WO2013031752A1 - 太陽電池モジュールの製造方法、太陽電池裏面封止シートおよび太陽電池モジュール - Google Patents

太陽電池モジュールの製造方法、太陽電池裏面封止シートおよび太陽電池モジュール Download PDF

Info

Publication number
WO2013031752A1
WO2013031752A1 PCT/JP2012/071650 JP2012071650W WO2013031752A1 WO 2013031752 A1 WO2013031752 A1 WO 2013031752A1 JP 2012071650 W JP2012071650 W JP 2012071650W WO 2013031752 A1 WO2013031752 A1 WO 2013031752A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
resin
film
silicon oxide
Prior art date
Application number
PCT/JP2012/071650
Other languages
English (en)
French (fr)
Inventor
亀田俊輔
荒井崇
網岡孝夫
芦田ゆう佳
Original Assignee
東レ株式会社
東レフィルム加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社, 東レフィルム加工株式会社 filed Critical 東レ株式会社
Priority to CN201280041452.3A priority Critical patent/CN103765611A/zh
Priority to KR1020147003863A priority patent/KR20140059197A/ko
Priority to US14/238,608 priority patent/US20140190557A1/en
Priority to IN2271CHN2014 priority patent/IN2014CN02271A/en
Publication of WO2013031752A1 publication Critical patent/WO2013031752A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for producing a solar cell module that can withstand use in a severe outdoor environment for a long period of time and is excellent in adhesion and weather resistance to a silicone encapsulant, a solar cell backside sealing sheet, and a solar cell module It is.
  • Solar cells used for photovoltaic power generation constitute the heart of a photovoltaic power generation system that directly converts sunlight energy into electrical energy, and are made of semiconductors such as silicon.
  • solar cell elements hereinafter referred to as cells
  • a unit incorporated in this package is called a solar cell module, and generally has a structure in which the surface exposed to sunlight is covered with glass, the gap is filled with a sealing material made of a thermoplastic resin, and the back surface is protected with a sealing sheet. ing. Therefore, the solar cell module is generally configured by laminating glass, a sealing material layer including cells, and a back surface sealing sheet in this order.
  • EVA resin ethylene-vinyl acetate copolymer resin
  • EVA resin ethylene-vinyl acetate copolymer resin
  • silicone resin takes time for thermosetting when sealing cells, and there is a risk of discoloration when exposed to ultraviolet rays for a long time, it is often mixed with an ultraviolet absorber. Since it is limited, there is a problem that power generation efficiency is suppressed.
  • Silicone is an example of a sealing material that compensates for such problems. Since silicone has excellent environmental resistance and light transmittance, there is a possibility that power generation efficiency can be improved as compared with the case where EVA resin is used. Further, by using liquid silicone having thermosetting property, it can be thermoset in a shorter time than EVA resin, which contributes to the improvement of productivity of the solar cell module.
  • the back side sealing sheet has mechanical strength, heat resistance, water resistance, chemical resistance, light reflectivity, water vapor barrier property, thermal adhesiveness with sealing material, design, and for mounting the outermost terminal box Not only properties such as adhesive strength with silicone resins are required, but also excellent weather resistance is required due to exposure to ultraviolet light.
  • a white polyvinyl fluoride film (DuPont, trade name: “Tedlar” (registered trademark)) can be exemplified, and the film is a polyester film.
  • a backside sealing sheet having a laminated structure in which sandwiches are sandwiched is widely used in such applications.
  • Patent Document 1 a configuration in which a polyester film excellent in weather resistance and gas barrier properties is laminated can be exemplified.
  • Patent Document 2 JP 2002-026354 A (paragraphs [0008] to [0010]) JP 2003-060218 A (paragraphs [0008] to [0010])
  • thermo adhesive layer hot melt adhesive layer
  • styrene / olefin copolymer resin disclosed in Patent Document 2 is improved in adhesive strength, but it cannot be said that the strength is sufficient. There was also concern about the durability.
  • the backside sealing sheet film has poor adhesiveness with silicone, and therefore, it is necessary to develop a new backside sealing sheet suitable for the silicone sealing material.
