WO2013034001A1 - Alliage d'aluminium coulé d'al-si-mg et son procédé de coulée - Google Patents
Alliage d'aluminium coulé d'al-si-mg et son procédé de coulée Download PDFInfo
- Publication number
- WO2013034001A1 WO2013034001A1 PCT/CN2012/076106 CN2012076106W WO2013034001A1 WO 2013034001 A1 WO2013034001 A1 WO 2013034001A1 CN 2012076106 W CN2012076106 W CN 2012076106W WO 2013034001 A1 WO2013034001 A1 WO 2013034001A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum
- aluminum alloy
- magnesium
- casting
- silicon
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
- C22C21/04—Modified aluminium-silicon alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
Definitions
- the present invention relates to the field of aluminum alloy casting technology, and more particularly to an aluminum-silicon-magnesium-based cast aluminum alloy having a high tensile strength and elongation comprehensive mechanical properties and a casting process. Background technique
- Casting aluminum alloy as a traditional metal material with low specific gravity, high specific strength, easy processing, low cost, good heat dissipation and corrosion resistance, flexible and simple production parts, easy to mass production, etc., widely used in aviation, aerospace, Automobile, machinery and other industries.
- cast aluminum alloys especially for cast aluminum alloys having high tensile strength and elongation comprehensive mechanical properties as well as excellent corrosion resistance and low cost.
- high-strength cast aluminum alloys have formed a complete series, and the properties and production processes of aluminum alloys have stabilized.
- high-strength aluminum alloys are mainly alloys based on Al-Cu-Mg and Al-Zn-Mg-Cu.
- Al-Cu-Mg-based alloys have good cutting and welding properties, but have poor casting properties and corrosion resistance.
- These aluminum alloys are widely used in aerospace products and are mainly used as structural members and heat-resistant parts that can withstand large loads.
- the Al-Zn-Mg-Cu-based alloy has good cutting performance and can be improved to some extent after being subjected to a short time aging at room temperature, but has poor corrosion resistance, high density, and is susceptible to hot cracking during casting.
- the main alloy composition mass percentage is 6.5-7.5% Si, 0.25-0.45%Mg, 0.08-0.20% Ti, the main impurity elements are Fe ⁇ 0.20%, Cu ⁇ 0.20%, Mn ⁇ 0.10%, Zn ⁇ 0.10 %, the remaining component is Al.
- A356.2 aluminum alloy is widely used, but its strength is not high.
- the current methods are as follows: The grain is refined by adding Na, Sr, Sb and Ti, B and other metamorphic materials. However, most of the aluminum alloy subjected to the above treatment is difficult to stabilize to a tensile strength of 300 MPa or more, and the elongation is also low. It is also possible to refine the crystal grains by adding elements such as rare earths, or to increase the extrusion process to increase the casting properties and mechanical properties of the aluminum alloy, but this also makes the aluminum alloy casting process more complicated and costly. Summary of the invention
- the main object of the present invention is to provide an aluminum-silicon-magnesium-based cast aluminum alloy and a casting process which have good casting properties, good mechanical properties and good corrosion resistance.
- the present invention provides an aluminum silicon magnesium cast aluminum alloy, the aluminum alloy component comprising the following mass percentage elements:
- the tensile strength of the aluminum alloy is greater than 380 MPa; the elongation is greater than or equal to 7.8%; and the Brinell hardness is greater than 85.
- the mass percentage content of each element constituting the aluminum alloy is: silicon 7.021; magnesium 0.463%; titanium 0.237%; ⁇ 0.018%; iron 0.183%; copper 0.040%; zinc 0.018%; manganese 0.098%; ⁇ 0.003 %; vanadium 0.019%; the rest is aluminum; the aluminum alloy has a tensile strength of 411 MPa and an elongation of 8.04%.
- the mass percentage content of each element constituting the aluminum alloy is: silicon 7.035%; magnesium 0.453%; titanium 0.229%; ⁇ 0.017%; iron 0.189%; copper 0.041%; zinc 0.019%; manganese 0.099%; 0.002%; vanadium 0.018%; the rest is aluminum; the tensile strength of the aluminum alloy is 400 Mpa, the elongation is 7.80%.
