WO2013031813A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2013031813A1
WO2013031813A1 PCT/JP2012/071804 JP2012071804W WO2013031813A1 WO 2013031813 A1 WO2013031813 A1 WO 2013031813A1 JP 2012071804 W JP2012071804 W JP 2012071804W WO 2013031813 A1 WO2013031813 A1 WO 2013031813A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
refrigerant
cooler
stage
stage side
Prior art date
Application number
PCT/JP2012/071804
Other languages
English (en)
French (fr)
Inventor
英敏 金尾
Original Assignee
八洋エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 八洋エンジニアリング株式会社 filed Critical 八洋エンジニアリング株式会社
Priority to SG2014014799A priority Critical patent/SG2014014799A/en
Publication of WO2013031813A1 publication Critical patent/WO2013031813A1/ja
Priority to IN2245CHN2014 priority patent/IN2014CN02245A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression

Definitions

  • the present invention relates to an air conditioner that adjusts temperature and humidity.
  • Patent Document 1 As a two-stage compression refrigerator, there is one that controls the degree of superheat of high-stage discharge gas (see, for example, Patent Document 1).
  • Patent Document 2 As an air conditioner, energy efficiency is improved and safety is ensured (see, for example, Patent Document 2), and multistage compression operation is performed to improve operation efficiency in both cooling operation and heating operation.
  • Patent Document 3 There are some (see, for example, Patent Document 3).
  • Japanese Patent Laying-Open No. 2007-255864 (refer to claims, FIG. 1) Japanese Patent Laying-Open No. 2006-029744 (refer to claims, FIGS. 1 to 3) Japanese Patent Laying-Open No. 2010-112618 (refer to claims, FIGS. 1 to 3)
  • the technical problem to be solved by the present invention is to realize energy saving by eliminating waste of energy consumption for processing latent heat and sensible heat when cooling and dehumidification are involved, In addition, it is to provide a safe and naturally friendly air conditioner.
  • an air conditioner includes an air supply duct for supplying air to be conditioned, which includes at least indoor air among outdoor air and indoor air of a building, to the indoor of the building, A high-stage cooler that is provided in the middle of the air duct and removes mainly sensible heat of the air to be conditioned, and is provided downstream of the air supply duct as viewed from the high-stage cooler.
  • a low-stage side cooler that mainly removes latent heat of the humidity-controlled air from which part of the load has been removed by the high-stage side cooler, and an indoor air cooler that mainly removes sensible heat from the indoor air Is provided to solve the above-mentioned problems.
  • An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the first air conditioner is installed in an upstream duct portion of the air supply duct as viewed from the high stage cooler.
  • An air conditioner according to a third aspect of the present invention is the air conditioner according to the first or second aspect of the present invention, wherein the indoor air is installed in the intake port of the air supply duct and connected to the air intake duct.
  • the above-described problem is further solved by providing an indoor air intake fan that captures air.
  • An air conditioner according to a fourth aspect of the present invention is the air conditioner according to the third aspect of the present invention, wherein the air conditioner is supplied to the high stage side cooler, the low stage side cooler, and the indoor air cooler to adjust the condition.
  • a first inter-refrigerant heat exchanger that performs heat exchange between the primary-side refrigerant and the secondary-side refrigerant in a state of being separated from each other.
  • the air conditioner which concerns on invention of Claim 5 is an air conditioner which concerns on invention of Claim 4,
  • coolants is installed in the outdoors of the said building,
  • the said secondary side Among the refrigerants, the refrigerant used in each of the high-stage side cooler and the low-stage side cooler and the refrigerant used in the indoor air cooler are different types of refrigerants and are used in the indoor air cooler.
  • the refrigerant is a safer refrigerant than the refrigerant used in each of the high stage side cooler and the low stage side cooler, and the refrigerant used in each of the high stage side cooler and the low stage side cooler and the above
  • the second inter-refrigerant heat exchanger that exchanges heat with the refrigerant used in the indoor air cooler is installed outside the building, thereby further solving the above-described problems.
  • the air conditioner according to the invention of claim 6 is the air conditioner according to claim 4 or claim 5, wherein the primary refrigerant is ammonia having excellent performance as a refrigerant, and the secondary side Since the refrigerant is water or brine that is safer than other refrigerants, the above-described problems are further solved.
  • the air conditioner according to the invention of claim 7 is the air conditioner according to claim 4 or claim 5, wherein the primary side refrigerant is one of chlorofluorocarbon, ammonia, water, carbon dioxide gas and hydrocarbon.
  • the secondary side refrigerant is carbon dioxide, which further solves the above-described problem.
  • the air conditioner which concerns on invention of this invention is the air conditioner which concerns on any one of Claim 1 thru
  • the low-stage compressor connected to the low-stage side cooler is a turbo refrigerator and can be controlled at a variable speed, thereby further solving the aforementioned problems.
  • An air conditioner according to claim 1 of the present invention includes an air supply duct for supplying air to be conditioned, which includes at least indoor air among outdoor air and indoor air in a building, to the indoor of the building, A high-stage cooler that is provided in the middle of the air duct and removes mainly sensible heat of the air to be conditioned, and is provided downstream of the air supply duct as viewed from the high-stage cooler.
  • a low-stage side cooler that mainly removes latent heat of the humidity-controlled air from which part of the load has been removed by the high-stage side cooler, and an indoor air cooler that mainly removes sensible heat from the indoor air Therefore, the heat load that can be processed by the high-stage side cooler is processed by the high-stage side cooler as much as possible, the heat load of the low-stage side cooler is reduced, and the temperature is unreasonably low.
  • the air conditioning apparatus which concerns on this invention of Claim 2 sees from the said high stage side cooler in the upstream duct part of the said air supply duct.
  • a first heat recovery unit installed; and a second heat recovery unit installed in a duct portion between the evaporators between the high-stage side cooler and the low-stage side cooler in the supply duct.
  • the second heat recovery device reduces the heat absorption burden of the low-stage side cooler and increases the proportion of the load on the high-stage side cooler for efficient operation.
  • High stage compressor and low stage required to operate the high stage cooler and low stage cooler It is possible to reduce the total power energy of the compressor.
  • an indoor draft is obtained by heating the air to be conditioned that has been cooled excessively compared to the temperature of the target indoor air in order to remove latent heat, and supplying the air close to the temperature of the indoor air by using the first heat recovery device.
  • the low-temperature humidity-controlled air flows into the indoor space, so that it is possible to prevent uncomfortable feelings felt by indoor persons.
  • the air conditioner according to the third aspect of the present invention is installed at the inlet of the air supply duct in addition to the effect exhibited by the air conditioner according to the first or second aspect of the invention.
  • the indoor air intake fan that takes in the indoor air in the duct is used to minimize the burden on the low-stage cooler due to the ratio of the latent heat load between the outdoor air and the indoor air.
  • the amount of indoor air supplied to the air supply duct can be adjusted by controlling the air intake fan.
  • the remainder of the sensible heat load removed by the high-stage side cooler and the low-stage side cooler is processed by an indoor air cooler such as an evaporator connected to the high stage side, thereby improving the energy efficiency of the entire device. Further improvement can be achieved.
  • the intended dehumidification can be performed without lowering the temperature of the air to be conditioned to an unreasonably low temperature.
  • the air conditioner according to the fourth aspect of the present invention includes, in addition to the effects exhibited by the air conditioner according to the third aspect of the invention, the high stage side cooler, the low stage side cooler, and the indoor air cooler.
  • the primary side from the primary side to the indoor side is provided with a first heat exchanger between the refrigerants that performs heat exchange between the primary side refrigerant and the secondary side refrigerant in a state where the circulation path is physically separated.
  • coolants is installed in the outdoors of the said building.
  • the refrigerant used in each of the high stage side cooler and the low stage side cooler and the refrigerant used in the indoor air cooler are different types of refrigerants, and the indoor air
  • the refrigerant used in the cooler is a safer refrigerant than the refrigerant used in each of the high-stage side cooler and the low-stage side cooler, and in each of the high-stage side cooler and the low-stage side cooler,
  • a second inter-refrigerant heat exchanger that exchanges heat between the refrigerant to be used and the refrigerant to be used in the indoor air cooler is installed outside the building, so that the primary refrigerant or the secondary refrigerant To prevent large amounts of water leaking indoors Even if primary refrigerants or secondary
  • coolant is Freon, ammonia, water, carbon dioxide gas ,
  • One of the hydrocarbons, and the secondary side refrigerant is carbon dioxide, thereby carrying out heat transport by latent heat from the carbon dioxide gas, and using ammonia and water for the primary side refrigerant and the secondary side refrigerant, respectively.
