WO2013035754A1 - クマリン誘導体の製造方法 - Google Patents

クマリン誘導体の製造方法 Download PDF

Info

Publication number
WO2013035754A1
WO2013035754A1 PCT/JP2012/072645 JP2012072645W WO2013035754A1 WO 2013035754 A1 WO2013035754 A1 WO 2013035754A1 JP 2012072645 W JP2012072645 W JP 2012072645W WO 2013035754 A1 WO2013035754 A1 WO 2013035754A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
compound represented
reaction
solvent
Prior art date
Application number
PCT/JP2012/072645
Other languages
English (en)
French (fr)
Inventor
政利 村形
拓真 池田
孝弘 市毛
Original Assignee
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外製薬株式会社 filed Critical 中外製薬株式会社
Priority to EP12829853.6A priority Critical patent/EP2754654B1/en
Priority to JP2013532632A priority patent/JP6061856B2/ja
Priority to US14/342,629 priority patent/US9133174B2/en
Publication of WO2013035754A1 publication Critical patent/WO2013035754A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • the present invention relates to a method for producing a coumarin derivative.
  • R 2 represents a hydrogen atom or a halogen atom
  • R c represents a C 1-6 alkyl group
  • X represents a heteroaryl group or R 13 R 14 NCO—
  • R 11 represents a hydrogen atom, a halogen atom
  • Patent Documents 1 and 2 A method for producing a coumarin derivative of the general formula (VII) is described in Patent Documents 1 and 2.
  • DMF represents N, N-dimethylformamide
  • TBS represents a tert-butyldimethylsilyl group
  • dba represents dibenzylideneacetone
  • BINAP represents 2
  • It represents 2′-bis (diphenylphosphino) -1,1′-binaphthyl.
  • the numerical value (%) or “quant.” Attached below the structural formula indicates the yield of the compound. ] (See the production example of “Compound 1j-2-16-2K” in Patent Documents 1 and 2).
  • the coumarin derivative of the general formula (VII) can be produced by the methods described in Patent Documents 1 and 2, but in the methods described in Patent Documents 1 and 2, an unintended reaction is performed after the formylation reaction and the reduction reaction. In order to suppress this, it is necessary to carry out a protective group introduction / removal step for the hydroxy group.
  • ultralow temperature conditions for example, ⁇ 95 ° C. to ⁇ 65 ° C.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a method for efficiently producing a coumarin derivative of the general formula (VII) or a synthetic intermediate thereof by a simple operation.
  • the present invention is directed to general formula (VI): [Wherein, R 2 represents a hydrogen atom or a halogen atom, R a and R b each independently represent a hydrogen atom or a protecting group for an amino group, or R a and R b together represent an amino group. And R c and R d each independently represents a C 1-6 alkyl group. ] And a method comprising the following steps A to D.
  • the present invention also provides a compound represented by the general formula (VII): [Wherein, R 2 and R c are as defined above, X represents a heteroaryl group or R 13 R 14 NCO—, and R 11 represents a hydrogen atom, a halogen atom, a cyano group, or a C 1-6 alkyl group.
  • nitrogen atom I represents a 4-6 membered may form a heterocyclic group
  • R 15, R 23 and R 24 each independently represent a hydrogen atom or a C 1-6 alkyl group containing at least one nitrogen atom .
  • a pharmaceutically acceptable salt thereof which comprises the following steps A to D:
  • Process B A compound represented by the general formula (II) is reacted with a base and a formylating agent to give a general formula (III): [Wherein, R 1 , R 2 , R a and R b have the same meanings as described above. ] Step of obtaining a compound represented by
  • Process C The compound represented by the general formula (III) is represented by the general formula (IV): [Wherein, R c and R d have the same meanings as described above. ] Is reacted with a compound represented by the general formula (V): [Wherein, R 1 , R 2 , R a , R b , R c and R d have the same meanings as described above. ] Step of obtaining a compound represented by
  • Process D The compound represented by the general formula (V) is (A) Double bond reduction reaction (when R 1 is a hydrogen atom), or (b) Double bond reduction reaction and R 1 hydrogenolysis reaction (when R 1 is a halogen atom)
  • the compound of general formula (VI) is a synthetic intermediate of a coumarin derivative of general formula (VII), and the method of the present invention is a novel method for producing a coumarin derivative of general formula (VII) or a synthetic intermediate thereof. It is.
  • a step of converting a formyl group into a hydroxy group is not included, so that it is not necessary to perform a protective group introduction / removal step. Further, it is not necessary to perform the formylation reaction under ultra-low temperature conditions. Moreover, a halogen atom can be converted into a nitrogen-containing substituent (amino group or protected amino group) without using a palladium catalyst and a phosphine ligand. Further, in the alkylation reaction (Step C), it is not necessary to use an excessive amount of an alkylating reagent (compound of general formula (IV)) that requires complicated operation for removal.
  • steps C and D can be carried out continuously in one pot.
  • steps C and D can be carried out continuously in one pot.
  • the method of the present invention for producing the compound represented by the general formula (VI) may comprise the above steps A to D.
  • the method of the present invention for producing the compound represented by the general formula (VII) or a pharmaceutically acceptable salt thereof may further include the following steps E to G.
  • Process E In the presence of an acid, the compound represented by the general formula (VI) is converted into the general formula (VIII): [Wherein, R 11 has the same meaning as described above. ] Is reacted with a compound represented by the general formula (IX): [Wherein R 2 , R c and R 11 have the same meanings as described above. ] Or a pharmaceutically acceptable salt or acid adduct thereof.
  • Process F In the presence of a base, a compound represented by the general formula (IX) or a pharmaceutically acceptable salt or acid adduct thereof is represented by XY [wherein X is as defined above, and Y represents a halogen atom. . And the general formula (X): [Wherein, R 2 , R c , R 11 and X are as defined above. ] Step of obtaining a compound represented by
  • Process G The compound represented by the general formula (X) is converted into the general formula (XI): [Wherein, R 16 and R 17 are as defined above, and Z represents a leaving group. ] Is reacted with a compound represented by the general formula (VII ′): [Wherein R 2 , R c , R 11 , X, R 16 and R 17 have the same meanings as described above. ] Step of obtaining a compound represented by
  • the present invention provides a method for efficiently producing a coumarin derivative of the general formula (VII) or a synthetic intermediate thereof efficiently by a simple operation.
  • the method of the present invention is represented by the general formula (VI): [Wherein, R 2 represents a hydrogen atom or a halogen atom, R a and R b each independently represent a hydrogen atom or a protecting group for an amino group, or R a and R b together represent an amino group. And R c and R d each independently represents a C 1-6 alkyl group. ] Or a compound represented by the general formula (VII): [Wherein, R 2 and R c are as defined above, X represents a heteroaryl group or R 13 R 14 NCO—, and R 11 represents a hydrogen atom, a halogen atom, a cyano group, or a C 1-6 alkyl group.
  • nitrogen atom I represents a 4-6 membered may form a heterocyclic group
  • R 15, R 23 and R 24 each independently represent a hydrogen atom or a C 1-6 alkyl group containing at least one nitrogen atom .
  • a pharmaceutically acceptable salt thereof comprising steps A to D.
  • the halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the C 1-6 alkyl group means a linear or branched alkyl group having 1 to 6 carbon atoms.
  • Examples of the C 1-6 alkyl group include a methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, t-butyl group, 1-methylpropyl group, n- Pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, 2,2-dimethylpropyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, n- Hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group 2,2-dimethylbutyl group,
  • the C 2-7 alkenyl group means a linear or branched alkenyl group having 2 to 7 carbon atoms.
  • Examples of the C 2-7 alkenyl group include a vinyl group, allyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, pentenyl group, pentadienyl group, hexenyl group, hexadienyl group, heptenyl group, and heptadienyl group. And heptatrienyl group.
  • the C 2-7 alkynyl group means a linear or branched alkynyl group having 2 to 7 carbon atoms.
  • Examples of the C 2-7 alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, pentynyl group, pentadiynyl group, hexynyl group, hexadiynyl group , Heptynyl group, heptadinyl group, and heptatriynyl group.
  • the C 1-4 acyl group means an acyl group having 1 to 4 carbon atoms.
  • Examples of the C 1-4 acyl group include formyl group, acetyl group, n-propionyl group, i-propionyl group, butyryl group, sec-butyryl group (isobutyryl group).
  • the C 1-6 alkoxy group means an alkyloxy group having a linear or branched alkyl group having 1 to 6 carbon atoms as an alkyl moiety.
  • Examples of the C 1-6 alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, an s-butoxy group, a t-butoxy group, a pentoxy group, and a hexoxy group.
  • C 3-8 cycloalkyl group is a 3- to 8-membered cyclic alkyl group (the cyclic alkyl group is a linear or branched alkyl substituent having 1 to 3 carbon atoms on the atoms constituting the ring. It may have).
  • the unsubstituted C 3-8 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the C 3-8 cycloalkyl group having a substituent include a methylcyclopropyl group, an ethylcyclopropyl group, a dimethylcyclopropyl group, a trimethylcyclopropyl group, a diethylcyclopropyl group, an ethylmethylcyclopropyl group, and a dimethyl group.
  • the heteroaryl group is a 5- to 10-membered aromatic heterocyclic group containing at least one heteroatom selected from an oxygen atom, a nitrogen atom, and a sulfur atom (the aromatic heterocyclic group is an atom constituting the ring). May have a substituent.
  • heteroaryl groups include furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, Pyrimidinyl group, pyrazinyl group, pyridazinyl group, triazinyl group, benzofuranyl group, benzothienyl group, benzothiadiazolyl group, benzothiazolyl group, benzoxazolyl group, benzooxadiazolyl group, benzoimidazolyl group, indolyl group, isoindolyl group, indazolyl group Group, quinolyl group, isoquinolyl group, cinnolinyl group, quinazolinyl group, quinoxalinyl group, indolizin
  • the heteroaryl group is a halogen atom, C 1-6 alkyl group, C 1-6 alkoxy group, cyano group, amino group, carbamoyl group, nitro group, carboxy group, C 2-7 alkenyl on the atoms constituting the ring. And a substituent such as a C 2-7 alkynyl group.
  • the 4- to 6-membered heterocyclic group containing at least one nitrogen atom is a 4- to 6-membered saturated or unsaturated ring group containing at least one nitrogen atom (the saturated or unsaturated ring group is an oxygen atom and / or Or may contain a sulfur atom, may be condensed with a benzene ring, and may have a substituent on the atom constituting the ring).
  • Examples of the 4- to 6-membered heterocyclic group containing at least one nitrogen atom include azetidinyl group, pyrrolidinyl group, piperidinyl group, piperazinyl group, pyrrolyl group, dihydropyrrolyl group, imidazolyl group, imidazolinyl group, imidazolidinyl group, pyrazolyl group.
  • pyrazolinyl group pyridazolidinyl group, oxazolinyl group, oxazolidinyl group, morpholinyl group, thiomorpholinyl group, pyridinyl group, dihydropyridinyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group.
  • the 4- to 6-membered heterocyclic group containing at least one nitrogen atom has a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a cyano group, an amino group, a carbamoyl group on the atoms constituting the ring. , A nitro group, a carboxy group, a C 2-7 alkenyl group, a C 2-7 alkynyl group and the like.
  • Step A includes R a R b NH [wherein R a and R b are as defined above. ]
  • R 1 represents a hydrogen atom or a halogen atom
  • Hal represents a halogen atom
  • R 2 has the same meaning as described above.
  • the amino protecting group includes, for example, a C 1-6 alkylcarbonyl group (acetyl group, propionyl group, butyryl group, isobutyryl group).
  • valeryl group isovaleryl group, pivaloyl group, etc.
  • carbamoyl group C 1-6 alkoxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, isopropyloxycarbonyl group, sec-butoxycarbonyl group, etc.), substituted silyl group (trimethylsilyl) Group, triethylsilyl group, triisopropylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group, etc.), allyl group, aralkyl group (aryl group in the aralkyl group (phenyl group, 1-naphthyl group, 2 - naphthyl group or the like), C 1-6 alkyl, C 1-6 Alkoxy group, may be substituted by nitro group or a halogen atom.) And the like.
  • R a and R b are amino protecting groups
  • amino protecting groups include C 1-6 alkylcarbonyl groups (acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group). Group, isovaleryl group, pivaloyl group, etc.), substituted oxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, t-butoxycarbonyl group, benzyloxycarbonyl group, 4-methoxybenzyloxycarbonyl group, etc.), carbamoyl group, substituted silyl group (Trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group, etc.), aralkyl group (aryl group in the aralkyl group (phenyl group, 1-naphthyl group, 2- naphthyl group
  • R a and R b together form an amino-protecting group include divalent substituents (1,1-dimethylthiomethylene group, benzylidene group, p-methoxybenzylidene group, diphenylmethylene group).
  • the halogen atom is preferably a chlorine atom, a bromine atom or an iodine atom, and particularly preferably a chlorine atom.
  • R 1 and R 2 are such that both R 1 and R 2 are halogen atoms, R 1 is a hydrogen atom, R 2 is a halogen atom, R 1 is a halogen atom, and R 2 is a hydrogen atom. It is particularly preferable that both R 1 and R 2 are halogen atoms. When both R 1 and R 2 are halogen atoms, these halogen atoms are preferably different, particularly preferably R 1 is a chlorine atom and R 2 is a fluorine atom.
  • the compound of the general formula (I) can be synthesized based on a method described in known literature. For example, 5-chloro-2,3-difluoropyridine is described in Synthetic Communications, 34, 4301-4311, 2004, and can be synthesized by the method described in the literature. Moreover, the compound of general formula (I) may use a commercially available thing. For example, a product sold by Tokyo Chemical Industry (product code: C2113) can be purchased.
  • reaction solvent in Step A examples include ether solvents (tetrahydrofuran, methyltetrahydrofuran, diethyl ether, t-butyl methyl ether, diisopropyl ether, cyclopentyl methyl ether, 1,2-dimethoxyethane, etc.), hydrocarbon solvents (hexane , Heptane, benzene, toluene, etc.), amide solvents (N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, etc.), and mixed solvents of these (at least two).
  • ether solvents tetrahydrofuran, methyltetrahydrofuran, diethyl ether, t-butyl methyl ether, diisopropyl ether, cyclopentyl methyl ether, 1,2-dimethoxyethane, etc.
  • hydrocarbon solvents hexane , Heptane,
  • the reaction can be carried out by stirring the reaction mixture at a suitable temperature (eg, ⁇ 50 ° C. to 150 ° C.) for a certain time (eg, 0.1 hour to 5 hours).
  • a suitable temperature eg, ⁇ 50 ° C. to 150 ° C.
  • a certain time eg, 0.1 hour to 5 hours.
  • R a R b NH is preferably reacted with a base before reacting with the compound of formula (I).
  • the base for example, sodium hexamethyldisilazide and sodium hydride are preferable.
  • the reaction solvent include ether solvents (tetrahydrofuran, methyltetrahydrofuran, diethyl ether, t-butyl methyl ether, diisopropyl ether, cyclopentyl methyl ether, 1,2-dimethoxyethane, etc.), hydrocarbon solvents (hexane, heptane, Benzene, toluene, etc.), amide solvents (N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, etc.), and mixed solvents of these (at least two).
  • the reaction can be carried out by stirring the reaction mixture at a suitable temperature (eg, ⁇ 30 ° C. to 80 ° C.) for
  • the mixture after completion of the reaction in the step A may be subjected to the step B as it is, but is usually subjected to post-treatment such as washing and extraction. Further, isolation (concentration, crystallization, etc.) and purification (recrystallization, column chromatography, etc.) may be performed before use in Step B.
  • Step B is a reaction of a compound represented by the general formula (II) with a base and a formylating agent to give a general formula (III): [Wherein, R 1 , R 2 , R a and R b have the same meanings as described above. ] Is a step of obtaining a compound represented by the formula:
  • a combination of a base and a formylating agent for example, a combination of lithium hexamethyldisilazide and N, N-dimethylformamide or a combination of lithium hexamethyldisilazide and 4-formylmorpholine is preferable, and lithium hexamethyldisilazide And the combination of 4-formylmorpholine is particularly preferred.
  • the compound of the general formula (II) and the base may be mixed first, and then mixed with the formylating agent.
  • the compound of general formula (II) and the formylating agent may be mixed and then mixed with a base.
  • the base itself is unstable or the reaction product of the compound of general formula (II) and the base is unstable, it is preferable to first mix with the formylating agent and then mix with the base.