  • the back surface sealing sheet of the structure in which the polyester film is sandwiched between the polyvinyl fluoride films is excellent in weather resistance, it is expensive, so that it is an obstacle in terms of reducing the cost of the solar cell module.
  • An object of the present invention is to provide a solar cell module manufacturing method, a solar cell back surface sealing sheet, and a solar cell module, which are capable of overcoming the above problems and having excellent adhesion and weather resistance to a silicone sealing material.
  • the manufacturing method of the solar cell module of the present invention has the following configuration in order to solve this problem. That is, A coating containing at least one of a silicate hydrolysis product and silica fine particles is applied to at least one surface of a base film to form a silicon oxide layer, and the silicon oxide layer and the silicone sealing material layer are bonded to each other. A method for manufacturing a solar cell module.
  • the solar cell back surface sealing sheet of this invention has the following structure, in order to solve this subject. That is, A solar cell backside sealing sheet having a silicon oxide layer formed by coating a coating containing at least one of a silicate hydrolysis product and silica fine particles on at least one side of a base film.
  • the solar cell module of the present invention has the following configuration. That is, A solar cell module in which the silicon oxide layer and the silicone sealing material layer are directly laminated.
  • the silicate is preferably butyl silicate.
  • the base film contains an inorganic pigment.
  • the base film has a resin layer containing an ultraviolet absorber on the surface opposite to the surface on which the silicon oxide layer is formed.
  • the base film has a resin layer containing an ultraviolet absorber, and the surface on which the silicon oxide layer is formed is the resin layer side.
  • the manufacturing method of a solar cell module excellent in the adhesive force with respect to a silicone sealing material and the weather resistance which can be used in the severe outdoor environment for a long term, a solar cell backside sealing sheet, and a solar cell module Is obtained.
  • a coating containing at least one of a silicate hydrolysis product and silica fine particles is applied to at least one surface of a base film to form a silicon oxide layer, The physical layer and the silicone sealing material layer are adhered to each other.
  • an excellent adhesive force between the base film and the silicone sealing material layer can be obtained, and further, a solar cell module having excellent weather resistance can be obtained.
  • Base film In the solar cell backside sealing sheet of the present invention, various resin films can be used as the base film when forming the silicon oxide layer disposed on the surface in contact with the silicone sealing material layer.
  • polyester resin films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), resin films such as polycarbonate, polymethyl methacrylate, polyacrylate, polypropylene, and polyethylene, and resin films obtained by mixing these resins. It is done. Among them, a polyester resin film is preferable because it is excellent in strength, dimensional stability, and thermal stability, and a polyethylene terephthalate film such as PET or PEN is particularly preferable because it is inexpensive.
  • the polyester resin may be a copolymer.
  • copolymer component examples include diol components such as propylene glycol, diethylene glycol, neopentyl glycol, and cyclohexane dimethanol, isophthalic acid, adipic acid, azelaic acid, and sebacin.
  • diol components such as propylene glycol, diethylene glycol, neopentyl glycol, and cyclohexane dimethanol, isophthalic acid, adipic acid, azelaic acid, and sebacin.
  • the dicarboxylic acid component of an acid and its ester-forming derivative can be used.
  • the solar cell backside sealing sheet of the present invention is preferably a resin film excellent in hydrolysis resistance, that is, a hydrolysis resistance film as a base film from the viewpoint of being used in an environment where it is directly exposed to the outside air.
  • a polyester resin film is formed using a so-called polymer obtained by condensation polymerization of monomers as a raw material, and contains about 1.5 to 2% by mass of an oligomer positioned between the monomer and the polymer.
  • a typical oligomer is a cyclic trimer, and a film with a high content of it causes a decrease in mechanical strength, cracks, breakage of materials, etc. due to the progress of hydrolysis due to rainwater, etc. during long-term exposure such as outdoors. .
  • a polyester resin film is formed from a polyester resin having a cyclic trimer content obtained by polymerization by a solid phase polymerization method of 1.0% by mass or less.
