WO2013032069A1 - 레이더 디텍터용 안테나 - Google Patents

레이더 디텍터용 안테나 Download PDF

Info

Publication number
WO2013032069A1
WO2013032069A1 PCT/KR2011/009088 KR2011009088W WO2013032069A1 WO 2013032069 A1 WO2013032069 A1 WO 2013032069A1 KR 2011009088 W KR2011009088 W KR 2011009088W WO 2013032069 A1 WO2013032069 A1 WO 2013032069A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
stub
branch
antenna
patch antenna
Prior art date
Application number
PCT/KR2011/009088
Other languages
English (en)
French (fr)
Inventor
이정해
박병철
주현모
김인호
박재규
이장원
박민우
Original Assignee
(주)백금티앤에이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)백금티앤에이 filed Critical (주)백금티앤에이
Priority to US14/342,375 priority Critical patent/US9368881B2/en
Priority to RU2014110272/28A priority patent/RU2571455C2/ru
Publication of WO2013032069A1 publication Critical patent/WO2013032069A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means

Definitions

  • the present invention relates to a radar detector antenna, and more particularly, to a radar detector antenna having a plurality of patch array antennas having different operating frequencies.
  • Radar detector is a device that detects laser or ultra-high frequency emitted from speed guns used to measure the speed of vehicles and safety alarm devices that inform road information.In some countries, radar detectors are used. Is legally recognized.
  • speed guns are specified to use frequency ranges such as X band (8 GHz to 12 GHz), Ku band (10.95 GHz to 14.5 GHz), K band (18 GHz to 27 GHz), and Ka band (26.5 GHz to 40 GHz). .
  • Speed guns are used in various types using various frequencies, but antennas used in radar detectors are designed to respond to specific frequency bands, and thus, they do not correspond to spinguns using frequency bands other than the corresponding frequency bands.
  • Radar detectors used at high frequencies require horn antennas because they require high gain and wide bandwidth.
  • horn antennas have limitations in miniaturizing radar detectors due to structural limitations.
  • Microstrip patch antennas can be used for miniaturization and thinning of radar detectors, but microstrip patch antennas have the advantages of being compact and thin, but with low gain and narrow bandwidth. There are disadvantages.
  • the present invention is to solve the above problems, an object of the present invention is to provide an antenna for a radar detector that can match a plurality of antennas having different operating frequencies with a single feeder.
  • Radar detector antenna for solving the above problems is a feed section, a first branch and a second branch branched from the feed section, the first band connected to the first branch A first band patch antenna having a band characteristic, a second band patch antenna having a second band band characteristic connected to the second branch, and between the feeder and the first band patch antenna on the first branch; A second band stub for blocking a signal of a second band band from propagating to the first band patch antenna and the first band provided between the feeder and the second band patch antenna on the second branch; And a first band stub to block the band signal from propagating to the second band patch antenna.
  • Radar detector antenna for solving the above problems is a feed section, the first branch and the second branch and the third branch branched from the feed section, and is connected to the first branch A first band patch antenna having a first band band characteristic, a second band patch antenna having a second band band characteristic connected to the second branch, and a third band patch having a third band band characteristic connected to the third branch An antenna, a second band first stub and a third band first stub provided between the feed section and the first band patch antenna on the first branch, and the feed section and the second band on the second branch A first band first stub and a third band second stub provided between a patch antenna and a first band second stub and a second band agent provided between the feeder and the third band patch antenna on the third branch path Contains 2 stubs.
  • the radar detector antenna according to the present invention can be matched with one power supply unit without impairing the characteristics of a plurality of antennas having different frequency characteristics, so that one radar detector can use various kinds of frequency bands.
  • the circuit configuration can be simplified.
  • FIG. 1 is a plan view illustrating a radar detector antenna according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a first band patch antenna of a radar detector antenna according to a first embodiment of the present invention.
  • FIG 3 is a diagram illustrating a second band patch antenna of the radar detector antenna according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating the progression of the first band signal and the second band signal by the first band stub of the radar detector antenna according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating the progression of the first band signal and the second band signal by the second band stub of the radar detector antenna according to the first embodiment of the present invention.
  • 6A to 6D illustrate simulation results when the first band signal is applied to the radar detector antenna according to the first embodiment of the present invention.
  • 7A to 7D illustrate simulation results when a second band signal is applied to the radar detector antenna according to the first embodiment of the present invention.
  • FIG. 8 is a plan view illustrating an antenna for a radar detector according to a second embodiment of the present invention.
  • FIG. 9 is a plan view illustrating a radar detector antenna according to a third embodiment of the present invention.
  • FIG. 10 illustrates a radiation module of one of the second band patch antennas of the radar detector antenna according to the third embodiment of the present invention.
  • 11 is a graph comparing bandwidths of the second band patch antenna and the uniform impedance patch antenna according to the third embodiment of the present invention.
  • 12A to 12C are plan views illustrating radiation patches of the radar detector antenna according to the fourth embodiment of the present invention.
  • FIG. 1 is a plan view illustrating a radar detector antenna according to a first embodiment of the present invention.
  • the radar detector antenna 100 is a feed section 101 to which a detection target signal is applied, and a first branch branched from the feed section 101. 102, the second branch 103, the first band patch antenna 110 connected to the first branch 102, and the second band patch antenna 120 connected to the second branch 103. And a second band stub 140 provided on the first branch, and a first band stub 130 provided on the second branch.
  • the patch antenna may be formed on a dielectric substrate (not shown) of a constant thickness, and formed on a substrate using a metal thin plate such as copper (Cu) or aluminum (Al), or has excellent electrical conductivity and good formability and processability. It can be formed using a metal thin plate such as silver (Ag), gold (Au).
  • a metal thin plate such as silver (Ag), gold (Au).
  • the first band patch antenna 110 includes a first band strip 111 connected to a first branch 102, a plurality of first radiation patches 113, and a first band strip.
  • a plurality of first band feed lines 112 connecting the 111 and each of the first radiation patches 113 may be provided.
  • the first band strip 111, the first radiation patch 113, the first band strip 111, and the first branch 102 may be formed of the same material as the first band patch antenna 110.
  • the first band strip 111 may be connected substantially perpendicular to the end of the first branch 102
  • the first band feed line 112 may be connected substantially perpendicular to both ends of the first band strip 111. have.
  • the first band feed line 112 may be connected to one side of the first radiation patch 113 so that the plurality of first radiation patches 113 may be connected to each other in parallel.
  • a portion where the first radiation patch 113 and the first band feed line 112 are connected to each other may be provided with an inset 114 recessed inwardly of the first radiation patch 113.
  • the inset 114 may be provided with a pair on both sides of the first band feed line 112.
  • the impedance of the first radiation patch 113 may be adjusted according to the width of the radiation patch and the length of the inset 114.
  • the impedance (R patch ) of the radiation patch is not formed in the following equation (1).
  • G One Is the conductance of a single slot
  • G 12 Denotes mutual conductance between slots.
  • G One and G 12 Is as shown in [Equation 2] and [Equation 3].
  • the impedance R in of the radiation patch having the inset is expressed by Equation 4 below.
  • the impedance R in varies depending on the length y 0 of the inset formed in the radiation patch.
  • the impedance of the first radiation patch 113 is designed to be 200 ⁇ . Since two first radiation patches 113 having an impedance of 200 ⁇ are connected in parallel, the input impedance Z 11 of the first band patch antenna 110 viewed from the first branch 102 may be 100 ⁇ . .
  • the first band in which the first band patch antenna 110 operates may be an X band (8 GHz to 12 GHz) band.
  • the shape of the first band patch antenna 110 shown in FIG. 2 is just one embodiment, and another frequency band, for example, a Ku band (10.95 GHz to 14.5 GHz), a K band (18 GHz to 27 GHz), and a Ka band (26.5 GHz to 40 GHz) may be designed as a patch antenna that operates in any one, and the arrangement may also be designed in an array other than 1 ⁇ 2 array.
  • the length of the first band strip 111 may be a positive integer multiple of the guided wavelength ⁇ g 1 of the first band center frequency. .
  • the length of the first band strip 111 is designed to be approximately equal to the intra-wavelength ⁇ g 1 .
  • a second band stub 140 may be provided on the first branch 102 between the first band patch antenna 110 and the power feeding unit 101.
  • the second band stub 140 is formed at a position spaced apart from the feed section 101 by a quarter length of the intra-wavelength wavelength ⁇ g 2 of the second band center frequency at which the second band patch antenna 120 to be described later operates. Can be.
  • the second band stub 140 may be formed to protrude by a quarter length of the tube wavelength ⁇ g 2 of the second band center frequency substantially perpendicular to the first branch 102.
  • the second band stub 140 may be formed to protrude about 2 mm at a position spaced about 2 mm from the feeder 101.
  • the input impedance Z 12 of the first band patch antenna 110 including the second band stub 140 is the second band stub ( By half) to 50 ohms.
  • FIG 3 is a diagram illustrating a second band patch antenna of the radar detector antenna according to the first embodiment of the present invention.
  • the second band patch antenna 120 includes a plurality of second band strips 121 branched from the second branch 103, a plurality of second radiation patches 123, and a second portion.
  • a second band feed line 122 connecting the band strip 121 and each second radiation patch 123 may be provided.
  • the second band strip 121, the second radiation patch 123, the second band strip 121, and the second branch 103 may be formed of the same material as the second band patch antenna 120.
  • the plurality of second band strips 121 may branch approximately vertically in the second branch 103.
  • the six second band strips 121 are symmetric in the second branch 103. May branch off.
  • the branched shape of the second band strip 121 may have various shapes depending on the arrangement of the second radiation patches 123.
  • the second band feed line 122 may be connected substantially perpendicular to the second band strip 121.
  • one second band strip 121 may be provided with three second band feed lines 122.
  • the second band feed line 122 may be connected to one side of the second radiation patch 123 so that the plurality of second radiation patches 123 may be connected to each other in parallel.
  • a portion where the second radiation patch 123 and the second band feed line 122 are connected is provided with an inset 124 recessed into the second radiation patch 123.
  • the inset 124 may be provided in pairs on both sides of the second band feed line 122.
  • the impedance of the second radiation patch 123 may also be adjusted according to the width of the radiation patch and the length of the inset 124.
  • the second radiation patch 123 may be formed of the same shape and material so as to have the same impedance, and the second radiation patch 123 is connected to the same second band strip 121 so as to set the phase difference between the second radiation patch 123 to zero.
  • the two-band feed line 122 may be positioned such that the interval between each other is a positive integer multiple of the intra-wavelength wavelength ⁇ g 2 of the second band center frequency. In this embodiment, the spacing of the second band feed line 122 is designed to be approximately equal to the internal wavelength ⁇ g 2 .
  • the input impedances Z 21 facing the respective second band strips 121 in the second branch 103 are preferably formed to be substantially the same.
  • the input impedance Z 21 viewed from each second band strip 121 in the second branch 103 is set to 300 ⁇ .
  • the input impedance Z 22 of the second band patch antenna 120 viewed from the second branch 103 before the second band strip 121 is branched is 100 ⁇ .
  • the second band in which the second band patch antenna 120 operates may be a K band (18 GHz to 27 GHz) band.
  • the shape of the second band patch antenna 120 shown in FIG. 3 is just one embodiment and may be a different frequency band, for example, a Ku band (10.95 GHz to 14.5 GHz), a K band (18 GHz to 27 GHz), or a Ka band. (26.5 GHz ⁇ 40 GHz) can be designed as a patch antenna that operates in any one, and the arrangement can also be designed in an array other than 3 ⁇ 6 array. However, a frequency band different from the first band in which the first band patch antenna 110 operates may be selected in the second band in which the second band patch antenna 120 operates.
  • the first band stub 130 may be provided on the second branch 103 between the second band patch antenna 120 and the power feeding unit 101.
  • the first band stub 130 may be formed at a position spaced apart from the feed part 101 by a quarter length of the intra-wavelength wavelength ⁇ g 1 of the first band center frequency at which the first band patch antenna 110 operates. have.
  • first band stub 130 may be formed to protrude by a quarter length of the internal wavelength ⁇ g 1 of the first band center frequency substantially perpendicular to the first branch 102.
  • the first band stub 130 may protrude about 4.7 mm at a position spaced about 4.7 mm from the feeder 101.
  • the input impedance Z 23 of the second band patch antenna 120 including the first band stub 130 is equal to the first band stub ( 130) to become 50 ⁇ .
  • FIG. 4 is a diagram illustrating the progression of the first band band signal and the second band band signal by the first band stub of the radar detector antenna according to the first embodiment of the present invention.
  • the circuit When the signal of the second band band S 2 is applied to the feeder 101, the circuit is opened at the end of the first band stub 130 and the center frequency of the first band at the end of the first band stub 130.
  • Signal of the second band band by the effect that the circuit is shorted at a point separated by a quarter length of the intra-wavelength wavelength ⁇ g 1 , that is, the portion where the first band stub 130 is connected to the second branch 103. (S 2 ) flows to the second band patch antenna 120 side.
  • the circuit is opened at the end of the first band stub 130 and the center of the first band at the end of the first band stub 130.
  • FIG. 5 is a diagram illustrating the progression of the first band signal and the second band signal by the second band stub of the radar detector antenna according to the first embodiment of the present invention.
  • the circuit When the signal S 1 of the first band band is applied to the feeder 101, the circuit is opened at the end of the second band stub 140 and the second band center frequency at the end of the second band stub 140.
  • the signal of the first band band due to the effect that the circuit is shorted at a point separated by a quarter length of the intra-wavelength wavelength ⁇ g 2 , that is, the portion where the second band stub 140 is connected to the first branch 102. S 1 is flowed to the first band patch antenna 110.
  • the circuit is opened at the end of the second band stub 140, and the second band stub 140 is centered at the end of the second band stub 140.
  • the effect is similar to that in which the circuit is opened at a point separated by 1/2 the length of the tube wavelength ⁇ g 2 of the frequency, that is, at the branch of the first branch 102 from the feed section 101, so that a signal of the second band band is generated. (S 2 ) is not allowed to proceed to the first band patch antenna 110 side.
  • FIG. 6A to 6D show simulation results when the first band band signal is applied to the radar detector antenna according to the first embodiment of the present invention.
  • FIG. 6A is a diagram showing field distribution
  • FIG. 6B. 6 is a graph showing the return loss
  • Figure 6c is a graph showing the E-Plane radiation pattern
  • Figure 6d is a graph showing the H-Plane radiation pattern.
  • Simulation results shown in FIGS. 6A to 6D show that the first band patch antenna 110 is designed as an X band band patch antenna and the second band patch antenna 120 is designed as a K band band patch antenna, in an X band band. This is the result of applying the signal of 10.525 GHz to the power supply unit 101.
  • the first band band signal (10.525 GHz) applied to the power supply unit 101 proceeds to the first band patch antenna 110 by the second band stub 140, but the first band. Proceeding to the second band patch antenna 120 side by the stub 130 is blocked.
  • the impedance of the first band stub 130 for the 10.525 GHz signal was measured to be about 6000 ⁇ , thereby preventing the signal applied to the feeder 101 from traveling to the second band patch antenna 120.
