WO2013038622A1 - グラフェンの製造方法およびグラフェン - Google Patents

グラフェンの製造方法およびグラフェン Download PDF

Info

Publication number
WO2013038622A1
WO2013038622A1 PCT/JP2012/005646 JP2012005646W WO2013038622A1 WO 2013038622 A1 WO2013038622 A1 WO 2013038622A1 JP 2012005646 W JP2012005646 W JP 2012005646W WO 2013038622 A1 WO2013038622 A1 WO 2013038622A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
support film
resin support
substrate
film
Prior art date
Application number
PCT/JP2012/005646
Other languages
English (en)
French (fr)
Inventor
健志 藤井
まり子 佐藤
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2013038622A1 publication Critical patent/WO2013038622A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation

Definitions

  • the present invention relates to a method for producing graphene and graphene, and more particularly to a method for producing graphene and graphene in which a single layer graphene is formed on a transition metal single crystal thin film formed on a specific single crystal substrate.
  • Graphene is a sheet of carbon atoms aligned in the same plane, with carbon atoms bound by sp 2 bonds.
  • Non-Patent Document 1 and Non-Patent Document 2 single-layer graphene has been discovered, and unique quantum conduction derived from two-dimensionality such as half integer Hall effect has been reported. Has attracted a great deal of attention.
  • Non-Patent Document 3 has succeeded in uniformly forming a graphene thin film of good film quality on a Cu foil by a CVD method.
  • the Cu foil When depositing graphene on a Cu foil by a CVD method, the Cu foil is placed in a CVD furnace, heated to 1000 ° C. with hydrogen introduced, and a hydrocarbon-based gas such as methane is supplied, Graphene is deposited by holding for about 30 minutes. On this graphene, PMMA is formed as a resin support film, and Cu foil is etched. Next, the graphene can be transferred by attaching a graphene / PMMA film to an arbitrary substrate and dissolving PMMA with acetone or the like.
  • control of the deposits on the surface of graphene is an important issue in order to ensure control of the film quality of graphene and stable production.
  • An object of the present invention is to reduce the adhesion of metal fine particles such as copper generated during the transfer process, and to form high quality graphene maintaining high mobility.
  • the graphene on which a resin support film for example, PMMA (polymethyl methacrylate)
  • a resin support film for example, PMMA (polymethyl methacrylate)
  • PMMA polymethyl methacrylate
  • the above-mentioned PMMA or PDMS polydimethylsiloxane
  • the transition metal substrate is preferably Fe, Co, Ni, Cu, Mo, Ru, Rh, Pd, W, Re, Ir, Pt or an alloy thereof.
  • carbon atoms can easily form a six-membered ring, and higher crystalline graphene can be obtained by the catalytic effect.
  • Cu (111) and Ir (111) which have face-centered cubic, have low carbon solubility, so precipitation due to carbon supersaturation does not occur, and the number of graphene layers can be controlled by the amount of carbon supplied, in particular preferable.
  • Ni (111) which also has face-centered cubic, is particularly preferable because the mismatch between graphene and crystal is as small as about 1%.
  • Ru and Co having a hexagonal crystal are preferably a (0001) plane having a six-fold symmetry similar in symmetry to graphene.
  • the thickness of the resin support film is preferably 0.1 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 10 ⁇ m. If the thickness of the resin supporting film is 0.1 ⁇ m or less, the resin supporting film is broken and can not be handled. If the thickness is 100 ⁇ m or more, it is difficult to remove the solvent in the resin, and deformation occurs.
  • metal fine particles attached to graphene in a transfer process can be reduced, and high quality graphene maintaining high mobility can be formed on any substrate.
  • graphene can only grow on metals.
  • transfer can be used to form graphene on the desired substrate or layer.
  • a transparent conductive film for a solar cell although it is on the p-type semiconductor layer or the n-type semiconductor layer to form graphene as the transparent conductive film, it is possible to form graphene directly on it It is difficult from all restrictions.
  • transfer since the formed graphene can be formed on the p-type semiconductor layer or the n-type semiconductor layer, it is practically important.
  • stability of the characteristics of graphene can be secured, and a process with high yield can be constructed.
  • a film can be formed by a CVD method (chemical vapor deposition) or a PVD method (physical vapor deposition).
  • CVD method chemical vapor deposition
  • PVD method physical vapor deposition
  • the substrate was heated to about 600 to 1200 ° C. under various conditions such as a transition metal substrate in an ultrahigh vacuum of 1 ⁇ 10 ⁇ 7 Pa or less, a low pressure of about 10 to 10000 Pa, and atmospheric pressure.