  • the cyclic trimer content is measured by, for example, measuring the content (% by mass) relative to the resin mass by measuring by liquid chromatography using a solution obtained by dissolving 100 mg of a polymer in 2 mL of orthochlorophenol. Is required.
  • the resin film constituting the solar cell backside sealing sheet if necessary, for example, an antistatic agent, an ultraviolet absorber, a stabilizer, an antioxidant, a plasticizer, a lubricant, a filler, a coloring pigment, etc.
  • an antistatic agent for example, an ultraviolet absorber, a stabilizer, an antioxidant, a plasticizer, a lubricant, a filler, a coloring pigment, etc.
  • Resin films and the like in which additives are added within a range not impairing the effects of the present invention can also be used.
  • resin films to which additives are added include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), resin films such as polycarbonate, polymethyl methacrylate, polyacrylate, polypropylene, and polyethylene, and the like. And a white film obtained by forming a resin raw material in which a white pigment is kneaded into a resin film in which the above resin is mixed.
  • the white pigment inorganic pigments such as titanium oxide and zinc oxide can be preferably used. By kneading, a white film having a whiteness of 80% or more and an opacity of 80% or more can be obtained.
  • the white film is used for the purpose of assisting energy conversion in the semiconductor element by reflecting the light incident on the back sheet, and is preferably arranged in a layer close to the cell.
  • a white film preferably used as a base film is used for reflecting sunlight to improve power generation efficiency.
  • a polyester resin film such as PET or PEN is preferable because of its excellent strength, dimensional stability, and thermal stability, and a polyethylene terephthalate film is particularly preferable because of its low cost.
  • the polyester resin constituting the polyester resin film is composed of polyethylene terephthalate in which 80 mol% or more of the structural unit is ethylene terephthalate, polyethylene naphthalate in which 80 mol% or more of the structural unit is ethylene naphthalate, Although represented by a polylactic acid film or the like in which 80 mol% or more of the unit is polylactic acid, it is not particularly limited.
  • the polyester resin may be a copolymer.
  • the copolymer component include diol components such as propylene glycol, diethylene glycol, neopentyl glycol, and cyclohexane dimethanol, isophthalic acid, adipic acid, azelaic acid, and sebacin.
  • the dicarboxylic acid component of an acid and its ester-forming derivative can be used.
  • the thickness of the resin film for the solar cell backside sealing sheet is not particularly limited, but is preferably in the range of 1 to 250 ⁇ m in view of the voltage resistance characteristics, cost, etc. of the sealing sheet.
  • the base film may be a water vapor barrier film in which at least one inorganic oxide layer is formed by vapor deposition for the purpose of imparting water vapor barrier properties.
  • the “water vapor barrier film” in the present invention is a resin film having a water vapor transmission rate of 5 g / (m 2 ⁇ day) or less as measured by the method B described in JIS K 7129 (2000).
  • As the water vapor barrier film at least one metal thin film layer or inorganic layer is formed on at least one surface of a polyester resin film such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) or an olefin film such as polypropylene by vapor deposition or the like.
  • a film provided with an oxide layer is mentioned, since the solar cell backside sealing sheet is required to have high electrical insulation, it is not an electrically conductive metal thin film layer, but an inorganic oxide layer. Is preferred.
  • the gas barrier property of a film provided with an inorganic oxide layer by vapor deposition or the like is caused by at least the thermal dimensional stability of a polyester resin film as a base material. Therefore, a polyester resin film is a film stretched in a biaxial direction. Preferably there is.
  • the resin film may be subjected to surface treatment such as discharge treatment such as corona discharge or plasma discharge, or acid treatment, if necessary.
  • a weather resistance / ultraviolet blocking resin layer which will be described later, may be laminated on the resin film as necessary.
  • a coating containing at least one of a silicate hydrolysis product and silica fine particles is applied to at least one surface of the above-described base film to form a silicon oxide layer.
  • the silicate ethyl silicate, propyl silicate, and butyl silicate are preferable, and butyl silicate is more preferable.