  • the radar detector antenna 100 is provided with a signal of the X band band (10.525 GHz) even though the antennas 100 and 120 are provided with patch antennas 110 and 120 of two different bands. ) Is blocked from being applied to the second band patch antenna 120, resulting in a return loss and radiation pattern that are very similar to that of the X band band patch antenna 110 only.
  • FIG. 7A to 7D illustrate simulation results when a second band signal is applied to the radar detector antenna according to the first embodiment of the present invention.
  • FIG. 7A illustrates a field distribution.
  • 7C is a graph showing E-Plane radiation pattern, and
  • FIG. 7D is a graph showing H-Plane radiation pattern.
  • the simulation results shown in FIGS. 7A to 7D show that the first band patch antenna 110 is designed as an X band band patch antenna, and the second band patch antenna 120 is designed as a K band band patch antenna, in a K band band. This is the result of applying the signal of 24.15 GHz to the power supply unit 101.
  • the second band band signal (24.15 GHz) applied to the feeder 101 proceeds to the second band patch antenna 120 by the first band stub 130, but the second band Proceeding to the first band patch antenna 110 side by the stub 140 is blocked.
  • the impedance of the second band stub 140 with respect to the 24.15 GHz signal was measured to be about 3000 ⁇ , thereby preventing the signal applied to the feeder 101 from traveling to the first band patch antenna 110.
  • the radar detector antenna 100 includes the patch antennas 110 and 120 of two different bands
  • the signal of the K band band (24.15 GHz) to be applied is applied.
  • a reflection loss and a radiation pattern very similar to those in which only the K band band patch antenna 120 exists are displayed.
  • each patch antenna 110, 120 can be selectively operated according to the frequency band of the signal to be applied, so as not to damage the characteristics of a plurality of antennas having different frequency characteristics to one feed section It is possible to match, so that one radar detector can cope with various kinds of speed guns using different kinds of frequency bands, and the circuit configuration can be simplified.
  • FIG. 8 is a plan view illustrating an antenna for a radar detector according to a second embodiment of the present invention.
  • the radar detector antenna 200 may further include a third band patch antenna 130 to selectively operate for three band regions. .
  • the radar detector antenna 200 includes a feed section 101, a first branch 102, a second branch 103, and a third branch 104 branched from the feed unit 101. ), The first band patch antenna 110 connected to the side of the first branch 102 and the second band patch antenna 120 connected to the side of the second branch 103 and the third branch 104.
  • the first band patch antenna 110 is connected to an end of the first branch 102.
  • the second band at a position separated by a quarter length of the tube wavelength ⁇ g 2 of the second band center frequency at which the second band patch antenna 120 operates from the feed section 101.
  • the first stub 141 is provided, and the first stub 141 is provided at a position spaced one quarter of a length of the tube wavelength ⁇ g 3 of the third band center frequency at which the third band patch antenna 130 operates.
  • a three band first stub 151 may be provided.
  • the second band first stub 141 may be formed to protrude by a quarter length of the intra-wavelength wavelength ⁇ g 2 of the second band center frequency substantially perpendicular to the first branch 102.
  • the first stub 151 may be formed to protrude by a quarter length of the intra-wavelength ⁇ g 3 of the third band center frequency substantially perpendicular to the first branch 102.
  • the second band first stub 141 and the third band first stub 151 may protrude in opposite directions with respect to the first branch 102 in order to minimize mutual influence.
  • the second band patch antenna 120 is connected to the end of the second branch 103.
  • the first band at a position separated by a quarter length of the tube wavelength ⁇ g 1 of the first band center frequency at which the first band patch antenna 110 operates from the feed section 101.
  • the first stub 131 is provided, and the third band second stub 152 is provided at a position spaced apart from the feed part 101 by a quarter length of the internal wavelength ⁇ g 3 of the third band center frequency.
  • the first band first stub 131 may be formed to protrude by a quarter length of the internal wavelength ⁇ g 1 of the first band center frequency substantially perpendicular to the second branch 103.
  • the two stubs 152 may protrude by a quarter length of the intra-wavelength ⁇ g 3 of the third band center frequency substantially perpendicular to the second branch 103.
  • the first band first stub 131 and the third band second stub 152 may protrude in opposite directions with respect to the second branch 103 to minimize mutual influence.
  • the third band patch antenna 130 is connected to the end of the third branch 104.
  • the first band second stub 132 is provided at a position spaced apart from the feed section 101 by a quarter length of the internal wavelength ⁇ g 1 of the first band center frequency.
  • the second band second stub 142 may be provided at a position spaced apart from the whole 101 by a quarter length of the intra-wavelength ⁇ g 2 of the second band center frequency.
  • the first band second stub 132 may be formed to protrude by a quarter length of the internal wavelength ⁇ g 1 of the first band center frequency approximately perpendicular to the third branch 104.
  • the two stubs 142 may be formed to protrude by a quarter length of the intra-wavelength ⁇ g 2 of the third band center frequency substantially perpendicular to the second branch 103.
  • the first band second stub 132 and the second band second stub 142 may protrude in opposite directions with respect to the third branch 104 in order to minimize mutual influence.
  • the input impedances of the patch antennas 110, 120, and 130 viewed from the feeder are all designed to be the same, and the input impedance may be designed to be 50 ⁇ .
  • the first band patch antenna 110, the second band patch antenna 120, and the third band patch antenna 130 include the X band (8 GHz to 12 GHz), the Ku band (10.95 GHz to 14.5 GHz), and the K band (18 GHz to 18 GHz). 27 GHz) and Ka band (26.5 GHz ⁇ 40 GHz) can be designed as a patch antenna that operates. However, it is preferable that the first band patch antenna 110, the second band patch antenna 120, and the third band patch antenna 130 select different frequency bands from each other.
  • the first band first stub 131 provided in the second branch 103 Blocks the signal from being applied to the second band patch antenna 120, and the first band second stub 132 provided in the third branch is applied to the third band patch antenna 130. Can be blocked.
  • the second band first stub 141 and the third band first stub 151 provided in the first branch 102 apply the corresponding signal to the first band patch antenna 110 to the first band band signal. Only the first band patch antenna 110 may operate.
  • the second band first stub 141 provided in the first branch 102 has a first band patch antenna ( 110, the second band second stub 142 provided in the third branch may block the signal from being applied to the third band patch antenna 130.
  • first band first stub 131 and the third band second stub 152 provided in the second branch 103 apply the corresponding signal to the second band patch antenna 120 to the second band band signal. Only the second band patch antenna 120 may operate.
  • the third band first stub 151 provided in the first branch 102 has a first band patch antenna ( Blocking the application to the side 110, the third band second stub 152 provided in the second branch can block the application of the signal to the second band patch antenna 120 side.
  • first band second stub 132 and the second band second stub 142 provided in the third branch 104 apply the corresponding signal to the third band patch antenna 130 to the third band band signal. Only the third band patch antenna 130 may operate.
  • FIG. 9 is a plan view illustrating a radar detector antenna according to a third embodiment of the present invention.
  • the first band patch antenna 310 and the second band patch antenna 320 Has a plurality of spinning patches 313a, 313b, 323a, 323b, 323c with insets 314a, 314b, 324a, 324b, 324c of different lengths.
  • the first band patch antenna 310 of the radar detector antenna 300 has a first band first having different lengths of the insets 314a and 314b.
  • the radiation patch 313a and the first band second radiation patch 313b may be provided.
  • the second band patch antenna 320 may include a second band first radiation patch 323a, a second band second radiation patch 323b, and a second band third having different lengths of the insets 324a, 324b, and 324c. At least one radiation module 320a having a radiation patch 323c may be provided.
  • FIG. 10 illustrates a radiation module of one of the second band patch antennas of the radar detector antenna according to the third embodiment of the present invention.
  • the radiation module 320a may be a non-uniform impedance radiation module in which a radiation patch having a 1 ⁇ 3 array is arranged. Or it may have a different arrangement form as needed.
  • This embodiment is a K-band antenna, wherein the three radiating patches 323a, 323b, and 323c are 4.4 mm wide and 3.6 mm long, and the lengths y1, y2, y3 of the insets 324a, 324b, 324c are 1.4mm, 1.1mm and 0.6mm respectively. And the width of the inset (324a, 324b, 324c) was designed to 0.1mm.
  • a radiation patch having a length y1 of the inset 324a of 1.4 mm will be referred to as a second band first radiation patch 323a
  • a radiation patch having a length y2 of the inset 324b of 1.1 mm will be referred to as a second band.
  • the radiation patch having a length y3 of the second radiation patch 323b and the inset 324c of 0.6 mm is called a second band third radiation patch 323c.
  • the impedance of the second band first radiation patch 323a is 100 ⁇
  • the impedance of the second band second radiation patch 323b is 150 ⁇
  • the impedance of the second band third radiation patch 323c is 200 ⁇ .
  • the three radiation patches 323a, 323b, and 323c may be connected in parallel to the second band strip 321 through second band feed lines 322a, 322b, and 322c, respectively.
  • adjacent second band feed lines 322a, 322b, and 322c are spaced apart from each other by the second band. It may be positioned to be a positive integer multiple of the tube wavelength ( ⁇ g 2 ) of the center frequency.
  • the second band strip 321 is a connecting strip electrically connecting the plurality of matching ends 321a, 321b, and 321c corresponding to each of the radiation patches 323a, 323b, and 323c and the matching ends 321a, 321b, and 321c.
  • 321d, 321e, and 321f can be provided.
  • Matching ends 321a, 321b, and 321c are provided at a portion where the second band feed lines 322a, 322b, and 322c and the second band strip 321 are connected to each other, and each radiation patch 323a and 323b having different impedances. , 323c) to apply the same current.
  • the spacing between the second band feed lines 322a, 322b, and 322c is designed to be the same as the intra-wavelength wavelength ⁇ g 2
  • the adjacent matching ends 321a, 321b, and 321c are connected to each other.
  • the lengths of the first connection strips 321d and the second connection strips 321e are each 3/4 of the intra-wavelength ⁇ g 2
  • the lengths of the matching ends 321a, 321b, and 321c are the intra-wavelengths, respectively. It can be formed to be a quarter of ( ⁇ g 2 ).
  • the input impedance Z in at the second band strip 321 may be calculated by Equation 5 below.
  • is the propagation constant ego
  • Is the length of the second band strip 321
  • Z 0 is the characteristic impedance of the second band strip 321
  • Z L is the impedance of the power feeding element.
  • the second band first radiation patch 323a and the second band second radiation patch 323b are eventually used. The same current can be applied to.
  • the second band first radiation patch 323a and the second band second radiation patch 323b are the same, the second band first radiation patch 323a and the second band second radiation patch 323b are the same. And the same current is applied to the second band third radiation patch 323c.
  • Such a design can provide the same current even if the radiation patch having different impedances is used. This can prevent unexpected results in the design of the patch antenna, thereby improving the ease of design of the antenna.
  • the overall sizes of the second band first radiation patch 323a, the second band second radiation patch 323b, and the second band third radiation patch 323c of the radiation module 320a according to the present embodiment are the same, Since the lengths y1, y2, y3 of the insets 324a, 324b, and 324c formed in the radiation patches 323a, 323b, and 323c are different, the resonance frequencies of the radiation patches 323a, 323b, and 323c are different. As a result, the radiation module 320a according to the present embodiment has a wider bandwidth due to the effect of triple resonance.
  • 11 is a graph comparing bandwidths of the second band patch antenna and the uniform impedance patch antenna according to the third embodiment of the present invention.
  • the second band patch antenna 320 according to the third embodiment of the present invention comprises six radiating modules 320a symmetrically and constitutes a 3 ⁇ 6 non-uniform array antenna, and has a dielectric constant ( A TLY-5 substrate with) 2.2 was used.
  • the 3 ⁇ 6 homogeneous impedance array antenna to be compared also used the same arrangement and the same TLY-5 substrate.
  • the 3 ⁇ 6 uniform impedance array antenna used a radiation patch having the same impedance of 200 ⁇ as the second band third radiation patch 323c of the radiation module 320a according to the present embodiment as a radiation patch.
  • the 10 dB bandwidths of the second band patch antenna 320 and the 3 ⁇ 6 uniform impedance array antenna according to the third embodiment of the present invention are 1.2 GHz (24.03 GHz to 25.03 GHz, respectively). 4.93%) and 830MHz (23.84GH ⁇ 24.67GHz, 3.43%).
  • the 10 dB bandwidth of the second band patch antenna 320 according to the third embodiment of the present invention is about 1.5 times wider than that of the 3 ⁇ 6 uniform impedance array antenna.
  • This embodiment corresponds to an example for designing the second band patch antenna 320 as a K-band antenna, and the present invention is not limited thereto and is designed to be designed as an antenna for another frequency region intended by the designer. And shapes can be different.
  • the width (W) and the inset length (y 0 ) determine the impedance, and the length (L) is known as a factor for determining the resonance frequency of the antenna, in addition to the K band, the X band, the Ku band,
  • the antenna for the Ka band can be manufactured, and the patch array antenna according to the above configuration can be used for a radar detector, and can be applied to other applications in which a patch antenna is used.
  • the number and arrangement of the radiation patches can be variously changed.
  • the first band patch antenna 310 may also include a plurality of radiation patches 313a and 313b having insets 314a and 314b of different lengths, similar to the second band patch antenna 320 described above. Matching ends 311a and 311b may be provided in the first band strip 311 so that the same current is applied to the radiation patches 313a and 313b.
  • the first band strip 311 including the matching ends 311a and 311b and the connection strips 311c and 311d may be designed using Equation 5 described above. Details thereof are described in the second band patch antenna 320 and thus will be omitted.
  • the non-uniform patch antenna is implemented through the plurality of radiation patches 313a, 313b, 323a, 323b, and 323c having insets of different lengths, but the radiation patches 313a, 313b, 323a, 323b, and 323c are implemented. ), Or the width of the first band feed line (312a, 312b) and the width of the second band feed line (322a, 322b, 322c) may be changed to implement a non-uniform patch antenna.
  • 12A to 12C are plan views illustrating radiation patches of the radar detector antenna according to the fourth embodiment of the present invention.
  • the first radiation patch 113 and / or the second radiation patch 123 of the radar detector antenna according to the fourth embodiment of the present invention may be configured as a circularly polarized patch.
  • Circularly polarized patches are patches that receive a circularly polarized wave (CP) that travels in a spiral trajectory as the electric field rotates on the vibration plane.
  • CP circularly polarized wave
  • the radar detector antenna according to the fourth embodiment of the present invention uses a circularly polarized patch to the first radiation patch 113 and / or the second radiation patch 123 to polarize a transmission signal that is a signal transmitted from a speed gun or the like.
  • the transmission signal may be detected regardless of the direction, and the transmission signal may be detected even when the direction of the polarization is changed due to the reflection of the transmission signal by a road or a building.
  • FIG. 12A illustrates an example of a circularly polarized patch according to a fourth embodiment of the present invention, and circular polarized patches 113 and 123 formed of hexagons in which the vertices in the diagonal direction are cut parallel to each other may be used. Similar to the first embodiment of the present invention, the circularly polarized patches 113 and 123 may be connected to the feed lines 112 and 122.
  • FIG. 12B illustrates another example of the circularly polarized patch according to the fourth embodiment of the present invention, wherein an inset cut 415 for adjusting an input resistance of the patch is further provided on one side of the hexagonal patch shown in FIG. 12A. Formed form. A plurality of inset cuts 415 may be formed.
  • insets 114 and 124 may be provided recessed inwards of the circularly polarized patches 113 and 123 on both sides of the feed lines 112 and 122.
  • FIG. 12C illustrates another example of the circularly polarized patch according to the fourth embodiment of the present invention.
  • a rectangular hole 416 is formed in the center of the hexagonal patch shown in FIG.
  • the size of the patch can be downsized, so that the radar detector can be downsized.
  • feeder 102 first branch
  • first band first stub 132 first band second stub

