測される場合には、FIG.4Iに示すようにリカバリ回転速度をL/U ON用リカバリ回転速度より大きなL/U OFF用リカバリ回転速度に切り換えることでフュエルリカバリの実施タイミングを前倒しして、自動変速機2Aのイナーシャフェーズ中にフュエルリカバリを行う。またフュエルカットが行われていない場合には、フュエルカットを大幅に制限する。そのため、FIGS.3A-3Iのケースで生じたアップシフト直後のフュエルリカバリによる車両のショックはFIG.4Fに示すように発生せず、ドライバや同乗者が違和感を感じることもない。
 FIGS.5A-5Jも、FIG.2の駆動力制御ルーチンを実行した場合の足離しアップシフトの結果を示す。FIGS.5A-5JはFIGS.4A-4Iのケースよりもエンジン回転速度が高い状態で足離しアップシフトが行われ、フュエルカットに先立って自動変速機2Aのアップシフトが開始されるケースである。
 FIGS.5Aー5Cに示すように、アクセラレータアクセラレータペダルが解放され、時刻t1にアクセラレータ開度がゼロになると、ロックアップクラッチ2Cの解放と自動変速機2Aのアップシフトが指示される。
 時刻t2にイナーシャフェーズと判定され、ステップS6でL/U OFF完了判定カウントダウンタイマがゼロにリセットされ、ステップS7でリカバリ回転速度がL/U OFF用リカバリ回転速度の約1600rpmへと割り増しされる。ただし、この時点ではFIG.5Dに示すように、エンジン回転速度がリカバリ回転速度をなお上回っているので、この時点でのステップS9の判定は肯定的となり、ステップS10でフュエルカットが続行される。 
 次回以降のルーチン実行においては、ステップS3の判定が肯定的かつステップS4の判定は否定的となるので、リカバリ回転速度はロックアップOFF用のリカバリ回転速度の約1600rpmに維持される。
 時刻t3になると、FIG.5Dに示すようにエンジン回転速度がリカバリ回転速度を下回る。これにより、ステップS9の判定が否定的に転じ、ステップS11でフュエルリカバリが行われる。この段階では、自動変速機2Aはイナーシャフェーズを続行しているので、フュエルリカバリが行われることでエンジントルクは増大するが、自動変速機2Aの出力トルクには影響がない。したがって、フュエルリカバリはFIG.5Fに示すように、車両の前後方向の加速度変化をもたらさず、ドライバや同乗者にショックを与えることはない。
 時刻t3以後はアクセラレータペダルが踏み込まれない限り、リカバリ回転速度がロックアップOFF用リカバリ回転速度の約1600rpmに維持されるので、フュエルカットの実行は実質的に阻止される。
 以上説明した実施形態において、アクセラレータペダル踏み込み量センサ6がアクセラレータペダル解放検出手段を構成し、エンジン回転速度センサ8がエンジン回転速度検出手段を構成する。また、ATCU5がアップシフト手段を構成し、ECU4がフュエルカット実行手段、フュエルリカバリ実行手段、フュエルリカバリ予測手段、イナーシャフェーズ判定手段、及びフュエルリカバリ前倒し手段を構成する。
 なお、FIG.2のステップS11でフュエルリカバリを実行した場合に、フュエルリカバリによりエンジントルクが実際に増大するまでにタイムラグが生じる可能性がある。ステップS5のイナーシャフェーズの判定に用いる変速後のギア段、すなわちN+1速に対応する自動変速機入力回転速度にタイムラグ解消のための所定量の割り増しを加えることで、こうしたタイムラグを補償して、フュエルリカバリによるエンジントルクの増大タイミングを正確に制御することができる。
 以上説明した実施形態では、足離しアップシフトでフュエルリカバリ条件が成立する場合に、リカバリ回転速度をロックアップOFF用のリカバリ回転速度へと割り増ししている。これにより、フュエルリカバリをロックアップクラッチ2Cの締結/解放と関連付けて制御することができる。しかしながら、ステップS6ではリカバリ回転速度を必ずしもロックアップOFF回転速度に等しく設定する必要はない。要は足離しアップシフトでフュエルリカバリ条件が成立する場合に、フュエルリカバリを前倒しして行われるように、リカバリ回転速度を増大補正すれば良い。
 また、この実施形態では、フュエルリカバリをリカバリ回転速度の増大補正により前倒している。これにより、燃料インジェクタ1Bのフュエルカットとフュエルリカバリを行うステップS9-S11の基本アルゴリズムに手を加えずに、フュエルカット中の内燃エンジン1にイナーシャフェーズでのフュエルリカバリを行わせることができる。ただし、足離しアップシフトでフュエルリカバリ条件が成立する場合に、フュエルリカバリを指示する信号燃料を燃料インジェクタ1Bに直接出力することももちろん可能である。
 以上の説明に関して2011年9月12日を出願日とする日本国における特願2011-198435号、の内容をここに引用により合体する。
 以上のように、この発明を特定の実施形態を通じて説明して来たが、この発明は上記の実施形態に限定されるものではない。当業者にとっては、その知識範囲の中で上記の実施形態にさまざまな修正や変更を加えることが可能である。
 以上のように、この発明により足離しアップシフト中のフュエルリカバリに伴うショックの発生を防止することができる。したがって、自動車などの車両の乗り心地の改善に好ましい効果が得られる。
 この発明の実施例が包含する排他的性質あるいは特長は以下のようにクレームされる。