  • the paint used at this time can be dissolved in a solvent such as isopropyl alcohol, n-butyl alcohol, toluene and the like, and the silicon oxide layer can be formed by coating and drying.
  • the silicon oxide layer thus formed functions as an easy adhesion layer for the sealing material.
  • the silicon oxide layer is preferably bonded to the silicone encapsulant layer in a thermocompression bonding process when forming the solar cell module, and the adhesive strength is required to be maintained even in an environment where it is exposed outdoors for a long time. Is done. Therefore, the easy-adhesion layer for the sealing material is preferably a weather-resistant material, and a silicon oxide layer is preferably applied from this viewpoint.
  • the thickness of the silicon oxide layer in the present invention is not particularly limited, but is preferably in the range of 0.05 to 0.4 ⁇ m in consideration of productivity and cost.
  • the method for forming the silicon oxide layer on the base film is not particularly limited, and various known coating techniques can be used. For example, a roll coating method, a dip coating method, a bar coating method, a die coating method, a gravure roll coating method, or a combination of these methods can be used. Among them, the gravure roll coating method is a preferable method because it increases the stability of the coating layer forming composition.
  • the coating liquid containing the silicon oxide according to the present invention includes a heat stabilizer, an antioxidant, a strengthening agent, a deterioration preventing agent, a weathering agent, a flame retardant, a plasticizer, and a mold release as long as the characteristics are not impaired. Agents, lubricants, crosslinking aids, pigment dispersants, antifoaming agents, leveling agents, UV absorbers, light stabilizers, thickeners, adhesion improvers, matting agents and the like may be added.
  • heat stabilizers, antioxidants and deterioration inhibitors examples include hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, alkali metal halides, and mixtures thereof.
  • reinforcing agents examples include clay, talc, calcium carbonate, zinc carbonate, wollastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon, carbon black, and oxidation.
  • examples include zinc, zeolite, hydrotalcite, metal fiber, metal whisker, ceramic whisker, potassium titanate whisker, boron nitride, graphite, glass fiber, and carbon fiber.
  • UV absorbers examples include salicylic acid-based, benzophenone-based, benzotriazole-based, and cyanoacrylate-based UV absorbers.
  • Examples of the light stabilizer that can be used include hindered amine light stabilizers. Specifically, bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, methyl (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (2,2,6) decanedioate , 6-tetramethyl-1-octyloxy] -4-piperidinyl] ester and the like, modified products, polymers and derivatives thereof.
  • hindered amine light stabilizers Specifically, bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate, Bis (1,2,2,6,
  • seat obtained by forming a silicon oxide layer in a base film is used as a solar cell back surface sealing sheet.
  • the solar cell back surface sealing sheet in this invention is good also as a form which laminated
  • bonding using a known dry lamination method can be applied.
  • an adhesive prepared by diluting two resins of a main agent and a crosslinking agent with a diluting solvent is used.
  • polyether polyurethane-based, polyester polyurethane-based, polyester-based, and polyepoxy-based resins are the main ingredients, and the cross-linking agent is rich in reactivity with active hydroxyl groups, and its reaction rate and initial adhesive force are rapidly expressed. It is preferable to use an isocyanate group-containing polymer.
  • the adhesive layer formed from these adhesives does not cause delamination due to deterioration of the adhesive strength after long-term outdoor use, and causes yellowing that leads to a decrease in light reflectance. It is required that there is no.
  • the resin used for forming the adhesive layer is preferably an aliphatic resin or an alicyclic resin that does not contain an aromatic ring or has a low content.
  • the thickness of the adhesive layer is preferably in the range of 1 to 10 ⁇ m. When the thickness of the adhesive layer is within this preferable range, sufficient adhesive strength can be obtained, but the production cost does not increase.
  • the solar cell backside sealing sheet is required to have various properties such as water vapor barrier properties, light reflectivity, long-term moisture and weather resistance, adhesion to sealing materials, and electrical insulation.
  • various company-specific sheet designs laminate designs are made in combination with various functional films, processing techniques such as vapor deposition and wet coating in accordance with the concept of functional division.