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

본 발명에 따른 레이더 디텍터용 안테나는 급전부와, 상기 급전부에서 분기되는 제1지로와 제2지로와, 상기 제1지로와 연결되는 제1밴드 대역 특성의 제1밴드 패치 안테나와, 상기 제2지로와 연결되는 제2밴드 대역 특성의 제2밴드 패치 안테나와, 상기 제1지로 상에서 상기 급전부와 상기 제1밴드 패치 안테나 사이에 구비되는 제2밴드 스터브(stub) 그리고 상기 제2지로 상에서 상기 급전부와 상기 제2밴드 패치 안테나 사이에 구비되는 제1밴드 스터브를 포함하고, 서로 다른 주파수 특성을 갖는 복수 개의 안테나의 특성을 손상하지 않으면서 하나의 급전부로 매칭할 수 있다.

Description

레이더 디텍터용 안테나
본 발명은 레이더 디텍터용 안테나에 관한 것으로, 더욱 자세하게는 서로 다른 동작 주파수를 갖는 복수 개의 패치 어레이 안테나를 구비하는 레이더 디텍터용 안테나에 관한 것이다.
레이더 디텍터(Radar detector)는 차량 등의 속도를 측정하기 위해 사용되는 스피드건(Speed gun)이나 도로 정보를 알려주는 안전경보장치 등에서 방출된 레이저 또는 초고주파를 감지하는 장비로서, 일부 국가에서는 레이더 검출기의 사용을 합법적으로 인정하고 있다.
미국의 경우, 스피드건은 X 밴드(8GHz~12GHz), Ku 밴드(10.95GHz~14.5GHz), K 밴드(18GHz~27GHz), Ka 밴드(26.5GHz~40GHz) 등의 주파수 범위를 사용하도록 규정되어 있다.
스피드건은 다양한 주파수를 이용하는 다양한 종류의 것이 이용되나, 레이더 디텍터에 사용되는 안테나는 특정주파수 밴드에 반응하도록 설계되므로, 해당 주파수 밴드 이외의 주파수 밴드를 사용하는 스피건에는 대응하지 못한다.
다양한 주파수를 검출하기 위해 서로 다른 주파수 밴드에 반응하는 복수 개의 안테나가 내장되는 경우, 레이더 검출기의 크기가 커지고 각 안테나에 필요한 급전부가 늘어나 전체 회로도 복잡해진다.
또한 고주파에서 사용되는 레이더 디텍터의 경우 높은 이득과 넓은 대역폭이 요구되므로 혼 안테나를 사용하고 있다. 하지만, 혼 안테나는 구조적 한계 때문에 레이더 디텍터를 소형화시키는데 한계가 있다.
레이더 디텍터의 소형화 및 박형화(薄形化)를 위해 마이크로스트립 패치 안테나(microstrip patch antenna)를 이용할 수 있으나, 마이크로스트립 패치 안테나는 소형, 박형으로 제작이 가능한 이점을 갖는 대신에 이득이 낮고 대역폭이 좁은 단점이 있다.
본 발명은 전술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 서로 다른 동작 주파수를 갖는 복수 개의 안테나를 하나의 급전부로 매칭할 수 있는 레이더 디텍터용 안테나를 제공하기 위함이다.
또한 보다 넓은 대역폭과 넓은 이득을 갖는 레이더 디텍터용 안테나를 제공하기 위한 것이다.
전술한 과제를 해결하기 위한 본 발명의 하나의 실시예에 따른 레이더 디텍터용 안테나는 급전부와, 상기 급전부에서 분기되는 제1지로와 제2지로와, 상기 제1지로와 연결되는 제1밴드 대역 특성의 제1밴드 패치 안테나와, 상기 제2지로와 연결되는 제2밴드 대역 특성의 제2밴드 패치 안테나와, 상기 제1지로 상에서 상기 급전부와 상기 제1밴드 패치 안테나 사이에 구비되어 상기 제2밴드 대역의 신호가 상기 제1밴드 패치 안테나로 진행하는 것을 차단하는 제2밴드 스터브(stub) 및 상기 제2지로 상에서 상기 급전부와 상기 제2밴드 패치 안테나 사이에 구비되어 상기 제1밴드 대역의 신호가 상기 제2밴드 패치 안테나로 진행하는 것을 차단하는 제1밴드 스터브를 포함한다.
전술한 과제를 해결하기 위한 본 발명의 다른 실시예에 따른 레이더 디텍터용 안테나는 급전부와, 상기 급전부에서 분기되는 제1지로와 제2지로와 제3지로와, 상기 제1지로와 연결되는 제1밴드 대역 특성의 제1밴드 패치 안테나와, 상기 제2지로와 연결되는 제2밴드 대역 특성의 제2밴드 패치 안테나와, 상기 제3지로와 연결되는 제3밴드 대역 특성의 제3밴드 패치 안테나와, 상기 제1지로 상에서 상기 급전부와 상기 제1밴드 패치 안테나 사이에 구비되는 제2밴드 제1스터브와 제3밴드 제1스터브와, 상기 제2지로 상에서 상기 급전부와 상기 제2밴드 패치 안테나 사이에 구비되는 제1밴드 제1스터브와 제3밴드 제2스터브 및 상기 제3지로 상에서 상기 급전부와 상기 제3밴드 패치 안테나 사이에 구비되는 제1밴드 제2스터브와 제2밴드 제2스터브를 포함한다.
본 발명에 따른 레이더 디텍터용 안테나는 서로 다른 주파수 특성을 갖는 복수 개의 안테나의 특성을 손상하지 않으면서 하나의 급전부로 매칭할 수 있어서, 하나의 레이더 디텍터로 다른 종류의 주파수 밴드를 이용하는 다양한 종류의 스피드건에 대응할 수 있고, 회로구성을 간단히 할 수 있다.
또한 넓은 대역폭과 높은 이득을 제공하는 효과가 있고, 대역폭이 넓은 안테나를 용이하게 설계할 수 있는 효과가 있다.
이상과 같은 본 발명의 기술적 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 기술적 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나를 도시한 평면도이다.
도 2는 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나의 제1밴드 패치 안테나를 도시한 도면이다.
도 3은 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나의 제2밴드 패치 안테나를 도시한 도면이다.
도 4는 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나의 제1밴드 스터브에 의한 제1밴드 신호와 제2밴드 신호의 진행을 도시한 도면이다.
도 5는 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나의 제2밴드 스터브에 의한 제1밴드 신호와 제2밴드 신호의 진행을 도식화한 도면이다.
도 6a 내지 6d는 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나에 제1밴드 신호가 인가된 경우의 시뮬레이션 결과를 도시한 도면이다.
도 7a 내지 7d는 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나에 제2밴드 신호가 인가된 경우의 시뮬레이션 결과를 도시한 도면이다.
도 8은 본 발명의 제2실시예에 따른 레이더 디텍터용 안테나를 도시한 평면도이다.
도 9는 본 발명의 제3실시예에 따른 레이더 디텍터용 안테나를 도시한 평면도이다.
도 10은 본 발명의 제3실시예에 따른 레이더 디텍터용 안테나의 제2밴드 패치 안테나 중 하나의 방사모듈을 도시한 도면이다.
도 11은 본 발명의 제3실시예에 따른 제2밴드 패치 안테나와 균일 임피던스 패치 안테나의 대역폭을 비교한 그래프이다.
도 12a 내지 12c는 본 발명의 제4실시예에 따른 레이더 디텍터용 안테나의 방사 패치를 도시한 평면도이다.
이하 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 그러나 본 실시예는 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면에서의 요소의 형상 등은 보다 명확한 설명을 위하여 과장되게 표현된 부분이 있을 수 있으며, 도면 상에서 동일 부호로 표시된 요소는 동일 요소를 의미한다.
도 1은 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나를 도시한 평면도이다.
도 1에 도시된 바와 같이, 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나(100)는 디텍팅 대상 신호가 인가되는 급전부(101)와, 급전부(101)에서 분기되는 제1지로(102)와 제2지로(103)와, 제1지로(102) 측에 연결되는 제1밴드 패치 안테나(110)와, 제2지로(103) 측에 연결되는 제2밴드 패치 안테나(120)와, 제1지로 상에 구비되는 제2밴드 스터브(stub)(140)와, 제2지로 상에 구비되는 제1밴드 스터브(130)를 포함한다.
도 2는 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나의 제1밴드 패치 안테나를 도시한 도면이다. 패치 안테나는 일정한 두께의 유전체 기판(미도시) 상에 형성될 수 있고, 기판 상에 구리(Cu)나 알루미늄(Al) 등의 금속박판을 이용해 형성하거나, 전기전도도가 우수하고 성형성과 가공성이 좋은 은(Ag), 금(Au) 등의 금속박판을 이용해 형성할 수 있다.
도 2에 도시된 바와 같이, 제1밴드 패치 안테나(110)는 제1지로(102)와 연결되는 제1밴드 스트립(111)과, 복수 개의 제1방사패치(113)와, 제1밴드 스트립(111)과 각 제1방사패치(113)를 각각 연결하는 복수 개의 제1밴드 급전라인(112)을 구비할 수 있다. 제1밴드 스트립(111), 제1방사패치(113), 제1밴드 스트립(111) 및 제1지로(102)는 제1밴드 패치 안테나(110)와 동일한 재질로 형성될 수 있다.
한편, 제1밴드 스트립(111)은 제1지로(102)의 단부에 대략 수직으로 연결될 수 있고, 제1밴드 급전라인(112)은 제1밴드 스트립(111)의 양단에 대략 수직으로 연결될 수 있다. 그리고 제1밴드 급전라인(112)은 제1방사패치(113)의 일측에 연결되어 복수 개의 제1방사패치(113)가 서로 병렬로 연결되도록 할 수 있다.
제1방사패치(113)와 제1밴드 급전라인(112)이 연결되는 부분에는 제1방사패치(113)의 내측으로 함몰 형성되는 인셋(114)이 구비될 수 있다. 인셋(114)은 제1밴드 급전라인(112)의 양측으로 한 쌍이 구비될 수 있다. 제1방사패치(113)의 임피던스는 방사패치의 너비와 인셋(114)의 길이에 따라 조절될 수 있다.
먼저, 인셋이 형성되지 않은 방사 패치의 임피던스(Rpatch)는 다음 [수학식 1]과 같다.
[수학식 1]
Figure PCTKR2011009088-appb-I000001
G1은 단일 슬롯의 컨덕턴스(conductance)를 의미하고, G12는 슬롯 간 상호 컨덕턴스를 의미한다. G1 G12는 다음 [수학식 2]와 [수학식 3]과 같다.
[수학식 2]
Figure PCTKR2011009088-appb-I000002
[수학식 3]
Figure PCTKR2011009088-appb-I000003
한편, 인셋의 길이를 y0라고 할 때, 인셋이 형성된 방사 패치의 임피던스(Rin)는 다음 [수학식 4]와 같다.
[수학식 4]
Figure PCTKR2011009088-appb-I000004
[수학식 4]에 의해 알 수 있듯이, 방사 패치는 동일한 너비(W)와 길이(L)를 갖더라도, 방사 패치에 형성되는 인셋의 길이(y0)에 따라 임피던스(Rin)가 달라진다.
본 실시예에서 제1방사패치(113)의 임피던스는 200Ω으로 설계되었다. 임피던스가 200Ω으로 설계된 2개의 제1방사패치(113)가 병렬로 연결되어 있으므로, 제1지로(102)에서 바라본 제1밴드 패치 안테나(110)의 입력 임피던스(Z11)는 100Ω이 될 수 있다.
제1밴드 패치 안테나(110)가 동작하는 제1밴드는 X 밴드(8GHz~12GHz) 대역일 수 있다. 도 2에 도시된 제1밴드 패치 안테나(110)의 형태는 하나의 실시예에 불과하며 다른 주파수 대역, 예를 들면 Ku 밴드(10.95GHz~14.5GHz), K 밴드(18GHz~27GHz), Ka 밴드(26.5GHz~40GHz) 중 어느 하나에서 동작하는 패치 안테나로 설계될 수 있으며, 배열 형태 역시 1×2배열이외의 다른 배열로 설계될 수 있다.