  • An air conditioner according to an eighth aspect of the present invention is connected to the high stage side cooler in addition to the effect exhibited by the air conditioner according to any one of the first to seventh aspects.
  • the high-stage compressor and the low-stage compressor connected to the low-stage side cooler are turbo chillers and can be controlled at a variable speed, so that the high-stage compressor and the low-stage compressor Since both of the compression ratios are small, the air to be conditioned is efficiently cooled and dehumidified, and the high-stage and low-stage evaporation temperatures are controlled by controlling the rotational speed of the high-stage compressor or low-stage compressor. Can be adjusted to an optimum temperature to improve the energy efficiency of the entire air conditioner.
  • An air conditioner according to the present invention is provided in the middle of an air supply duct for supplying air to be conditioned, including at least indoor air among outdoor air and indoor air in the building, to the indoor of the building. And a high-stage side cooler that mainly removes sensible heat from the air to be conditioned, and a high-stage side cooler installed on the downstream side of the air supply duct. If it is equipped with a low-stage side cooler that mainly removes latent heat of the humidity-controlled air that has been partially removed, and an indoor air cooler that mainly removes sensible heat from indoor air Any specific embodiment may be used.
  • the humidity-control target that has been cooled too much through the air supply duct Since the temperature of the air is raised, it is possible to avoid the draft of the air to be conditioned to be supplied indoors.
  • “draft” means that when the air to be conditioned that has been cooled in cooling air conditioning is supplied indoors, the air to be conditioned whose temperature is too low compared to the indoor temperature directly hits the indoor person. A phenomenon that makes you feel uncomfortable.
  • a plurality of inlets for the air supply duct may be provided corresponding to each of the indoor air and the outdoor air so that each of the indoor air and the outdoor air can be supplied.
  • FIG. 1 is a block diagram showing the configuration of the air-conditioning apparatus according to the first embodiment of the present invention
  • FIG. 2 shows the configuration of the air-conditioning apparatus according to the second embodiment of the present invention
  • FIG. 3 is a block diagram showing the configuration of an air conditioner according to a third embodiment of the present invention
  • FIG. 4 shows the configuration of the air conditioner according to a fourth embodiment of the present invention. It is the block diagram shown.
  • the air conditioning apparatus 100 includes an air supply duct 110, a two-stage compression refrigerator 100 ⁇ / b> A, an indoor air cooler 140, and an indoor air intake fan 150.
  • the two-stage compression refrigerator 100A includes a high-stage cooler 120, a low-stage cooler 130, an EVACON EC, a high-stage compressor HP, a high-pressure receiver HR, an intermediate receiver MR, a low-stage compressor LP, And the low-pressure receiver LR, and the refrigerant C is supplied to the high-stage cooler 120, the low-stage cooler 130, and the indoor air cooler 140 to cool the humidity adjustment target air CA.
  • the EVACON EC has a low head and a large ventilation area where a large capacity fan works effectively so that a low condensing temperature can be efficiently realized, so that the rotation speed of the fan can be controlled to control the condensing temperature. It is configured.
  • the high-stage compressor HP is a turbo compressor having a low compression ratio and efficient vane characteristics, and its rotational speed capacity is controlled by an inverter.
  • the intermediate liquid receiver MR is a device that can stably operate the two-stage compression and the two-stage expansion, and a liquid refrigerant is added to the high-stage side cooler 120 and the indoor air cooler 140 that are full liquid air coolers.
  • the low-stage compressor LP is a turbo compressor having an efficient vane characteristic with a low compression ratio, and its rotational speed capacity is controlled by an inverter.
  • An efficient intermediate pressure can be set by controlling the rotation of the high-stage compressor HP and the low-stage compressor LP. Note that the rotation speeds of the high-stage compressor HP and the low-stage compressor LP can be controlled separately.
  • the low-pressure receiver LR sends the liquid refrigerant C to the low-stage side cooler 130 which is a full liquid evaporator for recovering latent heat, and separates the returned liquid-gas mixed refrigerant to reduce only the gas. It works to return to the stage compressor LP.
  • the high stage side cooler 120 and the indoor air cooler 140 efficiently process the sensible heat load of the humidity adjustment target air CA and the indoor air IA at a relatively high evaporation temperature.
  • the low-stage cooler 130 reduces the temperature of the humidity adjustment target air CA until the absolute humidity reaches a set value, and condenses and removes moisture in the humidity adjustment target air CA.
  • the air conditioner 100 includes an air supply duct 110 that supplies air to the indoor area of the building B with the humidity adjustment target air CA including at least the indoor air IA among the outdoor air OA and the indoor air IA of the building B, and A high-stage cooler 120 that is provided in the middle and removes mainly sensible heat of the air CA subject to humidity control, and is provided downstream of the air supply duct 110 when viewed from the high-stage cooler 120.
  • the low stage side cooler 130 that mainly removes latent heat of the humidity-controlled air CA from which part of the load is removed by the high stage side cooler 120, and the indoor air cooler that mainly removes sensible heat from the indoor air IA.
  • the heat load that can be processed by the high-stage side cooler 120 is processed as much as possible by the high-stage side cooler 120 to reduce the heat load of the low-stage side cooler 130.
  • Extra much to reasonably low temperatures While not reducing the temperature of the humidity adjustment target air CA, the energy efficiency at the time of dehumidification is improved by avoiding the increase in energy consumption caused by reducing the temperature of the excessive humidity adjustment target air CA and consuming unnecessary energy.
  • the humidity control target air CA is suppressed to the necessary minimum flow rate to minimize the cooling load of the humidity control target air CA, and the efficient indoor air cooler 140, for example, the two-stage compression refrigerator 100A
  • the indoor air cooler 140 composed of an evaporator or the like connected to the high stage side to perform the necessary sensible heat load, energy consumption can be minimized.
  • the air conditioner 100 calculates the coefficient of performance of the two-stage compression refrigerator 120 when the turbo refrigerator is used for the high-stage compressor HP and the low-stage compressor LP. It can be 12 or more. In addition, the air conditioner 100 can optimize the environmental conditions at the time of dehumidification and the setting conditions of the apparatus to increase the coefficient of performance of the two-stage compression refrigerator 100A to 10 or more.
  • the refrigeration load has a latent heat load and a sensible heat load.
  • the sensible heat load can fulfill the purpose if the evaporation temperature is lower than the target indoor temperature, but the latent heat load is the target absolute Evaporation temperatures below the humidity relative saturation temperature are required and are much lower than those for sensible heat loads.
  • the air conditioner 100 includes the indoor air intake fan 150 that is installed at the suction port 111 of the air supply duct 110 and takes in the indoor air IA into the air supply duct 110, so that the indoor air IA and the outdoor air OA are included.
  • the amount of indoor air IA supplied to the air supply duct 110 is adjusted by controlling the indoor air intake fan 150 so as to minimize the burden on the low-stage cooler 130 due to the ratio of the latent heat load of the air. It is like that.
  • the air conditioning apparatus 100 can perform the intended dehumidification without lowering the temperature of the humidity adjustment target air CA to an unreasonably low temperature.
  • the air conditioner 100 has a large latent heat load generated indoors, and if the target humidity cannot be maintained only by dehumidification of the outdoor air OA, it is necessary to excessively lower the evaporation temperature of the low-stage cooler 130. Therefore, the indoor air intake fan 150 takes in the indoor air IA as at least part of the humidity adjustment target air CA into the air supply duct 110 so as to maintain an efficient operation state of the two-stage compression refrigerator 100A. It has become.
  • chlorofluorocarbon may be used as the refrigerant C used in the air conditioner 100.
  • the air conditioner 100 processes the remainder of the sensible heat load removed by the high stage cooler 120 and the low stage cooler 130 by the indoor air cooler 140 such as an evaporator connected to the high stage side.
  • the energy efficiency of the entire apparatus is further improved.
  • an air conditioner 200 according to a second embodiment of the present invention will be described with reference to FIG.
  • the same reference numerals as those of the air conditioner 100 described above are used for reference numerals from the 100s to the 200s, the 300s, and the 400s. The detailed description will be omitted.
  • the air conditioner 200 includes an air supply duct 210, a first heat recovery device 260, and a second heat recovery device 270 installed inside the building B.
  • the air conditioner 200 includes a first heat recovery device 260 such as a heat pipe installed in the upstream duct portion 210 ⁇ / b> A of the air supply duct 210 as viewed from the high stage side cooler 220, and the high stage side cooling of the air supply duct 210.