  • a substrate film having hydrolysis resistance a white film, a film having an inorganic oxide vapor deposition layer, and an outer layer side weather resistance / ultraviolet blocking resin layer (film, resin coating layer, etc.) It is good also as a solar cell back surface sealing sheet which satisfy
  • the base film of the solar cell backside sealing sheet has a weather resistant / ultraviolet blocking resin layer on the surface opposite to the surface on which the silicon oxide layer is formed.
  • the base film may have a weather resistance / ultraviolet blocking resin layer, and a silicon oxide layer may be formed on the resin layer side.
  • a film having hydrolysis resistance is used as a base film, and the base film is laminated with a hydrolysis resistance / weather resistance film formed with a weather resistance / ultraviolet ray blocking resin layer.
  • a design having an ultraviolet blocking resin layer (hereinafter sometimes simply referred to as a resin layer) is preferable.
  • the weather resistance / ultraviolet blocking resin layer include a resin layer containing an ultraviolet absorber.
  • fluorine-containing resin, acrylic resin, polyester resin, polyolefin resin, polyamide resin, or the like can be used.
  • the fluorine-containing resin includes polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), ethylene-tetrafluoroethylene copolymer resin (ETFE), ethylene-chlorotrifluoroethylene.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • ETFE ethylene-tetrafluoroethylene copolymer resin
  • ECTFE tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resins
  • acrylic resins polymethyl methacrylate, polyacrylate, acrylic resins obtained by crosslinking acrylic polyol resins using various crosslinking agents, etc.
  • Polyester resins include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT).
  • Polyolefin resins include polypropylene and polyethylene.
  • Ethylene - vinyl acetate (EVA) Ethylene - vinyl acetate
  • cyclic olefin resins a polyamide resin, nylon 6, nylon 6,6, nylon 11, and nylon 12 can be exemplified.
  • an inorganic ultraviolet absorber or an organic ultraviolet absorber is used as the ultraviolet absorber blended in these resins.
  • inorganic ultraviolet absorbers include titanium oxide and zinc oxide that can also be used as white pigments, and carbon black that can also be used as black pigments.
  • organic ultraviolet absorbers include salicylic acid and benzophenone. Examples thereof include UV absorbers such as benzotriazole and cyanoacrylate.
  • organic ultraviolet absorber examples include salicylic acid-based pt-butylphenyl salicylate, p-octylphenyl salicylate, benzophenone-based 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2 -Hydroxy-4-methoxy-5-sulfobenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, bis (2-methoxy-4-hydroxy-5-benzoylphenyl) methane, benzotriazole 2- ( 2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [4- (1,1,3,3-tetra Methylbutyl) -6- (2Hbenzotriazol-2-yl) phenol], cyanoacrylate Ethyl-2-cyano-3,3′-diphenylacrylate), others, and
  • the solar cell module which is the application of the present invention is used outdoors for 20 years, sometimes longer than that, and as an ultraviolet absorber to be used, an inorganic ultraviolet absorber is more durable from the viewpoint of durability. preferable.
  • an ultraviolet absorber to be used an inorganic ultraviolet absorber is more durable from the viewpoint of durability. preferable.
  • light stabilizers used in weathering and UV blocking resin layers include hindered amine-based light stabilizers.
  • an acrylic polyol resin in which a resin layer is copolymerized with an ultraviolet absorber and a light stabilizer. Further, it is more preferable to mix an acrylic polyol-based resin copolymerized with an ultraviolet absorber and a light stabilizer and an inorganic ultraviolet absorber to form a resin layer because the ultraviolet blocking performance is further improved.
  • the weather resistance / ultraviolet blocking resin layer may contain additives such as antistatic agents, stabilizers, antioxidants, reinforcing agents, plasticizers, lubricants, fillers, coloring pigments, and the like as necessary.
  • heat stabilizers, antioxidants, and deterioration inhibitors include hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, alkali metal halides, or mixtures thereof.