  • Examples of the solvent for reacting the compound of the general formula (II) with a base include ether solvents (tetrahydrofuran, methyltetrahydrofuran, diethyl ether, t-butyl methyl ether, diisopropyl ether, cyclopentyl methyl ether, 1,2-dimethoxy). Ethane), hydrocarbon solvents (hexane, heptane, benzene, toluene, etc.), amide solvents (N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, etc.), and those (at least two) ).
  • the reaction can be carried out by stirring the reaction mixture at a suitable temperature (eg, ⁇ 100 ° C. to 50 ° C.) for a certain time (eg, 0.1 hour to 10 hours).
  • Examples of the solvent for reacting the compound of the general formula (II) with a formylating agent include, for example, ether solvents (tetrahydrofuran, methyltetrahydrofuran, diethyl ether, t-butyl methyl ether, diisopropyl ether, cyclopentyl methyl ether, 1,2 -Dimethoxyethane, etc.), hydrocarbon solvents (hexane, heptane, benzene, toluene, etc.), amide solvents (N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, etc.), and those (at least 2 types) of mixed solvents.
  • ether solvents tetrahydrofuran, methyltetrahydrofuran, diethyl ether, t-butyl methyl ether, diisopropyl ether, cyclopentyl methyl ether, 1,2 -
  • the reaction can be carried out by stirring the reaction mixture at a suitable temperature (eg, ⁇ 100 ° C. to 50 ° C.) for a certain time (eg, 0.1 hour to 10 hours).
  • the reaction temperature is preferably, for example, ⁇ 100 ° C. to 50 ° C., more preferably ⁇ 50 ° C. to 0 ° C., and further preferably ⁇ 30 ° C. to ⁇ 10 ° C.
  • Step C The mixture after completion of the reaction in Step B may be subjected to Step C as it is, or may be subjected to post-treatment such as washing and extraction.
  • post-treatment such as washing and extraction.
  • further isolation concentration, crystallization, etc.
  • purification recrystallization, column chromatography, etc. It is preferable to use for C.
  • Step C the compound represented by the general formula (III) is converted into the general formula (IV): [Wherein, R c and R d have the same meanings as described above. ] Is reacted with a compound represented by the general formula (V): [Wherein, R 1 , R 2 , R a , R b , R c and R d have the same meanings as described above. ] Is a step of obtaining a compound represented by the formula:
  • Step D is a compound represented by the general formula (V).
  • the reaction is preferably performed in the presence of a base or an acid, particularly preferably in the presence of both a base and an acid, from the viewpoint of improving the production yield and / or shortening the reaction time.
  • a base include ammonia, primary amines (methylamine, ethylamine, propylamine, cyclohexylamine, etc.), secondary amines (dimethylamine, diethylamine, dipropylamine, dicyclohexylamine, ethylisopropylamine, pyrrolidine, piperidine.
  • piperidine is particularly preferred.
  • Bases include derivatives of amino acids (alanine, ⁇ -alanine, histidine, proline, lysine, arginine, etc.) (histidine methyl ester, proline ethyl ester, lysine ethyl ester, arginine ethyl ester, dipeptide, tripeptide, etc.), aminolin Derivatives (esters etc.) of acids (1-aminoethyl phosphoric acid, 2-aminoethyl phosphoric acid etc.), derivatives (esters etc.) of carboxyalkyl phosphines (carboxymethyl phosphine, carboxyethyl phosphine etc.), carboxyalkyl phosphine oxides (carboxy Derivatives (esters and the like) of methyl phosphine oxide, carboxyethyl phosphine oxide and the like can also be used.
  • amino acids alanine, ⁇ -alan
  • Examples of the acid include acetic acid, oxalic acid, maleic acid, fumaric acid, succinic acid, malonic acid, citric acid, benzoic acid, salicylic acid, tartaric acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, and pivalic acid. And the like, and acetic acid is particularly preferred.
  • a compound having both a basic functional group and an acidic functional group can also be used. Examples of such a compound include amino acids (alanine, ⁇ -alanine, histidine, proline).
  • Lysine, arginine, etc. or a salt thereof, aminophosphoric acid (1-aminoethylphosphoric acid, 2-aminoethylphosphoric acid, etc.) or a salt thereof, and carboxyalkylphosphine (carboxymethylphosphine, carboxyethylphosphine, etc.) Carboxyalkyl phosphine oxide (carboxymethyl phosphine oxide, carboxyethyl phosphine oxide, etc.) or salts thereof.
  • a salt of a compound having a basic functional group (for example, the above-mentioned base) and a compound having an acidic functional group (for example, the above-mentioned acid) can be used.
  • examples of such salts include ammonia oxalate, ethylamine acetate, propylamine 1/2 maleate, cyclohexylamine benzoate, N-methylmorpholine 1/2 tartrate, ethylenediamine diacetic acid. Salts (ethylenediamine diacetate), ethylenediamine dipropionate, propylenediamine diacetate, aminoethylpiperidine diacetate.
  • the combination thereof is preferably, for example, a combination of piperidine and acetic acid.
  • the reaction in Step C can be performed by stirring the reaction mixture at an appropriate temperature (for example, 0 ° C. to 80 ° C.) for a certain time (for example, 0.1 to 30 hours).
  • an appropriate temperature for example, 0 ° C. to 80 ° C.
  • a certain time for example, 0.1 to 30 hours.
  • Examples of the double bond reduction reaction in Step D include heterogeneous reduction or homogeneous catalytic reduction.
  • the heterogeneous reduction include hydrogen-platinum dioxide, hydrogen-platinum / carbon, hydrogen-palladium / carbon, hydrogen-palladium hydroxide / carbon, hydrogen-palladium black, hydrogen-palladium / barium sulfate, hydrogen-Raney nickel, Reduction with hydrogen-copper chromite, hydrogen-rhodium / carbon, hydrogen-rhodium / alumina, hydrogen-ruthenium dioxide, hydrogen-ruthenium / carbon, formic acid-palladium / carbon, formic acid-palladium hydroxide / carbon, formic acid-palladium black It is done.
  • Examples of homogeneous catalytic reduction include hydrogen-chlorotris (triphenylphosphine) rhodium (I), hydrogen-chlorotris (triparatolylphosphine) rhodium (I), hydrogen-chlorotris (tripamethoxyphenylphosphine) rhodium (I), hydrogen -Hydridocarbonyltris (triphenylphosphine) rhodium (I), hydrogen-rhodium acetate (II), hydrogen-ruthenium acetate (II), hydrogen-chlorohydridotris (triphenylphosphine) ruthenium (II), hydrogen-carboxylate hydride Tris (triphenylphosphine) ruthenium (II), hydrogen-hydridocarbonyltris (triphenylphosphine) iridium (I), hydrogen-platinum (II) -tin chloride complex, hydrogen-pent
  • the reduction reaction is carried out using a metal hydride reagent (sodium borohydride, lithium borohydride, sodium borohydride-pyridine complex, sodium borohydride-picoline complex, sodium borohydride-tetrahydrofuran complex, triethylsilane, etc.). Can also be used.
  • the reduction reaction can be carried out by stirring the reaction mixture at an appropriate temperature (eg, ⁇ 100 ° C. to 50 ° C.) for a certain time (eg, 0.1 hour to 20 hours) at normal pressure or under pressure.
  • the hydrogenolysis reaction of R 1 in step D can be performed using an appropriate hydrogen source in the presence of a catalyst.
  • the catalyst may be a heterogeneous catalyst or a homogeneous catalyst.
  • the heterogeneous catalyst include platinum dioxide, platinum / carbon, palladium / carbon, palladium hydroxide / carbon, palladium black, and Raney nickel.
  • homogeneous catalysts examples include chlorotris (triphenylphosphine) rhodium (I), chlorotris (triparatolylphosphine) rhodium (I), chlorotris (tripamethoxyphenylphosphine) rhodium (I), hydridocarbonyltris (triphenylphosphine)
  • chlorotris triphenylphosphine
  • chlorotris triparatolylphosphine
  • chlorotris tripamethoxyphenylphosphine
  • rhodium (I) examples include rhodium (I), rhodium acetate (II), ruthenium acetate (II), chlorohydridotris (triphenylphosphine) ruthenium (II), and carboxylate hydridotris (triphenylphosphine) ruthenium (II).
  • Examples of the hydrogen source include hydrogen, formic acid, ammonium formate, sodium formate, formic acid-triethylamine, triethylsilane, tetramethyldisiloxane, and polymethylhydrosiloxane.
  • the hydrogenolysis reaction can be carried out by stirring the reaction mixture at an appropriate temperature (for example, 0 ° C. to 100 ° C.) for a certain time (for example, 0.1 to 20 hours) at normal pressure or under pressure. .
  • Step D when the double bond reduction reaction and R 1 hydrogenolysis reaction are performed, either one may be performed at the same time or the first reaction may be performed first. When performing two reactions simultaneously, it is preferable from the point of efficiency to perform by one reaction operation.
  • reaction solvent used in Steps C and D examples include ether solvents (ether, tetrahydrofuran, dioxane, dimethoxyethane, cyclopentyl methyl ether, methyl tert-butyl ether, etc.), aromatic hydrocarbon solvents (benzene, toluene, xylene).
  • ether solvents ether, tetrahydrofuran, dioxane, dimethoxyethane, cyclopentyl methyl ether, methyl tert-butyl ether, etc.
  • aromatic hydrocarbon solvents benzene, toluene, xylene
  • Examples of the mixed solvent of at least two organic solvents include a mixed solvent of 2-propanol and toluene, a mixed solvent of methanol and benzene, a mixed solvent of ethanol and xylene, and a mixed solvent of n-propanol and chlorobenzene.
  • Water may be used, or a mixed solvent of water and the above organic solvent (may be a mixed solvent of at least two organic solvents) may be used.
  • reaction solvent used in Step C examples include water, acetate solvents (methyl acetate, ethyl acetate, isopropyl acetate, etc.) and aromatic hydrocarbon solvents (benzene, toluene, xylene, quinoline, chlorobenzene, etc.).
  • acetate solvent is particularly preferably ethyl acetate
  • aromatic hydrocarbon solvent is particularly preferably toluene
  • the mixed solvent is particularly preferably a mixed solvent of water, ethyl acetate and toluene.
  • the solvent composition (volume ratio of water, acetate ester solvent and aromatic hydrocarbon solvent) is, for example, 3 to 5: 2. -4: 4-6 are preferable, 7-9: 5-7: 9-11 are more preferable, and 11-13: 8-10: 14-16 are more preferable.
  • the solvent compositions shown in Table 1-1 and Table 1-2 are also given as specific examples of preferable solvent compositions.
  • the reaction solvent is preferably, for example, the above organic solvent (may be a mixed solvent of at least two kinds of organic solvents), 2,2, It is particularly preferred to use 2-trifluoroethanol alone.
  • examples of the reaction solvent include water and the above organic solvent (may be a mixed solvent of at least two kinds of organic solvents).
  • a mixed solvent of water, an acetate ester solvent (methyl acetate, ethyl acetate, isopropyl acetate, etc.) and an aromatic hydrocarbon solvent (benzene, toluene, xylene, quinoline, chlorobenzene, etc.) is more preferable, and water A mixed solvent of ethyl acetate and toluene is particularly preferable.
  • reaction solvent used in Step D examples include, for example, acetate solvents (methyl acetate, ethyl acetate, isopropyl acetate, etc.), aromatic hydrocarbon solvents (benzene, toluene, xylene, quinoline, chlorobenzene, etc.), and alcohol solvents.
  • acetate solvents methyl acetate, ethyl acetate, isopropyl acetate, etc.
  • aromatic hydrocarbon solvents benzene, toluene, xylene, quinoline, chlorobenzene, etc.
  • alcohol solvents examples include, for example, acetate solvents (methyl acetate, ethyl acetate, isopropyl acetate, etc.), aromatic hydrocarbon solvents (benzene, toluene, xylene, quinoline, chlorobenzene, etc.), and alcohol solvents.
  • Solvent methanol, ethanol, trifluoroethanol, n-propanol, 2-propanol, n-butanol, sec-butanol, t-butanol, pentanol, hexanol, cyclopropanol, cyclobutanol, cyclopentanol, cyclohexanol, ethylene glycol 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol and the like.
  • the acetate solvent is particularly preferably ethyl acetate
  • the aromatic hydrocarbon solvent is particularly preferably toluene
  • the alcohol solvent is particularly preferably 2-propanol
  • the mixed solvent is ethyl acetate, toluene and 2
  • a mixed solvent of -propanol is particularly preferred.
  • the solvent composition volume ratio of the acetate ester solvent, the aromatic hydrocarbon solvent and the alcohol solvent is, for example, 2 -4: 4-6: 8-15 are preferred, 5-7: 9-11: 20-26 are more preferred, and 8-10: 14-16: 44-48 are even more preferred.
  • Suitable catalysts (bases and / or acids) in this case are, for example, as shown in the following tables (Table 1-1, Table 1-2).
  • Table 1-1, Table 1-2 In the table below, “CPME” represents cyclopentyl methyl ether and “MTBE” represents methyl tert-butyl ether.
  • Room temperature means 15 ° C. to 25 ° C.
  • Examples of the phosphate buffer (pH 6.5) include those having the following composition.
  • sodium citrate buffer pH 5.1, pH 4.3
  • sodium citrate buffer composition Potassium dihydrogen phosphate: about 2.6 w / v%
  • Sodium hydroxide about 0.2 w / v%
  • reaction solvent is preferably, for example, 2,2,2-trifluoroethanol.
  • reaction solvent used in Step C is a mixed solvent of water, an acetate ester solvent and an aromatic hydrocarbon solvent (for example, a mixed solvent of water, ethyl acetate and toluene)
  • the reaction in Step C is completed.
  • the aqueous layer is removed from the subsequent mixture to obtain an organic layer, and an alcohol solvent (for example, 2-propanol) is added without washing, purification, etc., and this is preferably subjected to Step D in view of efficiency and the like. .
  • the mixture after completion of the reaction in the step D may be directly used for the next step.
  • it is subjected to post-treatment such as washing and extraction.
  • isolation (concentration, crystallization, etc.) and purification (recrystallization, column chromatography, etc.) may be carried out before the next step.
  • the mixture after completion of the reaction is subjected to post-treatment (washing, extraction, etc.), and is further subjected to isolation (concentration, crystallization, etc.) and subjected to step E.
  • reaction solvent used in Step D is a mixed solvent of an acetate ester solvent, an aromatic hydrocarbon solvent and an alcohol solvent (for example, a mixed solvent of ethyl acetate, toluene and 2-propanol)
  • the mixture after completion of the reaction of D may be used as it is for the next step (for example, step E), or may be used for the next step (for example, step E) after performing post-treatment such as filtration, washing, and extraction. (If post-treatment is performed, further isolation and purification may be performed), but after performing post-treatment such as filtration, washing, and extraction, the next step (for example, step E) is performed without isolation and purification. ) Is preferably used.
  • step D in addition to the compound of general formula (VI), for example, general formula (VI ′): [Wherein R 2 , R a , R b , R c and R d have the same meanings as described above. ] (The keto-enol tautomer of the compound of the general formula (VI)) may be obtained. In this case, the compound of the general formula (VI ′) may be used for the next step without removing the compound. Good.
  • Step D the compound of the general formula (VI) is represented by the general formula (Va): [Wherein R 2 , R a , R b , R c and R d have the same meanings as described above. ] And / or general formula (Vb): [Wherein, R 1 , R 2 , R a , R b , R c and R d have the same meanings as described above. ] It may be obtained via the compound of
  • the method of the present invention for producing a compound represented by the general formula (VI) may comprise steps A to D.
  • the method of the present invention for producing the compound represented by the general formula (VII) or a pharmaceutically acceptable salt thereof may further include steps E to G.
  • step E in the presence of an acid, the compound represented by the general formula (VI) is converted to the general formula (VIII): [Wherein, R 11 has the same meaning as described above. ] Is reacted with a compound represented by the general formula (IX): [Wherein R 2 , R c and R 11 have the same meanings as described above. ] Or a pharmaceutically acceptable salt thereof (a salt with an acid) or an acid adduct.
  • Examples of the acid include inorganic acids (hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, etc.), sulfonic acids (methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, etc.), carboxylic acids (formic acid, Acetic acid, oxalic acid, maleic acid, fumaric acid, citric acid, malic acid, succinic acid, malonic acid, gluconic acid, mandelic acid, benzoic acid, salicylic acid, fluoroacetic acid, trifluoroacetic acid, tartaric acid, propionic acid, glutaric acid, etc.) Sulfonic acid is preferable, and methanesulfonic acid is particularly preferable.
  • inorganic acids hydroochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, etc.
  • sulfonic acids methanesulfonic acid,
  • a solvent inert to the reaction can be used.
  • solvents include ether solvents (ether, tetrahydrofuran, dioxane, dimethoxyethane, cyclopentyl methyl ether, etc.), aromatic hydrocarbon solvents (benzene, toluene, xylene, quinoline, chlorobenzene, etc.), aliphatic carbonization, and the like.
  • Hydrogen solvents pentane, hexane, heptane, octane, cyclohexane, etc.
  • amide solvents N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, etc.
  • alcohol solvents methanol, ethanol, 2 , 2,2-trifluoroethanol, n-propanol, 2-propanol, n-butanol, sec-butanol, pentanol, hexanol, cyclopropanol, cyclobutanol, cyclopentanol, cyclohexanol, ethyl Glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, etc.), acetate solvents (methyl acetate, ethyl acetate, isopropyl acetate, etc.), acet