- the mass percentage content of each element constituting the aluminum alloy is: silicon 7.087%; magnesium 0.459%; titanium 0.185%; ⁇ 0.014%; iron 0.169%; copper 0.063%; zinc 0.024%; manganese 0.089%; 0.002%; vanadium 0.017%; the balance is aluminum; the tensile strength of the aluminum alloy is 388 Mpa, and the elongation is 10.02%.
- the magnesium has a mass percentage of 0.40 to 0.55%.
- the titanium has a mass percentage of 0.15 to 0.25%.
- the mass percentage of the ruthenium is from 0.01 to 0.02%.
- the invention also provides a casting process of aluminum silicon magnesium alloy aluminum alloy, comprising:
- the solution after casting is sequentially subjected to solid solution, cooling and timely treatment.
- the aluminum ingot solution is refined at a temperature of 720 ° C to 730 ° C, and the refining time is 15 to 25 minutes; the predetermined time is 10-15 minutes, and the predetermined temperature is 715 ° C ⁇ 725 °C; solution treatment temperature is 535 °C ⁇ 5 °C, solution treatment time is 8h ⁇ 10h; aging treatment temperature is 165 °C ⁇ 5 °C, aging treatment time is 6h-8h.
- the modified material is an aluminum-bismuth alloy.
- the invention discloses an aluminum-silicon-magnesium-based cast aluminum alloy and a casting process, which overcomes the low strength and low elongation of the aluminum-silicon alloy, and the aluminum-copper system (Al-Cu-Mg) and the aluminum-zinc system (Al- Zn-Mg-Cu ) alloy has poor casting performance and corrosion resistance.
- Aluminum-silica-magnesium cast aluminum alloy improves the tensile strength, toughness and casting properties of aluminum alloy, and has lower cost and corrosion resistance. Good advantage.
- FIG. 1 is a schematic view showing a tensile curve of a first embodiment of an aluminum-silicon-magnesium-based cast aluminum alloy according to the present invention
- FIG. 2 is a schematic view showing a tensile curve of a second embodiment of the aluminum-silicon-magnesium-based cast aluminum alloy according to the present invention
- 3 is a schematic view showing a tensile curve of a third embodiment of the aluminum-silicon-magnesium-based cast aluminum alloy according to the present invention
- FIG. 4 is a flow chart showing an embodiment of the aluminum-silicon-magnesium-based aluminum alloy casting process of the present invention.
- the solution of the embodiment of the invention is mainly: on the basis of the existing A356.2 aluminum alloy, the metamorphism comprises the following mass percentage: silicon 6.5-7.5%; magnesium 0.40-0.60%; titanium 0.10-0.30%; ⁇ 0.01 -0.03%; iron ⁇ 0.20%; copper ⁇ 0.10%; zinc ⁇ 0.20%; manganese ⁇ 0.10%; ⁇ ⁇ 0.01%; 4 ⁇ ⁇ 0.02%; the balance is aluminum, by smelting, refining, casting, solid solution, cooling Timely and effective treatment, aluminum-silica-magnesium cast aluminum alloy with high tensile strength and elongation, good casting performance and corrosion resistance.
- the present invention provides a high-strength, high-toughness
- Aluminum-silica-magnesium cast aluminum alloy has good casting performance and low cost and good corrosion resistance.
- the aluminum-silicon-magnesium-based cast aluminum alloy is modified on the basis of the existing ⁇ 356.2 aluminum ingot, and the specific components thereof include the following mass percentage elements:
- the mass percentage of magnesium is from 0.40 to 0.55%.
- the mass percentage of titanium is from 0.15 to 0.25%.
- the mass percentage of cerium is from 0.01 to 0.02%.
- the mass percentage of the components of the aluminum silicon magnesium cast aluminum alloy is: 6.5-7.5% of silicon; 0.40-0.55% of magnesium; 0.15-0.25% of titanium; 0.01-0.02% of ;; ⁇ 0.20% of iron; %; zinc ⁇ 0.20%; manganese ⁇ 0.10%; the balance is aluminum and unavoidable impurity components.
- the impurity component may be ruthenium, or vanadium, or both.
- the tensile strength of the aluminum alloy composed of the above mass percentage elements is greater than 380 MPa; elongation Greater than or equal to 7.8%; Brinell hardness greater than 85.
