WO2013034081A1 - 光学玻璃、模压用预制件及光学元件 - Google Patents
光学玻璃、模压用预制件及光学元件 Download PDFInfo
- Publication number
- WO2013034081A1 WO2013034081A1 PCT/CN2012/081039 CN2012081039W WO2013034081A1 WO 2013034081 A1 WO2013034081 A1 WO 2013034081A1 CN 2012081039 W CN2012081039 W CN 2012081039W WO 2013034081 A1 WO2013034081 A1 WO 2013034081A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- weight
- optical
- optical glass
- content
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
Definitions
- the present invention relates to an optical glass, a preform for molding, and an optical element, and more particularly to a high refractive low dispersion optical glass, a molding preform formed of the glass, and a preform formed of the glass Optical element.
- High refractive low dispersion optical glass is widely used in optical design, especially in refractive index
- optical glasses More than 88 optical glasses with an Abbe number of 37 or more.
- the transmittance of the optical glass is closely related to the refractive index, and the higher the refractive index, the worse the transmittance, and the tendency of the glass to be colored.
- the glass used in precision press molding should have a low transition temperature (Tg) as much as possible, and the molding has high requirements on the chemical stability of the glass such as acid resistance and water resistance.
- the technical problem to be solved by the present invention is to provide an optical glass having a refractive index of 1.88 or more and an Abbe number of 37 or more.
- the optical glass has excellent transmittance and a low transition temperature, and is suitable for precision molding.
- the technical solution adopted by the present invention to solve the technical problem is: optical glass, the weight percentage content is: more than 1% and less than 10% of SiO 2 ; 10-20% of B 2 0 3 ; 25-35 % of La 2 0 3 ; 10-20% of Gd 2 0 3 ; greater than 0 and less than 5% of Lu 2 0 3 ; wherein La 2 0 3 / (La 2 0 3 + Gd 2 0 3 + Lu 2 0 3 ) is less than 0. 67; 10-20% Ta 2 0 5 ; 8-15% ZnO; 0.1-1% Li0 2 ; 0. 5-8% Zr0 2 ; 5-15% W0 3 ; -3% Ti0 2 ; 0-0. 2% Sb 2 0 3 .
- Lu 2 0 3 is greater than 0 and less than 2%.
- La 2 0 3 / (La 2 0 3 + Gd 2 0 3 + Lu 2 0 3 ) is less than 0.67 and greater than 0.60. Further, the ZnO: 10-13%.
- a molding preform formed using the above optical glass A molding preform formed using the above optical glass.
- the invention has the beneficial effects that: as a high refractive low dispersion optical glass, the high refractive index and stable production of glass can be obtained by adjusting the composition contents of La 2 O 3 , Gd 2 0 3 and Lu 2 0 3 ; By controlling the ratio of La 2 0 3 /(La 2 0 3 + Gd 2 0 3 + Lu 2 0 3 ), the optical constant can be obtained and the transmittance of the glass can be effectively improved; the introduction of ZnO can lower the glass.
- the transition temperature can also improve the chemical stability of the glass; the introduction of Li02 in a small amount can also effectively lower the glass transition temperature, and the introduction of W03 in the present invention can improve the transmittance of the glass.
- the optical glass of the present invention has a refractive index range of 1.88 or more, an Abbe number range of 37 or more, and an excellent glass transmittance of 7 .
- the glass transition temperature is below 610 °C, suitable for precision molding, and can meet the imaging needs of optical systems and equipment.
- the optical glass of the invention contains a SiO 2 component, and the SiO 2 can improve the stability of the glass, can also effectively adjust the liquid phase viscosity of the glass, and improve the crystallization property of the glass; if the content of SiO 2 is too low, the aforementioned effect is not obvious; When the Si0 2 content is too high, the glass meltability is deteriorated and the transition temperature is increased. Therefore, the addition amount of SiO 2 is more than 1% and less than 10%, and the content is preferably more than 1% and less than 8%, and more preferably 2% to 6%.
- B 2 0 3 is an essential component for obtaining high refractive low dispersion performance optical glass.
- B 2 0 can effectively improve the meltability of the glass and lower the melting temperature and the viscous flow temperature.