  • the second heat recovery device 270 such as a heat pipe installed in the inter-evaporator duct portion 210B between the heat exchanger 260 and the lower stage cooler 270, the first heat recovery device 260, the higher stage side Since the cooler 220, the second heat recovery device 270, and the low stage side cooler 230 sequentially absorb heat from the humidity adjustment target air CA, only the high stage side cooler 220 and the low stage side cooler 230 are used to control the humidity control target air CA.
  • the heat absorption burden of the low-stage side cooler 230 is reduced by the second heat recovery device 270 and the load ratio of the high-stage side cooler 220 is increased to perform efficient operation.
  • High stage cooler And it is adapted to decrease the high-stage total power energy of the compressor HP and the low-pressure stage compressor LP required to operate the 20 and the low-stage-side condenser 230.
  • the temperature of the humidity adjustment target air CA cooled by the low stage cooler 230 for dehumidification is 14 ° C. and the target temperature of the indoor air IA is 28 ° C.
  • the evaporation connected to the high stage side.
  • Most of the sensible heat due to the indoor load of the indoor air cooler 240 composed of a condenser is removed, and the indoor air IA that should be 30 ° C. and the humidity-controlled air CA of 14 ° C. are mixed and maintained at 28 ° C.
  • irreversible changes occur, entropy increases, and waste is generated.
  • the indoor air IA is 28 ° C.
  • the former is wasteful when it is carried out in an evaporator at 20 ° C. If this waste is recovered by the first heat recovery device 260 and the second heat recovery device 270, for example, air at 14 ° C. is heated to 21 ° C. and supplied indoors, the waste can be reduced by about 50%.
  • the air conditioning apparatus 200 warms the humidity adjustment target air CA, which has been cooled excessively compared to the temperature of the target indoor air IA, in order to remove latent heat, by the first heat recovery device 260 and brings it close to the temperature of the indoor air IA.
  • the indoor draft that is, the low-temperature humidity-controlled air CA flows into the indoor from the air inlet 212, thereby preventing discomfort felt by humans indoors.
  • the air conditioner 300 according to the third embodiment includes a high-stage chiller 380 ⁇ / b> A and a low-stage chiller 380 ⁇ / b> B, each of which is an example of a first inter-refrigerant heat exchanger, and high-stage cooling.
  • the cold water tanks WT1 and WT2, and the cold water pump WP1 and the cold water pump WP2 are provided.
  • the two-stage compression refrigerator 300A supplies the secondary-side refrigerant C2 to the high-stage cooler 320 and the low-stage cooler 330 to cool the humidity adjustment target air CA.
  • the air conditioner 300 is supplied to the high stage side cooler 320, the low stage side cooler 330, and the indoor air cooler 340 to absorb the sensible heat and latent heat of the humidity adjustment target air CA and the sensible heat of the indoor air IA.
  • the primary side refrigerant C1 and the secondary side refrigerant in a state where the secondary side refrigerant circulation path P2 of the secondary side refrigerant C2 and the primary side refrigerant circulation path P1 of the primary side refrigerant C1 that cools the secondary side refrigerant C2 are physically separated.
  • the primary side refrigerant C1 does not leak from the primary side to the indoor side. Even when a harmful primary refrigerant is used, energy efficiency at the time of air conditioning is improved, and safety is further realized without adversely affecting human beings indoors.
  • the primary refrigerant C1 is ammonia having excellent performance as a refrigerant
  • the secondary refrigerant C2 is water or brine that is safer than other refrigerants. Since harmful ammonia is circulated only outdoors, it is designed to realize an air conditioner that is environmentally friendly and uses air when it is air-conditioned with natural refrigerants while ensuring indoor safety. .
  • ammonia is used as the primary-side refrigerant C1
  • it is superior in terms of efficiency, cost, physical properties, and economic viewpoints compared to the case where water is used as the primary-side refrigerant C1.
  • the primary side refrigerant C1 may be one of Freon, ammonia, water, carbon dioxide, and hydrocarbon
  • the secondary side refrigerant C2 may be carbon dioxide.
  • the primary refrigerant C1 is one of chlorofluorocarbon, ammonia, water, carbon dioxide, and hydrocarbon
  • the secondary refrigerant C2 is carbon dioxide
  • ammonia is added to the primary refrigerant C1 and the secondary refrigerant C2.
  • the primary side refrigerant C1 used in the process is prevented from leaking indoors to avoid an oxygen deficient state indoors, and the heat exchange between the humidity-controlled air CA and the carbon dioxide gas is relatively efficient compared to water.
  • sensible heat transport means using heat transfer by temperature change.
  • latent heat transport refers to transporting heat by using heat transfer by phase change.
  • the air conditioning apparatus 400 includes an air supply duct 410, a two-stage compression refrigerator 400A, a first heat recovery unit 460, a second heat recovery unit 470, and an indoor air intake. Fan 450 is provided.
  • the two-stage compression refrigerator 400A is a high-stage cascade condenser 490A and a low-stage cascade condenser 490B, each of which is an example of a first inter-refrigerant heat exchanger, and an evaporator connected to the high stage side.
  • the low-stage compressor LP, the low-pressure receiver LR, the high-stage carbon dioxide receiver HGR, which is an example of the second inter-refrigerant heat exchanger, the low-stage carbon dioxide receiver LGR, and the refrigerant pump CP1 ⁇ 1, CP1-2, CP2 and the secondary side refrigerant C2 is supplied to the high stage side cooler 420 and the low stage side cooler 430 to cool the humidity adjustment target air CA.
  • the liquid carbon dioxide gas cooled and liquefied by the high stage side cascade condenser 490A enters the high stage carbon dioxide gas receiver HGR and is sent to the high stage side cooler 420 and the indoor air cooler 440 by a liquid head difference or a liquid pump.
  • the primary refrigerant C1 such as ammonia sent to the high-stage cascade condenser 490A and the low-stage cascade condenser 490B is carbon dioxide in the portion connected to the indoor side of the high-stage cascade condenser 490A and the low-stage cascade condenser 490B.
  • the secondary side refrigerants C2-1 and C2-2 such as are liquefied.
  • the secondary side refrigerant C2-2 such as the liquefied indoor side carbon dioxide gas is sent to the low stage side cooler 430 by the liquid head difference or the liquid pump, and mainly takes the latent heat load and evaporates to lower the low stage side cascade condenser 490B.
  • the secondary-side refrigerant C2-1 such as liquid carbon dioxide gas sent to the high-stage side cooler 420 treats a part of the load of the humidity adjustment target air CA at a relatively high evaporation temperature, thereby producing a high-stage carbon dioxide.
  • gas receiver HGR the heat exchange and heat transport by the carbon dioxide gas are performed with a change in latent heat, so that the efficiency is remarkably improved as compared with the case of using sensible heat with water interposed.
  • the high-stage cascade condenser 490A and the low-stage cascade condenser 490B as in this example are connected to a large amount of the primary refrigerant C1, that is, ammonia in the main body of the two-stage compression refrigerator 400A when there is a gas leak indoors. If there is a possibility that it may lead to a major accident such as poisoning or lack of oxygen, it may not be necessary in a factory with a large space and relatively easy ventilation.
  • the high stage side cascade condenser 490A and the low stage side cascade condenser 490B are installed outside the building B, and the high stage side cooler 420 and the low stage side cooler 430 of the secondary side refrigerant C2 are installed.
  • Refrigerants C2-1 and C2-2 used in each and refrigerant C2-3 used in the indoor air cooler 440 are different types of refrigerant, and refrigerant C2-3 used in the indoor air cooler 440 is It is a refrigerant that is safer than the refrigerants C2-1 and C2-2 used in each of the high stage side cooler 420 and the low stage side cooler 430, and each of the high stage side cooler 420 and the low stage side cooler 430.
  • a high-stage carbon dioxide gas receiver HGR that exchanges heat between the refrigerants C2-1 and C2-2 used in the air and the refrigerant C2-3 used in the indoor air cooler 440 is installed outside the building B.
  • the air conditioner 400 prevents the primary side refrigerant C1 from leaking in large quantities indoors, and therefore, even when the primary side refrigerant C1 that is harmful to the human body is used with priority on energy efficiency, the energy efficiency during air conditioning. As well as improving safety, it is possible to further ensure safety without adversely affecting indoor people.
  • the primary side refrigerant C1 may be ammonia
  • the secondary side refrigerant C2 may be water or brine
  • the primary side refrigerant C1 may be chlorofluorocarbon.
  • Ammonia, water, carbon dioxide, and hydrocarbon, and the secondary refrigerant C2 may be carbon dioxide, and the same effect as the air conditioner 300 can be obtained.
  • Air conditioner 110 210, 310, 410 ... Air supply duct 210A, 310A, 410A ... Upstream duct part 210B, 310B, 410B ... Evaporator duct Portions 210C, 310C, 410C ... Downstream duct portions 111, 211, 311, 411 ... Suction ports 100A, 200A, 300A, 400A ...
  • Secondary side refrigerant P1 Primary side refrigerant circulation path P2 ... Second Secondary refrigerant circulation path B ... Building WT1, WT2 ... Cold water tanks WP1, WP2 ... Cold water pumps CP1-1, CP1-2, CP2 ... Refrigerant pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Central Air Conditioning (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 冷却及び除湿を伴う際に潜熱及び顕熱を処理するためのエネルギー消費の無駄をなくして、省エネルギーを実現し、合わせて安全且つ自然に優しい空気調和装置を提供すること。 給気ダクト(110)と、調湿対象空気(CA)の主に顕熱を除去する高段側冷却器(120)と、高段側冷却器(120)で負荷の一部を除去された調湿対象空気(CA)の主に潜熱を除去する低段側冷却器(130)と、屋内空気(IA)の主に顕熱を除去する屋内空気冷却器(140)とを備えている空気調和装置(100)。