  • a transition metal substrate in an ultrahigh vacuum of 1 ⁇ 10 ⁇ 7 Pa or less, a low pressure of about 10 to 10000 Pa, and atmospheric pressure.
  • hydrocarbon gas such as methane
  • the methane gas is cracked (dissociative adsorption) and carbon atoms are supplied to the surface.
  • the carbon atoms receive the catalytic effect of the surface of the transition metal substrate, and by migrating a long distance, they can reach the nuclei of graphene and grow graphene.
  • MBE molecular beam epitaxy method
  • PLD pulse laser deposition
  • atomic carbon is generated by heating graphite to 1200 to 2000 ° C. in ultra-high vacuum (10 -7 Pa or less), and atomic carbon that has become a molecular beam is heated on the surface of the heated transition metal substrate. It is possible to form graphene film by receiving a catalytic effect by supplying
  • a foil, a single crystal, a thin film or the like can be used as the transition metal substrate.
  • the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
  • Example 1 As shown in FIG. 1, a Cu foil (film thickness 100 ⁇ m) 10 cm square CMP polished (chemical mechanical polishing) is placed as a transition metal substrate 11 in a CVD reactor, and evacuation is performed to 1 ⁇ 10 ⁇ 3 Pa. Then, after heating to 1000 ° C. at 50 ° C./min with hydrogen introduced at 6.7 ⁇ 10 2 Pa (5 Torr), the supply of hydrogen is stopped while maintaining 1000 ° C., and methane is reduced to about 4. Introduce 0 ⁇ 10 3 Pa (about 30 Torr). Film formation was performed for 30 minutes while maintaining the substrate temperature and the gas pressure, and after film formation, rapid cooling was performed at 100 ° C./sec to grow graphene 10 shown in FIG. 1A.
  • a Cu foil (film thickness 100 ⁇ m) 10 cm square CMP polished chemical mechanical polishing
  • the graphene 10 formed on the resin supporting film 12 is disposed on the SiO 2 / Si substrate which is the optional substrate 14 and held for 5 minutes in a heated state at 80 ° C., whereby the structure shown in FIG. did.
  • the substrate is immersed in acetone for 1 minute, 500 nm is removed from the surface of the resin support film 12, and the substrate is washed with ultrapure water for 5 minutes, as shown in FIG. The layer in which the particles were present was removed.
  • the resin supporting film 12 was dissolved again with acetone and washed with ultrapure water for 5 minutes to form graphene as shown in FIG. 2 (b).
  • Example 2 The steps up to FIG. 1 (d) are the same, and then the sample is treated in an atmosphere of 5% hydrogen at 300 ° C. for 1 hour to decompose and remove the PMMA surface of the resin support film 12;
  • a structure in which the metal fine particles 13 (copper fine particles) are exposed is manufactured, and the metal fine particles 13 are not removed as shown in FIG. 3B by washing and removing the metal fine particles 13 with ultrapure water.
  • a support film 12 was formed. Then, the resin supporting film 12 was dissolved in acetone and washed with ultrapure water for 5 minutes to form a graphene film as shown in FIG. 3 (c).
  • Example 3 Until the step shown in FIG. 1 (d), the same procedure as in FIG. 1 (d) is followed by dropping several tens of .mu.l of a PMMA solution and spin coating under the conditions of 1000 rpm for 60 seconds, as shown in FIG. 4 (a). Formed. Then, by heating under the conditions of 80 ° C. and 5 minutes, the fine metal particles 13 were moved from the resin support film 12 to the resin support film 12-1 as shown in FIG. 4 (b). After that, it is immersed in acetone for 1 minute to dissolve only the resin supporting film 12-1 and then washed with ultrapure water for 5 minutes to obtain copper fine particles of the resin supporting film 12 as shown in FIG. 4 (c). Removed the layer in which Then, the resin supporting film 12 was dissolved again with acetone and washed with ultrapure water for 5 minutes to form a graphene film as shown in FIG. 4 (d).
  • FIG. 5 is a diagram of a cross-sectional TEM image of the sample completed up to the step of FIG. From this figure, it was confirmed that copper fine particles as the metal fine particles 13 were present in the vicinity of the surface of PMMA as the resin supporting film 12.
  • the number of metal fine particles on the surface of the graphene manufactured according to the present invention is about several per ⁇ m 2 , which reduces by two digits or more compared to the process of not removing the metal fine particles as a comparative example. Succeeded. From the above results, the effects of the present invention were demonstrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 転写プロセスの際に発生する、銅などの金属微粒子の付着を低減し、高い移動度を保った高品質のグラフェンを形成する。 遷移金属基板の表面に炭素を供給することでグラフェンを成長させる工程と、前記グラフェン上に樹脂支持膜を形成する工程と、前記遷移金属基板をエッチングにより除去する工程と、前記樹脂支持膜上のグラフェンを任意の基板あるいは層に貼り付ける工程と、前記樹脂支持膜を除去する工程とを有し、さらに、樹脂支持膜を除去する工程の前に、樹脂支持膜の表面に存在する金属微粒子を取り除く工程を有する