- the content of B 2 0 3 is too high, the high refractive index of the glass is not obtained, and if the content is too low, the glass is unstable; therefore, the content is required to be at least 10%, but when the content of B 2 0 3 is greater than At 20%, the refractive index is lowered, so that the refractive index glass which is the final product of the present invention cannot be obtained; therefore, the addition amount thereof is 10-20%, preferably the content is 11-18%, and more preferably the content is 12-15%.
- L3 ⁇ 40 3 is an important component for obtaining high refractive index low dispersion glass, and its content is required to be 25-35%. When its content is less than 25%, both refractive index and low dispersion are decreased. When it is more than 35%, it is resistant. The permeability is lowered, so that the glass cannot be stably produced, and the content is preferably in the range of 27 to 32%, more preferably 28 to 32%.
- the Gd 2 0 3 component also has an effect of increasing the refractive index of the glass to make it lower in dispersion, and Gd 2 0 3 is used in an appropriate amount to help improve the devitrification resistance of the high refractive low dispersion glass.
- the amount is too small, the above effects are insufficient, and in particular, the Abbe number index is not obtained; if the amount is too large, the devitrification resistance is rather deteriorated. Therefore, its content is 10-20%, preferably in the range of 13-17%.
- Lu 2 0 3 is also a component effective for increasing the refractive index of the glass and increasing the Abbe number. However, when it is contained in a large amount, the devitrification resistance is deteriorated, and the specific gravity of the glass is increased; Lu 2 0 3 is also an expensive rare earth oxide, so the content thereof is selected to be more than 0 and less than 5%, and the preferred range is It is greater than 0 and less than 2%.
- the inventors have found through careful research that when three high refractive rare earth oxides of La 2 O 3 , Gd 2 0 3 and Lu 2 0 3 are simultaneously introduced into the glass, the high refractive low dispersion oxide can be effectively increased.
- the range of the La 2 0 3 / (La 2 0 3 + Gd 2 0 3 + Lu 2 0 3 ) satisfies less than 0.67, preferably less than 0, by adjusting the proportion of the content thereof.
- the glass can reach a refractive index (nd) of 1.88 or more, the Abbe number is controlled to an optical constant of 37 or more, and the light transmittance of the glass is excellent, and the batch stable production can be realized; This is more pronounced after the addition of Lu 2 0 3 in the range of greater than 0 and less than 2%.
- Ta 2 0 5 is a component that obtains a high refractive index, and at the same time, the devitrification resistance of the glass can be remarkably improved. 5-15% ⁇
- the addition amount is too high to reduce the Abbe's number of the glass, and it is also a precious metal oxide, the amount of use is limited to 10-20%, preferably the content of 10. 5-15%.
- ⁇ can effectively reduce the glass transition temperature in the present invention, and is also an essential component of the high refractive index low dispersion glass, which can improve the anti-impermeable property of the glass and lower the viscous flow temperature thereof, and also improve the chemical stability of the glass.
- the effect of inhibiting crystallization should be more than 8%, otherwise the melting property of the glass is lowered, and the chemical stability is deteriorated; however, the content thereof should be 15% or less, otherwise the low-dispersion glass which is the final product of the present invention cannot be obtained. Therefore, its content is 8-15%, A preferred content is 10-13%.
- Li 2 0 containing a small amount of molten glass transition temperature can effectively reduce (a Tg of), to improve the glass, but excessive use of the refractive index of glass will decrease, worsening the stability, so the content of 0. 1-2%; preferably 0.2 -1%.
- Zr0 2 was added an appropriate amount of glass may serve to improve the anti-impermeable action, but also effectively lowers the high temperature viscosity of the glass, increasing the chemical stability, Zr0 2 added in an amount of at least 0.5%, or fail
- the wo 3 component has an effect of increasing the refractive index of the glass and improving the crystallization of the glass, and an appropriate amount of introduction can improve the light transmittance of the glass in a short-wavelength region in the visible light region, but in the present invention, if the content is higher than 15%, The transmittance will be worse, and the devitrification performance of the glass will deteriorate. Therefore, it is contained in an amount of from 5 to 15%, preferably from 8 to 13%.
- the introduction of a small amount of Ti0 2 instead of W0 3 can make the glass have a higher refractive index and a lower specific gravity, but when it coexists with W0 3 , if the content is higher than 3%, the glass transmittance is deteriorated.