  • reinforcing agents include clay, talc, calcium carbonate, zinc carbonate, wollastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon, carbon black, zinc oxide, Zeolite, hydrotalcite, metal fiber, metal whisker, ceramic whisker, potassium titanate whisker, boron nitride, graphite, glass fiber, carbon fiber and the like can be mentioned.
  • Examples of the weather resistant / ultraviolet blocking resin layer include the following films and coating layers.
  • Examples of the film include a polyvinyl fluoride film, a polyvinylidene fluoride film, a polyethylene terephthalate film, a polyethylene film, and an ethylene-vinyl acetate film containing titanium oxide or carbon black.
  • Examples thereof include a coating layer formed using a tetrafluoroethylene copolymer resin-containing paint containing titanium oxide or carbon black, and a paint containing an acrylic polyol resin and a polyisocyanate resin.
  • the solar cell backside sealing sheet contains titanium oxide or a tetrafluoroethylene copolymer resin-containing paint containing carbon black, an acrylic polyol resin and a polyisocyanate resin.
  • a coating layer formed using a coating material is preferable.
  • the method for laminating the above weather-resistant / ultraviolet-blocking resin layer is not particularly limited. Examples thereof include a coating method and the dry laminating method described above in which a film containing another resin or additive and an adhesive are used for bonding.
  • examples of the solvent for the coating solution include toluene, xylene, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dimethylformamide, dimethylacetamide, methanol, ethanol, and Water and the like can be exemplified, and the property of the coating liquid may be either an emulsion type or a dissolution type.
  • the method for forming the weather resistant / ultraviolet blocking resin layer is not particularly limited, and a known coating method can be used.
  • a coating method various methods can be applied.
  • a roll coating method, a dip coating method, a bar coating method, a die coating method, a gravure roll coating method, or a combination of these methods can be used. It can.
  • the gravure roll coating method is a preferable method for increasing the stability of the coating layer forming composition.
  • olar cell module When the solar cell backside sealing sheet produced as described above is used for a solar cell module, the silicon oxide layer of the solar cell backside sealing sheet is adhered to the silicone sealing material layer of the solar cell module. Include in the module.
  • the characteristic evaluation method used in the present invention is as follows. (1) Measurement of coating amount The coating amount of the weather resistant / ultraviolet blocking resin layer (resin layer) was measured by the following procedure. After forming the resin layer, it was cut into an area of 500 cm 2 and the mass of the test piece was defined as mass A. Next, the resin layer was dissolved in methyl ethyl ketone from the test piece, peeled off, and the mass of the test piece was measured again to obtain mass B. Subsequently, the coating amount per unit area was calculated based on the following formula. This coating amount measurement was performed on three test pieces, and the average value was taken as the coating amount.
  • a pre-calculated diluent was blended so that the mass ratio with respect to the coating was 100/4, and the coating was further calculated to have a solid concentration of 20% by mass (resin solid concentration): n-acetate
  • the coating material 3 of solid content concentration 20 mass% (resin solid content concentration) was obtained by measuring propyl and stirring for 15 minutes.
  • Example 1 As a base film, a hydrolysis-resistant polyethylene terephthalate film “Lumirror” (registered trademark) X10S (125 ⁇ m) having a cyclic trimer content of 1% by mass or less manufactured by Toray Industries, Inc. was prepared. One side of the base film is subjected to corona treatment, and further, the coating 1 is applied using a wire bar, and dried at 125 ° C. for 60 seconds.
  • Limirror registered trademark
  • a solar cell back surface sealing sheet 1 (abbreviated as sealing sheet 1 in Tables 3 and 4) was produced.
  • a silicone resin tensile elastic modulus 0.09 MPa (based on JIS K 7161 (1994)), tensile strength 0.4 MPa (based on JIS K 7161 (1994)), refraction on a 3 mm thick semi-tempered glass
  • Two-part curable resin with a rate of 1.402 (based on JIS K 0062 (1992)) and specific gravity (25 ° C.) 0.97 (based on JIS Z 8807 (1976)
  • the inner layer side surface (the surface on which the silicon oxide layer of the base film of the base film is formed) of the stop sheet 1 is stacked and pressed using a vacuum laminator under a heating condition at 120 ° C. for 30 seconds and then pressed for 5 minutes.