  • An acetate solvent is also preferable, and ethyl acetate is particularly preferable.
  • an ethyl acetate solvent such as ethyl
  • step E can be carried out without removing the remaining solvent.
  • the reaction temperature is usually ⁇ 20 ° C. to 150 ° C., preferably ⁇ 10 ° C. to 100 ° C.
  • the reaction time is appropriately determined depending on the reaction temperature and the like, but is usually 2 hours to 20 hours, preferably 2 hours to 10 hours.
  • the target product can be precipitated as crystals by adding a solvent to the reaction mixture.
  • a solvent include a combination of water and an alcohol solvent, and a combination of water and ethanol is preferable.
  • 2-propanol may be further combined.
  • seed crystal can be added to promote crystal precipitation.
  • Step F is a compound represented by the general formula (IX) or a pharmaceutically acceptable salt or acid adduct thereof in the presence of a base, XY [wherein X is as defined above, and Y is Represents a halogen atom.
  • Examples of the base include weakly basic inorganic salts (sodium carbonate, potassium carbonate, cesium carbonate, etc.), metal hydrides (sodium hydride, potassium hydride, etc.), and potassium carbonate, cesium carbonate, sodium hydride. preferable.
  • reaction solvent examples include ether solvents (tetrahydrofuran, diethyl ether, etc.) and N, N-dimethylformamide, with tetrahydrofuran and N, N-dimethylformamide being preferred.
  • the reaction temperature is appropriately determined depending on the reaction solvent and the like.
  • X is an electron-deficient heteroaryl group (pyridyl group, pyrimidinyl group, etc.)
  • it is usually 60 ° C. to 150 ° C., preferably 70 ° C. to 100 ° C. is there.
  • X is an electron-rich heteroaryl group (thiazolyl group or the like)
  • it is usually 90 ° C. to 200 ° C., preferably 100 ° C. to 120 ° C.
  • X is R 3 R 4 NCO—
  • it is usually 0 ° C. to 50 ° C., preferably 0 ° C. to 30 ° C.
  • the reaction time is appropriately determined depending on the reaction temperature and the like, but is usually 30 minutes to 5 hours, preferably 40 minutes to 2 hours.
  • X is an electron-rich heteroaryl group (such as thiazolyl group), for example, a monovalent copper salt (such as copper (I) iodide, CuPF 6 , copper (I) trifluoromethanesulfonate), preferably iodide
  • a monovalent copper salt such as copper (I) iodide, CuPF 6 , copper (I) trifluoromethanesulfonate
  • the reaction may be performed while irradiating microwaves in the presence of copper (I).
  • step G the compound represented by the general formula (X) is converted into the general formula (XI): [Wherein, R 16 and R 17 are as defined above, and Z represents a leaving group. ] Is reacted with a compound represented by the general formula (VII ′): [Wherein R 2 , R c , R 11 , X, R 16 and R 17 have the same meanings as described above. ] Is a step of obtaining a compound represented by the formula:
  • Examples of the leaving group represented by Z include a halogen atom and a 2-oxazolidinone-3-yl group.
  • a halogen atom is preferable, and a chlorine atom is particularly preferable.
  • reaction solvent examples include methylene chloride, acetonitrile, and N, N-dimethylformamide, and acetonitrile and N, N-dimethylformamide are preferable from the viewpoint of solubility of the compound of the general formula (X).
  • the reaction may be performed in the presence of a base.
  • a base organic amines (pyridine, triethylamine, diisopropylethylamine, etc.) are preferable.
  • the reaction temperature is usually 15 ° C to 120 ° C, preferably 20 ° C to 85 ° C.
  • the reaction time is usually 1 hour to 2 days, preferably 2 hours to 24 hours.
  • a compound of the general formula (VII) in which R 15 is a C 1-6 alkyl group can be obtained by C 1-6 alkylation of a compound of the formula (VII ′).
  • C 1-6 alkylation is described, for example, in Bioorganic Medicinal Chemistry 2005, 13, 1393-1402, Organic Preparations and Procedures International 2004, 36, 347-351, or Journal of Medicinal 50-47. Can be done based on.
  • a pharmaceutically acceptable salt of the compound of the general formula (VII) can be produced by contacting or reacting the compound with an acid or a base that can be used for producing a pharmaceutical product.
  • salts include inorganic acid salts (hydrochloride, hydrobromide, hydroiodide, sulfate, phosphate, etc.) and sulfonates (methanesulfonate, benzenesulfonate).
  • carboxylates formate, acetate, oxalate, maleate, fumarate, citrate, malate, succinate, malonate, gluconate, Mandelate, benzoate, salicylate, fluoroacetate, trifluoroacetate, tartrate, propionate, glutarate, etc.
  • alkali metal salts lithium, sodium, potassium, cesium, rubidium) Salt
  • alkaline earth metal salt magnesium salt, calcium salt, etc.
  • ammonium salt ammonium salt, alkyl ammonium salt, dialkyl ammonium salt, trialkyl ammonium
  • Moniumu salts tetraalkyl ammonium salts and the like
  • alkali metal salts are preferred
  • potassium salts are particularly preferred.
  • nuclear magnetic resonance (NMR) analysis was performed using a nuclear magnetic resonance apparatus JNM-ECP500 (manufactured by JEOL).
  • Mass spectrometry (MS) was performed using a mass spectrometer LCT Premier XE (manufactured by Waters).
  • N, N-dimethylformamide is abbreviated as “DMF”, tetrahydrofuran as “THF”, high performance liquid chromatography as “HPLC”, and trifluoroacetic acid as “TFA”.
  • Room temperature means 15 ° C. to 25 ° C.
  • Step 1 Synthesis of 2-acetylamino-5-chloro-3-fluoropyridine: Under a nitrogen atmosphere, DMF (200 mL) and THF (830 mL) were added to acetamide (94.8 g, 1.61 mol), and the temperature was raised to 50 ° C. A 40 wt% sodium hexamethyldisilazide THF solution (629 g, 1.37 mol) was added dropwise to the obtained solution, and the mixture was stirred at the same temperature for 2 hours. 5-Chloro-2,3-difluoropyridine (100.0 g, 0.67 mol) was added, THF (20 mL) was added, and the mixture was stirred at the same temperature for 3 hr.
  • Step 2 Synthesis of 2-acetylamino-5-chloro-3-fluoro-4-formylpyridine: 2-acetylamino-5-chloro-3-fluoropyridine (70.0 g, 0.37 mol) and 4-formylmorpholine (128.2 g, 1.11 mol) were dissolved in THF (840 mL) at room temperature under a nitrogen atmosphere. did. This solution was cooled to ⁇ 20 ° C., a THF solution (595 g, 0.85 mol) of 24 wt% lithium hexamethyldisilazide was added dropwise, and the mixture was stirred at the same temperature for 5.5 hours.
  • This reaction solution was added to an aqueous solution in which citric acid monohydrate (257 g) and sodium chloride (70 g) were dissolved in water (420 mL) at 0 ° C. with stirring.
  • the organic layer was separated and washed sequentially with 50 wt% dipotassium hydrogen phosphate aqueous solution (350 mL) and 20 wt% brine (350 mL) to obtain an organic layer (1458 g).
  • a part (292 g) of this organic layer was collected for analysis, and the remaining (1166 g) was evaporated under reduced pressure.
  • THF (350 mL) was added to the residue, and the solvent was distilled off under reduced pressure.
  • Step 3 Synthesis of 2-[(2-acetylamino-3-fluoropyridin-4-yl) methyl] -3-oxobutanoic acid ethyl ester: Under a nitrogen atmosphere, the solid product of Step 2 (81.4 g) was dissolved in 2,2,2-trifluoroethanol (448 mL), piperidine (4.4 g, 51.7 mmol), acetic acid (3.1 g, 51 0.7 mmol) and ethyl 3-oxobutanoate (37.0 g, 0.28 mol) were added, and the mixture was heated to 50 ° C. and stirred for 3 hours.
  • Step 4 Synthesis of 3- (3-Fluoro-2-aminopyridin-4-ylmethyl) -7-hydroxy-4-methyl-2-oxo-2H-1-benzopyran methanesulfonate: Under a nitrogen atmosphere, the oily product of Step 3 (15.0 g) was dissolved in 2,2,2-trifluoroethanol (33 mL). Resorcinol (5.3 g, 47.9 mmol) and methanesulfonic acid (11.7 mL, 181 mmol) were added to this solution at 24 ° C., followed by stirring at 90 ° C. for 4 hours.
  • Step 5 Synthesis of 4-methyl-3- (3-fluoro-2-aminopyridin-4-ylmethyl) -7- (pyrimidin-2-yloxy) -2-oxo-2H-1-benzopyran: Under a nitrogen atmosphere, 3- (3-fluoro-2-aminopyridin-4-ylmethyl) -7-hydroxy-4-methyl-2-oxo-2H-1-benzopyran methanesulfonate (7.6 g, 19.2 mmol) and 2-Bromopyrimidine (4.0 g, 24.9 mmol) was dissolved in DMF (122 mL), potassium carbonate (5.8 g, 42.2 mmol) was added, and the mixture was stirred at 115 ° C. for 3.5 hours.
  • Step 6 Synthesis of 3- ⁇ 2- (methylaminosulfonyl) amino-3-fluoropyridin-4-ylmethyl ⁇ -4-methyl-7- (pyridin-2-yloxy) -2-oxo-2H-1-benzopyran: Under a nitrogen atmosphere, 4-methyl-3- (3-fluoro-2-aminopyridin-4-ylmethyl) -7- (pyrimidin-2-yloxy) -2-oxo-2H-1-benzopyran (1.7 g, 4 0.5 mmol) was suspended in DMF (18 mL).
  • Step 7 Synthesis of 3- ⁇ 2- (methylaminosulfonyl) amino-3-fluoropyridin-4-ylmethyl ⁇ -4-methyl-7- (pyridin-2-yloxy) -2-oxo-2H-1-benzopyran potassium salt: Under a nitrogen atmosphere, 3- ⁇ 2- (methylaminosulfonyl) amino-3-fluoropyridin-4-ylmethyl ⁇ -4-methyl-7- (pyridin-2-yloxy) -2-oxo-2H-1-benzopyran ( 1.6 g, 3.4 mmol) was suspended in THF (10 mL) and water (3 mL) was added.
  • Resorcinol 59 mg, 0.53 mmol
  • methanesulfonic acid 130 ⁇ L, 2.0 mmol
  • the temperature was raised to room temperature, and the solvent was distilled off under reduced pressure to obtain a crude product.
  • This was purified by column chromatography [eluent: dichloromethane / methanol (20/1 to 10/1)] to give the title compound [3- (3-fluoro-2-acetylaminopyridin-4-ylmethyl) -7-hydroxy.
  • Step 1 Synthesis of 2-acetylamino-5-chloro-3-fluoropyridine: DMF (14 mL) and THF (44 mL) were added to acetamide (6.6 g, 112 mmol) under a nitrogen atmosphere, and the temperature was raised to 50 ° C. To the resulting solution was added dropwise a 1.9M sodium hexamethyldisilazide THF solution (51 mL, 96 mmol), and the mixture was stirred at the same temperature for 3 hours. 5-Chloro-2,3-difluoropyridine (7.0 g) was added, THF (1.4 mL) was added, and the mixture was stirred at the same temperature for 3 hr.
  • Step 2 Synthesis of 2-acetylamino-5-chloro-3-fluoro-4-formylpyridine: Under a nitrogen atmosphere, 2-acetylamino-5-chloro-3-fluoropyridine (6.0 g) and DMF (7.4 mL, 95 mmol) were dissolved in THF (60 mL). The solution was cooled to ⁇ 20 ° C. and 1.0 M lithium hexamethyldisilazide in THF (127 mL, 127 mmol) was added dropwise, followed by stirring at the same temperature for 5 hours.
  • This reaction solution was added to an aqueous solution in which citric acid monohydrate (33 g) and sodium chloride (7.5 g) were dissolved in water (48 mL) at 0 ° C. with stirring. The temperature was raised to room temperature, the organic layer was separated, and the organic layer was washed successively with 40 wt% dipotassium hydrogenphosphate aqueous solution (30 mL) and 20 wt% brine (30 mL), and the solvent was distilled off under reduced pressure. THF (30 mL) was added to the residue, and the solvent was distilled off under reduced pressure. Again, THF (30 mL) was added to the residue, and the solvent was distilled off under reduced pressure to obtain a solid containing the title compound (7.3 g). The product was used in the next step without further purification. 1 H-NMR and MS spectra were consistent with those of the title compound obtained in Example 1 (Step 2).
  • Steps 3 and 4 Synthesis of 3- (3-Fluoro-2-aminopyridin-4-ylmethyl) -7-hydroxy-4-methyl-2-oxo-2H-1-benzopyran methanesulfonate: Under a nitrogen atmosphere, the solid product of Step 2 (7.3 g) was added to acetonitrile (45 mL), piperidine (0.5 mL, 5.2 mmol), acetic acid (0.3 mL, 5.2 mmol) and ethyl 3-oxobutanoate (3 .6 mL, 29 mmol) was added at room temperature, and the mixture was heated to 50 ° C. and stirred for 4.5 hours.
  • reaction solution (47 g) was cooled to room temperature, a part of the reaction solution (5 g) was collected, and the remaining reaction solution (42 g) was added to 2-propanol (36 mL), triethylamine (69 mL, 496 mmol) and formic acid ( 16 mL, 409 mmol) in 2-propanol (78 mL) and 20% Pd (OH) 2 carbon (3.9 g, water content 50%) were added, and the mixture was heated to 50 ° C. and stirred for 5.5 hours. . After cooling to room temperature, the reaction mixture was filtered through celite, and the residue was washed with ethyl acetate (386 mL).
  • This oil was dissolved in 2,2,2-trifluoroethanol (15 mL), resorcinol (2.4 g, 21 mmol) and methanesulfonic acid (5.3 mL, 81 mmol) were added at room temperature, Stir for hours.
  • the reaction mixture was cooled to room temperature, ethanol (15 mL) and water (4.9 mL) were added, and the mixture was further stirred at 95 ° C. for 3 hr.
  • the solution was cooled to 55 ° C., 2-propanol (47 mL) was added, and the mixture was further cooled to room temperature and stirred for 1.5 hours.
  • Step 5 Synthesis of 4-methyl-3- (3-fluoro-2-aminopyridin-4-ylmethyl) -7- (pyrimidin-2-yloxy) -2-oxo-2H-1-benzopyran: Under a nitrogen atmosphere, potassium carbonate (2.3 g, 17 mmol) was added to a DMF (48 mL) solution of the solid product of Step 4 (3.0 g) and 2-bromopyrimidine (1.6 g, 9.8 mmol) at 115 ° C. For 2.5 hours. After cooling the reaction solution to 28 ° C., water (48 mL) was added dropwise at the same temperature over 5 minutes, and further cooled to 0 ° C. and stirred for 2 hours.
  • a saturated aqueous ammonium chloride solution (4.5 mL) and water (4.5 mL) were sequentially added to the reaction mixture, and the mixture was extracted with ethyl acetate (9.0 mL).
  • the aqueous layer was extracted twice with ethyl acetate (9.0 mL), and the combined organic layer was washed with brine (4.5 mL) and dried over anhydrous sodium sulfate.
  • a part of the organic layer (22.1%) was collected for 1 H-NMR determination, and then the remaining organic layer was evaporated under reduced pressure.
  • a mixed solvent (7.0 mL) of heptane and t-butyl methyl ether (15: 1) was added to the residue, and the mixture was suspended and stirred.
  • Example 7 Synthesis of 2-acetylamino-5-chloro-3-fluoropyridine: Acetamide (4.1 g, 70 mmol) was dissolved in DMF (30 mL) under a nitrogen atmosphere. To this solution, sodium hydride (content 50 to 72%, 2.4 g, 60 mmol (with a content of 60%)) was added in three portions at 0 ° C. 5-Chloro-2,3-difluoropyridine (3.0 g, 20 mmol) was added dropwise at 0 ° C., and the mixture was stirred for 3 hours while warming to room temperature.
  • Example 10 Synthesis of 2-[(2-acetylamino-3-fluoropyridin-4-yl) methyl] -3-oxobutanoic acid ethyl ester: Under a nitrogen atmosphere, a solid product (containing 2-acetylamino-5-chloro-3-fluoro-4-formylpyridine) (114 mg) (114 mg) obtained in the same manner as in Steps 1 and 2 of Example 1 was added to acetonitrile (0.
  • Example 11 Synthesis of 2-[(2-acetylamino-3-fluoropyridin-4-yl) methyl] -3-oxobutanoic acid ethyl ester: Under a nitrogen atmosphere, the solid product (containing 2-acetylamino-5-chloro-3-fluoro-4-formylpyridine) (114 mg) obtained in the same manner as in Steps 1 and 2 of Example 1 (114 mg) was added to 2, 2, 2-Trifluoroethanol (0.4 mL), piperidine (5 ⁇ L, 0.046 mmol), acetic acid (3 ⁇ L, 0.046 mmol) and ethyl 3-oxobutanoate (34 ⁇ L, 0.27 mmol) were added, and the temperature was raised to 50 ° C.
  • Example 12 Reduction of 2-[(2-acetylamino-5-chloro-3-fluoropyridine) methylene] -3-oxobutanoic acid ethyl ester by hydrogenation: 2-[(2-acetylamino-5-chloro-3-fluoropyridine) methylene] -3-oxobutanoic acid ethyl ester (13 mg) obtained in the same manner as in Example 2 was added to methanol (0.2 mL) and ethyl acetate ( (0.02 mL) in a mixed solvent. To this solution, 10% Pd (OH) 2 carbon (PE-Type, N.
  • Step 1 and 2 Synthesis of 2-acetylamino-5-chloro-3-fluoro-4-formylpyridine: In the same manner as in Steps 1 and 2 of Example 1, a solid (3.43 g) containing the title compound was obtained. The product was used in the next step without further purification.
  • Step 3 Synthesis of 2-[(2-acetylamino-3-fluoropyridin-4-yl) methyl] -3-oxobutanoic acid ethyl ester: Under a nitrogen atmosphere, water (8.0 mL) was added to the solid product of Step 2 (3.43 g), and further with stirring, 3-oxobutanoic acid (1.32 g, 10.1 mmol), ethylenediamine diacetate (830 mg, 4 .61 mmol), toluene (10.0 mL) and ethyl acetate (6.0 mL) were added, and the mixture was heated to 40 ° C. and stirred for 5 hours.
  • Step 4 Synthesis of 3- (3-Fluoro-2-aminopyridin-4-ylmethyl) -7-hydroxy-4-methyl-2-oxo-2H-1-benzopyran methanesulfonate: Under a nitrogen atmosphere, the oily product of Step 3 (2.70 g) was dissolved in ethyl acetate (5.47 mL) and resorcinol (1.32 g, 12.0 mmol) and methanesulfonic acid (8.20 mL, 126 mmol) with stirring. ) was added at room temperature, and the mixture was heated to 50 ° C. and stirred for 4 hours.
  • the reaction solution was cooled to room temperature and allowed to stand for 16 hours, water (2.7 mL) was added, and the mixture was stirred at 80 ° C. for 7 hours.
  • the reaction solution was cooled to room temperature, allowed to stand for 16 hours, heated to 70 ° C., and seed crystals (27.4 mg) were added.
  • water (5.5 mL) was added and stirred for 1 hour, and ethanol (13.7 mL) was further added and stirred for 30 minutes. After cooling to 25 ° C., ethanol (38.2 mL) was added and stirred for 30 minutes, and the precipitated crystals were collected by filtration.
  • Step 1 and 2 Synthesis of 2-acetylamino-5-chloro-3-fluoro-4-formylpyridine: In the same manner as in Steps 1 and 2 of Example 1, a solid (3.44 g) containing the title compound was obtained. The product was used in the next step without further purification.
  • Step 3 Synthesis of 2-[(2-acetylamino-3-fluoropyridin-4-yl) methyl] -3-oxobutanoic acid ethyl ester: Under a nitrogen atmosphere, water (8.0 mL) was added to the solid product of Step 2 (3.44 g), and further with stirring, 3-oxobutanoic acid (1.35 g, 10.4 mmol), ethylenediamine diacetate (852 mg, 4 .73 mmol), toluene (10.0 mL) and ethyl acetate (6.0 mL) were added, and the mixture was heated to 40 ° C. and stirred for 5 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Pyridine Compounds (AREA)