한편 제1방사패치(113)간의 위상차를 0으로 하기 위해, 제1밴드 스트립(111)의 길이는 제1밴드 중심주파수의 관내파장(guided wavelength)(λg1)의 양의 정수배가 될 수 있다. 본 실시예에서는 제1밴드 스트립(111)의 길이가 관내파장(λg1)과 대략 동일하도록 설계하였다.
한편 제1밴드 패치 안테나(110)와 급전부(101) 사이의 제1지로(102) 상에는 제2밴드 스터브(140)가 구비될 수 있다.
제2밴드 스터브(140)는 급전부(101)로부터 후술할 제2밴드 패치 안테나(120)가 동작하는 제2밴드 중심주파수의 관내파장(λg2)의 1/4 길이만큼 이격된 위치에 형성될 수 있다.
또한 제2밴드 스터브(140)는 제1지로(102)에 대해 대략 수직으로 제2밴드 중심주파수의 관내파장(λg2)의 1/4 길이만큼 돌출되어 형성될 수 있다.
예를 들어, 제2밴드가 K 밴드(18GHz~27GHz)인 경우, 제2밴드 스터브(140)는 급전부(101)로부터 약 2mm 이격된 위치에 약 2mm 돌출되어 형성될 수 있다.
한편 제1밴드 패치 안테나(110)가 동작하는 제1밴드 대역의 주파수에서, 제2밴드 스터브(140)를 포함한 제1밴드 패치 안테나(110)의 입력 임피던스(Z12)는 제2밴드 스터브(140)에 의해 절반이 되어 50Ω이 된다.
도 3은 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나의 제2밴드 패치 안테나를 도시한 도면이다.
도 3에 도시된 바와 같이, 제2밴드 패치 안테나(120)는 제2지로(103)에서 분기되는 복수 개의 제2밴드 스트립(121)과, 복수 개의 제2방사패치(123)와, 제2밴드 스트립(121)과 각 제2방사패치(123)를 각각 연결하는 제2밴드 급전라인(122)을 구비할 수 있다. 제2밴드 스트립(121), 제2방사패치(123), 제2밴드 스트립(121) 및 제2지로(103)는 제2밴드 패치 안테나(120)와 동일한 재질로 형성될 수 있다.
한편, 복수 개의 제2밴드 스트립(121)은 제2지로(103)에서 대략 수직으로 분기될 수 있다. 도 3에 도시된 제2밴드 패치 안테나(120)는 복수 개의 제2방사패치(123)가 3×6배열로 구비되므로, 6개의 제2밴드 스트립(121)이 제2지로(103)에서 대칭적으로 분기될 수 있다. 제2밴드 스트립(121)의 분기형태는 제2방사패치(123)의 배열에 따라 다양한 형태가 가능하다.
제2밴드 급전라인(122)은 제2밴드 스트립(121)에 대략 수직으로 연결될 수 있다. 예를 들면, 도 3에 도시된 바와 같이, 하나의 제2밴드 스트립(121)에는 3개의 제2밴드 급전라인(122)이 구비될 수 있다.
그리고 제2밴드 급전라인(122)은 제2방사패치(123)의 일측에 연결되어 복수 개의 제2방사패치(123)가 서로 병렬로 연결되도록 할 수 있다.
제2방사패치(123)와 제2밴드 급전라인(122)이 연결되는 부분에는 제2방사패치(123)의 내측으로 함몰 형성되는 인셋(124)이 구비된다. 인셋(124)은 제2밴드 급전라인(122)의 양측으로 한 쌍이 구비될 수 있다. 제2방사패치(123)의 임피던스 역시 방사패치의 너비와 인셋(124)의 길이에 따라 조절될 수 있다.
제2방사패치(123)는 모두 동일한 임피던스를 갖도록 동일한 형상과 재질로 형성될 수 있으며, 제2방사패치(123)간의 위상차를 0으로 하기 위해, 동일한 제2밴드 스트립(121)에 연결되는 제2밴드 급전라인(122)은 서로의 간격이 제2밴드 중심주파수의 관내파장(λg2)의 양의 정수배가 되도록 위치될 수 있다. 본 실시예에서는 제2밴드 급전라인(122)의 간격이 관내파장(λg2)과 대략 동일하게 설계하였다.
제2지로(103)에서 각각의 제2밴드 스트립(121)을 바라본 입력 임피던스(Z21)들은 서로 대략 동일하게 형성되는 것이 바람직하다. 본 실시예의 경우 설계의 편의성을 위해 제2지로(103)에서 각 제2밴드 스트립(121)을 바라본 입력 임피던스(Z21)가 300Ω이 되도록 하였다.
그리고 제2밴드 스트립(121)이 분기되기 이전의 제2지로(103)에서 바라본 제2밴드 패치 안테나(120)의 입력 임피던스(Z22)는 100Ω이 되도록 하였다.
제2밴드 패치 안테나(120)가 동작하는 제2밴드는 K 밴드(18GHz~27GHz) 대역일 수 있다. 도 3에 도시된 제2밴드 패치 안테나(120)의 형태는 하나의 실시예에 불과하며 다른 주파수 대역, 예를 들면 Ku 밴드(10.95GHz~14.5GHz), K 밴드(18GHz~27GHz), Ka 밴드(26.5GHz~40GHz) 중 어느 하나에서 동작하는 패치 안테나로 설계될 수 있으며, 배열 형태 역시 3×6배열이외의 다른 배열로 설계될 수 있다. 다만, 제2밴드 패치 안테나(120)가 동작하는 제2밴드는 제1밴드 패치 안테나(110)가 동작하는 제1밴드와 다른 주파수 영역이 선택될 수 있다.
한편 제2밴드 패치 안테나(120)와 급전부(101) 사이의 제2지로(103) 상에는 제1밴드 스터브(130)가 구비될 수 있다.
제1밴드 스터브(130)는 급전부(101)로부터 제1밴드 패치 안테나(110)가 동작하는 제1밴드 중심주파수의 관내파장(λg1)의 1/4 길이만큼 이격된 위치에 형성될 수 있다.
또한 제1밴드 스터브(130)는 제1지로(102)에 대해 대략 수직으로 제1밴드 중심주파수의 관내파장(λg1)의 1/4 길이만큼 돌출되어 형성될 수 있다.
예를 들어, 제1밴드가 X 밴드(8GHz~12GHz)인 경우, 제1밴드 스터브(130)는 급전부(101)로부터 약 4.7mm 이격된 위치에 약 4.7mm 돌출되어 형성될 수 있다.
한편 제2밴드 패치 안테나(120)가 동작하는 제2밴드 대역의 주파수에서, 제1밴드 스터브(130)를 포함한 제2밴드 패치 안테나(120)의 입력 임피던스(Z23)는 제1밴드 스터브(130)에 의해 절반이 되어 50Ω이 된다.
도 4는 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나의 제1밴드 스터브에 의한 제1밴드 대역 신호와 제2밴드 대역 신호의 진행을 도식화한 도면이다.
급전부(101)로 제2밴드 대역의 신호(S2)가 인가되면, 제1밴드 스터브(130)의 단부에서 회로가 오픈되고, 제1밴드 스터브(130)의 단부에서 제1밴드 중심주파수의 관내파장(λg1)의 1/4 길이만큼 떨어진 지점, 즉 제1밴드 스터브(130)가 제2지로(103)와 연결되는 부분에서 회로가 쇼트된 것과 같은 효과로 제2밴드 대역의 신호(S2)를 제2밴드 패치 안테나(120) 측으로 흘려보낸다.
그러나 급전부(101)로 제1밴드 대역의 신호(S1)가 인가되면, 제1밴드 스터브(130)의 단부에서 회로가 오픈되고, 제1밴드 스터브(130)의 단부에서 제1밴드 중심주파수의 관내파장(λg1)의 1/2 길이만큼 떨어진 지점, 즉 급전부(101)로부터 제2지로(103)가 분기되는 지점에서 회로가 오픈된 것과 유사한 효과가 나타나 제1밴드 대역의 신호(S1)가 제2밴드 패치 안테나(120) 측으로 진행하지 못하도록 한다.
도 5는 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나의 제2밴드 스터브에 의한 제1밴드 신호와 제2밴드 신호의 진행을 도식화한 도면이다.
급전부(101)로 제1밴드 대역의 신호(S1)가 인가되면, 제2밴드 스터브(140)의 단부에서 회로가 오픈되고, 제2밴드 스터브(140)의 단부에서 제2밴드 중심주파수의 관내파장(λg2)의 1/4 길이만큼 떨어진 지점, 즉 제2밴드 스터브(140)가 제1지로(102)와 연결되는 부분에서 회로가 쇼트된 것과 같은 효과로 제1밴드 대역의 신호(S1)를 제1밴드 패치 안테나(110) 측으로 흘려보낸다.
그러나 급전부(101)로 제2밴드 대역의 신호(S2)가 인가되면, 제2밴드 스터브(140)의 단부에서 회로가 오픈되고, 제2밴드 스터브(140)는 단부에서 제2밴드 중심주파수의 관내파장(λg2)의 1/2 길이만큼 떨어진 지점, 즉 급전부(101)로부터 제1지로(102)가 분기되는 지점에서 회로가 오픈된 것과 유사한 효과가 나타나 제2밴드 대역의 신호(S2)가 제1밴드 패치 안테나(110) 측으로 진행하지 못하도록 한다.
도 6a 내지 6d는 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나에 제1밴드 대역 신호가 인가된 경우의 시뮬레이션 결과를 도시한 도면으로, 도 6a는 필드분포를 도시한 도면이고, 도 6b는 반사손실을 도시한 그래프이고, 도 6c는 E-Plane 방사패턴을 나타낸 그래프이며, 도 6d는 H-Plane 방사패턴을 나타낸 그래프이다.
도 6a 내지 6d에 도시된 시뮬레이션 결과는 제1밴드 패치 안테나(110)는 X 밴드 대역 패치 안테나로 설계되고, 제2밴드 패치 안테나(120)는 K 밴드 대역 패치 안테나로 설계된 조건에서, X 밴드 대역인 10.525GHz의 신호를 급전부(101)에 인가한 결과이다.
도 6a에 도시된 바와 같이, 급전부(101)로 인가된 제1밴드 대역 신호(10.525GHz)는 제2밴드 스터브(140)에 의해 제1밴드 패치 안테나(110) 측으로 진행하나, 제1밴드 스터브(130)에 의해 제2밴드 패치 안테나(120) 측으로 진행하는 것이 차단된다.
측정결과 10.525GHz 신호에 대해 제1밴드 스터브(130)의 임피던스는 약 6000Ω으로 측정되었으며, 이에 의해 급전부(101)로 인가된 신호가 제2밴드 패치 안테나(120) 측으로 진행하는 것을 차단한다.
도 6b 내지 6d에 도시된 바와 같이, 본 실시예에 따른 레이더 디텍터용 안테나(100)는 서로 다른 두 대역의 패치 안테나(110, 120)를 구비하고 있음에도, 인가되는 X 밴드 대역의 신호(10.525GHz)가 제2밴드 패치 안테나(120)로 인가되는 것을 차단하여, X 밴드 대역 패치 안테나(110)만이 존재하는 것과 극히 유사한 반사손실과 방사패턴이 나타나게 된다.
도 7a 내지 7d는 본 발명의 제1실시예에 따른 레이더 디텍터용 안테나에 제2밴드 신호가 인가된 경우의 시뮬레이션 결과를 도시한 도면으로, 도 7a는 필드분포를 도시한 도면이고, 도 7b는 반사손실을 도시한 그래프이고, 도 7c는 E-Plane 방사패턴을 나타낸 그래프이며, 도 7d는 H-Plane 방사패턴을 나타낸 그래프이다.
도 7a 내지 7d에 도시된 시뮬레이션 결과는 제1밴드 패치 안테나(110)는 X 밴드 대역 패치 안테나로 설계되고, 제2밴드 패치 안테나(120)는 K 밴드 대역 패치 안테나로 설계된 조건에서, K 밴드 대역인 24.15GHz의 신호를 급전부(101)에 인가한 결과이다.
도 7a에 도시된 바와 같이, 급전부(101)로 인가된 제2밴드 대역 신호(24.15GHz)는 제1밴드 스터브(130)에 의해 제2밴드 패치 안테나(120) 측으로 진행하나, 제2밴드 스터브(140)에 의해 제1밴드 패치 안테나(110) 측으로 진행하는 것이 차단된다.
측정결과 24.15GHz 신호에 대해 제2밴드 스터브(140)의 임피던스는 약 3000Ω으로 측정되었으며, 이에 의해 급전부(101)로 인가된 신호가 제1밴드 패치 안테나(110) 측으로 진행하는 것을 차단한다.
도 7b 내지 7d에 도시된 바와 같이, 본 실시예에 따른 레이더 디텍터용 안테나(100)는 서로 다른 두 대역의 패치 안테나(110,120)를 구비하고 있음에도, 인가되는 K 밴드 대역의 신호(24.15GHz)가 제1밴드 패치 안테나(110)로 인가되는 것을 차단하여, K 밴드 대역 패치 안테나(120)만이 존재하는 것과 극히 유사한 반사손실과 방사패턴이 나타나게 된다.