- 5-2% ⁇ The content range is 0. 1-3%, preferably in the range of 0. 5-2%.
- the Sb 2 0 3 component can be used for defoaming when the glass is melted, but if the content is too large, the transmittance in the short-wavelength region of the visible light region is deteriorated. 5% ⁇ 0%, more preferably 0. 1%, most preferably 0. 05% as the upper limit.
- the optical glass is preferably prepared according to the following procedure:
- the molten glass in the mold was slowly cooled and annealed at 60 CTC to obtain an optical glass.
- the performance test of the optical glass is as follows:
- the refractive index (nd) and the Abbe number (ud) value are -30 ° C / h annealing value, refractive index and Abbe number according to the colorless optical glass provided in GB/T 7962. 1-1987 Test methods for refractive index and dispersion coefficient are tested; The glass was made into a sample having a thickness of 10 mm ⁇ 0.1 mm, and the test glass was entered at a wavelength corresponding to a transmittance of 70%. .
- the transition temperature (Tg) is tested according to GB/T7962. 16-1987 colorless optical glass test method, linear expansion coefficient, transition temperature and sag temperature.
- gp the sample to be tested is within a certain temperature range, and the temperature is increased by rc. On the expansion curve of the sample to be tested, the linear portion of the low temperature region and the high temperature region are extended to intersect, and the temperature corresponding to the intersection point.
- the optical glass provided by the present invention has the following properties: a refractive index range of 1.88 or more; an Abbe number of 37 or more; and a corresponding wavelength ⁇ 7 when the transmittance reaches 70%. It is 385 nm or less; the transition temperature is 61 CTC or less.
- the optical glass provided by the present invention has an optical constant of high refractive index and low dispersion, excellent transmittance, and low transition temperature.
- the optical glass provided by the present invention has a refractive index of 1.88 or more, preferably a range of 1.88-1.90; an Abbe number of 37 or more, preferably 37-40, more preferably 37-38; when the transmittance reaches 70% Corresponding wavelength ⁇ 7 . It is 385 nm or less; the transition temperature is 610 ° C or lower, preferably 605 ° C or lower, more preferably 602 ° C or lower.
- the optical glass of the present invention can be used as a glass preform for pressure molding, or it can be directly formed by pressure molding of molten glass.
- the manufacturing method and the thermoforming method used as the glass preform are not particularly limited, and a known production method and molding method can be used.
- the glass preform produced by the optical glass of the present invention may be subjected to press working to produce an optical element, or the optical member may be directly subjected to press working on the molten and softened optical glass to produce an optical element.
- the optical element can be used as various lenses, mirrors, prisms, diffraction gratings, and the like, such as lenticular, biconcave, plano-convex, plano-concave, and meniscus lenses.
- the glass compositions of the examples are given in Table 1-2. Separately, according to the composition of the corresponding oxides, carbonates, nitrates, hydroxides, etc., and the composition shown in Table 1-2 after vitrification, fully mixed and placed in platinum In the crucible, after melting, clarifying and homogenizing at 1250-135 CTC, a molten glass is obtained; The molten glass was dropped below liocrc and poured into a preheated metal mold; the molten glass in the mold was annealed at 60 CTC to obtain an optical glass.
- Table 1-2 shows the performance parameters of the optical glass prepared by the embodiment of the present invention.