Description

グラフェンの製造方法およびグラフェン
 本発明は、グラフェンの製造方法およびグラフェンに関し、特に単層グラフェンを、特定の単結晶基板上に形成した遷移金属単結晶薄膜上に形成する、グラフェンの製造方法およびグラフェンに関する。
 グラフェンは、炭素原子がsp結合で結合して、同一平面内に並んだ炭素原子のシートである。
近年、非特許文献1及び非特許文献2に記載のように、単層のグラフェンが発見され、半整数ホール効果などの2次元性に由来する特異な量子伝導が報告され、物性物理の分野で非常に高い注目を集めている。
 また、グラフェンの移動度は15000cm/Vsとシリコンに比べ一桁以上高い値を示すことから、産業応用としてさまざまなものが提案されており、Siを超えるトランジスタへの応用、スピン注入デバイス、単分子を検出するガスセンサーなど多岐にわたる。中でも導電性薄膜や透明導電膜への適用は注目されており活発に開発が行われている。
 導電性薄膜としての重要な特性は低シート抵抗である。シート抵抗は導電率と膜厚に反比例するため膜厚が厚くなるほど低い値を得ることが出来る。また、導電率は移動度に比例するため、膜質の高いグラフェンを成膜させることによりその向上が見込める。例えば非特許文献3ではCVD法によってCuフォイル上に膜質の良いグラフェン薄膜を均一に成膜することに成功している。
K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang,S.V.Dubonos,I.V.Grigorieva,A.A.Firsov,Science306(2004)666. K.S.Novoselov,D.Jiang,F.Schedin,T.J.Booth,V.V.Khotkevich,S.V.Morozovand A.K.Geim,Proc.Natl.Acad.Sci.U.S.A.102(2005)10451. Xuesong et al.,Nano Lett.9(2009)4359-4362.
 CVD法によってCuフォイル上にグラフェンを成膜する場合、CuフォイルをCVD炉中に配置し、水素を導入した状態で1000℃まで昇温を行い、メタンなどの炭化水素系のガスを供給し、30分程度保持することでグラフェンが成膜される。このグラフェン上に、樹脂支持膜としてPMMAを形成して、Cuフォイルのエッチングを行う。次にグラフェン/PMMA膜を任意の基板に貼り付け、アセトンなどでPMMAを溶解させることによってグラフェンを転写ことができる。しかし、PMMAを形成する際に、グラフェン上にPMMA溶液をスピンコートや塗布にて成膜し、180℃程度でキュアを行う際に、Cuフォイルの表面に形成された自然酸化膜がPMMA側に移動し、銅の微粒子を形成する。この微粒子はPMMA中の溶剤の蒸発とともにPMMAの表面に偏析する。この状態で転写の際にPMMAをアセトンなどで溶解すると、PMMA中の金属微粒子がアセトン中に分散され、グラフェンの表面に再付着する。グラフェンのキャリア移動度は散乱体の数に反比例するため、金属微粒子が表面に付着すると移動度が低下するという問題がある。
 産業応用上、グラフェンの表面の付着物の制御は、グラフェンの膜質の制御と安定生産を確保するために重要な課題である。
 本発明の目的は、転写プロセスの際に発生する、銅などの金属微粒子の付着を低減し、高い移動度を保った高品質のグラフェンを形成することにある。
 上記目的を達成するため、本発明のグラフェンの製造方法は、樹脂支持膜(例えばPMMA(ポリメチルメタクリレート))を形成したグラフェンを任意の基板あるいは層に配置し、PMMAを除去する際に、あらかじめPMMAの表面に存在している微粒子を除去することに特徴を有するものである。すなわち、グラフェンを、不純物(微粒子)を付着させることなく、任意の基板あるいは層に転写することを特徴とするものである。
 樹脂支持膜としては、上記のPMMAや、PDMS(ポリジメチルシロキサン)が用いられる。