  • a battery module was produced.
  • Example 2 The solar cell backside sealing sheet 2 (Table 3) was applied in the same manner as in Example 1 except that the silicon oxide layer forming paint 2 was applied instead of the silicon oxide layer forming paint 1 and the drying temperature was set to 80 ° C. , 4 is abbreviated as sealing sheet 2).
  • a pseudo solar cell module was produced in the same manner as in Example 1 except that the solar cell back surface sealing sheet 2 was used.
  • Example 3 Corona treatment is applied to the surface opposite to the surface on which the silicon oxide layer of the solar cell backside sealing sheet 1 produced by the method described in Example 1 is formed, and the paint 3 is applied using a wire bar, Dry at 150 ° C.
  • a pseudo solar cell module was produced in the same manner as in Example 1 except that the solar cell back surface sealing sheet 3 was used.
  • Example 4 A silicon oxide layer was formed in the same manner as in Example 1 using “Lumirror” (registered trademark) E20 (125 ⁇ m), which is a white polyethylene terephthalate film manufactured by Toray Industries, Inc., as a base film.
  • a hydrolysis-resistant polyethylene terephthalate film “Lumirror” (registered trademark) X10S (125 ⁇ m) having a cyclic trimer content of 1% by mass or less was prepared as a laminate film.
  • One side of this laminating film is subjected to corona treatment and further coated with a paint 3 using a wire bar and dried at 150 ° C. for 30 seconds so that the coating amount after drying is 3.0 g / m 2.
  • a weather resistant / ultraviolet blocking resin layer was provided.
  • a dry laminating adhesive is applied using a wire bar, and dried at 80 ° C.
  • a dry laminate adhesive layer was formed so that the coating amount after drying was 5.0 g / m 2 (thickness 5 ⁇ m).
  • the surface opposite to the surface on which the weather resistance / ultraviolet blocking resin layer of the laminating film is formed is bonded, dry lamination is performed, and the solar cell back surface sealing sheet 4 (in Tables 3 and 4, the sealing sheet 4 and (Abbreviated).
  • a pseudo solar cell module was produced in the same manner as in Example 1 except that the solar cell back surface sealing sheet 4 was used. (Example 5) Applying paint 3 instead of silicon oxide layer-forming paint 1, drying at 150 ° C.
  • the solar cell back surface sealing sheet 5 (abbreviated as the sealing sheet 5 in Tables 3 and 4) was prepared in the same manner as in Example 1 except that.