- the aluminum-silicon-magnesium-based cast aluminum alloy according to the first embodiment of the present invention has a mass percentage content of each element constituting the aluminum alloy: 7.021% of silicon; 0.463% of magnesium; 0.237% of titanium; ⁇ 0.018%; Iron 0.183%; copper 0.040%; zinc 0.018%; manganese 0.098%; ⁇ 0.003%; vanadium 0.019%;
- the smelted solution is refined by gas filtration (GBF, Gas Bubbling Filtration).
- the gas in the bubble filtration method can be argon or nitrogen.
- a modified material is added to the refining solution, and the modified material may be an aluminum-bismuth alloy solution to better refine the crystal grains to improve the casting properties and mechanical properties of the aluminum alloy.
- the refining temperature can be 725 ° C ⁇ 5 ° C, the time is 15 minutes, in the process of refining, at the same time eight slag treatment.
- the refining solution is allowed to stand for a predetermined time, for example, 10 minutes, and the hydrogen content, the slag amount, and the material composition in the solution are detected, and when the test is qualified (for example, the hydrogen content reaches 0.2 cc/100 g A1, including After the slag amount is less than 1/20), casting is carried out at 720 ° C ⁇ 5 ° C.
- the tensile curve of the cast aluminum alloy after the surface of the sample rod is turned is shown in Fig. 1.
- the sample rod has a diameter of 9.92 mm, a maximum tensile force of 31.77 KN (kilonewton), a tensile strength of 411 MPa, and an elongation at break of 8.04%.
- an aluminum-silicon-magnesium-based cast aluminum alloy the mass percentage content of each element constituting the aluminum alloy is: 7.035% of silicon; 0.453% of magnesium; 0.229% of titanium; 0.017% of ⁇ ; Iron 0.189%; copper 0.041%; zinc 0.019%; manganese 0.099%; ⁇ 0.002%; vanadium 0.018%;
- the casting process of the aluminum-silicon-magnesium-based cast aluminum alloy in this embodiment is the same as that in the first embodiment.
- the tensile curve of the cast aluminum alloy after the surface of the sample rod is turned on in the present embodiment is as shown in FIG.
- the sample rod has a diameter of 9.89 mm, a maximum tensile force of 30.784 KN, a tensile strength of 400 MPa, and an elongation after breaking of 7.80%.
- an aluminum-silicon-magnesium-based cast aluminum alloy the mass percentage content of each element constituting the aluminum alloy is: silicon 7.087%; magnesium 0.459%; titanium 0.185%; niobium 0.014%; iron 0.169% Copper 0.063%; zinc 0.024%; manganese 0.089%; ⁇ 0.002%; vanadium 0.017%; the balance is aluminum.
- the casting process of the aluminum-silicon-magnesium-based cast aluminum alloy of this embodiment is the same as that of the first embodiment described above.
- the tensile curve of the cast aluminum alloy after the surface of the sample rod is turned in this embodiment is shown in Fig. 3.
- the sample has a diameter of 10.2 mm, a maximum tensile force of 31.740 KN, a tensile strength of 388 MPa, and an elongation after break of 10.02%.
- the aluminum silicon magnesium casting aluminum alloy proposed by the embodiment of the invention overcomes the low strength and low elongation of the aluminum silicon alloy, and the aluminum alloy and the aluminum zinc alloy have poor casting performance and corrosion resistance, and the aluminum is used.
- the silicon-magnesium-based cast aluminum alloy improves the tensile strength, toughness and casting properties of the aluminum alloy, and has the advantages of low cost and good corrosion resistance.
- an embodiment of the present invention provides a casting process of an aluminum-silicon-magnesium-based aluminum alloy, which includes:
- Step S101 smelting the A356.2 aluminum ingot furnace
- Step S102 adding a metamorphic material to the smelted aluminum ingot solution, and performing refining by a bubble filtration method;
- metamorphic materials in the refining process is to better refine the grains to improve the casting properties and mechanical properties of the aluminum alloy.
- the metamorphic material can be an aluminum-bismuth alloy, which can also be used as needed. Use other metamorphic materials.
- the gas in the bubble filtration method may be argon or nitrogen.
- the refining temperature during refining can be 720 ° C ⁇ 730 ° C, and the refining time can be 15 - 25 minutes.