Abstract

 本発明は、一般式(VII): [式中、Rは水素原子又はハロゲン原子を表し、RはC1-6アルキル基を表し、Xはヘテロアリール基等から選択される基を表し、R11は、水素原子、ハロゲン原子、C1-6アルキル基等から選択される原子又は基を表し、R16及びR17は各々独立に、水素原子、C1-6アルキル基等から選択される原子又は基を表し、R15は水素原子又はC1-6アルキル基を表す。] で表される化合物若しくはその薬学上許容し得る塩又はその合成中間体を製造するための新規の方法を提供する。

Description

クマリン誘導体の製造方法
 本発明は、クマリン誘導体の製造方法に関する。
 一般式(VII):
Figure JPOXMLDOC01-appb-C000017
[式中、Rは水素原子又はハロゲン原子を表し、RはC1-6アルキル基を表し、Xはヘテロアリール基又はR1314NCO-を表し、R11は、水素原子、ハロゲン原子、シアノ基、C1-6アルキル基、C2-7アルケニル基、カルバモイル基又はC2-7アルキニル基(該C2-7アルキニル基はC1-4アシル基で置換されていてもよい。)を表し、R13、R14、R16及びR17は各々独立に、水素原子、C1-6アルコキシ基、C3-8シクロアルキル基又はC1-6アルキル基(該C1-6アルキル基は、シアノ基、ハロゲン原子、ヒドロキシ基、C1-6アルコキシ基又は-NR2324で置換されていてもよい。)を表し、或いはR13とR14の組合せ及びR16とR17の組合せは各々独立に、結合する窒素原子と一緒になって、少なくとも1個の窒素原子を含む4~6員のヘテロ環基を形成していてもよく、R15、R23及びR24は各々独立に水素原子又はC1-6アルキル基を表す。]
で表される化合物又はその薬学上許容し得る塩(以下、場合により「一般式(VII)のクマリン誘導体」という。)は、抗腫瘍活性等の薬理活性を有することが知られている(特許文献1、2参照)。
 一般式(VII)のクマリン誘導体の製造方法は、特許文献1、2に記載されている。特許文献1、2には、例えば、下記スキーム[スキーム中、DMFはN,N-ジメチルホルムアミドを表し、TBSはtert-ブチルジメチルシリル基を表し、dbaはジベンジリデンアセトンを表し、BINAPは2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチルを表す。また、構造式の下に付した数値(%)又は「quant.」は該化合物の収率を示す。]に示される方法が記載されている(特許文献1、2の「化合物1j-2-16-2K」の製造例参照)。
Figure JPOXMLDOC01-appb-C000018
WO2007/091736 WO2009/014100
 一般式(VII)のクマリン誘導体は特許文献1、2に記載の方法で製造することができるが、特許文献1、2に記載の方法では、ホルミル化反応及び還元反応の後、意図せざる反応を抑制するために、ヒドロキシ基について保護基の導入・除去工程を実施する必要がある。また、ホルミル化反応の際に、反応制御の観点から超低温条件(例えば、-95℃~-65℃)が必要となる。さらに、アルキル化反応(上記スキームの7番目の工程)では、効率的な合成の観点からアセト酢酸エチルを過剰量使用することが好ましいが、その場合、残存試薬の除去という煩雑な操作が必要となる。
 本発明は、このような事情に鑑みてなされたものであり、簡便な操作で効率的に一般式(VII)のクマリン誘導体又はその合成中間体を製造する方法を提供することを目的とする。
 本発明は、一般式(VI):
Figure JPOXMLDOC01-appb-C000019
[式中、Rは水素原子又はハロゲン原子を表し、R及びRは各々独立に、水素原子、又はアミノ基の保護基を表し、或いはR及びRは一緒になってアミノ基の保護基を形成していてもよく、R及びRは各々独立にC1-6アルキル基を表す。]
で表される化合物を製造する方法であって、下記工程A~Dを含む方法を提供する。
 また、本発明は、一般式(VII):
Figure JPOXMLDOC01-appb-C000020
[式中、R及びRは上記と同義であり、Xはヘテロアリール基又はR1314NCO-を表し、R11は、水素原子、ハロゲン原子、シアノ基、C1-6アルキル基、C2-7アルケニル基、カルバモイル基又はC2-7アルキニル基(該C2-7アルキニル基はC1-4アシル基で置換されていてもよい。)を表し、R13、R14、R16及びR17は各々独立に、水素原子、C1-6アルコキシ基、C3-8シクロアルキル基又はC1-6アルキル基(該C1-6アルキル基は、シアノ基、ハロゲン原子、ヒドロキシ基、C1-6アルコキシ基又は-NR2324で置換されていてもよい。)を表し、或いはR13とR14の組合せ及びR16とR17の組合せは各々独立に、結合する窒素原子と一緒になって、少なくとも1個の窒素原子を含む4~6員のヘテロ環基を形成していてもよく、R15、R23及びR24は各々独立に水素原子又はC1-6アルキル基を表す。]
で表される化合物又はその薬学上許容し得る塩を製造する方法であって、下記工程A~Dを含む方法を提供する。
 工程A:
 RNH[式中、R及びRは上記と同義である。]を、一般式(I):
Figure JPOXMLDOC01-appb-C000021
[式中、Rは水素原子又はハロゲン原子を表し、Halはハロゲン原子を表し、Rは上記と同義である。]
で表される化合物と反応させて、一般式(II):
Figure JPOXMLDOC01-appb-C000022
[式中、R、R、R及びRは上記と同義である。]
で表される化合物を得る工程
 工程B:
 一般式(II)で表される化合物を塩基及びホルミル化剤と反応させて、一般式(III):
Figure JPOXMLDOC01-appb-C000023
[式中、R、R、R及びRは上記と同義である。]
で表される化合物を得る工程
 工程C:
 一般式(III)で表される化合物を、一般式(IV):
Figure JPOXMLDOC01-appb-C000024
[式中、R及びRは上記と同義である。]
で表される化合物と反応させて、一般式(V):
Figure JPOXMLDOC01-appb-C000025
[式中、R、R、R、R、R及びRは上記と同義である。]
で表される化合物を得る工程
 工程D:
 一般式(V)で表される化合物を、
 (a)二重結合の還元反応(Rが水素原子の場合)、又は
 (b)二重結合の還元反応及びRの加水素分解反応(Rがハロゲン原子の場合)
に付して、一般式(VI):
Figure JPOXMLDOC01-appb-C000026
[式中、R、R、R、R及びRは上記と同義である。]
で表される化合物を得る工程
 一般式(VI)の化合物は一般式(VII)のクマリン誘導体の合成中間体であり、本発明の方法は、一般式(VII)のクマリン誘導体又はその合成中間体を製造するための新規の方法である。
 本発明の方法では、ホルミル化反応の後、ホルミル基をヒドロキシ基に変換する工程が含まれないため、保護基の導入・除去工程を実施する必要がない。また、ホルミル化反応を超低温条件で行う必要がない。また、パラジウム触媒及びホスフィン配位子を用いずに、ハロゲン原子を含窒素置換基(アミノ基又は保護されたアミノ基)に変換することができる。また、アルキル化反応(工程C)において、除去に煩雑な操作が必要となるアルキル化試薬(一般式(IV)の化合物)を過剰に使用する必要もない。さらに、本発明の方法では、工程C及びDをワンポットで連続的に実施することが可能である。このように、本発明の方法によれば、従来の方法よりも少ない工程数で一般式(VI)の化合物及び一般式(VII)のクマリン誘導体を合成することが可能となる。また、本発明の方法によれば、簡便な操作で効率的に一般式(VII)のクマリン誘導体又はその合成中間体を製造することが可能となる。
 一般式(VI)で表される化合物を製造するための本発明の方法は、上記工程A~Dからなるものであってもよい。
 一般式(VII)で表される化合物又はその薬学上許容し得る塩を製造するための本発明の方法は、さらに下記工程E~Gを含んでもよい。
 工程E:
 酸の存在下、一般式(VI)で表される化合物を、一般式(VIII):
Figure JPOXMLDOC01-appb-C000027
[式中、R11は上記と同義である。]
で表される化合物と反応させて、一般式(IX):
Figure JPOXMLDOC01-appb-C000028
[式中、R、R及びR11は上記と同義である。]
で表される化合物又はその薬学上許容し得る塩若しくは酸付加物を得る工程
 工程F:
 塩基の存在下、一般式(IX)で表される化合物又はその薬学上許容し得る塩若しくは酸付加物を、X-Y[式中、Xは上記と同義であり、Yはハロゲン原子を表す。]と反応させて、一般式(X):
Figure JPOXMLDOC01-appb-C000029
[式中、R、R、R11及びXは上記と同義である。]
で表される化合物を得る工程
 工程G:
 一般式(X)で表される化合物を、一般式(XI):
Figure JPOXMLDOC01-appb-C000030
[式中、R16及びR17は上記と同義であり、Zは脱離基を表す。]
で表される化合物と反応させて、一般式(VII’):
Figure JPOXMLDOC01-appb-C000031
[式中、R、R、R11、X、R16及びR17は上記と同義である。]
で表される化合物を得る工程
 本発明により、簡便な操作で効率的に一般式(VII)のクマリン誘導体又はその合成中間体を製造する方法が提供される。
 以下、本発明の実施形態について説明する。
 本発明の方法は、一般式(VI):
Figure JPOXMLDOC01-appb-C000032
[式中、Rは水素原子又はハロゲン原子を表し、R及びRは各々独立に、水素原子、又はアミノ基の保護基を表し、或いはR及びRは一緒になってアミノ基の保護基を形成していてもよく、R及びRは各々独立にC1-6アルキル基を表す。]
で表される化合物、又は一般式(VII):
Figure JPOXMLDOC01-appb-C000033
[式中、R及びRは上記と同義であり、Xはヘテロアリール基又はR1314NCO-を表し、R11は、水素原子、ハロゲン原子、シアノ基、C1-6アルキル基、C2-7アルケニル基、カルバモイル基又はC2-7アルキニル基(該C2-7アルキニル基はC1-4アシル基で置換されていてもよい。)を表し、R13、R14、R16及びR17は各々独立に、水素原子、C1-6アルコキシ基、C3-8シクロアルキル基又はC1-6アルキル基(該C1-6アルキル基は、シアノ基、ハロゲン原子、ヒドロキシ基、C1-6アルコキシ基又は-NR2324で置換されていてもよい。)を表し、或いはR13とR14の組合せ及びR16とR17の組合せは各々独立に、結合する窒素原子と一緒になって、少なくとも1個の窒素原子を含む4~6員のヘテロ環基を形成していてもよく、R15、R23及びR24は各々独立に水素原子又はC1-6アルキル基を表す。]
で表される化合物又はその薬学上許容し得る塩を製造する方法であり、工程A~Dを含む。
 本発明において、ハロゲン原子とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。
 C1-6アルキル基とは、炭素数1~6の直鎖状及び分岐鎖状のアルキル基を意味する。C1-6アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、1-メチルプロピル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、1,2-ジメチルプロピル基、1-エチルプロピル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基が挙げられる。
 C2-7アルケニル基とは、炭素数2~7の直鎖状及び分岐鎖状のアルケニル基を意味する。C2-7アルケニル基としては、例えば、ビニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ペンテニル基、ペンタジエニル基、ヘキセニル基、ヘキサジエニル基、ヘプテニル基、へプタジエニル基、ヘプタトリエニル基が挙げられる。
 C2-7アルキニル基とは、炭素数2~7の直鎖状及び分岐鎖状のアルキニル基を意味する。C2-7アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基、ペンタジイニル基、ヘキシニル基、ヘキサジイニル基、ヘプチニル基、へプタジイニル基、ヘプタトリイニル基が挙げられる。
 C1-4アシル基とは、炭素数1~4のアシル基を意味する。C1-4アシル基としては、例えば、ホルミル基、アセチル基、n-プロピオニル基、i-プロピオニル基、ブチリル基、sec-ブチリル基(イソブチリル基)が挙げられる。
 C1-6アルコキシ基とは、アルキル部分として炭素数1~6の直鎖状又は分岐鎖状のアルキル基を有するアルキルオキシ基を意味する。C1-6アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、s-ブトキシ基、t-ブトキシ基、ペントキシ基、ヘキソキシ基が挙げられる。
 C3-8シクロアルキル基とは、3~8員環状アルキル基(該環状アルキル基は、環を構成する原子上に、炭素数1~3の直鎖状又は分岐鎖状のアルキル置換基を有していてもよい。)を意味する。無置換のC3-8シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基が挙げられる。また、置換基を有するC3-8シクロアルキル基としては、例えば、メチルシクロプロピル基、エチルシクロプロピル基、ジメチルシクロプロピル基、トリメチルシクロプロピル基、ジエチルシクロプロピル基、エチルメチルシクロプロピル基、ジメチルエチルシクロプロピル基、ジエチルメチルシクロプロピル基、メチルシクロブチル基、エチルシクロブチル基、ジメチルシクロブチル基、トリメチルシクロブチル基、テトラメチルシクロブチル基、ジエチルシクロブチル基、エチルメチルシクロブチル基、ジメチルエチルシクロブチル基、メチルシクロペンチル基、エチルシクロペンチル基、ジメチルシクロペンチル基、トリメチルシクロペンチル基、エチルメチルシクロペンチル基、メチルシクロヘキシル基、エチルシクロヘキシル基、ジメチルシクロヘキシル基、メチルヘプチル基が挙げられる。
 ヘテロアリール基とは、酸素原子、窒素原子及び硫黄原子から選択される少なくとも1種のヘテロ原子を含む5~10員芳香族ヘテロ環基(該芳香族ヘテロ環基は、環を構成する原子上に置換基を有してもよい。)を意味する。ヘテロアリール基としては、例えば、フリル基、チエニル基、ピロリル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、トリアジニル基、ベンゾフラニル基、ベンゾチエニル基、ベンゾチアジアゾリル基、ベンゾチアゾリル基、ベンゾオキサゾリル基、ベンゾオキサジアゾリル基、ベンゾイミダゾリル基、インドリル基、イソインドリル基、インダゾリル基、キノリル基、イソキノリル基、シンノリニル基、キナゾリニル基、キノキサリニル基、インドリジニル基、イミダゾピリジル基が挙げられる。
 ヘテロアリール基は、環を構成する原子上に、ハロゲン原子、C1-6アルキル基、C1-6アルコキシ基、シアノ基、アミノ基、カルバモイル基、ニトロ基、カルボキシ基、C2-7アルケニル基、C2-7アルキニル基等の置換基を有してもよい。
 少なくとも1個の窒素原子を含む4~6員ヘテロ環基とは、少なくとも1個の窒素原子を含む4~6員飽和又は不飽和環基(該飽和又は不飽和環基は、酸素原子及び/又は硫黄原子を含んでもよく、また、ベンゼン環と縮合していてもよい。また、環を構成する原子上に置換基を有してもよい。)を意味する。少なくとも1個の窒素原子を含む4~6員ヘテロ環基としては、例えば、アゼチジニル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、ピロリル基、ジヒドロピロリル基、イミダゾリル基、イミダゾリニル基、イミダゾリジニル基、ピラゾリル基、ピラゾリニル基、ピリダゾリジニル基、オキサゾリニル基、オキサゾリジニル基、モルホリニル基、チオモルホリニル基、ピリジニル基、ジヒドロピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基が挙げられる。
 少なくとも1個の窒素原子を含む4~6員ヘテロ環基は、環を構成する原子上に、ハロゲン原子、C1-6アルキル基、C1-6アルコキシ基、シアノ基、アミノ基、カルバモイル基、ニトロ基、カルボキシ基、C2-7アルケニル基、C2-7アルキニル基等の置換基を有してもよい。
工程A:
 工程Aは、RNH[式中、R及びRは上記と同義である。]を、一般式(I):
Figure JPOXMLDOC01-appb-C000034
[式中、Rは水素原子又はハロゲン原子を表し、Halはハロゲン原子を表し、Rは上記と同義である。]
で表される化合物と反応させて、一般式(II):
Figure JPOXMLDOC01-appb-C000035
[式中、R、R、R及びRは上記と同義である。]
で表される化合物を得る工程である。
 R及びRの一方が水素原子、他方がアミノ基の保護基である場合、アミノ基の保護基としては、例えば、C1-6アルキルカルボニル基(アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基等)、カルバモイル基、C1-6アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、イソプロピルオキシカルボニル基、sec-ブトキシカルボニル基等)、置換シリル基(トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等)、アリル基、アラルキル基(該アラルキル基中のアリール基(フェニル基、1-ナフチル基、2-ナフチル基等)は、C1-6アルキル基、C1-6アルコキシ基、ニトロ基又はハロゲン原子で置換されていてもよい。)が挙げられる。
 また、R及びRの両方がアミノ基の保護基である場合、アミノ基の保護基としては、例えば、C1-6アルキルカルボニル基(アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基等)、置換オキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、4-メトキシベンジルオキシカルボニル基等)、カルバモイル基、置換シリル基(トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等)、アラルキル基(該アラルキル基中のアリール基(フェニル基、1-ナフチル基、2-ナフチル基等)は、C1-6アルキル基、C1-6アルコキシ基、ニトロ基又はハロゲン原子で置換されていてもよい)、アリル基が挙げられる。
 R及びRが一緒になってアミノ基の保護基を形成する場合としては、例えば、2価の置換基(1,1-ジメチルチオメチレン基、ベンジリデン基、p-メトキシベンジリデン基、ジフェニルメチレン基、[(2-ピリジル)メシチル]メチレン基、N,N-ジメチルアミノメチレン基、イソプロピリデン基、p-ニトロベンジリデン基、(5-クロロ-2-ヒドロキシフェニル)フェニルメチレン基、シクロヘキシリデン基等)がアミノ基中の窒素原子と一緒になってイミノ基を形成する場合が挙げられる。
 R及びRは、一方が水素原子、他方がアミノ基の保護基であるか、両方がアミノ基の保護基であるのが好ましく、一方が水素原子、他方がアミノ基の保護基であるのがより好ましく、一方が水素原子、他方がC1-6アルキルカルボニル基であるのがさらに好ましく、一方が水素原子、他方がアセチル基であるのが特に好ましい。
 Rがハロゲン原子の場合、該ハロゲン原子としては、塩素原子、臭素原子又はヨウ素原子が好ましく、塩素原子が特に好ましい。
 R及びRは、R及びRの両方がハロゲン原子であるか、Rが水素原子、Rがハロゲン原子であるか、Rがハロゲン原子、Rが水素原子であるのが好ましく、R及びRの両方がハロゲン原子であるのが特に好ましい。R及びRの両方がハロゲン原子である場合、これらのハロゲン原子は異なっているのが好ましく、Rが塩素原子、Rがフッ素原子であるの特に好ましい。
 一般式(I)の化合物は、公知文献に記載の方法に基づいて合成することができる。例えば、5-クロロ-2,3-ジフルオロピリジンはSynthetic Communications,34, 4301-4311, 2004に記載されており、該文献に記載の方法により合成することができる。また、一般式(I)の化合物は、市販のものを使用してもよい。例えば、東京化成工業から販売されている製品(製品コード:C2113)を購入することができる。
 工程Aの反応溶媒としては、例えば、エーテル系溶媒(テトラヒドロフラン、メチルテトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、ジイソプロピルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等)、炭化水素系溶媒(ヘキサン、ヘプタン、ベンゼン、トルエン等)、アミド系溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等)、及びそれら(少なくとも2種)の混合溶媒が挙げられる。
 反応は、適当な温度(例えば、-50℃~150℃)で一定時間(例えば、0.1時間~5時間)、反応混合物を攪拌することによって行うことができる。
 RNHは、式(I)の化合物と反応させる前に塩基と反応させるのが好ましい。ここで、塩基としては、例えば、ナトリウムヘキサメチルジシラジド、水素化ナトリウムが好ましい。反応溶媒としては、例えば、エーテル系溶媒(テトラヒドロフラン、メチルテトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、ジイソプロピルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等)、炭化水素系溶媒(ヘキサン、ヘプタン、ベンゼン、トルエン等)、アミド系溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等)、及びそれら(少なくとも2種)の混合溶媒が挙げられる。反応は、適当な温度(例えば、-30℃~80℃)で一定時間(例えば、0.1時間~3時間)、反応混合物を攪拌することによって行うことができる。