 遷移金属基板はFe、Co、Ni、Cu、Mo、Ru、Rh、Pd、W、Re、Ir、Ptまたはこれらの合金であることが好ましい。これらの遷移金属では触媒効果により、炭素原子が6員環を形成し易くより高い結晶性のグラフェンを得ることが出来る。
 また、面心立方を持つCu(111)や、Ir(111)は、カーボンの溶解性が低いため、炭素の過飽和による析出が生じず、供給した炭素量によってグラフェンの層数を制御できるため特に好ましい。さらに、同じく面心立方を持つNi(111)は、グラフェンと結晶のミスマッチが約1%と小さいため特に好ましい。また六方晶を有するRuやCoは、グラフェンと対称性が類似している6回対称を有する(0001)面が好ましい。
 樹脂支持膜の厚みは0.1μmから100μmが好ましく、1μmから10μmがより好ましい。樹脂支持膜の厚みが0.1μm以下では樹脂支持膜が破れてしまいハンドリングできず、100μm以上では樹脂中の溶剤を除去することが難しく、変形などがおこるため適さない。
 本発明によれば、転写プロセスにおいてグラフェンに付着する金属微粒子を低減することが可能であり、高い移動度を維持した高品質なグラフェンを任意基板に形成することが出来る。
 通常グラフェンは金属上にしか成長することができない。
 しかし、転写を用いれば所望の基板あるいは層の上にグラフェンを形成することができる。
 例えば、太陽電池用の透明導電膜の場合、透明導電膜としてのグラフェンを成膜するのはp型半導体層またはn型半導体層の上であるが、その上にグラフェンを直接成膜することはあらゆる制約から難しい。しかし、転写であれば、できたグラフェンをp型半導体層またはn型半導体層の上に形成できるため実用上重要となる。
 また、本発明によれば、グラフェンの特性の安定性が確保でき歩留まりの高いプロセスを構築することが可能である。
グラフェンを任意基板に転写するプロセスの概念図である。 PMMA中の銅微粒子が存在している層を取り除くプロセスの概念図である。 PMMA中の銅微粒子が存在している層を取り除くプロセスの概念図である。 PMMA中の銅微粒子が存在している層を取り除くプロセスの概念図である。 PMMA/グラフェン/銅フォイルの断面TEM像の図である。 本発明ならびに従来のプロセスで作製したグラフェンに存在している銅微粒子数の図である。 グラフェンに金属微粒子が存在している状態を示す図である。
 本発明のグラフェンの成長方法としては、CVD法(化学的気相堆積)またはPVD法(物理的気相堆積)により成膜出来る。
<実施の形態1>
 グラフェンを成長させるCVDでは、遷移金属基板を1×10-7Pa以下の超高真空中や10~10000Pa程度の低圧、大気圧などのさまざまな条件において、基板を600~1200℃程度に加熱した状態で、メタンなどの炭化水素ガスを遷移金属単結晶薄膜表面に吹き付けることで、メタンガスがクラッキング(解離吸着)され、表面に炭素原子が供給される。炭素原子は遷移金属基板の表面の触媒効果を受け、長い距離をマイグレーションすることで、グラフェンの核に到達し、グラフェンを成長することができる。
 また、PVD成長としてはMBE(分子線エピタキシー法)やPLD(パルスレーザー堆積)などによりグラフェンを成長させることが可能である。
 MBEでは超高真空中(10-7Pa以下)でグラファイトを1200~2000℃に加熱することで原子状の炭素を発生させ、分子線となった原子状炭素を、加熱した遷移金属基板表面上に供給することで、触媒効果を受けグラフェンを成膜させることが可能である。
 また、PLDでは超高真空中(10-7Pa以下)でグラファイトをKrFのエキシマレーザーにてアブレーションすることにより、瞬時に蒸発した炭素が分子線の状態で、加熱された遷移金属基板に、グラフェンを成膜することが可能である。
 遷移金属基板としてはフォイル、単結晶、薄膜などが使用可能である。
[実施例]