- the optical glass provided by the present invention has a high refractive index and excellent transmittance. Good and good chemical stability.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
本发明提供一种折射率在 1.88 以上,阿贝数为 37 以上的光学玻璃,该光学玻璃透过率优异,转变温度低,适于精密模压成形。光学玻璃,其重量百分比含量为:大于 1%且小于 10%的 SiO2 ;10-20%的 B2O3 ;25-35 % 的L a2O3 ;10-20%的 Gd2O3;大于 0 且小于 5%的 Lu2O3;其中,La2O3/ (La2O3 + Gd2O3 + Lu2O3)小于 0.67;10-20% 的T a2O ;8-15% 的 ZnO;0.1-2% 的 LiO2 ;0.5-8% 的 ZrO2 ;5-15% 的 WO3 ;0.1-3% 的 TiO2 ; 0-0.2%的 Sb2O3 。本发明作为一种高折射低色散光学玻璃,通过调整 La2O3 、Gd2O3 与 Lu2O3的组成含量,可以得到高折射率及生产稳定的玻璃,适于精密模压成型,并能够满足光学系统及设备的成像需求。
Description
光学玻璃、 模压用预制件及光学元件 技术领域
本发明涉及一种光学玻璃、 模压用预制件及光学元件, 更具体地说, 本发明涉及一种高折射低色散光学玻璃、 由所述玻璃形成的模压用预制件 以及由所述玻璃形成的光学元件。
背景技术
高折射低色散光学玻璃在光学设计中被大量应用, 特别是折射率在
1. 88 以上, 阿贝数为 37 以上的光学玻璃。 但是, 通常光学玻璃透光率与 折射率密切相关, 折射率越高往往透过率变差, 玻璃着色倾向加剧。
另外, 精密模压成型玻璃元件时,, 通常需在高温环境下进行, 经常 发生铸模的成形面的氧化、 腐蚀等问题, 难以实现低成本地大量生产。 为 此, 精密模压成形中使用的玻璃应尽量具有低的转变温度(Tg), 而且模压 成型对玻璃的耐酸、 耐水等化学稳定性也提出了较高的要求。
发明内容
本发明所要解决的技术问题是提供一种折射率在 1. 88 以上, 阿贝数 为 37以上的光学玻璃, 该光学玻璃透过率优异, 转变温度低, 适于精密模 压成形。
本发明解决技术问题所采用的技术方案是: 光学玻璃, 其重量百分比 含量为:大于 1%且小于 10%的 Si02; 10-20%的 B203; 25-35 %的 La203; 10-20% 的 Gd203; 大于 0且小于 5%的 Lu203 ; 其中, La203/ (La203+ Gd203+ Lu203) 小 于 0. 67; 10-20%的 Ta205; 8-15%的 ZnO; 0. 1—2%的 Li02; 0. 5-8%的 Zr02; 5-15% 的 W03; 0. 1-3% 的 Ti02; 0-0. 2%的 Sb203。
进一歩的, 所述 Si02 : 2-6%。
进一歩的, 所述 03 : 12-15%。
进一歩的, 所述 La203 : 27-32%。
进一歩的, 所述 Gd203 : 13-17%。
进一歩的, 所述 Lu203大于 0且小于 2%。
进一歩的, 所述 La203/ (La203+ Gd203+ Lu203) 小于 0. 67且大于 0. 60。
进一歩的, 所述 ZnO: 10-13%。
进一歩的, 所述 Li02 : 0. 2-1%。
进一歩的, 所述 Zr02 : 1-6%。
进一歩的, 所述 W03: 8-13%。
采用上述光学玻璃形成的模压用预制件。
采用上述光学玻璃形成的光学元件。
本发明的有益效果是: 本发明作为一种高折射低色散光学玻璃, 通过 调整 La203、 Gd203与 Lu203的组成含量, 可以得到高折射率及生产稳定的玻 璃; 通过控制 La203/ (La203+ Gd203+ Lu203) 的比率, 可以得到所述光学常 数并有效提高所述玻璃的透过率; ZnO 的引入可以降低玻璃的转变温度, 还可提高玻璃的化学稳定性; 少量引入 Li02 也可有效降低玻璃的转变温 度, 本发明适量引入 W03 , 可以改善所述玻璃的透过率。 本发明光学玻璃 折射率范围达到 1. 88 以上, 阿贝数范围 37 以上, 玻璃透过率优异, 入 7。 在 385nm 以下, 玻璃转变温度在 610°C以下, 适于精密模压成型, 并能够 满足光学系统及设备的成像需求。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所 获得的所有其他实施例, 都属于本发明保护的范围。
本发明的光学玻璃含有 Si02成分, Si02可提高玻璃的稳定性, 还可以 有效调节玻璃的液相粘度,改善玻璃的析晶性能; 如果 Si02的含量过低, 则 前述效果不明显; Si02含量过高, 则玻璃熔融性变差, 转变温度升高。 因 此, Si02的添加量为大于 1%且小于 10%, 优选含量为大于 1%小于 8%, 更优 选含量为 2%-6%。