Description

空気調和装置
 本発明は、温度及び湿度を調整する空気調和装置に関するものである。
 従来、二段圧縮式冷凍機として高段側吐出ガスの過熱度を制御するものがある(例えば、特許文献1参照)。
 また、空気調和装置としては、エネルギー効率を高めるとともに安全性を確保するもの(例えば、特許文献2参照)や、多段圧縮運転を行って冷房運転時及び暖房運転時の両方で運転効率を向上させるものがある(例えば、特許文献3参照)。
特開2007-255864号公報(特許請求の範囲、図1参照。) 特開2006-029744号公報(特許請求の範囲、図1乃至図3参照。) 特開2010-112618号公報(特許請求の範囲、図1乃至図3参照。)
 しかしながら、工場またはビル等の比較的大規模な空間を対象とする空調では、屋内空気等の調湿対象空気を除湿する際に冷房運転時における屋内空気の設定温度に比較して極端に低い温度まで調湿対象空気を下げて除湿を行い、空調設備の使用エネルギ-に大きな無駄を生じさせてしまうという問題点があった。
 より具体的には、除湿時に空調設備にかかる負荷全体に対する割合が相対的に小さな潜熱負荷を処理する際に、調湿対象空気全体を除湿するために必要な低い温度まで調湿対象空気の温度を下げて効率の悪い運転を行っていた。
 そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、冷却及び除湿を伴う際に潜熱及び顕熱を処理するためのエネルギー消費の無駄をなくして、省エネルギーを実現し、合わせて安全且つ自然に優しい空気調和装置を提供することである。
 まず、本請求項1の発明に係る空気調和装置は、建屋の屋外空気及び屋内空気のうち少なくとも屋内空気を含んだ調湿対象空気を前記建屋の屋内に給気する給気ダクトと、該給気ダクトの途中に設けられているとともに前記調湿対象空気の主に顕熱を除去する高段側冷却器と、該高段側冷却器からみて前記給気ダクトの下流側に設けられているとともに前記高段側冷却器で負荷の一部を除去された前記調湿対象空気の主に潜熱を除去する低段側冷却器と、前記屋内空気の主に顕熱を除去する屋内空気冷却器とを備えていることにより、前述した課題を解決したものである。
 そして、本請求項2の発明に係る空気調和装置は、請求項1の発明に係る空気調和装置において、前記高段側冷却器からみて前記給気ダクトの上流側ダクト部分に設置された第1熱回収器と、前記給気ダクトのうち前記高段側冷却器及び低段側冷却器の間の蒸発器間ダクト部分に設置された第2熱回収器とを備えていることにより、前述した課題をさらに解決したものである。
 そして、本請求項3の発明に係る空気調和装置は、請求項1又は請求項2の発明に係る空気調和装置において、前記給気ダクトの吸入口に設置されて前記給気ダクトに前記屋内空気を取り込む屋内空気取り込み用ファンと備えていることにより、前述した課題をさらに解決したものである。
 そして、本請求項4の発明に係る空気調和装置は、請求項3の発明に係る空気調和装置において、前記高段側冷却器、低段側冷却器及び屋内空気冷却器に供給されて前記調湿対象空気の顕熱及び潜熱と前記屋内空気の顕熱を吸収する二次側冷媒の二次側冷媒循環経路と前記二次側冷媒を冷却する一次側冷媒の一次側冷媒循環経路とを物理的に分離した状態で前記一次側冷媒及び2次側冷媒相互間の熱交換を実施する第1の冷媒間熱交換器とを備えていることにより、前述した課題をさらに解決したものである。
 そして、本請求項5の発明に係る空気調和装置は、請求項4の発明に係る空気調和装置において、前記第1の冷媒間熱交換器が、前記建屋の屋外に設置され、前記二次側冷媒のうち前記高段側冷却器及び低段側冷却器のそれぞれで使用する冷媒と前記屋内空気冷却器で使用する冷媒が、相互に異なる種類の冷媒であり、前記屋内空気冷却器で使用する冷媒が、前記高段側冷却器及び低段側冷却器のそれぞれで使用する冷媒より安全性の高い冷媒であり、前記高段側冷却器及び低段側冷却器のそれぞれで使用する冷媒と前記屋内空気冷却器で使用する冷媒との間で熱交換を実施する第2の冷媒間熱交換器が、前記建屋の屋外に設置されていることにより、前述した課題をさらに解決したものである。
 そして、本請求項6の発明に係る空気調和装置は、請求項4又は請求項5に係る空気調和装置において、前記一次側冷媒が、冷媒としての性能が優秀なアンモニアであり、前記二次側冷媒が、他の冷媒に比べて安全な水又はブラインであることにより、前述した課題をさらに解決したものである。
 そして、本請求項7の発明に係る空気調和装置は、請求項4又は請求項5に係る空気調和装置において、前記一次側冷媒が、フロン、アンモニア、水、炭酸ガス、炭化水素の中の一つであり、前記二次側冷媒が、炭酸ガスであることにより、前述した課題をさらに解決したものである。
 そして、本請求項8の発明に係る空気調和装置は、請求項1乃至請求項7のいずれか一つに係る空気調和装置において、前記高段側冷却器に接続されている高段圧縮機と前記低段側冷却器に接続されている低段圧縮機とが、ターボ冷凍機であり且つ可変速制御可能であることにより、前述した課題をさらに解決したものである。
 本発明の請求項1の発明に係る空気調和装置は、建屋の屋外空気及び屋内空気のうち少なくとも屋内空気を含んだ調湿対象空気を前記建屋の屋内に給気する給気ダクトと、該給気ダクトの途中に設けられているとともに前記調湿対象空気の主に顕熱を除去する高段側冷却器と、該高段側冷却器からみて前記給気ダクトの下流側に設けられているとともに前記高段側冷却器で負荷の一部を除去された前記調湿対象空気の主に潜熱を除去する低段側冷却器と、前記屋内空気の主に顕熱を除去する屋内空気冷却器とを備えていることにより、高段側冷却器で処理出来る熱負荷は、出来るだけ多く高段側冷却器で処理して、低段側冷却器の熱負荷を少なくし、不合理に低い温度まで余分に多くの調湿対象空気の温度を下げないとともに、余分に多くの調湿対象空気の温度を下げて無駄なエネルギーを消費することで生じる消費エネルギーの増大を回避して除湿時のエネルギー効率を向上させ、しかも不合理に低い温度まで冷媒の蒸発温度を下げることを回避して省エネルギーと安全性の確保及び環境保護を実現することができる。
 なお、調湿対象空気を冷却して除湿するとき、冷却時の調湿対象空気の絶対湿度と調湿対象空気の温度とは一対一の関係にあるため、目的の絶対湿度より低い調湿対象空気の温度を「不合理に低い温度」という。
 そして、本請求項2の発明に係る空気調和装置は、請求項1の発明に係る空気調和装置が奏する効果に加えて、前記高段側冷却器からみて前記給気ダクトの上流側ダクト部分に設置された第1熱回収器と、前記給気ダクトのうち前記高段側冷却器及び低段側冷却器の間の蒸発器間ダクト部分に設置された第2熱回収器とを備えていることにより、第一熱回収器、高段側冷却器、第二熱回収器、及び低段側冷却器で順次調湿対象空気から吸熱するため、高段側冷却器及び低段側冷却器のみで調湿対象空気から吸熱する場合と比較して、第2熱回収器により低段側冷却器の吸熱負担を小さくするとともに高段側冷却器の負担の割合を大きくして効率の良い運転を行い、高段側冷却器及び低段側冷却器を作動させるのに必要な高段側圧縮機及び低段側圧縮機のトータルの動力エネルギーを減少させることができる。
 また、潜熱を除去するために目的の屋内空気の温度と比較して冷やし過ぎた調湿対象空気を第1熱回収器で暖めて屋内空気の温度に近づけて給気することにより屋内のドラフトすなわち低温度の調湿対象空気が屋内に流れ込むことで屋内の人間が感じる不快感を防ぐことができる。
 そして、本請求項3の発明に係る空気調和装置は、請求項1又は請求項2の発明に係る空気調和装置が奏する効果に加えて、前記給気ダクトの吸入口に設置されて前記給気ダクトに前記屋内空気を取り込む屋内空気取り込み用ファンとを備えていることにより、屋外空気と屋内空気の潜熱負荷の割合に起因して低段側冷却器に掛る負担が最小限になるように屋内空気取り込み用ファンを制御して給気ダクトへの屋内空気の供給量を調節することができる。
 加えて、高段側冷却器及び低段側冷却器で除去した顕熱負荷の残りを、高段側に接続された蒸発器等の屋内空気冷却器で処理して、装置全体のエネルギー効率を更に向上させることができる。