- Step S103 after the refining solution is allowed to stand for a predetermined time, casting is performed at a predetermined temperature; wherein, the predetermined time may be 10-15 minutes, and in this step, after the refining solution is allowed to stand for a predetermined time, it needs to be detected.
- Step S104 sequentially performing solid solution, cooling and timely treatment on the solution after casting.
- the solution treatment temperature can be 535 °C ⁇ 5 °C
- the solution treatment time can be 8h ⁇ 10h (hours)
- the aging treatment temperature can be 165 °C ⁇ 5 °C
- the aging treatment time can be 6h-8h.
- the mass percentages of the components of the aluminum alloy produced by the above process of the present embodiment are: 6.5-7.5% of silicon; 0.40-0.60% of magnesium; 0.10-0.30% of titanium; ⁇ 0.01-0.03%; iron ⁇ 0.20%; Copper ⁇ 0.10%; ⁇ 0.20%; manganese ⁇ 0.10%; ⁇ ⁇ 0.01%; vanadium ⁇ 0.02%;
- the above aluminum alloy has a tensile strength greater than 380 MPa; an elongation greater than or equal to 7.8%; and a Brinell hardness greater than 85.
- the aluminum-silicon-magnesium-based cast aluminum alloy and the casting process proposed by the embodiments of the present invention overcome the low strength and low elongation of the aluminum-silicon alloy, and the casting properties of the aluminum-copper and aluminum-zinc alloys
- aluminum-silica-magnesium-cast aluminum alloy improves the tensile strength, toughness and casting properties of aluminum alloy, and has the advantages of low cost and good corrosion resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Prevention Of Electric Corrosion (AREA)
- Continuous Casting (AREA)
- Conductive Materials (AREA)
Abstract
La présente invention concerne un alliage d'aluminium coulé d'Al-Si-Mg et son procédé de coulée, l'alliage d'aluminium comprenant les éléments suivants en pourcentage en poids : silicium 6,5%-7,5%; magnésium 0,40%-0,60%; titane 0,10%-0,30%; strontium 0,01%-0,03%; fer ≤0,20%; cuivre ≤0,10%; zinc ≤0,20%; manganèse ≤0,10%; béryllium ≤0,01%; vanadium ≤0,02%; le complément étant constitué par l'aluminium. Le procédé de coulée de l'alliage d'aluminium comprend les étapes consistant à : charger un lingot d'aluminium A356.2 dans un four pour la fusion ; ajouter une matière de modification pour le raffinage ; attendre un laps de temps prédéterminé puis couler ; ensuite réaliser les traitements de solution solide, de refroidissement et de vieillissement de façon successive. La présente invention surmonte les inconvénients tels que la faible résistance et le faible allongement de l'alliage coulé d'Al-Si, et les propriétés de coulée et la résistance à la corrosion relativement médiocres de l'alliage coulé d'Al-Cu et de l'alliage coulé d'Al-Zn, améliore la résistance à la traction, la ténacité et les propriétés de coulée de l'alliage d'Al, et a de faibles coûts et une bonne résistance à la corrosion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110267111.5 | 2011-09-09 | ||