Claims (9)

  1.  アクセラレータペダルの踏み込み量に応動する内燃エンジン(1)の回転を、トルクコンバータ(2B)と自動変速機(2A)とを介して駆動輪に伝達する車両駆動装置において、
     アクセラレータペダルの踏み込み量を検出するアクセラレータペダルデプレッションセンサ(6)と、
     エンジン回転速度を検出するエンジン回転速度センサ(8)と;
     次のようにプログラムされたプログラマブルコントローラ(4,5):
      車両が走行中にアクセラレータペダルが解放された場合に、自動変速機(2A)のアップシフトを実行し;
      アクセラレータペダルが解放された状態でエンジン回転速度が所定のリカバリ回転速度以上の場合に内燃エンジン(1)へのフュエルカットを実行し;
      内燃エンジン(1)へのフュエルカット中にエンジン回転速度がリカバリ回転速度を下回ると内燃エンジン(1)へのフュエルリカバリを実行し;
      燃料供給の停止とアップシフトとが並行して行われた場合に、内燃エンジン(1)へのフュエルリカバリが実行されるかどうかを予測し;
      自動変速機(2A)がイナーシャフェーズにあるかどうかを判定し;
      内燃エンジン(1)へのフュエルリカバリの実行が予測される場合に、内燃エンジン(1)へのフュエルリカバリを早めて自動変速機(2A)のイナーシャフェーズで実行する、
     を備える。
  2.  請求項1の車両駆動装置において、コントローラ(4,5)は、アップシフト後の変速段の変速比と走行速度とに基づきアップシフト後のエンジン回転速度を予測し、アップシフト後のエンジン回転速度がリカバリ回転速度を下回る場合に、内燃エンジン(1)へのフュエルリカバリが実行されると予測するよう、さらにプログラムされる。
  3.  請求項1または2の車両駆動装置において、コントローラ(4,5)は、リカバリ回転速度の割り増しを行なうことで、内燃エンジン(1)へのフュエルリカバリを早めて自動変速機(2A)のイナーシャフェーズで実行するよう、さらにプログラムされる。
  4.  請求項3の車両駆動装置において、トルクコンバータ(2B)のロックアップとロックアップの解放とを行なうロックアップクラッチ(2C)をさらに備え、コントローラ(4,5)は、リカバリ回転速度として、ロックアップクラッチ(2C)の解放状態で適用されるロックアップOFF用リカバリ回転速度と、ロックアップクラッチ(2C)の非解放状態で適用される、ロックアップOFF用リカバリ回転速度より低速のロックアップON用リカバリ回転速度とを選択的に適用し、リカバリ回転速度の割り増しを、ロックアップON用リカバリ回転速度からロックアップOFF用リカバリ回転速度への切り替えによって行うよう、さらにプログラムされる。
  5.  請求項1から4のいずれかの車両駆動装置において、コントローラ(4,5)は、自動変速機(2A)の出力回転速度を継続する場合の変速前のギア段に対応する自動変速機(2A)の入力回転速度と、同じ出力回転速度に対する変速後のギア段に対応する自動変速機(2A)の入力回転速度と、の間に自動変速機(2A)の実入力回転速度が存在する場合に、自動変速機(2A)がイナーシャフェーズにあると判定するよう、さらにプログラムされる。
  6.  請求項1から4のいずれかの車両駆動装置において、コントローラ(4,5)は、自動変速機(2A)の実入力回転速度と実出力回転速度とから計算されるギア比が、変速前のギア比と変速後のギア比の間にある場合に、自動変速機(2A)がイナーシャフェーズにあると判定するよう、さらにプログラムされる。
  7.  請求項5の車両駆動装置において、コントローラ(4,5)は、変速後のギア段に対応する自動変速機(2A)の入力回転速度にタイムラグ解消のための所定量の割り増しを加えるよう、さらにプログラムされる。
  8.  アクセラレータペダルの踏み込み量に応動する内燃エンジン(1)の回転を、トルクコンバータ(2B)と自動変速機(2A)とを介して駆動輪に伝達する車両駆動装置において、
     アクセラレータペダルの踏み込み量を検出するアクセラレータペダル踏み込み量検出手段(6)と、