 さらに、不合理に低い温度まで調湿対象空気の温度を下げなくても目的の除湿を行うことが可能である。
 そして、本請求項4の発明に係る空気調和装置は、請求項3の発明に係る空気調和装置が奏する効果に加えて、前記高段側冷却器、低段側冷却器及び屋内空気冷却器に供給されて前記調湿対象空気の顕熱及び潜熱と前記屋内空気の顕熱を吸収する二次側冷媒の二次側冷媒循環経路と前記二次側冷媒を冷却する一次側冷媒の一次側冷媒循環経路とを物理的に分離した状態で前記一次側冷媒及び2次側冷媒相互間の熱交換を実施する第1の冷媒間熱交換器とを備えていることにより、一次側から屋内へ一次冷媒を漏れ出させないため、エネルギー効率を優先して人体に有害な一次冷媒を用いた場合でも空調時のエネルギー効率を向上させるとともに屋内にいる人間に有害な影響を与えないで安全確保をより一層実現することができる。
 そして、本請求項5の発明に係る空気調和装置は、請求項4の発明に係る空気調和装置が奏する効果に加えて、前記第1の冷媒間熱交換器が、前記建屋の屋外に設置され、前記二次側冷媒のうち前記高段側冷却器及び低段側冷却器のそれぞれで使用する冷媒と前記屋内空気冷却器で使用する冷媒が、相互に異なる種類の冷媒であり、前記屋内空気冷却器で使用する冷媒が、前記高段側冷却器及び低段側冷却器のそれぞれで使用する冷媒より安全性の高い冷媒であり、前記高段側冷却器及び低段側冷却器のそれぞれで使用する冷媒と前記屋内空気冷却器で使用する冷媒との間で熱交換を実施する第2の冷媒間熱交換器が、前記建屋の屋外に設置されていることにより、一次冷媒又は二次冷媒が屋内に大量に漏洩することを防止するため、エネルギー効率を優先して人体に有害な一次冷媒又は二次冷媒を用いた場合でも空調時のエネルギー効率を向上させるとともに屋内にいる人間に有害な影響を与えないで安全確保をより一層実現することができる。
 そして、本請求項6の発明に係る空気調和装置は、請求項4又は請求項5の発明に係る空気調和装置が奏する効果に加えて、前記一次側冷媒が、冷媒としての性能が優秀なアンモニアであり、前記二次側冷媒が、他の冷媒に比べて安全な水又はブラインであることにより、人体に有害なアンモニアを屋外のみで循環させるため、屋内の安全確保を実現した状態で、自然冷媒を使用して環境に優しいとともに空調時のエネルギー効率の優れた空気調和装置を実現することができる。
 なお、「冷媒としての性能が優秀」とは、他の冷媒に比べて成績係数が良いことを意味する。
 そして、本請求項7の発明に係る空気調和装置は、請求項4又は請求項5の発明に係る空気調和装置が奏する効果に加えて、前記一次側冷媒が、フロン、アンモニア、水、炭酸ガス、炭化水素の中の一つであり、前記二次側冷媒が、炭酸ガスであることにより、炭酸ガスによる潜熱による熱輸送をおこない、一次側冷媒及び二次側冷媒にアンモニア及び水をそれぞれ用いる場合の水の顕熱による熱輸送の欠点である冷媒温度と調湿対象空気との温度差の増大による冷凍機のエネルギー効率低下と水を循環させるためのポンプ動力増大とを回避するとともに、比較的安全な炭酸ガスを二次冷媒として使用することにより安全性を確保することができる。
 そして、本請求項8の発明に係る空気調和装置は、請求項1乃至請求項7のいずれか一つの発明に係る空気調和装置が奏する効果に加えて、前記高段側冷却器に接続されている高段圧縮機と前記低段側冷却器に接続されている低段圧縮機とが、ターボ冷凍機であり且つ可変速制御可能であることにより、高段側圧縮機及び低段側圧縮機ともに圧縮比が小さくなるため、効率良く調湿対象空気を冷却及び除湿し、しかも高段側圧縮機又は低段側圧縮機の回転数制御を行って高段側蒸発温度及び低段側蒸発温度を最適な温度に調整して空気調和装置全体のエネルギー効率を向上させることができる。
本発明の第1実施例に係る空気調和装置の構成を示したブロック図。 本発明の第2実施例に係る空気調和装置の構成を示したブロック図。 本発明の第3実施例に係る空気調和装置の構成を示したブロック図。 本発明の第4実施例に係る空気調和装置の構成を示したブロック図。
 本発明の空気調和装置は、建屋の屋外空気及び屋内空気のうち少なくとも屋内空気を含んだ調湿対象空気を前記建屋の屋内に給気する給気ダクトと、この給気ダクトの途中に設けられているとともに調湿対象空気の主に顕熱を除去する高段側冷却器と、この高段側冷却器からみて給気ダクトの下流側に設けられているとともに高段側冷却器で負荷の一部を除去された調湿対象空気の主に潜熱を除去する低段側冷却器と、屋内空気の主に顕熱を除去する屋内空気冷却器とを備えているものであれば、その具体的な実施の態様は、如何なるものであっても何ら構わない。
 例えば、ヒートパイプ等の第1熱回収器及び第2熱回収器によって吸熱された熱エネルギーを除湿後の調湿対象空気に供給することにより、給気ダクトを通過して冷え過ぎた調湿対象空気の温度を上昇させるため、屋内に給気される調湿対象空気のドラフトを回避することができる。
 ここで、「ドラフト」とは、冷房空調において冷却した調湿対象空気を屋内に供給するとき、屋内の温度に比べて低過ぎる温度の調湿対象空気が屋内の人間に直接当たることで人間が不快に感じる現象をいう。
 また、給気ダクトの吸入口は、屋内空気及び屋外空気のそれぞれを給気可能なように屋内空気及び屋外空気のそれぞれに対応して複数設けられていてもよい。
 以下、図1乃至図4を参照しながら、本発明に係る空気調和装置の第1実施例乃至第4実施例を説明する。
 ここで、図1は、本発明の第1実施例に係る空気調和装置の構成を示したブロック図であり、図2は、本発明の第2実施例に係る空気調和装置の構成を示したブロック図であり、図3は、本発明の第3実施例に係る空気調和装置の構成を示したブロック図であり、図4は、本発明の第4実施例に係る空気調和装置の構成を示したブロック図である。
[第1実施例]
 まず、図1を参照しながら、本発明の第1実施例に係る空気調和装置100を説明する。
 図1に示すように、空気調和装置100は、給気ダクト110、二段圧縮式冷凍機100A、屋内空気冷却器140及び屋内空気取り込み用ファン150を備えている。
 二段圧縮式冷凍機100Aは、高段側冷却器120、低段側冷却器130、エバコンEC、高段圧縮機HP、高圧受液器HR、中間受液器MR、低段圧縮機LP、及び低圧受液器LRを備え、冷媒Cを高段側冷却器120、低段側冷却器130及び屋内空気冷却器140に供給して調湿対象空気CAを冷却する。
 エバコンECは、低い凝縮温度が効率良く実現できるように低揚程、大容量のファンが有効に働く通風面積の大きなもので、凝縮温度を制御するためのファンの回転数制御を実行可能なように構成されている。
 高段圧縮機HPは、低圧縮比で効率の良いベーン特性を持つターボ圧縮機であり、インバータで回転数容量制御される。
 中間受液器MRは、二段圧縮二段膨張を安定して運転できるための機器であり、満液式空気冷却器である高段側冷却器120及び屋内空気冷却器140に液体状の冷媒Cを送り、戻ってきた液ガス混合冷媒を分離してガスだけを高段圧縮機HPに戻す働きをするとともに低段圧縮機LPの吐出ガスを冷却するインタークーラーの働きをする。
 低段圧縮機LPは、低圧縮比で効率の良いベーン特性を持つターボ圧縮機であり、インバータにより回転数容量制御される。
 そして、高段側圧縮機HP及び低段側圧縮機LPの回転制御により効率の良い中間圧力を設定することができる。
 なお、高段側圧縮機HP及び低段側圧縮機LPの回転数は、それぞれ別々に制御可能である。
 低圧受液器LRは、潜熱回収用としての満液式の蒸発器である低段側冷却器130に液体状の冷媒Cを送り、戻ってきた液ガス混合冷媒を分離してガスだけを低段圧縮機LPに戻す働きをする。
 高段側冷却器120及び屋内空気冷却器140は、比較的高い蒸発温度で調湿対象空気CA及び屋内空気IAの顕熱負荷を効率良く処理する。
 低段側冷却器130は、絶対湿度が設定値になるまで調湿対象空気CAの温度を下げて調湿対象空気CA中の水分を凝縮させて除去する。