CN201110267111.5A CN102312137B (zh) | 2011-09-09 | 2011-09-09 | 铝硅镁系铸造铝合金及铸造工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013034001A1 true WO2013034001A1 (fr) | 2013-03-14 |
Family
ID=45425701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/076106 WO2013034001A1 (fr) | 2011-09-09 | 2012-05-25 | Alliage d'aluminium coulé d'al-si-mg et son procédé de coulée |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102312137B (fr) |
WO (1) | WO2013034001A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113106303A (zh) * | 2021-03-31 | 2021-07-13 | 湖南大学 | 一种利用Zn微合金化及双级时效制度结合来提高ZL114A合金强度的方法 |
CN113234970A (zh) * | 2021-05-08 | 2021-08-10 | 昆明理工大学 | 一种含Er的高强韧铸造铝硅合金及其制备方法 |
CN113444928A (zh) * | 2021-07-20 | 2021-09-28 | 山东创新金属科技有限公司 | 一种重卡轮毂用高强铝合金及其制备方法 |
CN113564432A (zh) * | 2021-08-10 | 2021-10-29 | 江苏亚太航空科技有限公司 | 一种高韧耐热耐腐蚀Al-Mg-Si合金及其制备工艺与应用 |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102312137B (zh) * | 2011-09-09 | 2016-06-22 | 深圳市中兴康讯电子有限公司 | 铝硅镁系铸造铝合金及铸造工艺 |
CN102758154A (zh) * | 2012-07-26 | 2012-10-31 | 上海友升铝业有限公司 | Al-Mg-Si系合金的热处理工艺 |
CN103667816A (zh) * | 2012-09-17 | 2014-03-26 | 江苏华江科技有限公司 | 主轴拐臂箱外壳铸造工艺 |
CN102912197B (zh) * | 2012-10-12 | 2015-09-30 | 宁波科达工贸有限公司 | 一种铝硅镁系铸造铝合金及其制备方法 |
CN102912196B (zh) * | 2012-10-12 | 2015-04-08 | 宁波科达工贸有限公司 | 一种铝硅镁系铸造铝合金及其制备方法 |
CN103276258A (zh) * | 2013-05-13 | 2013-09-04 | 上海嘉朗实业有限公司 | 一种高强度铸造铝硅合金材料及其在液压壳体上的应用 |
CN103334034B (zh) * | 2013-06-14 | 2016-05-25 | 宁波科达制动器制造有限公司 | 一种涡轮增压器压气机蜗壳的制备方法 |
CN103382537B (zh) * | 2013-06-14 | 2016-04-13 | 宁波科达制动器制造有限公司 | 一种涡轮增压器压气机蜗壳 |
CN103436750B (zh) * | 2013-07-16 | 2015-11-25 | 安徽省天马泵阀集团有限公司 | 泵壳用高力学性能铸造铝合金及其制造方法 |
CN103572130A (zh) * | 2013-11-20 | 2014-02-12 | 江苏江旭铸造集团有限公司 | 高强度铸造铝合金 |
CN103710587A (zh) * | 2013-12-17 | 2014-04-09 | 芜湖万润机械有限责任公司 | 一种抗应力腐蚀铝合金型材的制备方法 |
CN103789584B (zh) * | 2014-01-26 | 2016-08-17 | 苏州雷姆斯汽车工程有限公司 | 液力缓速器壳体专用铸造铝合金及其制备方法 |
CN103820684A (zh) * | 2014-02-19 | 2014-05-28 | 福州钜立机动车配件有限公司 | 一种进气摇臂的重铸铝合金材料 |
CN104561690B (zh) * | 2015-01-26 | 2017-01-18 | 上海交通大学 | 高塑性铸造铝合金及其挤压铸造制备方法 |
CN105316608A (zh) * | 2015-11-20 | 2016-02-10 | 张家港市广大机械锻造有限公司 | 一种Al-Si合金的细化变质后的热处理工艺 |
CN105624480A (zh) * | 2015-12-29 | 2016-06-01 | 东南大学 | 一种铸造耐热铝合金及其制备工艺 |
CN105886854A (zh) * | 2016-06-08 | 2016-08-24 | 天津大学 | 降低Fe中间相危害及其高力学性能含钪、锆的A356铸造合金的制备方法 |
CN106893901B (zh) * | 2017-02-10 | 2019-03-22 | 珠海格力节能环保制冷技术研究中心有限公司 | 十字滑环的制备方法、涡旋压缩机的十字滑环 |