상기와 같은 구성에 의해, 인가되는 신호의 주파수 대역에 따라 각 패치 안테나(110,120)가 선택적으로 동작할 수 있으므로, 서로 다른 주파수 특성을 갖는 복수 개의 안테나의 특성을 손상하지 않으면서 하나의 급전부로 매칭할 수 있어서, 하나의 레이더 디텍터로 다른 종류의 주파수 밴드를 이용하는 다양한 종류의 스피드건에 대응할 수 있고, 회로구성을 간단히 할 수 있다.
이하에서는 본 발명의 제2실시예에 따른 레이더 디텍터용 안테나에 대해 설명한다. 설명의 편의를 위하여 제1실시예와 유사한 부분은 동일한 도면번호를 사용하고, 제1실시예와 공통되는 부분은 설명을 생략한다.
도 8은 본 발명의 제2실시예에 따른 레이더 디텍터용 안테나를 도시한 평면도이다.
도 8에 도시된 바와 같이, 본 발명의 제2실시예에 따른 레이더 디텍터용 안테나(200)는 세가지 밴드 영역에 대해 선택적으로 작동할 수 있도록 제3밴드 패치 안테나(130)를 더 구비할 수 있다.
본 발명의 제2실시예에 따른 레이더 디텍터용 안테나(200)는 급전부(101), 급전부(101)에서 분기되는 제1지로(102)와 제2지로(103)와 제3지로(104), 제1지로(102) 측에 연결되는 제1밴드 패치 안테나(110)와 제2지로(103) 측에 연결되는 제2밴드 패치 안테나(120)와 제3지로(104) 측에 연결되는 제3밴드 패치 안테나(130), 제1지로 상에 구비되는 제2밴드 제1스터브(141)와 제3밴드 제1스터브(151), 제2지로 상에 구비되는 제1밴드 제1스터브(131)와 제3밴드 제2스터브(152), 제3지로 상에 구비되는 제1밴드 제2스터브(132)와 제2밴드 제2스터브(142)를 포함한다.
제1지로(102)의 단부에는 제1밴드 패치 안테나(110)가 연결된다.
또한 제1지로(102) 상에는 급전부(101)로부터 제2밴드 패치 안테나(120)가 동작하는 제2밴드 중심주파수의 관내파장(λg2)의 1/4 길이만큼 이격된 위치에는 제2밴드 제1스터브(141)가 구비되고, 급전부(101)로부터 제3밴드 패치 안테나(130)가 동작하는 제3밴드 중심주파수의 관내파장(λg3)의 1/4 길이만큼 이격된 위치에는 제3밴드 제1스터브(151)가 구비될 수 있다.
제2밴드 제1스터브(141)는 제1지로(102)에 대해 대략 수직으로 제2밴드 중심주파수의 관내파장(λg2)의 1/4 길이만큼 돌출되어 형성될 수 있고, 제3밴드 제1스터브(151)는 제1지로(102)에 대해 대략 수직으로 제3밴드 중심주파수의 관내파장(λg3)의 1/4 길이만큼 돌출되어 형성될 수 있다.
제2밴드 제1스터브(141)와 제3밴드 제1스터브(151)는 상호 영향을 최소화하기 위하여, 제1지로(102)에 대해 서로 반대방향으로 돌출 형성될 수 있다.
한편, 제2지로(103)의 단부에는 제2밴드 패치 안테나(120)가 연결된다.
또한 제2지로(103) 상에는 급전부(101)로부터 제1밴드 패치 안테나(110)가 동작하는 제1밴드 중심주파수의 관내파장(λg1)의 1/4 길이만큼 이격된 위치에는 제1밴드 제1스터브(131)가 구비되고, 급전부(101)로부터 제3밴드 중심주파수의 관내파장(λg3)의 1/4 길이만큼 이격된 위치에는 제3밴드 제2스터브(152)가 구비될 수 있다.
제1밴드 제1스터브(131)는 제2지로(103)에 대해 대략 수직으로 제1밴드 중심주파수의 관내파장(λg1)의 1/4 길이만큼 돌출되어 형성될 수 있고, 제3밴드 제2스터브(152)는 제2지로(103)에 대해 대략 수직으로 제3밴드 중심주파수의 관내파장(λg3)의 1/4 길이만큼 돌출되어 형성될 수 있다.
제1밴드 제1스터브(131)와 제3밴드 제2스터브(152)는 상호 영향을 최소화하기 위하여, 제2지로(103)에 대해 서로 반대방향으로 돌출 형성될 수 있다.
한편, 제3지로(104)의 단부에는 제3밴드 패치 안테나(130)가 연결된다.
또한 제3지로(104) 상에는 급전부(101)로부터 제1밴드 중심주파수의 관내파장(λg1)의 1/4 길이만큼 이격된 위치에는 제1밴드 제2스터브(132)가 구비되고, 급전부(101)로부터 제2밴드 중심주파수의 관내파장(λg2)의 1/4 길이만큼 이격된 위치에는 제2밴드 제2스터브(142)가 구비될 수 있다.
제1밴드 제2스터브(132)는 제3지로(104)에 대해 대략 수직으로 제1밴드 중심주파수의 관내파장(λg1)의 1/4 길이만큼 돌출되어 형성될 수 있고, 제2밴드 제2스터브(142)는 제2지로(103)에 대해 대략 수직으로 제3밴드 중심주파수의 관내파장(λg2)의 1/4 길이만큼 돌출되어 형성될 수 있다.
제1밴드 제2스터브(132)와 제2밴드 제2스터브(142)는 상호 영향을 최소화하기 위하여, 제3지로(104)에 대해 서로 반대방향으로 돌출 형성될 수 있다.
그리고 급전부에서 각 패치 안테나(110,120,130)를 바라본 입력 임피던스가 모두 동일하도록 설계되는 것이 바람직하며, 상기 입력 임피던스는 50Ω이 되도록 설계될 수 있다.
제1밴드 패치 안테나(110)와 제2밴드 패치 안테나(120)와 제3밴드 패치 안테나(130)는 X 밴드(8GHz~12GHz)와 Ku 밴드(10.95GHz~14.5GHz)와 K 밴드(18GHz~27GHz)와 Ka 밴드(26.5GHz~40GHz) 중 어느 하나에서 동작하는 패치 안테나로 설계될 수 있다. 그러나 제1밴드 패치 안테나(110)와 제2밴드 패치 안테나(120)와 제3밴드 패치 안테나(130)는 서로 각각 다른 주파수 밴드를 선택함이 바람직하다.
상기와 같은 구성에 의해, 급전부(101)로 제1밴드 패치 안테나(110)가 동작하는 제1밴드 대역 신호가 인가되면, 제2지로(103)에 구비된 제1밴드 제1스터브(131)는 해당 신호가 제2밴드 패치 안테나(120) 측으로 인가되는 것을 차단하고, 제3지로에 구비된 제1밴드 제2스터브(132)는 해당 신호가 제3밴드 패치 안테나(130) 측으로 인가되는 것을 차단할 수 있다.
그리고 제1지로(102)에 구비된 제2밴드 제1스터브(141)와 제3밴드 제1스터브(151)는 해당 신호를 제1밴드 패치 안테나(110)측으로 인가하여 제1밴드 대역 신호에 대해 제1밴드 패치 안테나(110)만이 동작하도록 할 수 있다.
한편, 제2밴드 패치 안테나(120)가 동작하는 제2밴드 대역 신호가 인가되면, 제1지로(102)에 구비된 제2밴드 제1스터브(141)는 해당 신호가 제1밴드 패치 안테나(110) 측으로 인가되는 것을 차단하고, 제3지로에 구비된 제2밴드 제2스터브(142)는 해당 신호가 제3밴드 패치 안테나(130) 측으로 인가되는 것을 차단할 수 있다.
그리고 제2지로(103)에 구비된 제1밴드 제1스터브(131)와 제3밴드 제2스터브(152)는 해당 신호를 제2밴드 패치 안테나(120)측으로 인가하여 제2밴드 대역 신호에 대해 제2밴드 패치 안테나(120)만이 동작하도록 할 수 있다.
한편, 제3밴드 패치 안테나(130)가 동작하는 제3밴드 대역 신호가 인가되면, 제1지로(102)에 구비된 제3밴드 제1스터브(151)는 해당 신호가 제1밴드 패치 안테나(110) 측으로 인가되는 것을 차단하고, 제2지로에 구비된 제3밴드 제2스터브(152)는 해당 신호가 제2밴드 패치 안테나(120) 측으로 인가되는 것을 차단할 수 있다.
그리고 제3지로(104)에 구비된 제1밴드 제2스터브(132)와 제2밴드 제2스터브(142)는 해당 신호를 제3밴드 패치 안테나(130)측으로 인가하여 제3밴드 대역 신호에 대해 제3밴드 패치 안테나(130)만이 동작하도록 할 수 있다.
상기와 같은 구성의 확장으로 3가지 이상의 패치 안테나를 구비하여, 3가지 이상의 주파수 대역에 대해 선택적으로 동작하는 레이더 디텍터용 안테나를 구성하는 것이 가능하며, 이 역시 본 발명의 보호범위에 속한다고 할 것이다.
이하에서는 본 발명의 제3실시예에 따른 레이더 디텍터용 안테나에 대해 설명한다. 설명의 편의를 위하여 제1실시예와 유사한 부분은 동일한 도면번호를 사용하고, 제1실시예와 공통되는 부분은 설명을 생략한다.
도 9는 본 발명의 제3실시예에 따른 레이더 디텍터용 안테나를 도시한 평면도이다.
본 발명의 제3실시예에 따른 레이더 디텍터용 안테나(300)를 제1실시예에 따른 레이더 디텍터용 안테나(100)와 비교할 때, 제1밴드 패치 안테나(310)와 제2밴드 패치 안테나(320)는 서로 다른 길이의 인셋(314a, 314b, 324a, 324b, 324c)이 형성된 복수 개의 방사 패치(313a, 313b, 323a, 323b, 323c)를 구비한다.
도 9에 도시된 바와 같이, 본 발명의 제3실시예에 따른 레이더 디텍터용 안테나(300)의 제1밴드 패치 안테나(310)는 인셋(314a, 314b)의 길이가 서로 다른 제1밴드 제1방사패치(313a)와 제1밴드 제2방사패치(313b)를 구비할 수 있다.
또한 제2밴드 패치 안테나(320)는 인셋(324a, 324b, 324c)의 길이가 서로 다른 제2밴드 제1방사패치(323a)와 제2밴드 제2방사패치(323b)와 제2밴드 제3방사패치(323c)를 구비한 방사모듈(320a)을 하나 이상 구비할 수 있다.
도 10은 본 발명의 제3실시예에 따른 레이더 디텍터용 안테나의 제2밴드 패치 안테나 중 하나의 방사모듈을 도시한 도면이다.
도 10에 도시된 바와 같이, 본 실시예에 따른 방사모듈(320a)은 1×3 배열을 갖는 방사 패치가 배열된 비균일 임피던스 방사모듈일 수 있다. 또는 필요에 따라 다른 배열 형태를 가질 수 있다.
본 실시예는 K밴드 안테나로서, 3개의 방사 패치(323a, 323b, 323c)는 너비가 4.4mm, 길이가 3.6mm이고, 인셋(324a, 324b, 324c)의 길이(y1, y2, y3)는 각각 1.4mm, 1.1mm, 0.6mm로 설계하였다. 그리고 인셋(324a, 324b, 324c)의 폭은 0.1mm로 설계하였다.
이하에서는 인셋(324a)의 길이(y1)가 1.4mm인 방사 패치를 제2밴드 제1 방사패치(323a)라 하고, 인셋(324b)의 길이(y2)가 1.1mm인 방사 패치를 제2밴드 제2 방사패치(323b), 인셋(324c)의 길이(y3)가 0.6mm인 방사 패치를 제2밴드 제3 방사패치(323c)라 한다.
상기 설계에 의해, 제2밴드 제1 방사패치(323a)의 임피던스는 100Ω, 제2밴드 제2 방사패치(323b)의 임피던스는 150Ω, 제2밴드 제3 방사패치(323c)의 임피던스는 200Ω으로 설계될 수 있다.
상기 3개의 방사패치(323a, 323b, 323c)는 각각 제2밴드 급전라인(322a, 322b, 322c)을 통해 제2밴드 스트립(321)에 병렬로 연결될 수 있다.
본 발명의 제1실시예와 유사하게, 방사패치(323a, 323b, 323c)간의 위상차를 0으로 하기 위해, 이웃하는 제2밴드 급전라인(322a, 322b, 322c)은 서로의 간격이 제2밴드 중심주파수의 관내파장(λg2)의 양의 정수배가 되도록 위치될 수 있다.
한편 제2밴드 스트립(321)은 각 방사패치(323a, 323b, 323c)에 대응하는 복수 개의 정합단(321a, 321b, 321c)과 정합단(321a, 321b, 321c)을 전기적으로 연결하는 연결 스트립(321d, 321e, 321f)을 구비할 수 있다.
정합단(321a, 321b, 321c)은 제2밴드 급전라인(322a, 322b, 322c)과 제2밴드 스트립(321)이 연결되는 부분에 구비되어, 서로 다른 임피던스를 갖는 각 방사패치(323a, 323b, 323c)에 동일한 전류가 인가되도록 한다.