 空気調和装置100は、建屋Bの屋外空気OA及び屋内空気IAのうち少なくとも屋内空気IAを含んだ調湿対象空気CAを建屋Bの屋内に給気する給気ダクト110と、給気ダクト110の途中に設けられているとともに調湿対象空気CAの主に顕熱を除去する高段側冷却器120と、この高段側冷却器120からみて給気ダクト110の下流側に設けられているとともに高段側冷却器120で負荷の一部を除去された調湿対象空気CAの主に潜熱を除去する低段側冷却器130と、屋内空気IAの主に顕熱を除去する屋内空気冷却器140とを備えていることにより、高段側冷却器120で処理出来る熱負荷は、出来るだけ多く高段側冷却器120で処理して、低段側冷却器130の熱負荷を少なくし、不合理に低い温度まで余分に多くの調湿対象空気CAの温度を下げないとともに、余分に多くの調湿対象空気CAの温度を下げて無駄なエネルギーを消費することで生じる消費エネルギーの増大を回避して除湿時のエネルギー効率を向上させ、しかも不合理に低い温度まで冷媒Cの蒸発温度を下げることを回避して省エネルギーと安全性の確保及び環境保護を実現するようになっている。
 加えて、調湿対象空気CAを必要最小限の流量に抑えて調湿対象空気CAの冷却負荷を最小限に抑え、効率の良い屋内空気冷却器140、例えば、二段圧縮式冷凍機100Aの高段側に接続された蒸発器等からなる屋内空気冷却器140を使用して必要な顕熱負荷の処理を行うことにより、消費エネルギーを最小限に抑えることができる。
 より具体的には、例えば、真夏の気温35℃、湿球温度27℃のとき、大部分の顕熱を処理するのに高段側の蒸発温度を20℃、大部分の潜熱を処理するのに低段側の蒸発温度を10℃、屋内温度28℃、凝縮温度32℃と設定すれば可能であるが、この時の二段圧縮式冷凍機100Aの高段側及び低段側のそれぞれの圧縮比が、ともに1.4程度であるため、空気調和装置100は、高段圧縮機HP及び低段圧縮機LPにターボ冷凍機を使用した時の二段圧縮式冷凍機120の成績係数を12以上にすることができる。
 また、空気調和装置100は、除湿時の環境条件及び装置の設定条件を最適化して二段圧縮式冷凍機100Aの成績係数を10以上にすることができる。
 なお、蒸気圧縮式冷凍機において、蒸発温度をTE、凝縮温度をTCとした時の理想的な冷凍機の場合、成績係数=TE/(TC-TE)の関係があり、現実の冷凍機の場合も成績係数は蒸発温度が高ければ高いほど、凝縮温度が低ければ低いほど成績係数は大きい。
 空気調和装置100の場合、冷凍負荷に潜熱負荷と顕熱負荷があるが、顕熱負荷は目標の屋内温度より低い蒸発温度であれば目的を果たすことが可能であるが、潜熱負荷は目標絶対湿度相対飽和温度より低い蒸発温度が必要であり、顕熱負荷用の蒸発温度よりかなり低い。
 一般には顕熱と潜熱をまとめて一つの蒸発器で処理しているので、潜熱除去するための蒸発温度になっていて、不合理に低い温度での運転となり、エネルギーを過剰に消費していたという問題があった。
 上述の空気調和装置100によれば、このような問題を解消して効率良く空調を行うことができる。
 また、空気調和装置100は、給気ダクト110の吸入口111に設置されて給気ダクト110に屋内空気IAを取り込む屋内空気取り込み用ファン150を備えていることにより、屋内空気IAと屋外空気OAの潜熱負荷の割合に起因して低段側冷却器130に掛る負担が最小限になるように屋内空気取り込み用ファン150を制御して給気ダクト110への屋内空気IAの供給量を調節するようになっている。
 さらに、空気調和装置100は、不合理に低い温度まで調湿対象空気CAの温度を下げなくても目的の除湿を行うことが可能である。
 また、空気調和装置100は、屋内発生潜熱負荷が多く、屋外空気OAの除湿だけでは目的の湿度を保つことができなかったら低段側冷却器130の蒸発温度を過度に下げることが必要となるため、屋内空気取り込み用ファン150で屋内空気IAを調湿対象空気CAの少なくとも一部として給気ダクト110に取り込むことにより、効率の良い二段圧縮式冷凍機100Aの運転状態を維持するようになっている。
 また、エネルギー効率を向上させる点のみに注目すれば、空気調和装置100に用いられる冷媒Cとしてフロンを用いてもよい。
 加えて、空気調和装置100は、高段側冷却器120及び低段側冷却器130で除去した顕熱負荷の残りを、高段側に接続された蒸発器等の屋内空気冷却器140で処理して、装置全体のエネルギー効率を更に向上させるようになっている。
[第2実施例]
 次に、図2を参照しながら、本発明の第2実施例に係る空気調和装置200を説明する。
 なお、以下の第2実施例、第3実施例及び第4実施例に係る空気調和装置では、上述の空気調和装置100と共通する部分の符号を100番台から200番台、300番台、及び400番台にそれぞれ付け替えてその詳細な説明を省略する。
 図2に示すように、第2実施例に係る空気調和装置200は、建屋Bの屋内に設置された給気ダクト210、第1熱回収器260及び第2熱回収器270を備えている。
 空気調和装置200は、高段側冷却器220からみて給気ダクト210の上流側ダクト部分210Aに設置されたヒートパイプ等の第1熱回収器260と、給気ダクト210のうち高段側冷却器260及び低段側冷却器270の間の蒸発器間ダクト部分210Bに設置されたヒートパイプ等の第2熱回収器270とを備えていることにより、第一熱回収器260、高段側冷却器220、第二熱回収器270、及び低段側冷却器230で順次調湿対象空気CAから吸熱するため、高段側冷却器220及び低段側冷却器230のみで調湿対象空気CAから吸熱する場合と比較して、第2熱回収器270により低段側冷却器230の吸熱負担を小さくするとともに高段側冷却器220の負担の割合を大きくして効率の良い運転を行い、高段側冷却器220及び低段側冷却器230を作動させるのに必要な高段側圧縮機HP及び低段側圧縮機LPのトータルの動力エネルギーを減少させるようになっている。
 より具体的には、除湿用の低段側冷却器230で冷却された調湿対象空気CAの温度が14℃、屋内空気IAの目的温度が28℃の時、高段側に接続された蒸発器からなる屋内空気冷却器240の屋内負荷による顕熱の大部分を除去して30℃になるはずの屋内空気IAと14℃の調湿対象空気CAとを混合させて28℃を保つ運転をした時、不可逆変化が起きてエントロピが増加し無駄が発生していることが分かる。
 より具体的には、10℃の蒸発器で冷却された14℃の調湿対象空気CAを30℃になるはずの屋内空気IAに混合して28℃を保つ時と、屋内空気IAを28℃に保つのに20℃の蒸発器で行う場合とでは当然前者に無駄がある。
 この無駄を第1熱回収器260及び第2熱回収器270により回収して、例えば14℃の空気を21℃まで温めて屋内に供給すれば、無駄を約50%軽減できることになる。
 また、空気調和装置200は、潜熱を除去するために目的の屋内空気IAの温度と比較して冷やし過ぎた調湿対象空気CAを第1熱回収器260で暖めて屋内空気IAの温度に近づけることにより、屋内のドラフトすなわち低温度の調湿対象空気CAが吸気口212から屋内に流れ込むことで屋内の人間が感じる不快感を防ぐようになっている。
[第3実施例]
 次に、図3を参照しながら、本発明の第3実施例に係る空気調和装置300を説明する。
 図3に示すように、第3実施例に係る空気調和装置300は、それぞれが第1の冷媒間熱交換器の一例である高段側チラー380A及び低段側チラー380Bと、高段側冷却器
320と、低段側冷却器330と、エバコンECと、高段圧縮機HPと、高圧受液器HRと、中間受液器MRと、低段圧縮機LPと、低圧受液器LRと、冷水タンクWT1、WT2と、冷水ポンプWP1及び冷水ポンプWP2とを備えている。
 二段圧縮式冷凍機300Aは、二次側冷媒C2を高段側冷却器320及び低段側冷却器330に供給して調湿対象空気CAを冷却する。
 空気調和装置300は、高段側冷却器320、低段側冷却器330及び屋内空気冷却器340に供給されて調湿対象空気CAの顕熱及び潜熱と屋内空気IAの顕熱を吸収する二次側冷媒C2の二次側冷媒循環経路P2と二次側冷媒C2を冷却する一次側冷媒C1の一次側冷媒循環経路P1とを物理的に分離した状態で一次側冷媒C1及び二次側冷媒C2相互間の熱交換を実施する高段側チラー380A及び低段側チラー380Bとを備えていることにより、一次側から屋内へ一次側冷媒C1を漏れ出させないため、エネルギー効率を優先して人体に有害な一次冷媒を用いた場合でも空調時のエネルギー効率を向上させるとともに屋内にいる人間に有害な影響を与えないで安全確保をより一層実現するようになっている。