     エンジン回転速度を検出するエンジン回転速度検出手段(8)と、
     車両が走行中にアクセラレータペダルが解放された場合に、自動変速機(2A)のアップシフトを実行するアップシフト実行手段(5)と;
     アクセラレータペダルが解放された状態でエンジン回転速度が所定のリカバリ回転速度以上の場合に内燃エンジン(1)へのフュエルカットを実行するフュエルカット実行手段(4)と;
     内燃エンジン(1)へのフュエルカット中にエンジン回転速度がリカバリ回転速度を下回ると内燃エンジン(1)へのフュエルリカバリを実行するフュエルリカバリ実行手段(4)と;
     燃料供給の停止とアップシフトとが並行して行われた場合に、内燃エンジン(1)へのフュエルリカバリが実行されるかどうかを予測するフュエルリカバリ予測手段(4)と;
     自動変速機(2A)がイナーシャフェーズにあるかどうかを判定するイナーシャフェーズ判定手段(4)と;
     内燃エンジン(1)へのフュエルリカバリの実行が予測される場合に、内燃エンジン(1)へのフュエルリカバリを早めて自動変速機(2A)のイナーシャフェーズで実行するフュエルリカバリ前倒し手段(4)と、
     を備える。
  9.  アクセラレータペダルの踏み込み量に応動する内燃エンジン(1)の回転を、トルクコンバータ(2B)と自動変速機(2A)とを介して駆動輪に伝達する車両駆動方法において:
     アクセラレータペダルの踏み込み量を検出し;
     エンジン回転速度を検出し;
     車両が走行中にアクセラレータペダルが解放された場合に、自動変速機(2A)のアップシフトを実行し;
     アクセラレータペダルが解放された状態でエンジン回転速度が所定のリカバリ回転速度以上の場合に内燃エンジン(1)へのフュエルカットを実行し;
     内燃エンジン(1)へのフュエルカット中にエンジン回転速度がリカバリ回転速度を下回ると内燃エンジン(1)へのフュエルリカバリを実行し;
     燃料供給の停止とアップシフトとが並行して実行された場合に、内燃エンジン(1)へのフュエルリカバリが実施されるかどうかを予測し;
     自動変速機(2A)がイナーシャフェーズにあるかどうかを判定し;
     フュエルリカバリの実施が予測される場合に、内燃エンジン(1)へのフュエルリカバリを早めて自動変速機(2A)のイナーシャフェーズで実行する、
     を含む。
PCT/JP2012/066542 2011-09-12 2012-06-28 車両駆動装置及び車両駆動方法 WO2013038778A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280032315.3A CN103826953B (zh) 2011-09-12 2012-06-28 车辆驱动装置及车辆驱动方法
US14/344,136 US10024243B2 (en) 2011-09-12 2012-06-28 Vehicle driving device and vehicle driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011198435A JP5838677B2 (ja) 2011-09-12 2011-09-12 車両駆動装置
JP2011-198435 2011-09-12

Publications (2)

Publication Number Publication Date
WO2013038778A1 true WO2013038778A1 (ja) 2013-03-21
WO2013038778A9 WO2013038778A9 (ja) 2014-01-03

Family

ID=47883022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066542 WO2013038778A1 (ja) 2011-09-12 2012-06-28 車両駆動装置及び車両駆動方法

Country Status (4)