作为一种形成玻璃网络结构的有效氧化物, B203是获得高折射低色散性 能光学玻璃的必须组分。 本发明中 B20可有效改进玻璃的熔融性, 降低熔 炼温度和粘性流温度。 B203含量过多, 达不到所述玻璃的高折射率, 含量过 低, 则玻璃不稳定; 因此, 要求其含量为至少为 10%, 然而当 B203含量大于
20%时, 折射率下降, 从而无法得到作为本发明的最终产品的折射率玻璃; 因此其添加量为 10-20%, 优选含量为 11-18%, 更优选含量为 12-15%。
L¾03是得到高折射率低色散玻璃的重要成分, 其含量要求为 25-35%, 当其含量低于 25%时, 折射率和低色散性都下降, 当其大于 35%时, 抗失透 性下降, 因此无法稳定制备玻璃, 优选含量为 27-32%, 更优选 28-32%的范 围。
Gd203成分也具有提高玻璃的折射率、 使其低色散化的效果, 适量比例 地使用 Gd203, 有助于改善高折射低色散玻璃的耐失透性能。 但是, 如果其 量过少, 则上述效果不充分, 特别是得不到所述阿贝数指标; 如果其量过 多, 则耐失透性反而变差。 因此, 其含量为 10-20%,优选范围为 13-17%。
Lu203同样是对提高玻璃的折射率、 且增大阿贝数有效的成分。 可是, 当过于大量含有时, 使耐失透率性恶化, 玻璃比重增大; Lu203同时也是一 种价格昂贵的稀土氧化物, 因此选定其含量为大于 0小于 5%,优选范围为 大于 0小于 2%。
在本发明中发明人通过锐意研究发现, 将 La203、 Gd203与 Lu203三种高折 射稀土氧化物同时引入玻璃中时, 可以有效增大高折射低色散氧化物在玻 璃中的稳定溶解度,尤其是通过调整它们的含量比例,使所述 La203/ (La203+ Gd203+ Lu203) 范围满足小于 0. 67,优选范围小于 0. 67且大于 0. 60,可以使 玻璃达到折射率 (nd) 1. 88 以上,阿贝数控制在 37 以上的光学常数,而且玻 璃的透光性能优异,能够实现批量稳定生产;上述效果特别在添加了范围为 大于 0小于 2%的 Lu203后更明显。
Ta205是获得高折射率的组份, 同时可以明显提高玻璃的耐失透性。 但 添加量过高将降低玻璃的阿贝数, 同时它也是一种贵重金属氧化物, 使用 量限定为 10-20%, 优选含量为 10. 5-15%。
ΖηΟ在本发明中可以有效降低玻璃的转变温度,也是构成高折射率低色 散玻璃的必要组份, 可以改进玻璃的抗不透性并降低其粘性流温度, 同时 还具有提高玻璃化学稳定性与抑制结晶的作用, 其添加量应在 8%以上, 否 则所述玻璃熔融性能下降, 并且化学稳定性恶化; 但其含量应在 15%以下, 否则无法得到作为本发明的最终产品的低色散玻璃;因此,其含量为 8-15%,
优选含量为 10-13%。
Li20少量含有可有效降低玻璃转变温度 (Tg ), 改善玻璃的熔融性, 但使用量过多会降低玻璃折射率, 恶化稳定性, 故其含量 0. 1-2%; 优选 0. 2-1%。
加入适量的 Zr02可以起到改进玻璃抗不透性的作用, 而且还可有效降 低所述玻璃的高温粘度,提高化学稳定性, Zr02的添加量至少为 0. 5%,否则 达不到效果, 但其含量应在 8%以下, 否则玻璃易结晶; 因此其含量为 0. 5-8%, 优选含量为 1-6%, 更优选含量为 2-5%。
wo3成分具有提高玻璃折射率, 改善玻璃析晶的作用,适量的引入可以 使玻璃在可见光区域的短波长区域的光线透射率有所改善,但在本发明中, 若含量高于 15%,透过率反而会变差, 而且玻璃析晶性能变坏。 因此, 其含 量为 5-15%,优选含量为 8-13%。
在本发明中,引入少量的 Ti02替代 W03可以使玻璃具有更高的折射率, 更低的比重, 但当其与 W03共存时,若含量高于 3%,玻璃透过率会恶化;因此 其含量范围为 0. 1-3%,优选范围为 0. 5-2%。
Sb203成分可以用于玻璃熔融时的脱泡, 但如果其含量过多, 则可见光 区域的短波长区域的透射率变差。 因此, 可以优选以 0. 2%、 更优选 0. 1%、 最优选 0. 05%作为上限含有。
按照本发明, 所述光学玻璃优选按照以下歩骤制备:
以上述各组分的氧化物、 氢氧化物、 碳酸盐或硝酸盐为原料, 充分混 合后置于铂金坩埚内, 于 1200-1400°C, 优选 1250-1350°C下熔化、 澄清、 均化后, 得到熔融玻璃;
将所述熔融玻璃降至 liocrc以下后浇注入预热的金属模内;
在 60CTC将所述金属模内的熔融玻璃进行缓慢降温退火, 从而得到光 学玻璃。
对所述光学玻璃进行性能测试, 方法如下:
折射率 (nd) 和阿贝数 ( u d) 值为 -30°C/h的退火值, 折射率和阿贝 数按照 《GB/T 7962. 1-1987》 中提供的对无色光学玻璃的折射率和色散系 数的测试方法进行测试;
将玻璃制作成 10mm ± 0. 1 mm厚度的样品, 测试玻璃在透射比达到 70% 对应的波长 入。。
转变温度 (Tg ) 按照 《GB/T7962. 16-1987 无色光学玻璃测试方法 线 膨胀系数、 转变温度和弛垂温度》 测试, gp: 被测样品在一定的温度范围 内, 温度每升高 rc, 在被测样品的膨胀曲线上, 将低温区域和高温区域 直线部分延伸相交, 其交点所对应的温度。