 工程Aの反応終了後の混合物はそのまま工程Bに供してもよいが、通常は、洗浄、抽出等の後処理に付する。さらに単離(濃縮、晶析等)、精製(再結晶、カラムクロマトグラフィー等)を行ってから工程Bに供してもよい。
工程B:
 工程Bは、一般式(II)で表される化合物を塩基及びホルミル化剤と反応させて、一般式(III):
Figure JPOXMLDOC01-appb-C000036
[式中、R、R、R及びRは上記と同義である。]
で表される化合物を得る工程である。
 塩基とホルミル化剤の組合せとしては、例えば、リチウムヘキサメチルジシラジドとN,N-ジメチルホルムアミドの組合せ又はリチウムヘキサメチルジシラジドと4-ホルミルモルホリンの組合せが好ましく、リチウムヘキサメチルジシラジドと4-ホルミルモルホリンの組合せが特に好ましい。
 一般式(II)の化合物を塩基及びホルミル化剤と反応させる際には、まず一般式(II)の化合物と塩基とを混合し、次いでホルミル化剤と混合してもよいし、また、まず一般式(II)の化合物とホルミル化剤とを混合し、次いで塩基と混合してもよい。塩基自体が不安定であるか、一般式(II)の化合物と塩基との反応物が不安定である場合は、まずホルミル化剤と混合し、次いで塩基と混合するのが好ましい。
 一般式(II)の化合物を塩基と反応させる際の溶媒としては、例えば、エーテル系溶媒(テトラヒドロフラン、メチルテトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、ジイソプロピルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等)、炭化水素系溶媒(ヘキサン、ヘプタン、ベンゼン、トルエン等)、アミド系溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等)、及びそれら(少なくとも2種)の混合溶媒が挙げられる。反応は、適当な温度(例えば、-100℃~50℃)で一定時間(例えば、0.1時間~10時間)、反応混合物を攪拌することによって行うことができる。
 一般式(II)の化合物をホルミル化剤と反応させる際の溶媒としては、例えば、エーテル系溶媒(テトラヒドロフラン、メチルテトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、ジイソプロピルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等)、炭化水素系溶媒(ヘキサン、ヘプタン、ベンゼン、トルエン等)、アミド系溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等)、及びそれら(少なくとも2種)の混合溶媒が挙げられる。反応は、適当な温度(例えば、-100℃~50℃)で一定時間(例えば、0.1時間~10時間)、反応混合物を攪拌することによって行うことができる。反応温度は、例えば、-100℃~50℃が好ましく、-50℃~0℃がより好ましく、-30℃~-10℃がさらに好ましい。
 工程Bの反応終了後の混合物はそのまま工程Cに供してもよいし、また、洗浄、抽出等の後処理に付してもよい。また、後処理を行い、さらに単離(濃縮、晶析等)、精製(再結晶、カラムクロマトグラフィー等)を行ってから工程Cに供してもよいが、その場合、単離した段階で工程Cに供するのが好ましい。
工程C及びD:
 工程Cは、一般式(III)で表される化合物を、一般式(IV):
Figure JPOXMLDOC01-appb-C000037
[式中、R及びRは上記と同義である。]
で表される化合物と反応させて、一般式(V):
Figure JPOXMLDOC01-appb-C000038
[式中、R、R、R、R、R及びRは上記と同義である。]
で表される化合物を得る工程である。
 工程Dは、一般式(V)で表される化合物を、
 (a)二重結合の還元反応(Rが水素原子の場合)、又は
 (b)二重結合の還元反応及びRの加水素分解反応(Rがハロゲン原子の場合)
に付して、一般式(VI):
Figure JPOXMLDOC01-appb-C000039
[式中、R、R、R、R及びRは上記と同義である。]
で表される化合物を得る工程である。
 工程Cでは、生成収率向上及び/又は反応時間短縮の観点から、反応を塩基又は酸の存在下で行うのが好ましく、塩基及び酸の両方の存在下で行うのが特に好ましい。ここで、塩基としては、例えば、アンモニア、一級アミン(メチルアミン、エチルアミン、プロピルアミン、シクロヘキシルアミン等)、二級アミン(ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジシクロヘキシルアミン、エチルイソプロピルアミン、ピロリジン、ピペリジン、ピペラジン、モルホリン等)、三級アミン(トリエチルアミン、N-メチルモルホリン、エチルジイソプロピルアミン、DBU、DABCO等)、ジアミン(エチレンジアミン、プロピレンジアミン、アミノエチルピペリジン、アミノエチルモルホリン等)、グアニジン等のアミンが好ましく、ピペリジンが特に好ましい。また、塩基としては、アミノ酸(アラニン、β-アラニン、ヒスチジン、プロリン、リシン、アルギニン等)の誘導体(ヒスチジンメチルエステル、プロリンエチルエステル、リシンエチルエステル、アルギニンエチルエステル、ジペプチド、トリペプチド等)、アミノリン酸(1-アミノエチルリン酸、2-アミノエチルリン酸等)の誘導体(エステル等)、カルボキシアルキルホスフィン(カルボキシメチルホスフィン、カルボキシエチルホスフィン等)の誘導体(エステル等)、カルボキシアルキルホスフィンオキシド(カルボキシメチルホスフィンオキシド、カルボキシエチルホスフィンオキシド等)の誘導体(エステル等)も使用可能である。酸としては、例えば、酢酸、シュウ酸、マレイン酸、フマル酸、コハク酸、マロン酸、クエン酸、安息香酸、サリチル酸、酒石酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、ピバル酸等のカルボン酸が好ましく、酢酸が特に好ましい。塩基及び酸の両方を使用する場合は、塩基性官能基及び酸性官能基の両方を有する化合物も使用可能であり、そのような化合物としては、例えば、アミノ酸(アラニン、β-アラニン、ヒスチジン、プロリン、リシン、アルギニン等)又はその塩、アミノリン酸(1-アミノエチルリン酸、2-アミノエチルリン酸等)又はその塩が挙げられ、また、カルボキシアルキルホスフィン(カルボキシメチルホスフィン、カルボキシエチルホスフィン等)、カルボキシアルキルホスフィンオキシド(カルボキシメチルホスフィンオキシド、カルボキシエチルホスフィンオキシド等)又はそれらの塩が挙げられる。また、塩基及び酸の両方を使用する場合は、塩基性官能基を有する化合物(例えば上述の塩基)と酸性官能基を有する化合物(例えば上述の酸)との塩も使用可能であり、そのような塩としては、例えば、アンモニアのシュウ酸塩、エチルアミンの酢酸塩、プロピルアミンの1/2マレイン酸塩、シクロヘキシルアミンの安息香酸塩、N-メチルモルホリンの1/2酒石酸塩、エチレンジアミンの二酢酸塩(エチレンジアミンジアセテート)、エチレンジアミンの二プロピオン酸塩、プロピレンジアミンの二酢酸塩、アミノエチルピペリジンの二酢酸塩が挙げられる。塩基及び酸の両方を使用する場合、それらの組合せとしては、例えばピペリジンと酢酸の組合せが好ましい。また、塩基及び酸の両方を使用する場合は、リシン、ヒスチジン又はエチレンジアミンジアセテート(特にエチレンジアミンジアセテート)を使用するのも好ましい。
 工程Cの反応は、適当な温度(例えば、0℃~80℃)で一定時間(例えば、0.1時間~30時間)、反応混合物を攪拌することによって行うことができる。
 工程Dにおける二重結合の還元反応としては、例えば不均一系還元又は均一系接触還元が挙げられる。不均一系還元としては、例えば、水素-二酸化白金、水素-白金/炭素、水素-パラジウム/炭素、水素-水酸化パラジウム/炭素、水素-パラジウムブラック、水素-パラジウム/硫酸バリウム、水素-ラネーニッケル、水素-銅クロマイト、水素-ロジウム/炭素、水素-ロジウム/アルミナ、水素-二酸化ルテニウム、水素-ルテニウム/炭素、ギ酸-パラジウム/炭素、ギ酸-水酸化パラジウム/炭素、ギ酸-パラジウムブラックによる還元が挙げられる。均一系接触還元としては、例えば、水素-クロロトリス(トリフェニルホスフィン)ロジウム(I)、水素-クロロトリス(トリパラトリルホスフィン)ロジウム(I)、水素-クロロトリス(トリパラメトキシフェニルホスフィン)ロジウム(I)、水素-ヒドリドカルボニルトリス(トリフェニルホスフィン)ロジウム(I)、水素-酢酸ロジウム(II)、水素-酢酸ルテニウム(II)、水素-クロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)、水素-カルボキシラートヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)、水素-ヒドリドカルボニルトリス(トリフェニルホスフィン)イリジウム(I)、水素-白金(II)-塩化スズ錯体、水素-ペンタシアノコバルト(II)錯体、水素-トリシアノビピリジンコバルト(II)錯体、水素-ビス(ジメチルグリオキシマート)コバルト(II)錯体、水素-安息香酸メチル-トリカルボニルクロム錯体、水素-ビス(トリカルボニルシクロペンタジエニルクロム)、水素-ペンタカルボニル鉄、水素-ビス(シクロペンタジエニル)ジカルボニルチタン、水素-ヒドリドカルボニルコバルト錯体、水素-オクタカルボニル二コバルト、水素-ヒドリドカルボニルロジウム、水素-クロム(III)アセチルアセトナート-トリイソブチルアルミニウム、水素-コバルト(II)アセチルアセトナート-トリイソブチルアルミニウム、水素-ニッケル(II)2-ヘキサノアート-トリエチルアルミニウムによる接触還元が挙げられる。また、還元反応は、水素化金属試剤(水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ホウ素ナトリウム-ピリジン錯体、水素化ホウ素ナトリウム-ピコリン錯体、水素化ホウ素ナトリウム-テトラヒドロフラン錯体、トリエチルシラン等)を用いて行うこともできる。還元反応は、常圧下又は加圧下、適当な温度(例えば、-100℃~50℃)で一定時間(例えば、0.1時間~20時間)、反応混合物を攪拌することによって行うことができる。
 工程DにおけるRの加水素分解反応は、触媒の存在下、適当な水素源を用いて行うことができる。触媒は不均一系触媒及び均一系触媒のいずれでもよい。不均一系触媒としては、例えば、二酸化白金、白金/炭素、パラジウム/炭素、水酸化パラジウム/炭素、パラジウムブラック、ラネーニッケルが挙げられる。均一系触媒としては、例えば、クロロトリス(トリフェニルホスフィン)ロジウム(I)、クロロトリス(トリパラトリルホスフィン)ロジウム(I)、クロロトリス(トリパラメトキシフェニルホスフィン)ロジウム(I)、ヒドリドカルボニルトリス(トリフェニルホスフィン)ロジウム(I)、酢酸ロジウム(II)、酢酸ルテニウム(II)、クロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)、カルボキシラートヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)が挙げられる。水素源としては、例えば、水素、ギ酸、ギ酸アンモニウム、ギ酸ナトリウム、ギ酸-トリエチルアミン、トリエチルシラン、テトラメチルジシロキサン、ポリメチルヒドロシロキサンが挙げられる。加水素分解反応は、常圧下又は加圧下、適当な温度(例えば、0℃~100℃)で一定時間(例えば、0.1時間~20時間)、反応混合物を攪拌することによって行うことができる。
 工程Dにおいて二重結合の還元反応及びRの加水素分解反応を行う場合、同時に行ってもいずれかの反応を先に行ってもよいが、同時に行うのが好ましい。2つの反応を同時に行う場合、1つの反応操作で行うのが効率性の点で好ましい。
 工程C及びDで使用する反応溶媒としては、例えば、エーテル系溶媒(エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、シクロペンチルメチルエーテル、メチルtert-ブチルエーテル等)、芳香族炭化水素系溶媒(ベンゼン、トルエン、キシレン、キノリン、クロロベンゼン等)、脂肪族炭化水素系溶媒(ペンタン、ヘキサン、ヘプタン、オクタン等)、アミド系溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等)、アルコール系溶媒(メタノール、エタノール、トリフルオロエタノール、n-プロパノール、2-プロパノール、n-ブタノール、sec-ブタノール、t-ブタノール、ペンタノール、ヘキサノール、シクロプロパノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール等)、酢酸エステル系溶媒(酢酸メチル、酢酸エチル、酢酸イソプロピル等)、アセトニトリル、及びこれらの有機溶媒(少なくとも2種)の混合溶媒が好ましく、2,2,2-トリフルオロエタノール及びアセトニトリルがより好ましく、2,2,2-トリフルオロエタノールが特に好ましい。少なくとも2種の有機溶媒の混合溶媒としては、例えば、2-プロパノールとトルエンの混合溶媒、メタノールとベンゼンの混合溶媒、エタノールとキシレンの混合溶媒、n-プロパノールとクロロベンゼンの混合溶媒が挙げられる。水を使用してもよく、また、水と上記有機溶媒(少なくとも2種の有機溶媒の混合溶媒であってもよい。)の混合溶媒を使用してもよい。
 工程Cで使用する反応溶媒としてはまた、例えば、水、酢酸エステル系溶媒(酢酸メチル、酢酸エチル、酢酸イソプロピル等)及び芳香族炭化水素系溶媒(ベンゼン、トルエン、キシレン、キノリン、クロロベンゼン等)の混合溶媒が好ましい。ここで、酢酸エステル系溶媒としては酢酸エチルが特に好ましく、芳香族炭化水素系溶媒としてはトルエンが特に好ましく、混合溶媒としては水、酢酸エチル及びトルエンの混合溶媒が特に好ましい。水、酢酸エステル系溶媒及び芳香族炭化水素系溶媒の混合溶媒を使用する場合、溶媒組成(水、酢酸エステル系溶媒及び芳香族炭化水素系溶媒の容積比)は、例えば、3~5:2~4:4~6が好ましく、7~9:5~7:9~11がより好ましく、11~13:8~10:14~16がさらに好ましい。また、表1-1、表1-2に示される溶媒組成も、好ましい溶媒組成の具体例として挙げられる。
 工程Cで塩基及び酸としてピペリジンと酢酸の組合せを使用する場合、反応溶媒としては、例えば上記有機溶媒(少なくとも2種の有機溶媒の混合溶媒であってもよい。)が好ましく、2,2,2-トリフルオロエタノールを単独で使用するのが特に好ましい。また、工程Cで塩基及び酸としてリシン、ヒスチジン又はエチレンジアミンジアセテートを使用する場合、反応溶媒としては、例えば、水と上記有機溶媒(少なくとも2種の有機溶媒の混合溶媒であってもよい。)の混合溶媒が好ましく、水、酢酸エステル系溶媒(酢酸メチル、酢酸エチル、酢酸イソプロピル等)及び芳香族炭化水素系溶媒(ベンゼン、トルエン、キシレン、キノリン、クロロベンゼン等)の混合溶媒がより好ましく、水、酢酸エチル及びトルエンの混合溶媒が特に好ましい。
 工程Dで使用する反応溶媒としてはまた、例えば、酢酸エステル系溶媒(酢酸メチル、酢酸エチル、酢酸イソプロピル等)、芳香族炭化水素系溶媒(ベンゼン、トルエン、キシレン、キノリン、クロロベンゼン等)及びアルコール系溶媒(メタノール、エタノール、トリフルオロエタノール、n-プロパノール、2-プロパノール、n-ブタノール、sec-ブタノール、t-ブタノール、ペンタノール、ヘキサノール、シクロプロパノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール等)の混合溶媒が好ましい。ここで、酢酸エステル系溶媒としては酢酸エチルが特に好ましく、芳香族炭化水素系溶媒としてはトルエンが特に好ましく、アルコール系溶媒としては2-プロパノールが特に好ましく、混合溶媒としては酢酸エチル、トルエン及び2-プロパノールの混合溶媒が特に好ましい。酢酸エステル系溶媒、芳香族炭化水素系溶媒及びアルコール系溶媒の混合溶媒を使用する場合、溶媒組成(酢酸エステル系溶媒、芳香族炭化水素系溶媒及びアルコール系溶媒の容積比)は、例えば、2~4:4~6:8~15が好ましく、5~7:9~11:20~26がより好ましく、8~10:14~16:44~48がさらに好ましい。
 工程C又はDで水と有機溶媒(少なくとも2種の有機溶媒の混合溶媒であってもよい。)の混合溶媒を使用する場合の好適な溶媒組成及び反応温度、工程Cで混合溶媒を使用する場合の好適な触媒(塩基及び/又は酸)は、例えば下表(表1-1、表1-2)のとおりである。下表において、「CPME」はシクロペンチルメチルエーテル、「MTBE」はメチルtert-ブチルエーテルを表す。「室温」とは15℃~25℃を意味する。リン酸緩衝液(pH6.5)としては、例えば下記組成のものが挙げられる。クエン酸ナトリウム緩衝液(pH5.1、pH4.3)としては、例えば和光純薬工業製のもの(カタログNo.:195-07285、198-07275)を使用することができる。
 リン酸緩衝液の組成:
  リン酸二水素カリウム:約2.6w/v%
  水酸化ナトリウム:約0.2w/v%
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
 工程Cの反応終了後の混合物に対しては工程Dの実施前に洗浄、抽出等の後処理や単離・精製を行ってもよいが、そのような処理を行わずにそのまま次の工程Dに供するのが好ましい。工程C及びDをワンポットで連続的に実施する場合、反応溶媒としては、例えば2,2,2-トリフルオロエタノールが好ましい。
 また、工程Cで使用される反応溶媒が水、酢酸エステル系溶媒及び芳香族炭化水素系溶媒の混合溶媒(例えば、水、酢酸エチル及びトルエンの混合溶媒)である場合は、工程Cの反応終了後の混合物から水層を除去して有機層を得、洗浄、精製等を行わずにアルコール系溶媒(例えば2-プロパノール)を加え、これを工程Dに供するのが効率性等の点で好ましい。
 工程Dで得られた一般式(VI)の化合物をさらに別の反応(例えば工程Eの反応)に付する場合、工程Dの反応終了後の混合物はそのまま次の工程に供してもよいが、通常は、洗浄、抽出等の後処理に付する。さらに単離(濃縮、晶析等)、精製(再結晶、カラムクロマトグラフィー等)を行ってから次の工程に供してもよい。好ましくは、反応終了後の混合物を後処理(洗浄、抽出等)に付し、さらに単離(濃縮、晶析等)を行った段階で工程Eに供する。
 また、工程Dで使用される反応溶媒が、酢酸エステル系溶媒、芳香族炭化水素系溶媒及びアルコール系溶媒の混合溶媒(例えば、酢酸エチル、トルエン及び2-プロパノールの混合溶媒)である場合、工程Dの反応終了後の混合物はそのまま次の工程(例えば工程E)に供してもよいし、ろ過、洗浄、抽出等の後処理を行ってから次の工程(例えば工程E)に供してもよい(後処理を行った場合はさらに単離・精製を行ってもよい)が、ろ過、洗浄、抽出等の後処理を行った後、単離・精製を行わずに次の工程(例えば工程E)に供するのが好ましい。
 工程Dにおいて一般式(VI)の化合物に加えて、例えば一般式(VI’):
Figure JPOXMLDOC01-appb-C000042
[式中、R、R、R、R及びRは上記と同義である。]
の化合物(一般式(VI)の化合物のケト-エノール互変異性体)が得られることがあるが、この場合、一般式(VI’)の化合物を除去せずに次の工程に供してもよい。
 なお、工程Dにおいて、一般式(VI)の化合物は、一般式(Va):
Figure JPOXMLDOC01-appb-C000043
[式中、R、R、R、R及びRは上記と同義である。]
の化合物及び/又は一般式(Vb):
Figure JPOXMLDOC01-appb-C000044
[式中、R、R、R、R、R及びRは上記と同義である。]
の化合物を経由して得られてもよい。
 一般式(VI)で表される化合物を製造するための本発明の方法は、工程A~Dからなるものであってもよい。
 一般式(VII)で表される化合物又はその薬学上許容し得る塩を製造するための本発明の方法は、さらに工程E~Gを含んでもよい。
工程E:
 工程Eは、酸の存在下、一般式(VI)で表される化合物を、一般式(VIII):
Figure JPOXMLDOC01-appb-C000045
[式中、R11は上記と同義である。]
で表される化合物と反応させて、一般式(IX):
Figure JPOXMLDOC01-appb-C000046
[式中、R、R及びR11は上記と同義である。]
で表される化合物又はその薬学上許容し得る塩(酸との塩)若しくは酸付加物を得る工程である。
 酸としては、例えば、無機酸(塩酸、臭化水素酸、ヨウ化水素酸、硫酸、リン酸等)、スルホン酸(メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸等)、カルボン酸(ギ酸、酢酸、シュウ酸、マレイン酸、フマル酸、クエン酸、リンゴ酸、コハク酸、マロン酸、グルコン酸、マンデル酸、安息香酸、サリチル酸、フルオロ酢酸、トリフルオロ酢酸、酒石酸、プロピオン酸、グルタル酸等)が挙げられ、スルホン酸が好ましく、メタンスルホン酸が特に好ましい。