도 10에 도시된 바와 같이, 제2밴드 급전라인(322a, 322b, 322c) 사이의 간격이 관내파장(λg2)과 동일하게 설계된 경우, 이웃하는 정합단(321a, 321b, 321c)을 연결하는 제1연결 스트립(321d)과 제2연결 스트립(321e)의 길이는 각각 관내파장(λg2)의 3/4이 되도록 구비되고, 정합단(321a, 321b, 321c)의 길이는 각각 관내파장(λg2)의 1/4이 되도록 형성될 수 있다.
제2밴드 스트립(321)에서의 입력 임피던스(Zin)는 다음 [수학식 5]에 의해 계산될 수 있다.
[수학식 5]
Figure PCTKR2011009088-appb-I000005
β는 전파정수로서
Figure PCTKR2011009088-appb-I000006
이고,
Figure PCTKR2011009088-appb-I000007
는 제2밴드 스트립(321)의 길이이며, Z0는 제2밴드 스트립(321)의 특성 임피던스이고, ZL은 급전 소자의 임피던스이다.
Zin1의 경우, 제2밴드 스트립(321)의 길이(
Figure PCTKR2011009088-appb-I000008
)는 정합단(321a)의 길이로서
Figure PCTKR2011009088-appb-I000009
이므로, 이를 [수학식 5]에 대입하면 다음과 같다.
Figure PCTKR2011009088-appb-I000010
Zin2의 경우, 제2밴드 스트립(321)의 길이(
Figure PCTKR2011009088-appb-I000011
)는 제1연결 스트립(321d)의 길이로서
Figure PCTKR2011009088-appb-I000012
이므로, 이를 [수학식 5]에 대입하면, 다음과 같다.
Figure PCTKR2011009088-appb-I000013
상기 계산된 입력 임피던스(Zin2)와 제2밴드 제2 방사패치(323b)의 임피던스가 150Ω으로 동일하므로, 결국 제2밴드 제1 방사패치(323a)와 제2밴드 제2 방사패치(323b)에는 동일한 전류가 인가될 수 있다.
상술한 바와 같은 방식으로,
Figure PCTKR2011009088-appb-I000014
,
Figure PCTKR2011009088-appb-I000015
이 된다.
상기 계산된 입력 임피던스(Zin4)와 제2밴드 제3 방사패치(323c)의 임피던스의 비가 1:2가 되므로, 제2연결 스트립(321e)에 흐르는 전류와 제2밴드 제3 방사패치(323c)에 흐르는 전류의 비는 2:1이 된다.
그리고 제2밴드 제1 방사패치(323a)와 제2밴드 제2 방사패치(323b)에 흐르는 전류가 동일하므로, 결국 제2밴드 제1 방사패치(323a), 제2밴드 제2 방사패치(323b) 및 제2밴드 제3 방사패치(323c)에 동일한 전류가 인가된다.
또한,
Figure PCTKR2011009088-appb-I000016
이 된다.
상기와 같은 설계를 통해 임피던스가 각기 다른 방사패치를 사용하더라도, 전류를 동일하게 제공할 수 있다. 이는 패치 안테나의 설계를 함에 있어 예상치 못한 결과를 방지할 수 있어, 안테나의 설계의 용이성을 향상시킬 수 있다.
본 실시예와 달리. 이웃하는 제2밴드 급전라인(322a, 322b, 322c) 사이의 간격이 관내파장(λg)의 정수배인 경우에도, 제1연결 스트립(321d)과 제2연결 스트립(321e)의 길이 및 정합단(321a, 321b, 321c)의 길이를, [수학식 5]에서
Figure PCTKR2011009088-appb-I000017
의 값이
Figure PCTKR2011009088-appb-I000018
이 되도록
Figure PCTKR2011009088-appb-I000019
;(n은 홀수)가 되는 길이(
Figure PCTKR2011009088-appb-I000020
)로 설계하여 동일한 효과를 얻을 수 있다.
본 실시예에 따른 방사모듈(320a)의 제2밴드 제1 방사패치(323a), 제2밴드 제2 방사패치(323b) 및 제2밴드 제3 방사패치(323c)의 전체적인 크기는 동일하지만, 각 방사패치(323a, 323b, 323c)에 형성된 인셋(324a, 324b, 324c)의 길이(y1, y2, y3)가 서로 달라 각 방사패치(323a, 323b, 323c)의 공진 주파수는 서로 다르게 된다. 그 결과 본 실시예에 따른 방사모듈(320a)은 삼중 공진의 효과로 인해 대역폭이 보다 넓어지게 된다.
그리고 도 9에 도시된 바와 같이, 본 실시예에 따른 방사모듈(320a)을 복수 개 구비하여 안테나의 이득(gain)을 향상시킬 수 있다.
도 11은 본 발명의 제3실시예에 따른 제2밴드 패치 안테나와 균일 임피던스 패치 안테나의 대역폭을 비교한 그래프이다.
본 발명의 제3실시예에 따른 제2밴드 패치 안테나(320)는 6개의 방사모듈(320a)을 대칭형으로 구비하여 3×6 비균일 어레이 안테나로 구성하고, 유전율(
Figure PCTKR2011009088-appb-I000021
)이 2.2인 TLY-5 기판을 사용하였다.
비교 대상인 3×6 균일 임피던스 어레이 안테나 역시 동일한 배열 형태와 동일한 TLY-5 기판을 사용하였다.
다만, 3×6 균일 임피던스 어레이 안테나는 방사 패치로서 본 실시예에 따른 방사모듈(320a)의 제2밴드 제3방사패치(323c)와 동일한 200Ω의 임피던스를 갖는 방사 패치를 사용하였다.
실험 결과, 도 6에 도시된 바와 같이, 본 발명의 제3실시예에 따른 제2밴드 패치 안테나(320)와 3×6 균일 임피던스 어레이 안테나의 10dB 대역폭은 각각 1.2GHz(24.03GHz~25.03GHz, 4.93%)와 830MHz(23.84GH~24.67GHz, 3.43%)로 측정되었다.
위 실험 결과를 통해 본 발명의 제3실시예에 따른 제2밴드 패치 안테나(320)의 10dB 대역폭이 3×6 균일 임피던스 어레이 안테나에 비해 약 1.5배 넓음을 확인할 수 있다.
본 실시예는 제2밴드 패치 안테나(320)를 K 밴드 안테나로 설계하기 위한 한 예에 해당되며, 본 발명이 이에 한정되지 않고, 설계자가 의도하는 다른 주파수 영역에 대한 안테나로 설계하기 위해, 크기 및 형상을 달리 할 수 있다. 특히 너비(W)와 인셋 길이(y0)는 임피던스를 결정하고, 길이(L)는 안테나의 공진 주파수를 결정하는 인자로 알려져 있으므로, 상기 인자들을 조정하여 K 밴드 이외에도, X 밴드, Ku밴드, Ka 밴드 등에 대한 안테나를 제작할 수 있으며, 상기 구성에 의한 패치 어레이 안테나는 레이더 디텍터(Radar Detector)에 사용될 수 있고, 패치 안테나가 사용되는 다른 응용 예에도 적용될 수 있다. 또한 방사 패치의 개수와 배열 구조는 다양하게 변경 가능하다.
제1밴드 패치 안테나(310) 역시 상술한 제2밴드 패치 안테나(320)와 유사하게 서로 다른 길이의 인셋(314a, 314b)이 형성된 복수 개의 방사패치(313a,313b)를 구비할 수 있고, 각 방사패치(313a,313b)로 동일한 전류가 인가되도록 제1밴드 스트립(311)에는 정합단(311a,311b)이 구비될 수 있다.
정합단(311a,311b) 및 연결 스트립(311c,311d)을 포함한 제1밴드 스트립(311)은 상술한 [수학식 5]를 이용해 설계될 수 있다. 이에 대한 자세한 내용은 제2밴드 패치 안테나(320)에서 설명하였으므로 생략한다.
한편 상술한 실시예에서는 서로 다른 길이의 인셋이 형성된 복수 개의 방사 패치(313a,313b,323a,323b,323c)를 통해 비균일 패치 안테나를 구현하였으나, 방사 패치(313a,313b,323a,323b,323c)의 형상을 달리하거나, 제1밴드 급전라인(312a, 312b)의 폭을 달리하고, 제2밴드 급전라인(322a, 322b, 322c)의 폭을 달리하여 비균일 패치 안테나를 구현할 수도 있다.
이하에서는 본 발명의 제4실시예에 따른 레이더 디텍터용 안테나에 대해 설명한다. 설명의 편의를 위하여 제1실시예와 유사한 부분은 동일한 도면번호를 사용하고, 제1실시예와 공통되는 부분은 설명을 생략한다.
도 12a 내지 12c는 본 발명의 제4실시예에 따른 레이더 디텍터용 안테나의 방사 패치를 도시한 평면도이다.
도 12a 내지 12c에 도시된 바와 같이, 본 발명의 제4실시예에 따른 레이더 디텍터용 안테나의 제1방사패치(113) 및/또는 제2방사패치(123)는 원형 편파 패치로 구성될 수 있다.
원형 편파 패치는 전계가 진동 평면 상에서 회전하면서 나선형 궤적으로 진행하는 원형 편파(circularly polarized wave;CP)를 수신하는 패치이다.
본 발명의 제4실시예에 따른 레이더 디텍터용 안테나는 제1방사패치(113) 및/또는 제2방사패치(123)로 원형 편파 패치를 이용하여, 스피드 건 등에서 송출되는 신호인 송신 신호의 편파 방향에 상관없이 송신 신호를 감지할 수 있고, 송신 신호가 도로나 건물 등에 의해 반사되어 편파의 방향이 틀어진 경우에도 송신 신호를 감지할 수 있다.
이하에서는 원형 편파 패치의 몇가지 예에 대해 설명한다. 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 본 발명의 권리범위가 이에 한정되는 것은 아니다.
도 12a는 본 발명의 제4실시예에 따른 원형 편파 패치의 한 예를 도시한 것으로서, 사각형의 패치에서 대각 방향의 꼭지점이 평행하게 절단된 육각형으로 형성된 원형 편파 패치(113,123)가 사용될 수 있다. 본 발명의 제1실시예와 유사하게 원형 편파 패치(113,123)는 급전라인(112,122)과 연결될 수 있다.
도 12b는 본 발명의 제4실시예에 따른 원형 편파 패치의 다른 예를 도시한 것으로서, 도 12a에 도시된 육각형의 패치의 일측에 패치의 입력 저항을 조절할 수 있는 인셋컷(415)이 추가로 형성된 형태이다. 인셋컷(415)은 복수 개가 형성될 수 있다.
또한 급전라인(112,122)의 양측으로 원형 편파 패치(113,123)의 내측으로 함몰 형성되는 인셋(114,124)이 구비될 수 있다.
도 12c는 본 발명의 제4실시예에 따른 원형 편파 패치의 또 다른 예를 도시한 것으로서, 도 12a에 도시된 육각형의 패치의 중앙부에 사각홀(416)을 형성하여, 사각링과 유사한 형상의 원형 편파 패치(113,123)이다
도 12c에 도시된 원형 편파 패치의 경우 패치의 크기를 소형화할 수 있어, 레이더 디텍터의 소형화가 가능하다.
앞에서 설명되고, 도면에 도시된 본 발명의 일 실시예는, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.
<부호의 설명>
100,200,300 : 레이더 디텍터용 안테나
101: 급전부 102: 제1지로
103: 제2지로 104: 제3지로
110,310: 제1밴드 패치 안테나 111,311: 제1밴드 스트립
112,312a.312b: 제1밴드 급전라인 113,313a,313b: 제1방사패치
114, 124, 314a, 314b, 324a, 324b, 324c: 인셋
120,320: 제2밴드 패치 안테나 121,321: 제2밴드 스트립
122,322a,322b,322c: 제2밴드 급전라인
123,323a,323b,323c: 제2방사패치 130: 제1밴드 스터브
131: 제1밴드 제1스터브 132: 제1밴드 제2스터브
140: 제2밴드 스터브 141: 제2밴드 제1스터브
142: 제2밴드 제2스터브 151: 제3밴드 제1스터브
152: 제3밴드 제2스터브
311a,311b,321a,321b,321c : 정합단
311c,311d,321d,321e,321f: 연결 스트립
415: 인셋컷 416: 사각홀