 以下、本発明を、実施例を挙げて詳細に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 図1に示すように遷移金属基板11として10cm角のCMP研磨(ケミカルメカニカルポリッシング)したCuフォイル(膜厚100μm)をCVDの反応炉に配置し、1×10-3Paまで真空引きを行う。そして、水素を6.7×10Pa(5Torr)導入した状態で、50℃/minで1000℃まで加熱した後、1000℃を保持した状態で水素の供給を中止し、メタンを約4.0×10Pa(約30Torr)導入する。基板温度とガス圧を保持した状態で30min成膜を行い、成膜後は100℃/secにて急冷を行うことで図1(a)に示すグラフェン10を成長した。このグラフェン10の表面にジククロベンゼンで10wt%に溶解したPMMA溶液を数10μl滴下し、回転数1000rpm、60秒の条件でスピンコートを行い、180℃、5分でキュアすることで図1(b)に示すようにPMMA膜を形成し樹脂支持膜12とした。この樹脂支持膜12には、金属微粒子13が含まれている。このサンプルを塩酸10ml、過酸化水素10ml、純水50mlの混合液に浸漬し、遷移金属基板11であるCuフォイルをエッチングした後、5分間の流水洗浄を行うことで図1(c)の構造を形成した。そして、樹脂支持膜12に形成されたグラフェン10を任意基板14であるSiO/Si基板に配置し、80℃に加熱した状態で5分保持することで図1(d)に示す構造を作製した。その後、アセトンにて1分間浸漬し、樹脂支持膜12の表面から500nmを除去し、超純水にて5分間洗浄することで、図2(a)に示すように、樹脂支持膜12の銅微粒子が存在する層を取り除いた。そして、再度、樹脂支持膜12をアセトンで溶解し、超純水で5分洗浄することで図2(b)のようにグラフェンを成膜した。
(実施例2)
 図1(d)の工程までは同様で、その後、サンプルを水素5%のアルゴン雰囲気中で300℃、1時間処理することで、樹脂支持膜12のPMMAの表面を分解除去することで図3(a)のように金属微粒子13(銅微粒子)が露出した構造を作製し、超純水で金属微粒子13を洗浄除去することで、図3(b)のように金属微粒子13が存在しない樹脂支持膜12を形成した。そして、樹脂支持膜12をアセトンで溶解し、超純水で5分洗浄することで図3(c)のようにグラフェンを成膜した。
(実施例3)
 図1(d)の工程までは同様で、その後、PMMA溶液を数10μl滴下し、回転数1000rpm、60秒の条件でスピンコートを行い、図4(a)のように樹脂支持膜12-2を形成した。そして、80℃、5分の条件で加熱することで、図4(b)のように金属微粒子13を樹脂支持膜12から樹脂支持膜12-1に移動させた。その後、アセトンにて1分間浸漬し、樹脂支持膜12-1のみを溶解し、超純水にて5分間洗浄することで、図4(c)に示すように、樹脂支持膜12の銅微粒子が存在する層を取り除いた。そして、再度、樹脂支持膜12をアセトンで溶解し、超純水で5分洗浄することで図4(d)のようにグラフェンを成膜した。
(比較例1)
 図1(d)の工程までは同様で、その後、樹脂支持膜12をアセトンで溶解し、超純水で5分洗浄することで図7のようにグラフェンを成膜した。金属微粒子13が残存していることが明らかである。
 図5は、図1(d)の工程まで終了したサンプルの断面TEM像の図である。この図より、樹脂支持膜12であるPMMAの表面近傍に金属微粒子13である銅微粒子が存在していることが確認された。
 図6に示すように、本発明によって作製したグラフェンの表面の金属微粒子の数はμm当たり数個程度であり、比較例である金属微粒子を除去しないプロセスに比べて2桁以上の低減をすることに成功した。
 以上の結果より本発明の効果が実証された。
10 グラフェン(単層グラフェン)
11 遷移金属基板
12 樹脂支持膜
13 金属微粒子
14 任意基板