 反応溶媒としては、反応に不活性な溶媒を使用することができる。そのような溶媒としては、例えば、エーテル系溶媒(エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、シクロペンチルメチルエーテル等)、芳香族炭化水素系溶媒(ベンゼン、トルエン、キシレン、キノリン、クロロベンゼン等)、脂肪族炭化水素系溶媒(ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等)、アミド系溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等)、アルコール系溶媒(メタノール、エタノール、2,2,2-トリフルオロエタノール、n-プロパノール、2-プロパノール、n-ブタノール、sec-ブタノール、ペンタノール、ヘキサノール、シクロプロパノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール等)、酢酸エステル系溶媒(酢酸メチル、酢酸エチル、酢酸イソプロピル等)、アセトニトリル、及びそれら(少なくとも2種)の混合溶媒が挙げられ、2,2,2-トリフルオロエタノールが好ましい。また、酢酸エステル系溶媒も好ましく、酢酸エチルが特に好ましい。なお、工程Dの反応終了後の混合物を、後処理(ろ過、洗浄、抽出等)及び/又は単離・精製を行わずに工程Eに供する場合、工程Dで使用された溶媒(例えば、酢酸エチル等の酢酸エステル系溶媒)が混合物中に残存していることがあるが、工程Eは残存溶媒を除去せずに実施することができる。
 反応温度は、通常-20℃~150℃、好ましくは-10℃~100℃である。反応時間は反応温度等により適宜決定されるが、通常2時間~20時間、好ましくは2時間~10時間である。
 反応後、酸を中和しなければ、式(IX)の化合物の薬学上許容し得る塩又は酸付加物が得られる。他方、反応後、塩基(例えば、トリエチルアミン、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム)を加えて酸を中和すれば、式(IX)の化合物のフリー体が得られる。
 式(IX)の化合物の薬学上許容し得る塩又は酸付加物が得られる場合、反応混合物に溶媒を加えることによって目的物を結晶として析出させることができる。溶媒としては、例えば水とアルコール系溶媒の組合せが挙げられ、水とエタノールの組合せが好ましい。水とエタノールの組合せを使用する場合、さらに2-プロパノールを組み合わせてもよい。結晶析出の際には、種晶を加えて結晶析出を促進させることもできる。
工程F:
 工程Fは、塩基の存在下、一般式(IX)で表される化合物又はその薬学上許容し得る塩若しくは酸付加物を、X-Y[式中、Xは上記と同義であり、Yはハロゲン原子を表す。]と反応させて、一般式(X):
Figure JPOXMLDOC01-appb-C000047
[式中、R、R、R11及びXは上記と同義である。]
で表される化合物を得る工程である。
 塩基としては、例えば、弱塩基性無機塩(炭酸ナトリウム、炭酸カリウム、炭酸セシウム等)、金属水素化物(水素化ナトリウム、水素化カリウム等)が挙げられ、炭酸カリウム、炭酸セシウム、水素化ナトリウムが好ましい。
 反応溶媒としては、例えば、エーテル系溶媒(テトラヒドロフラン、ジエチルエーテル等)、N,N-ジメチルホルムアミドが挙げられ、テトラヒドロフラン、N,N-ジメチルホルムアミドが好ましい。
 反応温度は、反応溶媒等により適宜決定されるが、Xが電子不足のヘテロアリール基(ピリジル基、ピリミジニル基等)である場合は、通常60℃~150℃、好ましくは70℃~100℃である。Xが電子リッチなヘテロアリール基(チアゾリル基等)である場合は、通常90℃~200℃、好ましくは100℃~120℃である。XがRNCO-である場合は、通常0℃~50℃、好ましくは0℃~30℃である。反応時間は反応温度等により適宜決定されるが、通常30分間~5時間、好ましくは40分間~2時間である。
 Xが電子リッチなヘテロアリール基(チアゾリル基等)である場合は、例えば1価の銅塩(ヨウ化銅(I)、CuPF、トリフルオロメタンスルホン酸銅(I)等)、好ましくはヨウ化銅(I)の共存下、マイクロ波を照射しながら反応を行ってもよい。
工程G:
 工程Gは、一般式(X)で表される化合物を、一般式(XI):
Figure JPOXMLDOC01-appb-C000048
[式中、R16及びR17は上記と同義であり、Zは脱離基を表す。]
で表される化合物と反応させて、一般式(VII’):
Figure JPOXMLDOC01-appb-C000049
[式中、R、R、R11、X、R16及びR17は上記と同義である。]
で表される化合物を得る工程である。
 Zで表される脱離基としては、例えば、ハロゲン原子、2-オキサゾリジノン-3-イル基が挙げられ、ハロゲン原子が好ましく、塩素原子が特に好ましい。
 反応溶媒としては、例えば、塩化メチレン、アセトニトリル、N,N-ジメチルホルムアミドが挙げられ、一般式(X)の化合物の溶解性の点で、アセトニトリル、N,N-ジメチルホルムアミドが好ましい。
 反応は塩基の存在下で行ってもよい。塩基としては、有機アミン(ピリジン、トリエチルアミン、ジイソプロピルエチルアミン等)が好ましい。
 反応温度は、通常15℃~120℃、好ましくは20℃~85℃である。反応時間は、通常1時間~2日間、好ましくは2時間~24時間である。
 R15がC1-6アルキル基である一般式(VII)の化合物は、式(VII’)の化合物をC1-6アルキル化することによって得られる。C1-6アルキル化は、例えば、Bioorganic Medicinal Chemistry 2005, 13, 1393-1402、Organic Preparations and Procedures International 2004, 36, 347-351、又はJournal of Medicinal Chemistry 2004, 47, 6447-6450に記載の方法に基づいて行うことができる。
 一般式(VII)の化合物の薬学上許容し得る塩は、該化合物と、医薬品の製造に使用可能な酸又は塩基と、を接触又は反応させることにより製造することができる。そのような塩としては、例えば、無機酸塩(塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、リン酸塩等)、スルホン酸塩(メタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩等)、カルボン酸塩(ギ酸塩、酢酸塩、シュウ酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、リンゴ酸塩、コハク酸塩、マロン酸塩、グルコン酸塩、マンデル酸塩、安息香酸塩、サリチル酸塩、フルオロ酢酸塩、トリフルオロ酢酸塩、酒石酸塩、プロピオン酸塩、グルタル酸塩等)、アルカリ金属塩(リチウム塩、ナトリウム塩、カリウム塩、セシウム塩、ルビジウム塩等)、アルカリ土類金属塩(マグネシウム塩、カルシウム塩等)、アンモニウム塩(アンモニウム塩、アルキルアンモニウム塩、ジアルキルアンモニウム塩、トリアルキルアンモニウム塩、テトラアルキルアンモニウム塩等)が挙げられ、アルカリ金属塩が好ましく、カリウム塩が特に好ましい。
 以下、本発明の好適な実施例について詳細に説明する。
 以下の実施例において、核磁気共鳴(NMR)分析は、核磁気共鳴装置JNM-ECP500(JEOL製)を用いて行った。質量分析(MS)は、質量分析装置LCT Premier XE(Waters製)を用いて行った。
 なお、以下において、N,N-ジメチルホルムアミドは「DMF」、テトラヒドロフランは「THF」、高速液体クロマトグラフィーは「HPLC」、トリフルオロ酢酸は「TFA」と略記する。また、「室温」とは15℃~25℃を意味する。
[実施例1]
工程1:
2-アセチルアミノ-5-クロロ-3-フルオロピリジンの合成:
Figure JPOXMLDOC01-appb-C000050
 窒素雰囲気下、アセトアミド(94.8g,1.61mol)にDMF(200mL)及びTHF(830mL)を加え、50℃に昇温した。得られた溶液に40wt%ナトリウムヘキサメチルジシラジドのTHF溶液(629g,1.37mol)を滴下し、同温で2時間攪拌した。5-クロロ-2,3-ジフルオロピリジン(100.0g,0.67mol)を加えた後、THF(20mL)を加え、同温で3時間攪拌した。0℃に冷却後、反応液に2.8M HCl(500mL)を加え、室温に昇温して有機層を分離した。有機層を20wt%食塩水(500mL)で洗浄後、減圧下で溶媒留去した。残渣にTHF(500mL)を加え、70℃に加熱して残渣を溶解した。室温に冷却して固体析出を確認後、n-ヘプタン(1500mL)を加えてさらに0℃に冷却し、同温で3時間攪拌した。析出した結晶をろ取し、THF(100mL)及びn-ヘプタン(500mL)の混合溶媒で洗浄後、減圧下乾燥して標題化合物(91.2g)を得た。
 収率:72%
 H-NMR(CDCl)δ(ppm):2.36(3H,s),7.49(1H,dd,J=2.0,9.5Hz),7.78(1H,br),8.17(1H,d,J=2.0Hz).
 MS(ESI):189[M+1]
工程2:
2-アセチルアミノ-5-クロロ-3-フルオロ-4-ホルミルピリジンの合成:
Figure JPOXMLDOC01-appb-C000051
 窒素雰囲気下、室温にて2-アセチルアミノ-5-クロロ-3-フルオロピリジン(70.0g,0.37mol)及び4-ホルミルモルホリン(128.2g,1.11mol)をTHF(840mL)に溶解した。この溶液を-20℃に冷却し、24wt%リチウムヘキサメチルジシラジドのTHF溶液(595g,0.85mol)を滴下し、同温で5.5時間攪拌した。この反応液を、クエン酸一水和物(257g)及び食塩(70g)を水(420mL)に溶解させた水溶液に、攪拌下0℃にて加えた。有機層を分離し、50wt%リン酸水素二カリウム水溶液(350mL)及び20wt%食塩水(350mL)で順次洗浄して有機層(1458g)を得た。この有機層の一部(292g)を分析用に採取し、残り(1166g)を減圧下で溶媒留去した。残渣にTHF(350mL)を加え、減圧下で溶媒留去した。再度、残渣にTHF(350mL)を加え、減圧下で溶媒留去して、標題化合物を含む固体(81.4g)を得た。生成物は、さらに精製することなく次の工程に使用した。
 採取しておいた有機層(292g)の一部(29g)を、減圧下で溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー[溶離液:AcOEt/ヘキサン(1/4~9/1)]に付し、標題化合物(1.05g,4.85mmol)を白色粉末状固体として得た。
 収率:66%
 H-NMR(CDCl)δ(ppm):2.40(3H,s),7,59(1H,br),8.34(1H,br),10.42(1H,s).
 MS(ESI):217(M+1)
工程3:
2-[(2-アセチルアミノ-3-フルオロピリジン-4-イル)メチル]-3-オキソブタン酸 エチルエステルの合成:
Figure JPOXMLDOC01-appb-C000052
 窒素雰囲気下、工程2の固体生成物(81.4g)を2,2,2-トリフルオロエタノール(448mL)に溶解し、ピペリジン(4.4g,51.7mmol)、酢酸(3.1g,51.7mmol)及び3-オキソブタン酸エチル(37.0g,0.28mol)を加え、50℃に昇温後3時間攪拌した。この反応液を室温に冷却後、トリエチルアミン(758mL,5.5mol)及びギ酸(172mL,4.6mol)の2-プロパノール(1248mL)溶液と20%Pd(OH)炭素(21.2g,含水率46.2%)とを加え、50℃に昇温して4時間攪拌した。反応液をセライトろ過し、残渣を2-プロパノール(679mL)で洗浄した。ろ液と洗浄液を合わせ(2795g)、その一部(399g)を減圧下で溶媒留去した(残り(2396g)は保存した)。溶媒留去で得られた残渣に酢酸エチル(24.2mL)を加え、減圧下で溶媒留去した。再度、残渣に酢酸エチル(182mL)を加え、有機層を20wt%食塩水(61mL)、10wt%リン酸二水素カリウム水溶液(61mL)及び20wt%食塩水(61mL)で順次洗浄後、減圧下で溶媒留去した。さらに、残渣に2,2,2-トリフルオロエタノール(24mL)を加え、減圧下で溶媒留去して、標題化合物を含む油状物(15.0g)を得た。生成物は、さらに精製することなく次の工程に使用した。
 H-NMR(CDCl)δ(ppm):1.24(3H,t,J=7.0Hz),2.27(3H,s),2.37(3H,s),3.16-3.26(2H,m),3.86(1H,t,J=7.5Hz),4.15-4.22(2H,m),6.98(1H,t,J=5.0Hz),7.68(1H,br),8.05(1H,d,J=5.0Hz).
 MS(ESI):297(M+1)
工程4:
3-(3-フルオロ-2-アミノピリジン-4-イルメチル)-7-ヒドロキシ-4-メチル-2-オキソ-2H-1-ベンゾピラン メタンスルホネートの合成:
Figure JPOXMLDOC01-appb-C000053
 窒素雰囲気下、工程3の油状生成物(15.0g)を2,2,2-トリフルオロエタノール(33mL)に溶解した。この溶液にレゾルシノール(5.3g,47.9mmol)及びメタンスルホン酸(11.7mL,181mmol)を24℃で加えた後、90℃で4時間攪拌した。室温に冷却して13時間静置し、さらに、エタノール(33mL)及び水(11mL)を加え、90℃で4.5時間攪拌した。55℃に冷却して2-プロパノール(105mL)を加えた後、室温に冷却して14時間静置した。析出した結晶をろ取し、2-プロパノール(33mL)で2回洗浄後、減圧下乾燥して標題化合物(8.2g)を得た。
 収率(工程2で使用した2-アセチルアミノ-5-クロロ-3-フルオロピリジンからの通算収率):49%
 MS(ESI):301[M+1-MsOH]
工程5:
4-メチル-3-(3-フルオロ-2-アミノピリジン-4-イルメチル)-7-(ピリミジン-2-イルオキシ)-2-オキソ-2H-1-ベンゾピランの合成:
Figure JPOXMLDOC01-appb-C000054
 窒素雰囲気下、3-(3-フルオロ-2-アミノピリジン-4-イルメチル)-7-ヒドロキシ-4-メチル-2-オキソ-2H-1-ベンゾピラン メタンスルホネート(7.6g,19.2mmol)及び2-ブロモピリミジン(4.0g,24.9mmol)をDMF(122mL)に溶解し、炭酸カリウム(5.8g,42.2mmol)を加えて、115℃で3.5時間攪拌した。この反応液を28℃に冷却後、水(122mL)を同温で0.5時間かけて滴下し、2分間攪拌した。さらに、0℃に冷却後、1時間攪拌し、析出した結晶をろ取した。得られた結晶を水(61mL)及びアセトニトリル(61mL)で順次洗浄し、減圧下乾燥して標題化合物を結晶(6.5g)として得た。
 得られた結晶の一部(0.1g)を分析用に採取し、残り(6.4g)をDMF(70mL)に懸濁した。得られた懸濁液を60℃に加熱して5分間攪拌した後、同温でアセトニトリル(185mL)を加えて80分間攪拌した。その後、40℃に冷却して0.5時間攪拌し、さらに25℃に冷却して0.5時間攪拌した。さらに0℃に冷却して1.5時間攪拌した後、析出した結晶をろ取した。得られた結晶をアセトニトリル(46mL)で洗浄後、減圧下乾燥して標題化合物(5.5g)を得た。なお、標題化合物は、WO2007/091736に記載の化合物である。
 収率:76%
工程6:
3-{2-(メチルアミノスルホニル)アミノ-3-フルオロピリジン-4-イルメチル}-4-メチル-7-(ピリジン-2-イルオキシ)-2-オキソ-2H-1-ベンゾピランの合成:
Figure JPOXMLDOC01-appb-C000055
 窒素雰囲気下、4-メチル-3-(3-フルオロ-2-アミノピリジン-4-イルメチル)-7-(ピリミジン-2-イルオキシ)-2-オキソ-2H-1-ベンゾピラン(1.7g,4.5mmol)をDMF(18mL)に懸濁した。この溶液にピリジン(0.8mL,9.9mmol)を加えて10℃に冷却し、N-メチルスルファモイルクロライド(1.05g,8.1mmol)のアセトニトリル(18mL)溶液を、内温が15℃以下に維持されるように滴下した。同温で90分間攪拌後、アセトニトリル(3.4mL)を加え、さらに水(50mL)を、内温が20℃以下に維持されるように滴下した。外温0℃に冷却し、内温5℃到達後2時間攪拌した。析出した結晶をろ取し、水(8.5mL)で洗浄後、乾燥して標題化合物(1.9g,4.0mmol)を得た。
 収率:88%
 MS(ESI):472[M+1]
工程7:
3-{2-(メチルアミノスルホニル)アミノ-3-フルオロピリジン-4-イルメチル}-4-メチル-7-(ピリジン-2-イルオキシ)-2-オキソ-2H-1-ベンゾピラン カリウム塩の合成:
Figure JPOXMLDOC01-appb-C000056
 窒素雰囲気下、3-{2-(メチルアミノスルホニル)アミノ-3-フルオロピリジン-4-イルメチル}-4-メチル-7-(ピリジン-2-イルオキシ)-2-オキソ-2H-1-ベンゾピラン(1.6g,3.4mmol)をTHF(10mL)に懸濁し、水(3mL)を加えた。この懸濁溶液に2.0M水酸化カリウム水溶液(1.8mL,3.6mmol)を25℃で10分間かけて滴下し、60℃に昇温後、同温で2時間攪拌した。この反応液を20℃に冷却後、THF(8mL)を30分間かけて滴下した。滴下終了後、外温-5℃に冷却し、内温0℃到達後160分間攪拌した。析出した結晶をろ取し、THF(14mL)及び水(1.6mL)の混合液(予め5℃に冷却)で洗浄し、さらにTHF(8mL)で洗浄した後、乾燥して標題化合物(0.72g,1.4mmol)を得た。
 収率:42%
 MS(ESI):472[M+2H-K]
[実施例2]
2-[(2-アセチルアミノ-5-クロロ-3-フルオロピリジン)メチレン]-3-オキソブタン酸 エチルエステルの合成:
Figure JPOXMLDOC01-appb-C000057
 実施例1の工程1、2と同様にして得た固体生成物(2-アセチルアミノ-5-クロロ-3-フルオロ-4-ホルミルピリジンを含有)(327mg)を2,2,2-トリフルオロエタノール(1.6mL)に溶解し、ピペリジン(18μL,0.18mmol)、酢酸(11μL,0.18mmol)及び3-オキソブタン酸エチル(134μL,1.1mmol)を加え、50℃に昇温後3時間攪拌した。室温に冷却後、反応液に氷冷水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下で溶媒留去して粗生成物を得た。これをカラムクロマトグラフィー[溶離液:n-ヘプタン/酢酸エチル(1/1~1/4)]で精製して、標題化合物(E,Z異性体混合物)(277mg)を得た。
 収率:92%
 H-NMR(CDCl)(E,Z異性体混合物)δ(ppm):1.13(1.7H,t,J=7.0Hz),1.37(1.3H,t,J=7.0Hz),2.32(1.3H,s),2.33(1.7H,s),2.43(1.3H,d,J=1.5Hz),2.49(1.7H,s),4.22(1.1H,q,J=7.0Hz),4.36(0.9H,q,J=7.0Hz),7.42-7.43(1H,m),8.01(0.4H,brs),8.04(0.6H,brs),8.20(0.4H,s),8.22(0.6H,s).
 MS(ESI):329(M+1)
[実施例3]
2-[(2-アセチルアミノ-5-クロロ-3-フルオロピリジン-4-イル)メチル]-3-オキソブタン酸 エチルエステルの合成:
Figure JPOXMLDOC01-appb-C000058
 2-[(2-アセチルアミノ-5-クロロ-3-フルオロピリジン)メチレン]-3-オキソブタン酸 エチルエステル(50mg)を2-プロパノール(0.8mL)及び酢酸エチル(0.8mL)の混合溶媒に溶解した。この溶液に10%Pd(OH)炭素(PE-Type,エヌ・イー ケムキャット)(7mg,含水率51.8%)を加え、水素雰囲気下、室温で40分間攪拌した。反応液をろ過し、減圧下で溶媒留去して粗生成物を得た。これをカラムクロマトグラフィー[溶離液:n-ヘプタン/酢酸エチル(1/1~1/2)]で精製して、標題化合物(39mg)を固体として得た。
 収率:78%
 H-NMR(CDCl)δ(ppm):1.23(3H,t,J=7.0Hz),2.27(3H,s),2.35(3H,s),3.29-3.39(2H,m),3.89(1H,t,J=7.5Hz),4.18(2H,q,7.0Hz),7.69(1H,br),8.16(1H,s).
 MS(ESI):353(M+Na)
[実施例4]
3-(3-フルオロ-2-アセチルアミノピリジン-4-イルメチル)-7-ヒドロキシ-4-メチル-2-オキソ-2H-1-ベンゾピラン及び3-(3-フルオロ-2-アミノピリジン-4-イルメチル)-7-ヒドロキシ-4-メチル-2-オキソ-2H-1-ベンゾピランの合成:
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
 窒素雰囲気下、2-[(2-アセチルアミノ-3-フルオロピリジン-4-イル)メチル]-3-オキソブタン酸 エチルエステル(122mg,0.41mmol)を2,2,2-トリフルオロエタノール(360μL)に溶解した。この溶液にレゾルシノール(59mg,0.53mmol)及びメタンスルホン酸(130μL,2.0mmol)を室温で加えた後、85℃で3時間攪拌した。0℃に冷却してトリエチルアミンを加えた後、室温に昇温し、減圧下で溶媒留去して粗生成物を得た。これをカラムクロマトグラフィー[溶離液:ジクロロメタン/メタノール(20/1~10/1)]で精製し、標題化合物[3-(3-フルオロ-2-アセチルアミノピリジン-4-イルメチル)-7-ヒドロキシ-4-メチル-2-オキソ-2H-1-ベンゾピラン(64mg)及び3-(3-フルオロ-2-アミノピリジン-4-イルメチル)-7-ヒドロキシ-4-メチル-2-オキソ-2H-1-ベンゾピラン(31mg)]を各々固体として得た。
3-(3-フルオロ-2-アセチルアミノピリジン-4-イルメチル)-7-ヒドロキシ-4-メチル-2-オキソ-2H-1-ベンゾピラン:
 収率:46%