Claims (20)

  1. 급전부;
    상기 급전부에서 분기되는 제1지로와 제2지로;
    상기 제1지로와 연결되는 제1밴드 대역 특성의 제1밴드 패치 안테나;
    상기 제2지로와 연결되는 제2밴드 대역 특성의 제2밴드 패치 안테나;
    상기 제1지로 상에서 상기 급전부와 상기 제1밴드 패치 안테나 사이에 구비되어 상기 제2밴드 대역의 신호가 상기 제1밴드 패치 안테나로 진행하는 것을 차단하는 제2밴드 스터브(stub); 및
    상기 제2지로 상에서 상기 급전부와 상기 제2밴드 패치 안테나 사이에 구비되어 상기 제1밴드 대역의 신호가 상기 제2밴드 패치 안테나로 진행하는 것을 차단하는 제1밴드 스터브를 포함하는 레이더 디텍터용 안테나.
  2. 제1항에 있어서,
    상기 제1밴드 스터브는 상기 급전부로부터 상기 제1밴드 대역의 관내파장의 1/4의 길이만큼 이격되어 위치하고, 상기 제2밴드 스터브는 상기 급전부로부터 상기 제2밴드 대역의 관내파장의 1/4의 길이만큼 이격되어 위치하는 것을 특징으로 하는 레이더 디텍터용 안테나.
  3. 제2항에 있어서,
    상기 제1밴드 스터브의 길이는 상기 제1밴드 대역의 관내파장의 1/4의 길이에 대응하고, 상기 제2밴드 스터브의 길이는 상기 제2밴드 대역의 관내파장의 1/4의 길이에 대응하는 것을 특징으로 하는 레이더 디텍터용 안테나.
  4. 제1항에 있어서,
    상기 급전부와 상기 제1지로 및 상기 제2지로는 T형 접합을 이루는 것을 특징으로 하는 레이더 디텍터용 안테나.
  5. 제1항에 있어서,
    상기 제1밴드 대역은 X 밴드(8GHz~12GHz), Ku 밴드(10.95GHz~14.5GHz), K 밴드(18GHz~27GHz), Ka 밴드(26.5GHz~40GHz) 중 어느 하나의 밴드에 포함되는 것을 특징으로 하는 레이더 디텍터용 안테나.
  6. 제5항에 있어서,
    상기 제2밴드 대역은 X 밴드(8GHz~12GHz), Ku 밴드(10.95GHz~14.5GHz), K 밴드(18GHz~27GHz), Ka 밴드(26.5GHz~40GHz) 중 상기 제1밴드 대역이 포함되는 밴드 이외의 어느 하나의 밴드에 포함되는 것을 특징으로 하는 레이더 디텍터용 안테나.
  7. 제1항에 있어서,
    상기 제2밴드 스터브를 포함하는 상기 제1밴드 패치 안테나 측에 대한 상기 급전부에서의 제1입력 임피던스는 상기 제1밴드 스터브를 포함하는 상기 제2밴드 패치 안테나 측에 대한 상기 급전부에서의 제2입력 임피던스와 동일한 것을 특징으로 하는 레이더 디텍터용 안테나.
  8. 제7항에 있어서,
    상기 제1입력 임피던스와 상기 제2입력 임피던스는 50Ω인 것을 특징으로 하는 레이더 디텍터용 안테나.
  9. 제1항에 있어서,
    상기 제1밴드 패치 안테나 및 상기 제2밴드 패치 안테나 중 적어도 하나는,
    복수 개의 방사 패치;
    상기 복수 개의 방사 패치를 전기적으로 병렬 연결하는 스트립; 및
    상기 방사 패치와 상기 스트립 사이를 전기적으로 연결하는 급전라인을 구비하는 방사 모듈을 적어도 하나 구비하는 것을 특징으로 하는 레이더 디텍터용 안테나.
  10. 제9항에 있어서,
    상기 급전라인을 포함한 상기 복수 개의 방사 패치의 임피던스(impedance)는 서로 다른 것을 특징으로 하는 레이더 디텍터용 안테나.
  11. 제10항에 있어서,
    상기 복수 개의 방사 패치는 각각 서로 다른 길이의 인셋이 형성된 것을 특징으로 하는 레이더 디텍터용 안테나.
  12. 제10항에 있어서, 상기 스트립은,
    상기 복수 개의 방사패치에 동일한 전류가 인가되도록 상기 복수 개의 방사패치에 각각 대응하여 구비되는 복수 개의 정합단; 및
    이웃하는 상기 정합단을 상호 연결하는 연결 스트립을 구비하는 것을 특징으로 하는 레이더 디텍터용 안테나.
  13. 제12항에 있어서,
    상기 연결 스트립과 상기 정합단의 길이의 합은 관내파장의 양의 정수배인 것을 특징으로 하는 레이더 디텍터용 안테나.
  14. 제13항에 있어서,
    상기 연결 스트립의 길이는 관내파장의 3/4이고, 상기 정합단의 길이는 상기 관내파장의 1/4인 것을 특징으로 하는 레이더 디텍터용 안테나.
  15. 제9항에 있어서,
    상기 복수 개의 방사 패치 중 적어도 일부는 원형 편파 패치인 것을 특징으로 하는 레이더 디텍터용 안테나.
  16. 제15항에 있어서,
    상기 원형 편파 패치는 사각형의 패치에서 대각 방향의 꼭지점이 평행하게 절단된 육각형으로 형성되는 것을 특징으로 하는 레이더 디텍터용 안테나.
  17. 급전부;
    상기 급전부에서 분기되는 제1지로와 제2지로와 제3지로;
    상기 제1지로와 연결되는 제1밴드 대역 특성의 제1밴드 패치 안테나;
    상기 제2지로와 연결되는 제2밴드 대역 특성의 제2밴드 패치 안테나;
    상기 제3지로와 연결되는 제3밴드 대역 특성의 제3밴드 패치 안테나;
    상기 제1지로 상에서 상기 급전부와 상기 제1밴드 패치 안테나 사이에 구비되는 제2밴드 제1스터브와 제3밴드 제1스터브;
    상기 제2지로 상에서 상기 급전부와 상기 제2밴드 패치 안테나 사이에 구비되는 제1밴드 제1스터브와 제3밴드 제2스터브; 및
    상기 제3지로 상에서 상기 급전부와 상기 제3밴드 패치 안테나 사이에 구비되는 제1밴드 제2스터브와 제2밴드 제2스터브를 포함하는 레이더 디텍터용 안테나.
  18. 제17항에 있어서,
    상기 제1밴드 제1스터브와 상기 제1밴드 제2스터브는 각각 상기 급전부로부터 상기 제1밴드 대역의 관내파장의 1/4의 길이만큼 이격되어 위치하고,
    상기 제2밴드 제1스터브와 상기 제2밴드 제2스터브는 각각 상기 급전부로부터 상기 제2밴드 대역의 관내파장의 1/4의 길이만큼 이격되어 위치하고,
    상기 제3밴드 제1스터브와 상기 제3밴드 제2스터브는 각각 상기 급전부로부터 상기 제3밴드 대역의 관내파장의 1/4의 길이만큼 이격되어 위치하는 것을 특징으로 하는 레이더 디텍터용 안테나.
  19. 제18항에 있어서,
    상기 제1밴드 제1스터브는 상기 제2지로에서 상기 제1밴드 대역의 관내파장의 1/4의 길이만큼 돌출 형성되고,
    상기 제1밴드 제2스터브는 상기 제3지로에서 상기 제1밴드 대역의 관내파장의 1/4의 길이만큼 돌출 형성되고,
    상기 제2밴드 제1스터브는 상기 제1지로에서 상기 제2밴드 대역의 관내파장의 1/4의 길이만큼 돌출 형성되고,
    상기 제2밴드 제2스터브는 상기 제3지로에서 상기 제2밴드 대역의 관내파장의 1/4의 길이만큼 돌출 형성되고,
    상기 제3밴드 제1스터브는 상기 제1지로에서 상기 제3밴드 대역의 관내파장의 1/4의 길이만큼 돌출 형성되고,
    상기 제3밴드 제2스터브는 상기 제2지로에서 상기 제3밴드 대역의 관내파장의 1/4의 길이만큼 돌출 형성되는 것을 특징으로 하는 레이더 디텍터용 안테나.
  20. 제17항에 있어서,
    상기 제1밴드 대역, 상기 제2밴드 대역 및 상기 제3밴드 대역은 X 밴드(8GHz~12GHz), Ku 밴드(10.95GHz~14.5GHz), K 밴드(18GHz~27GHz), Ka 밴드(26.5GHz~40GHz) 중 어느 하나의 밴드를 포함하되,
    상기 제1밴드 대역, 상기 제2밴드 대역 및 상기 제3밴드 대역은 서로 다른 밴드 대역인 것을 특징으로 하는 레이더 디텍터용 안테나.
PCT/KR2011/009088 2011-08-29 2011-11-25 레이더 디텍터용 안테나 WO2013032069A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/342,375 US9368881B2 (en) 2011-08-29 2011-11-25 Antenna for a radar detector
RU2014110272/28A RU2571455C2 (ru) 2011-08-29 2011-11-25 Антенна для радарного детектора