经过测试, 本发明提供的光学玻璃具有以下性能: 折射率范围 1. 88以 上; 阿贝数为 37以上; 透射比达到 70%时对应的波长 λ 7。为 385nm以下; 转变温度 61CTC以下。
本发明提供的光学玻璃具有高折射率低色散的光学常数、 优异的透过 率以及低转变温度。本发明提供的光学玻璃的折射率为 1. 88以上, 优选范 围为 1. 88-1. 90; 阿贝数为 37以上, 优选 37-40,更优选 37-38 ; 透射比达 到 70%时对应的波长 λ 7。为 385nm以下;转变温度达到 610°C以下,优选 605 °C以下,更优选 602 °C以下。
本发明的光学玻璃可用作压力成型用玻璃预型材料, 或者也可直接将 熔融玻璃压力成型。 用作玻璃预型材时的制造方法及热成型方法无特别限 制, 可使用公知的制造方法及成型方法。
另外, 还可对本发明光学玻璃制作的玻璃预型材进行压力加工, 制造 光学元件, 或者也可采用直接对熔融、 软化的光学玻璃进行压力加工, 制 造光学元件。
另外, 光学元件可用作例如双凸、 双凹、 平凸、 平凹、 凹凸透镜等各 种透镜、 反射镜、 棱镜、 衍射光栅等。
以下, 对于本发明的实施例进行说明, 但本发明并不受这些实施例的 限定。
按照以下歩骤, 按照表 1-2所示的组成配比制作光学玻璃:
表 1-2给出了实施例玻璃组成。分别以各组分相应的氧化物、碳酸盐、 硝酸盐、 氢氧化物等原料形式, 按照使其玻璃化后变为表 1-2所示组成分 别进行称量, 充分混合后置于铂金坩埚内, 于 1250-135CTC下熔化、 澄清、 均化后, 得到熔融玻璃;
将所述熔融玻璃降至 liocrc以下后浇注入预热的金属模内; 在 60CTC将所述金属模内的熔融玻璃进行退火, 得到光学玻璃。
对所述光学玻璃进行性能测试, 结果参见表 1-2, 表 1-2为本发明实 施例制备的光学玻璃的性能参数。
表 1: 本发明实施例 1-5制备的光学玻璃的原料配比
Ta205 13 10 11. 1 12 10. 8
W03 13 9 10. 1 11 12. 3
Ti02 0. 7 0. 5 1. 3 0. 8 1
Li20 0. 4 0. 6 0. 3 2. 0 0. 5
ZnO 10. 4 11. 9 10. 3 14. 3 11. 2
Zr02 3. 1 2. 7 2. 1 3. 8 1. 5 合计 100 100 100 100 100 折射率 1. 8842 1. 8853 1. 8950 1. 8921 1. 9110 性能 阿贝数 37. 1 37. 4 37. 6 37. 5 37. 2 参数 λ 70 (nm) 385 384 385 385 383 转变温度 602 603 602 604 603 由表 1-2可知, 本发明提供的光学玻璃具有高折射率、 优异的透过率 能以及良好的化学稳定性。
Claims
1、 光学玻璃, 其特征在于, 其重量百分比含量为: 大于 1%且小于 10% 的 Si02; 10-20%的 B203; 25-35 %的 La203; 10- 20%的 Gd203; 大于 0且小于 5%的 Lu203; 其中, La203/ (La203+ Gd203+ Lu203) 小于 0. 67; 10-20%的 Ta205; 8-15%的 ZnO; 0. 1-2%的 Li02; 0. 5-8%的 Zr02; 5-15%的 W03; 0. 1-3%的 Ti02; 0-0. 2%的 Sb203。
2、 如权利要求 1所述的光学玻璃, 其特征在于, 所述 Si02 : 2-6%
3、 如权利要求 1所述的光学玻璃, 其特征在于, 所述 03 : 12-15%。
4、 如权利要求 1所述的光学玻璃, 其特征在于, 所述 La203 : 27-32%。
5、 如权利要求 1所述的光学玻璃, 其特征在于, 所述 Gd203 : 13-17%。
6、 如权利要求 1所述的光学玻璃, 其特征在于, 所述 Lu203大于 0且 小于 2%。
7、如权利要求 1所述的光学玻璃,其特征在于,所述 La203/(L¾03+ Gd203+ Lu203) 小于 0. 67且大于 0. 60。
8、 如权利要求 1所述的光学玻璃, 其特征在于, 所述 ZnO: 10-13%。
9、 如权利要求 1所述的光学玻璃, 其特征在于, 所述 Li02 : 0. 2-1%。
10、 如权利要求 1所述的光学玻璃, 其特征在于, 所述 Zr02 : 1-6%。
11、 如权利要求 1所述的光学玻璃, 其特征在于, 所述 W03 : 8-13%。
12、 采用所述 1-11 任一权利要求所述的光学玻璃形成的模压用预制 件。
13、 采用所述 1-11任一权利要求所述的光学玻璃形成的光学元件。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014528841A JP5813233B2 (ja) | 2011-09-08 | 2012-09-06 | 光学ガラス、プレス成形用プリフォーム、及び光学素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110265549.X | 2011-09-08 | ||