Claims (7)

  1.  遷移金属基板の表面に炭素を供給することでグラフェンを成長させる工程と、前記グラフェン上に樹脂支持膜を形成する工程と、前記遷移金属基板をエッチングにより除去する工程と、前記樹脂支持膜上のグラフェンを任意の基板あるいは層に貼り付ける工程と、前記樹脂支持膜を除去する工程とを有し、さらに、樹脂支持膜を除去する工程の前に、樹脂支持膜の表面に存在する金属微粒子を取り除く工程を有することを特徴とするグラフェンの製造方法。
  2.  遷移金属基板はFe、Co、Ni、Cu、Mo、Ru、Rh、Pd、W、Re、Ir、Ptまたはこれらの合金であることを特徴とする請求項1に記載のグラフェンの製造方法。
  3.  樹脂支持膜はPMMA(ポリメチルメタクリレート)、またはPDMS(ポリジメチルシロキサン)であることを特徴とする請求項1に記載のグラフェンの製造方法。
  4.  樹脂支持膜は膜厚が0.1μmから100μmであることを特徴とする請求項1ないし請求項3のいずれか1項に記載のグラフェンの製造方法。
  5.  炭素の供給方法として化学的気相成長法(CVD)または物理的気相成長法(PVD)を用いることを特徴とする請求項1に記載のグラフェンの製造方法。
  6.  任意の基板上に形成されたグラフェンに存在している金属微粒子
    が、μmあたり6個以下であることを特徴とするグラフェン。
  7.   任意の基板が、太陽電池を構成する半導体層であることを特徴と
    する請求項6に記載のグラフェン。
PCT/JP2012/005646 2011-09-16 2012-09-06 グラフェンの製造方法およびグラフェン WO2013038622A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-203509 2011-09-16
JP2011203509 2011-09-16

Publications (1)

Publication Number Publication Date
WO2013038622A1 true WO2013038622A1 (ja) 2013-03-21

Family

ID=47882875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005646 WO2013038622A1 (ja) 2011-09-16 2012-09-06 グラフェンの製造方法およびグラフェン

Country Status (2)