 MS(ESI):365[M+Na]
3-(3-フルオロ-2-アミノピリジン-4-イルメチル)-7-ヒドロキシ-4メチル-2-オキソ-2H-1-ベンゾピラン:
 収率:25%
 MS(ESI):323[M+Na]
[実施例5]
工程1:
2-アセチルアミノ-5-クロロ-3-フルオロピリジンの合成:
Figure JPOXMLDOC01-appb-C000061
 窒素雰囲気下、アセトアミド(6.6g,112mmol)にDMF(14mL)及びTHF(44mL)を加え、50℃に昇温した。得られた溶液に1.9MナトリウムヘキサメチルジシラジドのTHF溶液(51mL,96mmol)を滴下し、同温で3時間攪拌した。5-クロロ-2,3-ジフルオロピリジン(7.0g)を加えた後、THF(1.4mL)を加え、同温で3時間攪拌した。0℃に冷却後、反応液に、クエン酸一水和物(20g)及び食塩(4.9g)を水(35mL)で溶解した水溶液を加えた。室温に昇温して有機層を分離し、有機層を20wt%食塩水(35mL)で洗浄後、減圧下で溶媒留去した。残渣にヘプタン及びtert-ブチルメチルエーテル(15:1)の混合溶媒(70mL)と水(35mL)とを加え、室温で10分間攪拌した。これをろ過し、得られた固体を水(35mL)で2回洗浄した。さらにヘプタン及びtert-ブチルメチルエーテル(15:1)の混合溶媒(70mL)で洗浄後、減圧下乾燥して標題化合物(6.5g)を得た。
 収率:74%
 H-NMR及びMSスペクトルは、実施例1(工程1)で得られた標題化合物のそれらと一致した。
工程2:
2-アセチルアミノ-5-クロロ-3-フルオロ-4-ホルミルピリジンの合成:
Figure JPOXMLDOC01-appb-C000062
 窒素雰囲気下、2-アセチルアミノ-5-クロロ-3-フルオロピリジン(6.0g)及びDMF(7.4mL,95mmol)をTHF(60mL)に溶解した。この溶液を-20℃に冷却して1.0MリチウムヘキサメチルジシラジドのTHF溶液(127mL,127mmol)を滴下した後、同温で5時間攪拌した。この反応液を、クエン酸一水和物(33g)及び食塩(7.5g)を水(48mL)で溶解した水溶液に攪拌下0℃で加えた。室温に昇温して有機層を分離し、有機層を40wt%リン酸水素二カリウム水溶液(30mL)及び20wt%食塩水(30mL)で順次洗浄後、減圧下で溶媒留去した。残渣にTHF(30mL)を加え、減圧下で溶媒留去した。再度、残渣にTHF(30mL)を加え、減圧下で溶媒留去して、標題化合物を含む固体(7.3g)を得た。生成物は、さらに精製することなく次の工程に使用した。
 H-NMR及びMSスペクトルは、実施例1(工程2)で得られた標題化合物のそれらと一致した。
工程3及び4:
3-(3-フルオロ-2-アミノピリジン-4-イルメチル)-7-ヒドロキシ-4-メチル-2-オキソ-2H-1-ベンゾピラン メタンスルホネートの合成:
Figure JPOXMLDOC01-appb-C000063
 窒素雰囲気下、工程2の固体生成物(7.3g)にアセトニトリル(45mL)、ピペリジン(0.5mL,5.2mmol)、酢酸(0.3mL,5.2mmol)及び3-オキソブタン酸エチル(3.6mL,29mmol)を室温で加え、50℃に昇温後4.5時間攪拌した。この反応液(47g)を室温に冷却後、反応液の一部(5g)を採取し、残りの反応液(42g)に、2-プロパノール(36mL)と、トリエチルアミン(69mL,496mmol)及びギ酸(16mL,409mmol)の2-プロパノール(78mL)溶液と、20%Pd(OH)炭素(3.9g,含水率50%)と、を加え、50℃に昇温して5.5時間攪拌した。室温に冷却後、反応液をセライトろ過し、残渣を酢酸エチル(386mL)で洗浄した。ろ液と洗浄液を合わせ、10wt%食塩水(116mL)で2回洗浄した。有機層を飽和重曹水(116mL)及び20wt%食塩水(116mL)で順次洗浄し、減圧下で溶媒留去した。溶媒留去で得られた残渣に酢酸エチル(77mL)を加え、水(39mL)及び20wt%食塩水(39mL)で順次洗浄して有機層(124.2g)を得た。この有機層の一部(0.36g)を採取した後、残り(123.8g)を減圧下で溶媒留去して、標題化合物を含む油状物(7.0g)を得た。
 この油状物を2,2,2-トリフルオロエタノール(15mL)に溶解し、レゾルシノール(2.4g,21mmol)及びメタンスルホン酸(5.3mL,81mmol)を室温で加えた後、95℃で16時間攪拌した。この反応液を室温に冷却後、エタノール(15mL)及び水(4.9mL)を加え、さらに95℃で3時間攪拌した。この溶液を55℃に冷却後、2-プロパノール(47mL)を加え、さらに室温に冷却して1.5時間攪拌した。析出した結晶をろ取し、2-プロパノール(15mL)で2回洗浄後、減圧下乾燥して、標題化合物を含む固体(4.0g)を得た。生成物は、さらに精製することなく次の工程に使用した。
 固体中の標題化合物の含量をH-NMR分析(内部標準物質:N,N-ジメチルアセトアミド)により求め、それに基づいて標題化合物の収率を算出した。
 含量:79%
 収率(工程2で使用した2-アセチルアミノ-5-クロロ-3-フルオロピリジンからの通算収率):28%
 MSスペクトルは、実施例1(工程4)で得られた標題化合物のそれと一致した。
工程5:
4-メチル-3-(3-フルオロ-2-アミノピリジン-4-イルメチル)-7-(ピリミジン-2-イルオキシ)-2-オキソ-2H-1-ベンゾピランの合成:
Figure JPOXMLDOC01-appb-C000064
 窒素雰囲気下、工程4の固体生成物(3.0g)及び2-ブロモピリミジン(1.6g,9.8mmol)のDMF(48mL)溶液に炭酸カリウム(2.3g,17mmol)を加え、115℃で2.5時間攪拌した。この反応液を28℃に冷却後、水(48mL)を同温で5分間かけて滴下し、さらに0℃に冷却して2時間攪拌した。析出した結晶をろ取し、水(24mL)及びアセトニトリル(24mL)で順次洗浄後、減圧下乾燥して粗結晶(2.3g)を得た。得られた粗結晶(2.3g)にDMF(65mL)を加え、60℃に加熱して溶解確認後、25℃に冷却した。25℃で水(65mL)を加え、さらに0℃に冷却して4時間攪拌した。析出した結晶をろ取し、水(22mL)及びアセトニトリル(22mL)で順次洗浄後、減圧下乾燥して標題化合物(2.1g)を得た。なお、標題化合物は、WO2007/091736に記載の化合物である。
 収率(工程2で使用した2-アセチルアミノ-5-クロロ-3-フルオロピリジンからの通算収率):27%
[実施例6]
2-アセチルアミノ-5-クロロ-3-フルオロピリジンの合成:
Figure JPOXMLDOC01-appb-C000065
 窒素雰囲気下、アセトアミド(620mg,10.5mmol)及びt-ブトキシカリウム(1.01g,10.5mmol)のDMF(4.5mL)懸濁溶液を50℃に加熱して1.5時間攪拌した。0℃に冷却後、5-クロロ-2,3-ジフルオロピリジン(450mg,3.0mmol)を滴下し、DMF(0.45mL)を追加して、同温で2.5時間攪拌した。反応液に飽和塩化アンモニウム水溶液(4.5mL)及び水(4.5mL)を順次加え、酢酸エチル(9.0mL)で抽出した。水層を酢酸エチル(9.0mL)で2回抽出し、合わせた有機層を食塩水(4.5mL)で洗浄後、無水硫酸ナトリウムで乾燥した。有機層の一部(22.1%)をH-NMR定量用に採取した後、残りの有機層を減圧下で溶媒留去した。残渣にヘプタン及びt-ブチルメチルエーテル(15:1)の混合溶媒(7.0mL)を加えて懸濁攪拌した。析出した固体をろ取し、ヘプタン及びt-ブチルメチルエーテル(15:1)の混合溶媒(3.5mL)で洗浄後、減圧下乾燥して標題化合物(321mg,1.7mmol)を得た。
 収率は、先に採取した有機層のH-NMR分析(内部標準物質:1,2,4,5-テトラメチルベンゼン)により算出した。
 収率:78%
 H-NMR(CDCl)δ(ppm):2.37(3H,s),7.49(1H,dd,J=2.0,9.5Hz),7.62(1H,br),8.18(1H,d,J=2.0Hz).
 MS(ESI):189[M+1]
[実施例7]
2-アセチルアミノ-5-クロロ-3-フルオロピリジンの合成:
Figure JPOXMLDOC01-appb-C000066
 窒素雰囲気下、アセトアミド(4.1g,70mmol)をDMF(30mL)に溶解した。この溶液に水素化ナトリウム(含量50~72%,2.4g,60mmol(含量60%とする。))を0℃で3回に分けて加えた。5-クロロ-2,3-ジフルオロピリジン(3.0g,20mmol)を0℃で滴下し、室温まで昇温しながら3時間攪拌した。0℃に冷却後、反応液に飽和塩化アンモニウム水溶液を加え、さらに室温に昇温して酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下で溶媒留去した。残渣をヘプタン及びt-ブチルメチルエーテル(15:1)の混合溶媒に懸濁し、懸濁液を室温で攪拌した。これをろ過し、得られた固体を減圧下乾燥して標題化合物(2.7g)を得た。
 収率:70%
 H-NMR及びMSスペクトルは、実施例1(工程1)で得られた標題化合物のそれらと一致した。
[実施例8]
2-アセチルアミノ-5-クロロ-3-フルオロ-4-ホルミルピリジンの合成:
Figure JPOXMLDOC01-appb-C000067
 窒素雰囲気下、室温にて2-アセチルアミノ-5-クロロ-3-フルオロピリジン(20mg,0.11mmol)及び4-ホルミルモルホリン(64μL,0.64mmol)をTHF(0.2mL)に溶解した。この溶液を-20℃に冷却後、1.0MリチウムヘキサメチルジシラジドのTHF溶液(244μL,0.24mmol)を滴下し、同温で2時間攪拌した。この反応液を下記条件でHPLC分析に付し、標題化合物及び出発化合物(2-アセチルアミノ-5-クロロ-3-フルオロピリジン)の面積比から純度及び変換率を算出した。なお、変換率(%)=100-(出発化合物の面積比)である。
 純度:96.8%
 変換率:97.6%
 HPLC条件:
  カラム:TOSOH TSK-GEL ODS-100V(4.6mmI.D.×7.5cm,3μm)
  移動相:A液:HO/TFA(2000/1);B液:アセトニトリル/TFA(2000/1)
  グラジェント操作:B液:0%(3分間),0%~30%(10分間),30%(3分間),30%~100%(6分間),100%(1分間)
  流速:1.0mL/分
  温度:30.0℃
  検出波長:287nm
[実施例9]
2-アセチルアミノ-5-クロロ-3-フルオロ-4-ホルミルピリジンの合成:
Figure JPOXMLDOC01-appb-C000068
 窒素雰囲気下、室温にて2-アセチルアミノ-5-クロロ-3-フルオロピリジン(50mg,0.27mmol)及びDMF(123μL,1.6mmol)をTHF(0.5mL)に溶解した。この溶液を-20℃に冷却後、24wt%リチウムヘキサメチルジシラジドのTHF溶液(492μL,0.61mmol)を滴下し、同温で3時間攪拌した。この反応液を実施例8と同様の条件でHPLC分析に付し、標題化合物及び出発化合物(2-アセチルアミノ-5-クロロ-3-フルオロピリジン)の面積比から純度及び変換率を算出した。なお、変換率(%)=100-(出発化合物の面積比)である。
 純度:76.3%
 変換率:77.1%
[実施例10]
2-[(2-アセチルアミノ-3-フルオロピリジン-4-イル)メチル]-3-オキソブタン酸 エチルエステルの合成:
Figure JPOXMLDOC01-appb-C000069
 窒素雰囲気下、実施例1の工程1、2と同様にして得た固体生成物(2-アセチルアミノ-5-クロロ-3-フルオロ-4-ホルミルピリジンを含有)(114mg)にアセトニトリル(0.4mL)、ピペリジン(5μL,0.046mmol)、酢酸(3μL,0.046mmol)及び3-オキソブタン酸エチル(34μL,0.27mmol)を加え、50℃に昇温後6時間攪拌した。この反応液を下記条件でHPLC分析に付し、生成物(2-[(2-アセチルアミノ-5-クロロ-3-フルオロピリジン)メチレン]-3-オキソブタン酸エチルエステル)及び出発化合物(2-アセチルアミノ-5-クロロ-3-フルオロ-4-ホルミルピリジン)の面積比から純度及び変換率を算出した。なお、変換率(%)=100-(出発化合物の面積比)である。
 純度:86.3%
 変換率:99.3%
 HPLC条件(1):
  カラム:TOSOH TSK-GEL ODS-100V(4.6mmI.D.×7.5cm,3μm)
  移動相:A液:HO/TFA(2000/1);B液:アセトニトリル/TFA(2000/1)
  グラジェント操作:B液:0%(3分間),0%~30%(10分間),30%(3分間),30%~100%(6分間),100%(1分間)
  流速:1.0mL/分
  温度:30.0℃
  検出波長:210nm
 上記反応液を室温に冷却後、トリエチルアミン(670μL,4.9mmol)及びギ酸(150μL,4.0mmol)の2-プロパノール(1.1mL)溶液と20%Pd(OH)炭素(19mg,含水率50%)とを加え、50℃に昇温して4.5時間攪拌した。この反応液を下記条件でHPLC分析に付し、標題化合物及びその前駆体(2-[(2-アセチルアミノ-5-クロロ-3-フルオロピリジン-4-イル)メチル]-3-オキソブタン酸 エチルエステル)の面積比から各々の純度を算出した。
 純度:標題化合物:82.2%;前駆体:7.3%
 HPLC条件(2):
  カラム:TOSOH TSK-GEL ODS-100V(4.6mmI.D.×7.5cm,3μm)
  移動相:A液:HO/TFA(2000/1);B液:アセトニトリル/TFA(2000/1)
  グラジェント操作:B液:0%(3分間),0%~30%(10分間),30%(3分間),30%~100%(6分間),100%(1分間)
  流速:1.0mL/分
  温度:30.0℃
  検出波長:210nm
[実施例11]
2-[(2-アセチルアミノ-3-フルオロピリジン-4-イル)メチル]-3-オキソブタン酸 エチルエステルの合成:
Figure JPOXMLDOC01-appb-C000070
 窒素雰囲気下、実施例1の工程1、2と同様にして得た固体生成物(2-アセチルアミノ-5-クロロ-3-フルオロ-4-ホルミルピリジンを含有)(114mg)に2,2,2-トリフルオロエタノール(0.4mL)、ピペリジン(5μL,0.046mmol)、酢酸(3μL,0.046mmol)及び3-オキソブタン酸エチル(34μL,0.27mmol)を加え、50℃に昇温後5時間攪拌した。この反応液を実施例10のHPLC条件(1)と同様の条件でHPLC分析に付し、生成物(2-[(2-アセチルアミノ-5-クロロ-3-フルオロピリジン)メチレン]-3-オキソブタン酸エチルエステル)及び出発化合物(2-アセチルアミノ-5-クロロ-3-フルオロ-4-ホルミルピリジン)の面積比から純度及び変換率を算出した。なお、変換率(%)=100-(出発化合物の面積比)である。
 純度:89.9%
 変換率:99.5%
 上記反応液を室温に冷却後、トリエチルアミン(670μL,4.9mmol)及びギ酸(150μL,4.0mmol)の2-プロパノール(1.1mL)溶液と20%Pd(OH)炭素(19mg,含水率50%)とを加え、50℃に昇温して4.5時間攪拌した。この反応液を実施例10のHPLC条件(2)と同様の条件でHPLC分析に付し、標題化合物とその前駆体(2-[(2-アセチルアミノ-5-クロロ-3-フルオロピリジン-4-イル)メチル]-3-オキソブタン酸 エチルエステル)の面積比から各々の純度を算出した。
 純度:標題化合物:89.3%;前駆体:0.4%
[実施例12]
2-[(2-アセチルアミノ-5-クロロ-3-フルオロピリジン)メチレン]-3-オキソブタン酸 エチルエステルの水素添加による還元反応:
Figure JPOXMLDOC01-appb-C000071
 実施例2と同様にして得た2-[(2-アセチルアミノ-5-クロロ-3-フルオロピリジン)メチレン]-3-オキソブタン酸 エチルエステル(13mg)をメタノール(0.2mL)及び酢酸エチル(0.02mL)の混合溶媒に溶解した。この溶液に、10%Pd(OH)炭素(PE-Type,エヌ・イー ケムキャット)(2mg,含水率51.8%)を加え、水素雰囲気下、室温で1.5時間攪拌した。反応液をろ過後、減圧下で溶媒留去して粗生成物を得た。これをカラムクロマトグラフィー[まずn-ヘプタン/酢酸エチル(1/1~0/1)で溶出、次いで酢酸エチル/メタノール(15/1)で溶出]で精製し、油状物(1mg)を得た。
 収率:9%
 H-NMR及びMSスペクトルは、実施例1(工程3)で得られた化合物のそれらと一致した。
[実施例13]
工程1及び2:
2-アセチルアミノ-5-クロロ-3-フルオロ-4-ホルミルピリジンの合成:
Figure JPOXMLDOC01-appb-C000072
 実施例1の工程1、2と同様にして、標題化合物を含む固体(3.43g)を得た。生成物は、さらに精製することなく次の工程に使用した。
工程3:
2-[(2-アセチルアミノ-3-フルオロピリジン-4-イル)メチル]-3-オキソブタン酸 エチルエステルの合成:
Figure JPOXMLDOC01-appb-C000073
 窒素雰囲気下、工程2の固体生成物(3.43g)に水(8.0mL)を加え、さらに攪拌しながら3-オキソブタン酸(1.32g,10.1mmol)、エチレンジアミンジアセテート(830mg,4.61mmol)、トルエン(10.0mL)及び酢酸エチル(6.0mL)を加え、40℃に昇温後5時間攪拌した。この反応液を室温に冷却して有機層を分離した後、有機層に2-プロパノール(12.1mL)を加え、さらに攪拌しながら20%Pd(OH)炭素(1.52g,含水率46.2%)とトリエチルアミン(20.3g,201mmol)及びギ酸(7.43g,161mmol)の2-プロパノール(10.6mL)溶液とを順次加え、50℃に昇温して3時間攪拌した。反応液をセライトろ過し、残渣を2-プロパノール(30.3mL)で洗浄した。ろ液と洗浄液を合わせた後、減圧下で溶媒留去し、残渣に酢酸エチル(6.1mL)を加え、減圧下で溶媒留去した。再度、残渣に酢酸エチル(6.1mL)を加え、減圧下で溶媒留去し、さらに、残渣に酢酸エチル(54.5mL)を加え、有機層を20wt%食塩水(15.2mL)、10wt%リン酸二水素カリウム水溶液(15.2mL)及び20wt%食塩水(15.2mL)で順次洗浄後、減圧下で溶媒留去した。得られた残渣に酢酸エチル(6.1mL)を加えて不溶物をろ別し、ろ液を減圧下で溶媒留去して、標題化合物を含む油状物(2.70g)を得た。生成物は、さらに精製することなく次の工程に使用した。
 H-NMRスペクトルは、実施例1(工程3)で得られた標題化合物のそれと一致した。
工程4:
3-(3-フルオロ-2-アミノピリジン-4-イルメチル)-7-ヒドロキシ-4-メチル-2-オキソ-2H-1-ベンゾピラン メタンスルホネートの合成:
Figure JPOXMLDOC01-appb-C000074
 窒素雰囲気下、工程3の油状生成物(2.70g)を酢酸エチル(5.47mL)に溶解し、攪拌しながらレゾルシノール(1.32g,12.0mmol)及びメタンスルホン酸(8.20mL,126mmol)を室温で加え、50℃に昇温後4時間攪拌した。この反応液を室温に冷却して16時間静置した後、水(2.7mL)を加え、80℃で7時間攪拌した。この反応液を室温に冷却して16時間静置し、70℃に昇温後、種晶(27.4mg)を加えた。その後、水(5.5mL)を加えて1時間攪拌し、さらにエタノール(13.7mL)を加え30分間攪拌した。25℃に冷却し、エタノール(38.2mL)を加えて30分間攪拌した後、析出した結晶をろ取した。得られた結晶をエタノール(16.4mL)で2回洗浄後、減圧下乾燥して標題化合物(2.20g)を得た。
 収率(工程2で使用した2-アセチルアミノ-5-クロロ-3-フルオロピリジンからの通算収率):53%
 MSスペクトルは、実施例1(工程4)で得られた標題化合物のそれと一致した。
[実施例14]
工程1及び2:
2-アセチルアミノ-5-クロロ-3-フルオロ-4-ホルミルピリジンの合成:
Figure JPOXMLDOC01-appb-C000075
 実施例1の工程1、2と同様にして、標題化合物を含む固体(3.44g)を得た。生成物は、さらに精製することなく次の工程に使用した。
工程3:
2-[(2-アセチルアミノ-3-フルオロピリジン-4-イル)メチル]-3-オキソブタン酸 エチルエステルの合成:
Figure JPOXMLDOC01-appb-C000076
 窒素雰囲気下、工程2の固体生成物(3.44g)に水(8.0mL)を加え、さらに攪拌しながら3-オキソブタン酸(1.35g,10.4mmol)、エチレンジアミンジアセテート(852mg,4.73mmol)、トルエン(10.0mL)及び酢酸エチル(6.0mL)を加え、40℃に昇温後5時間攪拌した。この反応液を室温に冷却して有機層を分離した後、有機層(16.70g)の一部(4.18g)に2-プロパノール(3.0mL)を加え、さらに攪拌しながら20%Pd(OH)炭素(383mg,含水率46.2%)とトリエチルアミン(5.07g,50.1mmol)及びギ酸(1.87g,40.6mmol)の2-プロパノール(2.7mL)溶液とを順次加え、50℃に昇温して2時間攪拌した。反応液をセライトろ過し、残渣を2-プロパノール(7.6mL)で洗浄した。ろ液と洗浄液(21.7g)を合わせた後、減圧下で溶媒留去し、残渣に酢酸エチル(1.5mL)を加え、減圧下で溶媒留去した。再度、残渣に酢酸エチル(13.7mL)を加え、有機層を20wt%食塩水(3.8mL)、10wt%リン酸二水素カリウム水溶液(3.8mL)及び20wt%食塩水(3.8mL)で順次洗浄後、減圧下で溶媒留去して、標題化合物を含む油状物(655mg)を得た。
 H-NMRスペクトルは、実施例1(工程3)で得られた標題化合物のそれと一致した。