CN201110265549.XA CN102424523B (zh) | 2011-09-08 | 2011-09-08 | 光学玻璃、模压用预制件及光学元件 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013034081A1 true WO2013034081A1 (zh) | 2013-03-14 |
Family
ID=45958564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/081039 WO2013034081A1 (zh) | 2011-09-08 | 2012-09-06 | 光学玻璃、模压用预制件及光学元件 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5813233B2 (zh) |
CN (1) | CN102424523B (zh) |
WO (1) | WO2013034081A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111977970A (zh) * | 2020-09-07 | 2020-11-24 | 成都光明光电股份有限公司 | 光学玻璃及光学元件 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110028239B (zh) * | 2019-05-23 | 2022-08-09 | 成都光明光电股份有限公司 | 光学玻璃、玻璃预制件、光学元件和光学仪器 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080293556A1 (en) * | 2007-01-24 | 2008-11-27 | Hoya Corporation | Optical glass, preform for precision press-molding, optical element, and methods for manufacturing the same |
US20100255979A1 (en) * | 2008-05-30 | 2010-10-07 | Hoya Corporation | Optical glass, preform for precision press-molding, optical element, methods for manufacturing thereof, and imaging device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8602518A (nl) * | 1986-10-08 | 1988-05-02 | Philips Nv | Luminescerend lanthaan en/of gadolinium bevattend aluminosilikaat- en/of aluminoboraatglas en luminescerend scherm voorzien van een dergelijk glas. |
JPH08217484A (ja) * | 1995-02-13 | 1996-08-27 | Ohara Inc | 光学ガラス |
JP3912774B2 (ja) * | 2002-03-18 | 2007-05-09 | Hoya株式会社 | 精密プレス成形用光学ガラス、精密プレス成形用プリフォームおよびその製造方法 |
TW200813467A (en) * | 2006-06-13 | 2008-03-16 | Asahi Glass Co Ltd | Optical glass and lens using the same |
WO2008032742A1 (fr) * | 2006-09-14 | 2008-03-20 | Asahi Glass Co., Ltd. | Verre optique et lentille utilisant celui-ci |
CN1935717B (zh) * | 2006-10-17 | 2010-10-06 | 成都光明光电股份有限公司 | 高折射率低色散精密压型用光学玻璃 |
JP5678477B2 (ja) * | 2009-05-28 | 2015-03-04 | 旭硝子株式会社 | 光学ガラス |
JP5917791B2 (ja) * | 2009-06-30 | 2016-05-18 | 株式会社オハラ | 光学ガラス、プリフォーム材及び光学素子 |
CN101759359B (zh) * | 2009-12-25 | 2014-08-06 | 成都光明光电股份有限公司 | 模压用高折射低色散光学玻璃 |
-
2011
- 2011-09-08 CN CN201110265549.XA patent/CN102424523B/zh active Active