CN107641743A (zh) * | 2017-09-26 | 2018-01-30 | 常熟市恒泰精密金属制品有限公司 | 一种纳米碳化钛增强铝硅基复合材料及其制备方法 |
CN108004440A (zh) * | 2017-11-22 | 2018-05-08 | 浙江泰龙科技有限公司 | 一种a356铝合金铸件及其热处理工艺 |
CN108396204B (zh) * | 2018-02-09 | 2019-12-27 | 淮海工学院 | 一种亚共晶铝硅合金铸件及提高其性能的工艺方法 |
CN110396626A (zh) * | 2019-07-22 | 2019-11-01 | 张家港市众欣机械有限公司 | 一种高韧性、耐腐蚀的铝合金材质及其制备方法 |
CN111004947B (zh) * | 2019-11-25 | 2020-12-22 | 连云港星耀材料科技有限公司 | 一种铝合金轮毂的制备方法 |
CN111500882A (zh) * | 2020-04-02 | 2020-08-07 | 科曼车辆部件系统(苏州)有限公司 | 一种提高再生铝性能的方法 |
CN113373352B (zh) * | 2021-06-22 | 2022-11-11 | 帅翼驰新材料集团有限公司 | 一种高压铸造的铝合金及其制备方法 |
CN113604714A (zh) * | 2021-09-28 | 2021-11-05 | 润星泰(常州)技术有限公司 | 新能源车用电池模组端板制备方法、电池模组及端板 |
CN114058908B (zh) * | 2021-11-17 | 2022-05-27 | 江苏利信新型建筑模板有限公司 | 一种高分子节能环保型铝合金建筑模板及其加工工艺 |
CN114150171A (zh) * | 2021-12-01 | 2022-03-08 | 四会市辉煌金属制品有限公司 | 铝合金及其制备方法 |
CN114427054A (zh) * | 2022-01-20 | 2022-05-03 | 大连理工大学宁波研究院 | 一种高速列车齿轮传动系统用铝合金及其制造方法 |
CN115305391B (zh) * | 2022-08-10 | 2023-06-06 | 中南大学 | 一种低能耗铝硅镁合金及其制备方法 |
CN117904497A (zh) * | 2024-01-19 | 2024-04-19 | 哈尔滨工业大学 | 一种少铜含量的高强韧铸造铝合金及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60224739A (ja) * | 1984-04-24 | 1985-11-09 | Maeda Keikinzoku Kogyo Kk | Al−7%Si−0.3%Mg系アルミニウム基鋳造合金 |
JPH0234739A (ja) * | 1988-07-22 | 1990-02-05 | Hitachi Metals Ltd | 高強度、高靭性鋳造用アルミニウム合金 |
US6773666B2 (en) * | 2002-02-28 | 2004-08-10 | Alcoa Inc. | Al-Si-Mg-Mn casting alloy and method |
JP2005272966A (ja) * | 2004-03-25 | 2005-10-06 | Aisin Seiki Co Ltd | 半凝固成形用アルミニウム合金及び成形体の製造方法 |
CN1693508A (zh) * | 2005-05-17 | 2005-11-09 | 郑州大学 | 一种用细晶铝锭制造的轮毂用铝合金及其制造方法 |
EP1882754A1 (fr) * | 2006-07-27 | 2008-01-30 | FAGOR, S.Coop | Alliage d'aluminium |
CN101966575A (zh) * | 2010-11-13 | 2011-02-09 | 河南理工大学 | 铝合金车轮铸造工艺和热处理工艺 |
CN102312137A (zh) * | 2011-09-09 | 2012-01-11 | 中兴通讯股份有限公司 | 铝硅镁系铸造铝合金及铸造工艺 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2721041B1 (fr) * | 1994-06-13 | 1997-10-10 | Pechiney Recherche | Tôle d'alliage aluminium-silicium destinée à la construction mécanique, aéronautique et spatiale. |
JP3548709B2 (ja) * | 2000-05-08 | 2004-07-28 | 九州三井アルミニウム工業株式会社 | 輸送機器用Al合金の半溶融ビレットの製造方法 |
EP1882753A1 (fr) * | 2006-07-27 | 2008-01-30 | Fagor, S.Coop. | Alliage d'aluminium |
JP2010018875A (ja) * | 2008-07-14 | 2010-01-28 | Toyota Central R&D Labs Inc | 高強度アルミニウム合金、高強度アルミニウム合金鋳物の製造方法および高強度アルミニウム合金部材の製造方法 |
-
2011
- 2011-09-09 CN CN201110267111.5A patent/CN102312137B/zh active Active
-
2012
- 2012-05-25 WO PCT/CN2012/076106 patent/WO2013034001A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60224739A (ja) * | 1984-04-24 | 1985-11-09 | Maeda Keikinzoku Kogyo Kk | Al−7%Si−0.3%Mg系アルミニウム基鋳造合金 |
JPH0234739A (ja) * | 1988-07-22 | 1990-02-05 | Hitachi Metals Ltd | 高強度、高靭性鋳造用アルミニウム合金 |