Country Link
US (1) US10024243B2 (ja)
JP (1) JP5838677B2 (ja)
CN (1) CN103826953B (ja)
WO (1) WO2013038778A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103818230A (zh) * 2014-02-26 2014-05-28 南京越博汽车电子有限公司 单轴并联式混合动力汽车的amt离合器控制系统及控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550638B1 (ko) * 2014-09-22 2015-09-07 현대자동차 주식회사 차량 구동 제어 방법 및 시스템
WO2016063398A1 (ja) * 2014-10-23 2016-04-28 本田技研工業株式会社 変速機
WO2018083988A1 (ja) * 2016-11-07 2018-05-11 ジヤトコ株式会社 自動変速機の制御装置及び自動変速機の制御方法
JP6624090B2 (ja) * 2017-01-19 2019-12-25 トヨタ自動車株式会社 車両の制御装置
CN106958651B (zh) * 2017-04-01 2018-12-21 重庆大学 一种机械式刚柔换挡装置
JP6994007B2 (ja) * 2019-07-01 2022-02-03 本田技研工業株式会社 車両の制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291434A (ja) * 1989-05-01 1990-12-03 Toyota Motor Corp 自動変速機及びエンジンの一体制御装置
JP2002048224A (ja) * 2000-08-07 2002-02-15 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2010078124A (ja) * 2008-09-29 2010-04-08 Nissan Motor Co Ltd 車両のコースティング走行制御装置
JP2010125874A (ja) * 2008-11-25 2010-06-10 Toyota Motor Corp 車両の制御装置
JP2010223403A (ja) * 2009-03-25 2010-10-07 Jatco Ltd 自動変速機の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2897348B2 (ja) * 1990-06-06 1999-05-31 トヨタ自動車株式会社 ガスタービン車の変速制御方法
JP2006015819A (ja) 2004-06-30 2006-01-19 Nissan Motor Co Ltd 車両用パワートレーンのフューエルリカバーショック軽減装置
JP4453714B2 (ja) * 2007-04-02 2010-04-21 トヨタ自動車株式会社 車両の制御装置
US7762924B2 (en) * 2007-11-01 2010-07-27 Ford Global Technologies, Llc Transmission shifting responsive to borderline knock limits

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291434A (ja) * 1989-05-01 1990-12-03 Toyota Motor Corp 自動変速機及びエンジンの一体制御装置
JP2002048224A (ja) * 2000-08-07 2002-02-15 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2010078124A (ja) * 2008-09-29 2010-04-08 Nissan Motor Co Ltd 車両のコースティング走行制御装置
JP2010125874A (ja) * 2008-11-25 2010-06-10 Toyota Motor Corp 車両の制御装置
JP2010223403A (ja) * 2009-03-25 2010-10-07 Jatco Ltd 自動変速機の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103818230A (zh) * 2014-02-26 2014-05-28 南京越博汽车电子有限公司 单轴并联式混合动力汽车的amt离合器控制系统及控制方法

Also Published As

Publication number Publication date
CN103826953B (zh) 2017-03-01
JP2013060048A (ja) 2013-04-04
US20140338635A1 (en) 2014-11-20
CN103826953A (zh) 2014-05-28
WO2013038778A9 (ja) 2014-01-03
US10024243B2 (en) 2018-07-17
JP5838677B2 (ja) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2013038778A1 (ja) 車両駆動装置及び車両駆動方法
JP5948770B2 (ja) 車両駆動装置
JP4793331B2 (ja) 車両変速時の制御装置
JP5927817B2 (ja) 車両駆動装置
KR101594234B1 (ko) 차량 구동 장치 및 방법
JP5904271B2 (ja) ハイブリッド駆動電気自動車のエンジン始動制御装置及び始動制御方法
EP3348874A1 (en) Automatic transmission device and control method for automatic transmission device
US9434390B2 (en) Vehicle control device and vehicle control method
JP5098844B2 (ja) エンジンの制御装置
JPWO2013073307A1 (ja) 自動変速機及びその発進時制御方法
JP5892146B2 (ja) 車両の制御装置
JP5728421B2 (ja) ロックアップ制御装置及びロックアップ制御方法
JP4586493B2 (ja) 自動変速機の制御装置
JP6410017B2 (ja) 自動変速制御装置
JP2005233378A (ja) 車両用無段変速機の制御方法及び制御装置
JP5810870B2 (ja) 車両の駆動制御装置
KR101976920B1 (ko) 차량용 발진 제어방법
JP2022007780A (ja) 車両の制御装置
JP2005113830A (ja) 動力システム
JP6187402B2 (ja) 車両駆動ユニットの制御装置
JP6648357B2 (ja) 自動変速機の制御装置
WO2020234710A1 (ja) 変速システム及び変速システムの制御方法
WO2013137051A1 (ja) 電動車両の駆動力制御装置及び制御方法
JP2005119579A (ja) 自動車のオートクルーズ制御装置
JP2010121709A (ja) 自動変速機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832672

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14344136

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832672

Country of ref document: EP

Kind code of ref document: A1