-
2012
- 2012-09-06 JP JP2014528841A patent/JP5813233B2/ja active Active
- 2012-09-06 WO PCT/CN2012/081039 patent/WO2013034081A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080293556A1 (en) * | 2007-01-24 | 2008-11-27 | Hoya Corporation | Optical glass, preform for precision press-molding, optical element, and methods for manufacturing the same |
US20100255979A1 (en) * | 2008-05-30 | 2010-10-07 | Hoya Corporation | Optical glass, preform for precision press-molding, optical element, methods for manufacturing thereof, and imaging device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111977970A (zh) * | 2020-09-07 | 2020-11-24 | 成都光明光电股份有限公司 | 光学玻璃及光学元件 |
Also Published As
Publication number | Publication date |
---|---|
JP2014527019A (ja) | 2014-10-09 |
JP5813233B2 (ja) | 2015-11-17 |
CN102424523A (zh) | 2012-04-25 |
CN102424523B (zh) | 2014-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6719611B2 (ja) | 光学ガラス | |
JP5368571B2 (ja) | 高屈折率低分散光学ガラス | |
KR101410964B1 (ko) | 광학 유리 및 광학 소자 | |
JP5818995B2 (ja) | 光学ガラス及び光学素子 | |
TWI549919B (zh) | Precision molded optical glass, glass preforms, optical components and optical instruments | |
TW201315704A (zh) | 光學玻璃及光學元件 | |
WO2013129302A1 (ja) | 光学ガラスおよびその利用 | |
JP6096913B2 (ja) | 光学ガラス | |
WO2013049988A1 (zh) | 光学玻璃及其制造方法、光学元件 | |
WO2014048362A1 (zh) | 环保重镧火石光学玻璃 | |
JP5761603B2 (ja) | 光学ガラス | |
CN109399916A (zh) | 光学玻璃、光学预制件、光学元件和光学仪器 | |
JP6694229B2 (ja) | ガラス | |
WO2014048295A1 (zh) | 精密模压用光学玻璃、玻璃预制件、光学元件及光学仪器 | |
JP5711464B2 (ja) | 光学ガラス、精密プレス成形用プリフォームおよび光学素子 | |
CN104108872B (zh) | 环保光学玻璃、玻璃预制件、光学元件及光学仪器 | |
TW200948735A (en) | Optical glass | |
TW202009225A (zh) | 光學玻璃、由其製備而成的玻璃預製件或光學元件及光學儀器 | |
JP5880919B2 (ja) | 光学ガラス | |
JP5987364B2 (ja) | 光学ガラス | |
WO2013034081A1 (zh) | 光学玻璃、模压用预制件及光学元件 | |
CN111253066B (zh) | 光学玻璃、光学预制件、光学元件和光学仪器 | |
JP7165810B2 (ja) | 光学ガラス、光学ガラスで製造されるガラスプリフォーム又は光学素子及び光学機器 | |
CN101508522A (zh) | 精密模压用光学玻璃 | |
JP2014076941A (ja) | 光学ガラス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12830386 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014528841 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12830386 Country of ref document: EP Kind code of ref document: A1 |