Country Link
JP (1) JPWO2013038622A1 (ja)
WO (1) WO2013038622A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165366A (zh) * 2019-04-22 2019-08-23 浙江大学 一种热转印的石墨烯天线及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109850877A (zh) * 2019-02-21 2019-06-07 中国科学院上海微系统与信息技术研究所 石墨烯纳米带的转移方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161521A (ja) * 2002-11-12 2004-06-10 Hokkaido Univ 繊維状固体炭素集合体およびその製造方法
JP2010153793A (ja) * 2008-11-26 2010-07-08 Hitachi Ltd グラフェン層が成長された基板およびそれを用いた電子・光集積回路装置
JP2011063492A (ja) * 2009-09-18 2011-03-31 Fuji Electric Holdings Co Ltd グラフェン薄膜の製造方法とグラフェン薄膜
JP2011105569A (ja) * 2009-11-20 2011-06-02 Fuji Electric Holdings Co Ltd グラフェン薄膜の製膜方法
JP2011168448A (ja) * 2010-02-19 2011-09-01 Fuji Electric Co Ltd グラフェン膜の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161521A (ja) * 2002-11-12 2004-06-10 Hokkaido Univ 繊維状固体炭素集合体およびその製造方法
JP2010153793A (ja) * 2008-11-26 2010-07-08 Hitachi Ltd グラフェン層が成長された基板およびそれを用いた電子・光集積回路装置
JP2011063492A (ja) * 2009-09-18 2011-03-31 Fuji Electric Holdings Co Ltd グラフェン薄膜の製造方法とグラフェン薄膜
JP2011105569A (ja) * 2009-11-20 2011-06-02 Fuji Electric Holdings Co Ltd グラフェン薄膜の製膜方法
JP2011168448A (ja) * 2010-02-19 2011-09-01 Fuji Electric Co Ltd グラフェン膜の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165366A (zh) * 2019-04-22 2019-08-23 浙江大学 一种热转印的石墨烯天线及其制备方法和应用

Also Published As

Publication number Publication date
JPWO2013038622A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
Zhang et al. Controlled growth of single‐crystal graphene films
Pang et al. CVD growth of 1D and 2D sp 2 carbon nanomaterials
TWI544527B (zh) 半導體基材上石墨烯之直接生成
US9023221B2 (en) Method of forming multi-layer graphene
KR101626181B1 (ko) 그라핀 필름의 제어된 성장 방법
JP6416189B2 (ja) 誘電体基板上でのグラフェンの直接製造方法、及びそれに関連する物品/装置
US20130240830A1 (en) Direct and sequential formation of monolayers of boron nitride and graphene on substrates
US20160005881A1 (en) Stacked films and method for producing stacked films
TWI526559B (zh) 藉由物理氣相沉積法在基板上成長碳薄膜或無機材料薄膜的方法
JP2011256100A (ja) グラフェンの製造方法
WO2012051182A2 (en) Fabrication of single-crystalline graphene arrays
US11339499B2 (en) Method for epitaxial growth of single crystalline heterogeneous 2D materials and stacked structure
CN107539976B (zh) 一种二氧化碳制备超洁净石墨烯的方法
CN108069416B (zh) 超洁净石墨烯及其制备方法
KR101886659B1 (ko) 무전사식 그래핀층의 형성 방법
JP2013067549A (ja) 薄膜の形成方法
KR101692514B1 (ko) 기재 위에 대면적, 단결정, 단일층의 h-BN 박막을 형성하는 방법 및 그로부터 제조된 h-BN 박막 적층체
JP2012020915A (ja) 透明導電膜の形成方法及び透明導電膜
Tian et al. Synthesis of AAB‐stacked single‐crystal graphene/hBN/graphene trilayer van der Waals heterostructures by in situ CVD
US20140162021A1 (en) Method for producing graphene, and graphene produced by the method
JP2012232860A (ja) グラフェンの製造方法
WO2013038622A1 (ja) グラフェンの製造方法およびグラフェン
Diallo et al. In‐Situ Transmission Electron Microscopy Observation of Germanium Growth on Freestanding Graphene: Unfolding Mechanism of 3D Crystal Growth During Van der Waals Epitaxy
JP2013256408A (ja) グラフェン構造の製造方法
Kim et al. Direct growth of graphene at low temperature for future device applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533480

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832500

Country of ref document: EP

Kind code of ref document: A1