 また、空気調和装置300は、一次側冷媒C1が、冷媒としての性能が優秀なアンモニアであり、二次側冷媒C2が、他の冷媒に比べて安全な水又はブラインであることにより、人体に有害なアンモニアを屋外のみで循環させるため、屋内の安全確保を実現した状態で、自然冷媒を使用して環境に優しいとともに空調時のエネルギー効率の優れた空気調和装置を実現するようになっている。
 なお、一次側冷媒C1としてアンモニアを用いた場合、一次側冷媒C1として水を用いる場合に比べて、効率、価格、物性、装置を含めた経済的な観点で優位である。
 空気調和装置300では、一次側冷媒C1が、フロン、アンモニア、水、炭酸ガス、炭化水素の中の一つであり、二次側冷媒C2が、炭酸ガスであってもよい。
 このような一次側冷媒C1及び二次側冷媒C2を用いることにより、炭酸ガスによる潜熱による熱輸送をおこない、一次側冷媒C1及び二次側冷媒C2にアンモニア及び水をそれぞれ用いる場合の水の顕熱による熱輸送の欠点である冷媒温度と調湿対象空気との温度差の増大による冷凍機のエネルギー効率低下と水を循環させるためのポンプ動力増大とを回避するとともに、比較的安全な炭酸ガスを二次側冷媒C2として使用することにより安全性を確保することができる。
 一次側冷媒C1が、フロン、アンモニア、水、炭酸ガス、炭化水素の中の一つであり、二次側冷媒C2が、炭酸ガスである場合、一次側冷媒C1及び二次側冷媒C2にアンモニア及び水をそれぞれ用いる場合に比べて顕熱輸送による蒸発温度及び調湿対象空気の温度相互の温度差増大と水を循環させるポンプ動力増大とを回避するとともに相対的に二次側冷媒C2より大量に用いられる一次側冷媒C1を屋内に漏出させてしまうことを無くして屋内における酸欠状態を回避し、しかも水に比べて相対的に調湿対象空気CA及び炭酸ガス間相互の熱交換を効率良く行うため、安全性確保を実現するとともに熱交換におけるエネルギー損失負担を回避して装置全体のエネルギー効率をより一層向上させることができる。
 なお、顕熱輸送とは、温度変化による熱の授受を利用することをいう。
 これに対して潜熱輸送とは、相変化による熱の授受を利用して熱を移送することをいう。
[第4実施例]
 次に、図4を参照しながら、第4実施例に係る空気調和装置400を説明する。
 図4に示すように、第3実施例に係る空気調和装置400は、給気ダクト410、二段圧縮式冷凍機400A、第1熱回収器460、第2熱回収器470、及び屋内空気取り込み用ファン450を備えている。
 二段圧縮式冷凍機400Aは、それぞれが第1の冷媒間熱交換器の一例である高段側カスケードコンデンサ490A及び低段側カスケードコンデンサ490Bと、高段側に接続された蒸発器である高段側冷却器420と、低段側に接続された蒸発器である低段側冷却器430と、エバコンECと、高段圧縮機HPと、高圧受液器HRと、中間受液器MRと、低段圧縮機LPと、低圧受液器LRと、第2の冷媒間熱交換器の一例である高段炭酸ガス受液器HGRと、低段炭酸ガス受液器LGR、及び冷媒ポンプCP1-1、CP1-2、CP2を備え、二次側冷媒C2を高段側冷却器420及び低段側冷却器430に供給して調湿対象空気CAを冷却する。
 高段側カスケードコンデンサ490Aで冷却され液化された液体炭酸ガスは、高段炭酸ガス受液器HGRに入り液ヘッド差又は液ポンプにより高段側冷却器420及び屋内空気冷却器440に送られる。
 高段側カスケードコンデンサ490A及び低段側カスケードコンデンサ490Bに送られたアンモニアなどの一次側冷媒C1は、高段側カスケードコンデンサ490A及び低段側カスケードコンデンサ490Bの屋内側に接続された部分の炭酸ガス等の二次側冷媒C2-1、C2-2を液化する。
 液化した屋内側の炭酸ガスなどの二次側冷媒C2-2は、液ヘッド差又は液ポンプにより低段側冷却器430に送られ、主に潜熱負荷を取って蒸発し低段側カスケードコンデンサ490Bに戻る。
 一方、高段側冷却器420に送られた液体炭酸ガスなどの二次側冷媒C2-1は、調湿対象空気CAの負荷の一部を比較的高い蒸発温度で処理して、高段炭酸ガス受液器HGRに戻る。
 この時、炭酸ガスによる熱交換と熱輸送は、潜熱変化を伴って行われるので、水を介在させる顕熱利用の時と比較して格段に効率が良くなる。
 この例のような高段側カスケードコンデンサ490A及び低段側カスケードコンデンサ490Bは、屋内でガス漏れがあった時、二段圧縮式冷凍機400Aの本体における大量の一次側冷媒C1すなわちアンモニアと繋がっていると中毒や酸欠等の大事故に結び付く可能性がある場合に使用し、大空間を持ち比較的換気しやすい工場等では必要としないことがある。
 空気調和装置400では、高段側カスケードコンデンサ490A及び低段側カスケードコンデンサ490Bが、建屋Bの屋外に設置され、二次側冷媒C2のうち高段側冷却器420及び低段側冷却器430のそれぞれで使用する冷媒C2-1、C2-2と屋内空気冷却器440で使用する冷媒C2-3が、相互に異なる種類の冷媒であり、屋内空気冷却器440で使用する冷媒C2-3が、高段側冷却器420及び低段側冷却器430のそれぞれで使用する冷媒C2-1、C2-2より安全性の高い冷媒であり、高段側冷却器420及び低段側冷却器430のそれぞれで使用する冷媒C2-1、C2-2と屋内空気冷却器440で使用する冷媒C2-3との間で熱交換を実施する高段炭酸ガス受液器HGRが、建屋Bの屋外に設置されていることにより、空気調和装置400は、一次側冷媒C1が屋内に大量に漏洩することを防止するため、エネルギー効率を優先して人体に有害な一次側冷媒C1を用いた場合でも空調時のエネルギー効率を向上させるとともに屋内にいる人間に有害な影響を与えないで安全確保をより一層実現するようになっている。
 また、空気調和装置400では、空気調和装置300と同様に、一次側冷媒C1が、アンモニアであり、二次側冷媒C2が、水又はブラインであってもよいし、一次側冷媒C1が、フロン、アンモニア、水、炭酸ガス、炭化水素の中の一つであり、二次側冷媒C2が、炭酸ガスであってもよく、空気調和装置300と同様の効果を得ることができる。
 100、200、300、400 ・・・ 空気調和装置
 110、210、310、410 ・・・ 給気ダクト
 210A、310A、410A ・・・ 上流側ダクト部分
 210B、310B、410B ・・・ 蒸発器間ダクト部分
 210C、310C、410C ・・・ 下流側ダクト部分
 111、211、311、411 ・・・ 吸入口
 100A、200A、300A、400A ・・・ 二段圧縮式冷凍機
 120、220、320、420 ・・・ 高段側冷却器
 130、230、330、430 ・・・ 低段側冷却器
 140、240、340、440 ・・・ 屋内空気冷却器
 212、312、412 ・・・ 吸気口
 260、360、460 ・・・ 第1熱回収器
 270、370、470 ・・・ 第2熱回収器
 150、250、350、450 ・・・ 屋内空気取り込み用ファン
 380A ・・・ 高段側チラー
 380B ・・・ 低段側チラー
 490A ・・・ 高段側カスケードコンデンサ
 490B ・・・ 低段側カスケードコンデンサ
 EC ・・・ エバコン
 HP ・・・ 高段圧縮機
 HR ・・・ 高圧受液器
 MR ・・・ 中間受液器
 LP ・・・ 低段圧縮機
 LR ・・・ 低圧受液器
 CA ・・・ 調湿対象空気
 OA ・・・ 屋外空気
 IA ・・・ 屋内空気
 C ・・・ 冷媒
 C1 ・・・ 一次側冷媒
 C2-1、C2-2、C2-3 ・・・ 二次側冷媒
 P1 ・・・ 一次側冷媒循環経路
 P2 ・・・ 二次側冷媒循環経路
 B ・・・ 建屋
 WT1、WT2 ・・・ 冷水タンク
 WP1、WP2 ・・・ 冷水ポンプ
 CP1-1、CP1-2、CP2 ・・・ 冷媒ポンプ