Claims (13)

  1.  一般式(VI):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは水素原子又はハロゲン原子を表し、R及びRは各々独立に、水素原子、又はアミノ基の保護基を表し、或いはR及びRは一緒になってアミノ基の保護基を形成していてもよく、R及びRは各々独立にC1-6アルキル基を表す。]
    で表される化合物を製造する方法であって、下記工程A~Dを含む方法。
     工程A:
     RNH[式中、R及びRは上記と同義である。]を、一般式(I):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rは水素原子又はハロゲン原子を表し、Halはハロゲン原子を表し、Rは上記と同義である。]
    で表される化合物と反応させて、一般式(II):
    Figure JPOXMLDOC01-appb-C000003
    [式中、R、R、R及びRは上記と同義である。]
    で表される化合物を得る工程
     工程B:
     一般式(II)で表される化合物を塩基及びホルミル化剤と反応させて、一般式(III):
    Figure JPOXMLDOC01-appb-C000004
    [式中、R、R、R及びRは上記と同義である。]
    で表される化合物を得る工程
     工程C:
     一般式(III)で表される化合物を、一般式(IV):
    Figure JPOXMLDOC01-appb-C000005
    [式中、R及びRは上記と同義である。]
    で表される化合物と反応させて、一般式(V):
    Figure JPOXMLDOC01-appb-C000006
    [式中、R、R、R、R、R及びRは上記と同義である。]
    で表される化合物を得る工程
     工程D:
     一般式(V)で表される化合物を、
     (a)二重結合の還元反応(Rが水素原子の場合)、又は
     (b)二重結合の還元反応及びRの加水素分解反応(Rがハロゲン原子の場合)
    に付して、一般式(VI):
    Figure JPOXMLDOC01-appb-C000007
    [式中、R、R、R、R及びRは上記と同義である。]
    で表される化合物を得る工程
  2.  RNHがアセトアミド(HCCONH)である、請求項1に記載の方法。
  3.  Rが塩素原子であり、工程Bで使用される塩基とホルミル化剤の組合せが、リチウムヘキサメチルジシラジドとN,N-ジメチルホルムアミドの組合せ又はリチウムヘキサメチルジシラジドと4-ホルミルモルホリンの組合せである、請求項1又は2に記載の方法。
  4.  工程Cにおいて、一般式(III)で表される化合物と一般式(IV)で表される化合物との反応が塩基及び酸の存在下で行われる、請求項1~3のいずれか一項に記載の方法。
  5.  工程Cで使用される反応溶媒が、水、酢酸エステル系溶媒及び芳香族炭化水素系溶媒の混合溶媒である、請求項1~4のいずれか一項に記載の方法。
  6.  工程Dで使用される反応溶媒が、酢酸エステル系溶媒、芳香族炭化水素系溶媒及びアルコール系溶媒の混合溶媒である、請求項1~5のいずれか一項に記載の方法。
  7.  工程C又はDで使用される反応溶媒が2,2,2-トリフルオロエタノールである、請求項1~4のいずれか一項に記載の方法。
  8.  工程Dの(a)又は(b)の反応が、トリエチルアミン、ギ酸及び炭素担持パラジウムを用いて行われる、請求項1~7のいずれか一項に記載の方法。
  9.  一般式(VI)で表される化合物が、式:
    Figure JPOXMLDOC01-appb-C000008
    で表される化合物である、請求項1~8のいずれか一項に記載の方法。
  10.  一般式(I)で表される化合物が、式:
    Figure JPOXMLDOC01-appb-C000009
    で表される化合物である、請求項1~9のいずれか一項に記載の方法。
  11.  一般式(VII):
    Figure JPOXMLDOC01-appb-C000010
    [式中、R及びRは上記と同義であり、Xはヘテロアリール基又はR1314NCO-を表し、R11は、水素原子、ハロゲン原子、シアノ基、C1-6アルキル基、C2-7アルケニル基、カルバモイル基又はC2-7アルキニル基(該C2-7アルキニル基はC1-4アシル基で置換されていてもよい。)を表し、R13、R14、R16及びR17は各々独立に、水素原子、C1-6アルコキシ基、C3-8シクロアルキル基又はC1-6アルキル基(該C1-6アルキル基は、シアノ基、ハロゲン原子、ヒドロキシ基、C1-6アルコキシ基又は-NR2324で置換されていてもよい。)を表し、或いはR13とR14の組合せ及びR16とR17の組合せは各々独立に、結合する窒素原子と一緒になって、少なくとも1個の窒素原子を含む4~6員のヘテロ環基を形成していてもよく、R15、R23及びR24は各々独立に水素原子又はC1-6アルキル基を表す。]
    で表される化合物又はその薬学上許容し得る塩を製造する方法であって、請求項1~10のいずれか一項に記載の方法によって一般式(VI)で表される化合物を製造することを含む方法。
  12.  さらに下記工程E~Gを含む、請求項11に記載の方法。
     工程E:
     酸の存在下、一般式(VI)で表される化合物を、一般式(VIII):
    Figure JPOXMLDOC01-appb-C000011
    [式中、R11は上記と同義である。]
    で表される化合物と反応させて、一般式(IX):
    Figure JPOXMLDOC01-appb-C000012
    [式中、R、R及びR11は上記と同義である。]
    で表される化合物又はその薬学上許容し得る塩若しくは酸付加物を得る工程
     工程F:
     塩基の存在下、一般式(IX)で表される化合物又はその薬学上許容し得る塩若しくは酸付加物を、X-Y[式中、Xは上記と同義であり、Yはハロゲン原子を表す。]と反応させて、一般式(X):
    Figure JPOXMLDOC01-appb-C000013
    [式中、R、R、R11及びXは上記と同義である。]
    で表される化合物を得る工程
     工程G:
     一般式(X)で表される化合物を、一般式(XI):
    Figure JPOXMLDOC01-appb-C000014
    [式中、R16及びR17は上記と同義であり、Zは脱離基を表す。]
    で表される化合物と反応させて、一般式(VII’):
    Figure JPOXMLDOC01-appb-C000015
    [式中、R、R、R11、X、R16及びR17は上記と同義である。]
    で表される化合物を得る工程
  13.  一般式(VII)で表される化合物又はその薬学上許容し得る塩が、式:
    Figure JPOXMLDOC01-appb-C000016
    で表される化合物のカリウム塩である、請求項11又は12に記載の方法。
PCT/JP2012/072645 2011-09-05 2012-09-05 クマリン誘導体の製造方法 WO2013035754A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12829853.6A EP2754654B1 (en) 2011-09-05 2012-09-05 Method for producing coumarin derivative
JP2013532632A JP6061856B2 (ja) 2011-09-05 2012-09-05 クマリン誘導体の製造方法
US14/342,629 US9133174B2 (en) 2011-09-05 2012-09-05 Method for producing coumarin derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011193308 2011-09-05
JP2011-193308 2011-09-05

Publications (1)

Publication Number Publication Date
WO2013035754A1 true WO2013035754A1 (ja) 2013-03-14

Family

ID=47832197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072645 WO2013035754A1 (ja) 2011-09-05 2012-09-05 クマリン誘導体の製造方法

Country Status (4)

Country Link
US (1) US9133174B2 (ja)
EP (1) EP2754654B1 (ja)
JP (1) JP6061856B2 (ja)
WO (1) WO2013035754A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019096397A1 (en) 2017-11-16 2019-05-23 The Institute Of Cancer Research: Royal Cancer Hospital Coumarin derivative for therapy or prophylaxis of a cell proliferative disorder
WO2023211812A1 (en) 2022-04-25 2023-11-02 Nested Therapeutics, Inc. Heterocyclic derivatives as mitogen-activated protein kinase (mek) inhibitors

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021047783A1 (en) 2019-09-13 2021-03-18 The Institute Of Cancer Research: Royal Cancer Hospital Vs-6063 in combination with ch5126766 for the treatment of cancer
CN110885329B (zh) * 2019-12-16 2020-12-15 诚达药业股份有限公司 一种1,7-萘啶衍生物的合成方法
US11873296B2 (en) * 2022-06-07 2024-01-16 Verastem, Inc. Solid forms of a dual RAF/MEK inhibitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236145A (ja) * 1988-05-09 1990-02-06 Merck & Co Inc 骨親和剤としてのポリマロン酸類
WO2007091736A1 (ja) 2006-02-09 2007-08-16 Chugai Seiyaku Kabushiki Kaisha 抗腫瘍活性を有する新規クマリン誘導体
WO2009014100A1 (ja) 2007-07-20 2009-01-29 Chugai Seiyaku Kabushiki Kaisha p27蛋白質誘導剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890723B2 (ja) * 2000-07-21 2012-03-07 中外製薬株式会社 TNFαインヒビターとして有用なクマリン誘導体
CA2637172A1 (en) * 2006-01-27 2007-08-09 Array Biopharma Inc. Pyridin-2-amine derivatives and their use as glucokinase activators
DE102006037399A1 (de) * 2006-08-10 2008-02-14 Archimica Gmbh Verfahren zur Herstellung von Arylaminen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236145A (ja) * 1988-05-09 1990-02-06 Merck & Co Inc 骨親和剤としてのポリマロン酸類
WO2007091736A1 (ja) 2006-02-09 2007-08-16 Chugai Seiyaku Kabushiki Kaisha 抗腫瘍活性を有する新規クマリン誘導体
WO2009014100A1 (ja) 2007-07-20 2009-01-29 Chugai Seiyaku Kabushiki Kaisha p27蛋白質誘導剤

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BIOORGANIC MEDICINAL CHEMISTRY, vol. 13, 2005, pages 1393 - 1402
JOURNAL OF MEDICINAL CHEMISTRY, vol. 47, 2004, pages 6447 - 6450
ORGANIC PREPARATIONS AND PROCEDURES INTERNATIONAL, vol. 36, 2004, pages 347 - 351
See also references of EP2754654A4 *
STANCHO STANCHEV, ET AL.: "Synthesis and Inhibiting Activity of Some 4-Hydroxycoumarin Derivatives on HIV-1 Protease. Art 137637", ISRN PHARMACEUTICS, vol. 63, no. 10, 2011, pages 1 - 9, XP055145297 *
STANCHO STANCHEV, ET AL.: "Synthesis, computational study and cytotoxic activity of new 4-hydroxycoumarin derivatives", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 43, no. 4, 2008, pages 694 - 706, XP022576473 *
SYNTHETIC COMMUNICATIONS, vol. 34, 2004, pages 4301 - 4311

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019096397A1 (en) 2017-11-16 2019-05-23 The Institute Of Cancer Research: Royal Cancer Hospital Coumarin derivative for therapy or prophylaxis of a cell proliferative disorder
WO2019096449A1 (en) 2017-11-16 2019-05-23 The Institute Of Cancer Research: Royal Cancer Hospital Coumarin derivative for therapy or prophylaxis of a cell proliferative disorder
WO2023211812A1 (en) 2022-04-25 2023-11-02 Nested Therapeutics, Inc. Heterocyclic derivatives as mitogen-activated protein kinase (mek) inhibitors

Also Published As

Publication number Publication date
JPWO2013035754A1 (ja) 2015-03-23
EP2754654B1 (en) 2018-05-30
EP2754654A4 (en) 2015-04-08
JP6061856B2 (ja) 2017-01-18
US20140213786A1 (en) 2014-07-31
EP2754654A1 (en) 2014-07-16
US9133174B2 (en) 2015-09-15

Similar Documents

Publication Publication Date Title
JP7245834B2 (ja) 嚢胞性線維症膜コンダクタンス制御因子のモジュレーターを作成するためのプロセス
JP6392436B2 (ja) 置換された5−フルオロ−1h−ピラゾロピリジン類を製造するための方法
JP6371871B2 (ja) メチル{4,6−ジアミノ−2−[1−(2−フルオロベンジル)−1H−ピラゾロ[3,4−b]ピリジン−3−イル]ピリミジン−5−イル}メチルカルバメートの調製方法および医薬上活性な化合物として用いるためのその精製方法
JP6061856B2 (ja) クマリン誘導体の製造方法
JP5789260B2 (ja) C型肝炎ウイルスのプロテアーゼ阻害薬の調製方法
JP2022502388A (ja) Shp2の活性を阻害するための化合物及び組成物の製造
BR112017013093B1 (pt) Processos para a preparação de um composto de diariltio-hidantoína
CN101817773A (zh) 手性α-非天然氨基酸的制备方法
CN109796457B (zh) 一种2-(3-(氮杂环丁烷-3-基)哌啶-1-基)乙基-1-醇的制备方法及其应用
CN101218244A (zh) 制备吡唑-o-苷衍生物的方法及该方法的新颖中间体
CN114085213B (zh) 一种arv-471的制备方法
KR20160002822A (ko) Bace1 억제제의 합성
JP7094942B2 (ja) ベンズイミダゾール誘導体の製造方法
Liu et al. Diastereoselective Synthesis of Functionalized Tetrahydropyrimidin‐2‐thiones via ZnCl2 Promoted One‐pot Reactions
AU2017387801A1 (en) Methods for the preparation of 6-aminoisoquinoline
KR101299720B1 (ko) 3-아미노-5-플루오로-4-디알콕시펜탄산 에스테르의 새로운제조방법
JP2022517411A (ja) テトラヒドロピリドピリミジン類の調製方法
CN115521289A (zh) 一种吡啶衍生物及其制备方法
JP2021075535A (ja) ピリミジン誘導体およびそれらの中間体を調製する化学的方法
CN113896730A (zh) 一种枸橼酸托法替布及其中间体的制备方法
WO2009133778A1 (ja) tert-ブチル 3-アミノピペリジン-1-カルボキシレートの製造方法およびその中間体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829853

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14342629

Country of ref document: US