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110086728A KR101226545B1 (ko) 2011-08-29 2011-08-29 레이더 디텍터용 안테나
KR10-2011-0086728 2011-08-29

Publications (1)

Publication Number Publication Date
WO2013032069A1 true WO2013032069A1 (ko) 2013-03-07

Family

ID=47756519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009088 WO2013032069A1 (ko) 2011-08-29 2011-11-25 레이더 디텍터용 안테나

Country Status (4)

Country Link
US (1) US9368881B2 (ko)
KR (1) KR101226545B1 (ko)
RU (1) RU2571455C2 (ko)
WO (1) WO2013032069A1 (ko)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104396B1 (ko) * 2014-01-21 2020-04-27 엘지이노텍 주식회사 레이더 시스템의 안테나 장치
KR101627513B1 (ko) * 2015-10-07 2016-06-08 주식회사 하이트로닉스 광대역 신호감지율과 실내 탈부착 설치효율을 향상시킨 평면형 스마트 레이더 디텍터 장치
CN106450739A (zh) * 2016-11-30 2017-02-22 华域汽车系统股份有限公司 一种平面微带贴片阵列天线
KR101817627B1 (ko) * 2017-03-15 2018-01-11 주식회사아이플러스원 레이다 비콘 장치
KR101882460B1 (ko) 2017-05-31 2018-07-27 주식회사 진진 레이더 디텍터 장치
KR101962822B1 (ko) * 2017-11-06 2019-03-27 동우 화인켐 주식회사 필름 안테나 및 이를 포함하는 디스플레이 장치
JP7077587B2 (ja) * 2017-11-17 2022-05-31 Tdk株式会社 デュアルバンドパッチアンテナ
TWI692151B (zh) * 2017-11-23 2020-04-21 明泰科技股份有限公司 陣列天線
WO2019146042A1 (ja) * 2018-01-25 2019-08-01 三菱電機株式会社 アンテナ装置
JP2020028077A (ja) * 2018-08-16 2020-02-20 株式会社デンソーテン アンテナ装置
WO2020145392A1 (ja) * 2019-01-10 2020-07-16 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
CN112787076A (zh) * 2019-11-06 2021-05-11 华为技术有限公司 天线结构、雷达和终端
EP3862773A1 (en) 2020-02-04 2021-08-11 Aptiv Technologies Limited Radar device
EP3862772A1 (en) * 2020-02-04 2021-08-11 Aptiv Technologies Limited Radar device
EP3862771A1 (en) * 2020-02-04 2021-08-11 Aptiv Technologies Limited Radar device
WO2022055499A1 (en) * 2020-09-11 2022-03-17 Hewlett-Packard Development Company, L.P. Hybrid antennas
US11619705B2 (en) 2020-10-20 2023-04-04 Aptiv Technologies Limited Radar system with modified orthogonal linear antenna subarrays
KR102440353B1 (ko) * 2020-11-04 2022-09-05 (주)스마트레이더시스템 차량 내부 공간에 적응적인 수신 빔 분포를 형성하는 차량 내부용 레이더 장치
EP4012438A1 (en) * 2020-12-10 2022-06-15 Aptiv Technologies Limited Radar device
US20220236370A1 (en) * 2021-01-27 2022-07-28 Aptiv Technologies Limited Radar System with Paired One-Dimensional and Two-Dimensional Antenna Arrays
WO2022174364A1 (en) 2021-02-18 2022-08-25 Huawei Technologies Co., Ltd. Antenna for a wireless communication device and such a device
KR102666163B1 (ko) * 2021-03-04 2024-05-14 (주)스마트레이더시스템 타겟 검출용 레이더 장치
KR20230141352A (ko) * 2022-03-31 2023-10-10 엘지이노텍 주식회사 레이더 모듈, 레이더 장치 및 이를 포함하는 차량용 감지 시스템
WO2024019578A1 (ko) * 2022-07-21 2024-01-25 크리모 주식회사 복수의 방사체 어레이들을 구비하는 안테나 장치
KR102624310B1 (ko) * 2022-11-21 2024-01-15 (주)스마트레이더시스템 하이브리드 로우 프로파일 안테나

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010000213A (ko) * 2000-08-21 2001-01-05 안병엽 원형편파용 광대역 평판형 배열안테나
KR20090057537A (ko) * 2007-12-03 2009-06-08 블루웨이브텔(주) 고격리 무선 중계기용 광대역 스택 패치 배열 안테나
US20090309799A1 (en) * 2008-06-17 2009-12-17 Fujitsu Limited Single-layer adaptive plane array antenna and variable reactance circuit
KR20100113347A (ko) * 2009-04-13 2010-10-21 한국과학기술원 초고주파수 대역 레이더를 위한 직렬 급전 배열 안테나

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1307842C (en) * 1988-12-28 1992-09-22 Adrian William Alden Dual polarization microstrip array antenna
RU2062536C1 (ru) * 1993-12-14 1996-06-20 Евгений Александрович Соколов Двухдиапазонная совмещенная антенная решетка
US5982339A (en) * 1996-11-26 1999-11-09 Ball Aerospace & Technologies Corp. Antenna system utilizing a frequency selective surface
US6529153B1 (en) * 2001-01-12 2003-03-04 Patrick Dijkstra High end police radar detector system
US7385555B2 (en) * 2004-11-12 2008-06-10 The Mitre Corporation System for co-planar dual-band micro-strip patch antenna
EP1744399A1 (en) * 2005-07-12 2007-01-17 Galileo Joint Undertaking Multi-band antenna for satellite positioning system
US7760142B2 (en) * 2007-04-10 2010-07-20 Emag Technologies, Inc. Vertically integrated transceiver array
US8063832B1 (en) * 2008-04-14 2011-11-22 University Of South Florida Dual-feed series microstrip patch array
US8115683B1 (en) * 2008-05-06 2012-02-14 University Of South Florida Rectenna solar energy harvester
KR101269711B1 (ko) * 2011-05-23 2013-05-30 주식회사 에이스테크놀로지 오픈 스터브를 이용한 레이더 배열 안테나

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010000213A (ko) * 2000-08-21 2001-01-05 안병엽 원형편파용 광대역 평판형 배열안테나
KR20090057537A (ko) * 2007-12-03 2009-06-08 블루웨이브텔(주) 고격리 무선 중계기용 광대역 스택 패치 배열 안테나
US20090309799A1 (en) * 2008-06-17 2009-12-17 Fujitsu Limited Single-layer adaptive plane array antenna and variable reactance circuit
KR20100113347A (ko) * 2009-04-13 2010-10-21 한국과학기술원 초고주파수 대역 레이더를 위한 직렬 급전 배열 안테나

Also Published As

Publication number Publication date
RU2014110272A (ru) 2015-10-10
US20140218259A1 (en) 2014-08-07
US9368881B2 (en) 2016-06-14
RU2571455C2 (ru) 2015-12-20
KR101226545B1 (ko) 2013-02-06

Similar Documents

Publication Publication Date Title
WO2013032069A1 (ko) 레이더 디텍터용 안테나
WO2020116934A1 (en) Ridge gap waveguide and multilayer antenna array including the same
WO2009093875A2 (ko) 평판형 도파관 안테나의 급전망 구조 및 배치방법
US5701128A (en) Antenna-integrated strip line cable
WO2013065893A1 (ko) 슬롯형 증강안테나
WO2018182109A1 (ko) 다중대역 기지국 안테나
WO2014193051A1 (ko) 멀티 밴드 안테나 시스템
WO2019054739A1 (en) OPTICALLY CONTROLLED SWITCH
WO2020153629A1 (ko) 안테나를 포함하는 전자 장치
WO2019199050A1 (en) Antenna and unit-cell structure
WO2022080924A1 (ko) 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치
WO2017138800A1 (ko) 모노폴 안테나
WO2020060294A1 (ko) 간단한 구조의 단극 다투 스위치 장치
WO2021187794A1 (ko) 복수의 안테나를 포함하는 전자 장치
WO2009154417A2 (ko) 휴대 단말기용 다중대역 안테나 및 이를 구비한 휴대 단말기
WO2019225945A1 (ko) 빛에 기초하여 전자기파의 전송을 제어하는 방법 및 그 장치
WO2021085919A1 (ko) 안테나 구조체, 이를 포함하는 안테나 어레이 및 디스플레이 장치
WO2010150934A1 (ko) 엔포트 피딩 시스템 및 이에 포함된 페이즈 쉬프터, 지연 소자
WO2022169145A1 (en) Antenna module and electronic device including same
WO2022092728A1 (ko) 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치
EP3807937A1 (en) High frequency switch for high frequency signal transmitting/receiving devices
WO2022124783A1 (ko) 안테나용 rf 모듈 및 이를 포함하는 안테나 장치
WO2024019578A1 (ko) 복수의 방사체 어레이들을 구비하는 안테나 장치
WO2021020763A1 (ko) 도파관과 동축선을 개방형 결합구조로 접속시키는 어댑터
WO2021006564A1 (ko) 안테나 구조체 및 그를 포함하는 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14342375

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014110272

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11871496

Country of ref document: EP

Kind code of ref document: A1