 
 

Claims (8)

  1.  建屋の屋外空気及び屋内空気のうち少なくとも屋内空気を含んだ調湿対象空気を前記建屋の屋内に給気する給気ダクトと、
     該給気ダクトの途中に設けられているとともに前記調湿対象空気の主に顕熱を除去する高段側冷却器と、
     該高段側冷却器からみて前記給気ダクトの下流側に設けられているとともに前記高段側冷却器で負荷の一部を除去された前記調湿対象空気の主に潜熱を除去する低段側冷却器と、
     前記屋内空気の主に顕熱を除去する屋内空気冷却器と
     を備えていることを特徴とする空気調和装置。
  2.  前記高段側冷却器からみて前記給気ダクトの上流側ダクト部分に設置された第1熱回収器と、
     前記給気ダクトのうち前記高段側冷却器及び低段側冷却器の間の蒸発器間ダクト部分に設置された第2熱回収器と
     を備えていることを特徴とする請求項1に記載の空気調和装置。
  3.  前記給気ダクトの吸入口に設置されて前記給気ダクトに前記屋内空気を取り込む屋内空気取り込み用ファンと
     を備えていることを特徴とする請求項1又は請求項2記載の空気調和装置。
  4.  前記高段側冷却器、低段側冷却器及び屋内空気冷却器に供給されて前記調湿対象空気の顕熱及び潜熱と前記屋内空気の顕熱を吸収する二次側冷媒の二次側冷媒循環経路と前記二次側冷媒を冷却する一次側冷媒の一次側冷媒循環経路とを物理的に分離した状態で前記一次側冷媒及び2次側冷媒相互間の熱交換を実施する第1の冷媒間熱交換器と
     を備えていることを特徴とする請求項3に記載の空気調和装置。
  5.  前記第1の冷媒間熱交換器が、前記建屋の屋外に設置され、
     前記二次側冷媒のうち前記高段側冷却器及び低段側冷却器のそれぞれで使用する冷媒と前記屋内空気冷却器で使用する冷媒が、相互に異なる種類の冷媒であり、
     前記屋内空気冷却器で使用する冷媒が、前記高段側冷却器及び低段側冷却器のそれぞれで使用する冷媒より安全性の高い冷媒であり、
     前記高段側冷却器及び低段側冷却器のそれぞれで使用する冷媒と前記屋内空気冷却器で
    使用する冷媒との間で熱交換を実施する第2の冷媒間熱交換器が、前記建屋の屋外に設置されていること
     を特徴とする請求項4に記載の空気調和装置。
  6.  前記一次側冷媒が、冷媒としての性能が優秀なアンモニアであり、
     前記二次側冷媒が、他の冷媒に比べて安全な水又はブラインであること
     を特徴とする請求項4又は請求項5に記載の空気調和装置。
  7.  前記一次側冷媒が、フロン、アンモニア、水、炭酸ガス、炭化水素の中の一つであり、
     前記二次側冷媒が、炭酸ガスであること
     を特徴とする請求項4又は請求項5記載の空気調和装置。
  8.  前記高段側冷却器に接続されている高段圧縮機と前記低段側冷却器に接続されている低段圧縮機とが、ターボ冷凍機であり且つ可変速制御可能であること
     を特徴とする請求項1乃至請求項7のいずれか一つに記載の空気調和装置。

     
PCT/JP2012/071804 2011-09-01 2012-08-29 空気調和装置 WO2013031813A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG2014014799A SG2014014799A (en) 2011-09-01 2012-08-29 Air conditioning device
IN2245CHN2014 IN2014CN02245A (ja) 2011-09-01 2014-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-190883 2011-09-01
JP2011190883A JP5330471B2 (ja) 2011-09-01 2011-09-01 空気調和装置

Publications (1)

Publication Number Publication Date
WO2013031813A1 true WO2013031813A1 (ja) 2013-03-07

Family

ID=47756294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071804 WO2013031813A1 (ja) 2011-09-01 2012-08-29 空気調和装置

Country Status (5)

Country Link
JP (1) JP5330471B2 (ja)
IN (1) IN2014CN02245A (ja)
MY (1) MY165712A (ja)
SG (1) SG2014014799A (ja)
WO (1) WO2013031813A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163042A1 (ja) * 2018-02-22 2019-08-29 三菱電機株式会社 空気調和装置およびエアハンドリングユニット

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148038A (en) * 1980-04-21 1981-11-17 Takasago Thermal Eng Co Lts Low-temperature environmental laboratory equipment
JPS61276637A (ja) * 1985-05-29 1986-12-06 Kajima Corp 空気調和装置
JPS63212836A (ja) * 1987-03-02 1988-09-05 Toyo Eng Works Ltd 自走車用環境試験室の可変恒温、恒湿制御装置
JPH09105539A (ja) * 1995-10-06 1997-04-22 Takasago Thermal Eng Co Ltd 空調システム及び空調機
JP2006170543A (ja) * 2004-12-16 2006-06-29 Techno Ryowa Ltd 恒温・恒湿用空調システム
WO2010023737A1 (ja) * 2008-08-27 2010-03-04 株式会社前川製作所 二段圧縮ヒートポンプサイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148038A (en) * 1980-04-21 1981-11-17 Takasago Thermal Eng Co Lts Low-temperature environmental laboratory equipment
JPS61276637A (ja) * 1985-05-29 1986-12-06 Kajima Corp 空気調和装置
JPS63212836A (ja) * 1987-03-02 1988-09-05 Toyo Eng Works Ltd 自走車用環境試験室の可変恒温、恒湿制御装置
JPH09105539A (ja) * 1995-10-06 1997-04-22 Takasago Thermal Eng Co Ltd 空調システム及び空調機
JP2006170543A (ja) * 2004-12-16 2006-06-29 Techno Ryowa Ltd 恒温・恒湿用空調システム
WO2010023737A1 (ja) * 2008-08-27 2010-03-04 株式会社前川製作所 二段圧縮ヒートポンプサイクル装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163042A1 (ja) * 2018-02-22 2019-08-29 三菱電機株式会社 空気調和装置およびエアハンドリングユニット
JPWO2019163042A1 (ja) * 2018-02-22 2020-12-17 三菱電機株式会社 空気調和装置およびエアハンドリングユニット

Also Published As

Publication number Publication date
IN2014CN02245A (ja) 2015-06-12
MY165712A (en) 2018-04-20
JP5330471B2 (ja) 2013-10-30
SG2014014799A (en) 2014-06-27
JP2013053772A (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
US20120006050A1 (en) Air-conditioning apparatus
US20220097478A1 (en) Thermal management system
KR100823653B1 (ko) 통신장비용 냉방장치
CN108679747B (zh) 一种新风除湿空调系统
WO2010113420A1 (ja) 除湿システム
JP6606194B2 (ja) 空気圧縮機
US11747057B2 (en) Heat pump system
US11828507B2 (en) Air conditioning system and control method therefor
CN107036194B (zh) 高温水冷双冷源除湿新风换气机组
JP2006317012A (ja) エアコン
US9920973B2 (en) Air conditioner exhaust recycling
CN110608541B (zh) 一种热泵系统
JP5330471B2 (ja) 空気調和装置
CN106766332B (zh) 空调系统单元及空调系统
CN108375255A (zh) 空调器系统
CN213687346U (zh) 一种蒸发冷热泵机组
JP2010243005A (ja) 除湿システム
CN114278984A (zh) 多功能空调、控制方法及计算机可读存储介质
CN111251805B (zh) 车辆、车辆的热管理系统及其控制方法
JP2010243003A (ja) 除湿システム
CN215597814U (zh) 空调器
CN215337172U (zh) 空调器
WO2021063272A1 (zh) 热管理系统
CN112146302B (zh) 一种蒸发冷热泵机组
CN220892420U (zh) 空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828258

Country of ref document: EP

Kind code of ref document: A1