US6773666B2 (en) * | 2002-02-28 | 2004-08-10 | Alcoa Inc. | Al-Si-Mg-Mn casting alloy and method |
JP2005272966A (ja) * | 2004-03-25 | 2005-10-06 | Aisin Seiki Co Ltd | 半凝固成形用アルミニウム合金及び成形体の製造方法 |
CN1693508A (zh) * | 2005-05-17 | 2005-11-09 | 郑州大学 | 一种用细晶铝锭制造的轮毂用铝合金及其制造方法 |
EP1882754A1 (fr) * | 2006-07-27 | 2008-01-30 | FAGOR, S.Coop | Alliage d'aluminium |
CN101966575A (zh) * | 2010-11-13 | 2011-02-09 | 河南理工大学 | 铝合金车轮铸造工艺和热处理工艺 |
CN102312137A (zh) * | 2011-09-09 | 2012-01-11 | 中兴通讯股份有限公司 | 铝硅镁系铸造铝合金及铸造工艺 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113106303A (zh) * | 2021-03-31 | 2021-07-13 | 湖南大学 | 一种利用Zn微合金化及双级时效制度结合来提高ZL114A合金强度的方法 |
CN113106303B (zh) * | 2021-03-31 | 2021-12-14 | 湖南大学 | 一种利用Zn微合金化及双级时效制度结合来提高ZL114A合金强度的方法 |
CN113234970A (zh) * | 2021-05-08 | 2021-08-10 | 昆明理工大学 | 一种含Er的高强韧铸造铝硅合金及其制备方法 |
CN113444928A (zh) * | 2021-07-20 | 2021-09-28 | 山东创新金属科技有限公司 | 一种重卡轮毂用高强铝合金及其制备方法 |
CN113564432A (zh) * | 2021-08-10 | 2021-10-29 | 江苏亚太航空科技有限公司 | 一种高韧耐热耐腐蚀Al-Mg-Si合金及其制备工艺与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN102312137B (zh) | 2016-06-22 |
CN102312137A (zh) | 2012-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013034001A1 (fr) | Alliage d'aluminium coulé d'al-si-mg et son procédé de coulée | |
CN106399776B (zh) | 一种800MPa级超高强铝合金及其制备方法 | |
CN100482829C (zh) | 列车车厢用铝合金板材的制造方法 | |
CN103131904B (zh) | 一种铝合金材料及其热处理工艺 | |
CN112143945B (zh) | 一种多种复合稀土元素的高强韧性铸造铝硅合金及其制备方法 | |
CN102912196B (zh) | 一种铝硅镁系铸造铝合金及其制备方法 | |
CN113710826B (zh) | 用于汽车结构应用的非热处理型的铸造合金 | |
JP2008291364A (ja) | 耐熱性アルミニウム合金 | |
CN102146542A (zh) | 一种高强高韧铸造Al-Si-Mg合金 | |
CN111101034A (zh) | 一种低稀土高性能的稀土铝合金及其制备方法 | |
CN110592445B (zh) | 720-740MPa冷挤压Al-Zn-Mg-Cu-Ti铝合金及制备方法 | |
CN104561857A (zh) | 一种铝合金双级时效热处理工艺 | |
CN110592444A (zh) | 一种700-720MPa强度耐热高抗晶间腐蚀铝合金及其制备方法 | |
CN108048716A (zh) | 高强抗蠕变含钪Al-Cu系铝合金及铸造和热处理工艺 | |
WO2015135253A1 (fr) | Alliage d'al-si et son procédé de fabrication | |
CN107641741A (zh) | 一种高导热铝合金 | |
CN105543586A (zh) | 一种含Er高冲击韧性铸造铝硅合金 | |
CN105112742A (zh) | 一种Al-Si-Mg-Cu-Ti-Sc铸锻合金及其制备方法 | |
JPS63206445A (ja) | アルミニウム−リチウム三元合金 | |
CN102367525A (zh) | 一种铸造铝合金的制备方法 | |
WO2022134275A1 (fr) | Alliage d'aluminium et élément structural en alliage d'aluminium | |
WO2010003349A1 (fr) | Matière d'alliage d'aluminium de fonderie à haute résistance | |
CN110592448B (zh) | 耐热耐腐蚀2219型铝合金及其制备方法 | |
WO2020052129A1 (fr) | Alliage de magnésium et de terres rares présentant une grande ductilité et une résistance élevée et son procédé de préparation | |
CN110607471B (zh) | Sr、Zr、Ti三元复合微合金化Al-Si-Cu系铸造铝合金及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12830503 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12830503 Country of ref document: EP Kind code of ref document: A1 |