  • a pseudo solar cell module was produced in the same manner as in Example 1 except that the solar cell back surface sealing sheet 5 was used.
  • the method for producing a solar cell module, the solar cell backside sealing sheet, and the solar cell module of the present invention are useful because they are excellent in adhesive strength and weather resistance with respect to a silicone encapsulant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

 シリケートの加水分解生成物及びシリカ微粒子の少なくとも一つを含む塗料を基材フィルムの少なくとも片面に塗工してケイ素酸化物層を形成し、該ケイ素酸化物層とシリコーン封止材層とを接着する太陽電池モジュールの製造方法。 シリコーン封止材に対する接着力及び耐候性に優れた太陽電池モジュールの製造方法、太陽電池裏面封止シートおよび太陽電池モジュールを提供する。

Description

太陽電池モジュールの製造方法、太陽電池裏面封止シートおよび太陽電池モジュール
 本発明は、長期にわたる過酷な屋外環境下での使用に耐え得る、シリコーン封止材に対する接着力及び耐候性に優れた太陽電池モジュールの製造方法、太陽電池裏面封止シートおよび太陽電池モジュールに関するものである。
 近年、石油、石炭をはじめとする化石燃料の枯渇が危ぶまれ、これらの化石燃料により得られる代替エネルギーを確保するための開発が急務とされている。このため原子力発電、水力発電、風力発電、太陽光発電等の種々の方法が研究され、実際の利用に及んでいる。太陽光エネルギーを電気エネルギーに直接変換することが可能な太陽光発電は、半永久的で無公害の新たなエネルギー源として実用化されつつあり、実際に利用される上での価格性能比の向上が目覚しく、クリーンなエネルギー源として非常に期待が高い。
 太陽光発電に使用される太陽電池は、太陽光のエネルギーを直接電気エネルギーに変換する太陽光発電システムの心臓部を構成するものであり、シリコンなどに代表される半導体からできている。その構造としては、太陽電池素子(以下、セル)を直列、並列に配線し、20年程度の長期間にわたってセルを保護するために種々のパッケージングが施され、ユニット化されている。このパッケージに組み込まれたユニットは太陽電池モジュールと呼ばれ、一般に太陽光が当たる面をガラスで覆い、熱可塑性樹脂からなる封止材で間隙を埋め、裏面を封止シートで保護した構成となっている。そのため、太陽電池モジュールは、一般的にガラス、セルを含む封止材層、裏面封止シートの順に積層されて構成される。
 熱可塑性樹脂からなる封止材としては、透明性が高く、耐湿性にも優れているという理由でエチレン-酢酸ビニル共重合樹脂(以下、EVA樹脂)が用いられることが多い。しかしながらEVA樹脂はセルを封止する際の熱硬化に時間がかかること、また紫外線に長時間曝されると変色する恐れがあることから紫外線吸収剤を混ぜることが多く、これにより入射する光が制限されるため発電効率が抑えられてしまうという課題がある。このような課題を補う封止材としてシリコーンが挙げられる。シリコーンは優れた耐環境性、光透過性を有するため、EVA樹脂を用いた場合よりも発電効率を向上できる可能性がある。また熱硬化性を備えた液状シリコーンを使うことでEVA樹脂よりも短時間で熱硬化することができ、太陽電池モジュールの生産性向上に寄与する。
 一方、裏面封止シートには、機械強度、耐熱性、耐水性、耐化学薬品性、光反射性、水蒸気遮断性、封止材との熱接着性、意匠性、最外層の端子ボックス取り付け用シリコーン系樹脂との接着力といった特性が要求されるだけではなく、紫外線光に暴露されることから耐候性に優れることが要求される。
 封止材にEVA樹脂を用いた際の裏面封止シート用フィルムとしては、白色のポリフッ化ビニルフィルム(デュポン社、商品名:“テドラー”(登録商標))が例示でき、該フィルムでポリエステルフィルムをサンドイッチした積層構成の裏面封止シートは当該用途で幅広く用いられている。
 封止材にEVA樹脂を用いた際の裏面封止シート用フィルムとしては、耐候性、ガスバリア性に優れたポリエステル系フィルムを積層した構成も例示できる(特許文献1)。
 また、接着強度向上の対策としてスチレン・オレフィン共重合体樹脂の熱接着層(ホットメルト接着剤層)を設けたものが提案されている(特許文献2)。
特開2002-026354号公報(段落[0008]~[0010]) 特開2003-060218号公報(段落[0008]~[0010])
 特許文献1に開示された、封止材にEVA樹脂を用いた際の裏面封止シート用フィルムとして、耐候性、ガスバリア性に優れたポリエステル系フィルムを積層した裏面封止シート用フィルムを用いる場合、一般的にポリエチレンテレフタレート樹脂に代表されるポリエステルフィルムとEVA樹脂との接着性はあまり高くないという問題点があった。
 特許文献2に開示された、スチレン・オレフィン共重合体樹脂の熱接着層(ホットメルト接着剤層)を設けたものは、接着強度は向上するものの、その強度は十分とは言えず、また強度の耐久性にも懸念があった。
 一方、封止材にシリコーンを用いた際は、前記裏面封止シート用フィルムではシリコーンとの接着性が乏しいため、シリコーン封止材に適した新たな裏面封止シートの開発が必要である。また前記のポリフッ化ビニルフィルムでポリエステルフィルムを挟んだ構成の裏面封止シートは耐候性に優れるものの、高価であるため太陽電池モジュールの低価格化の点でも障害となる。
 本発明の目的は、前記課題を克服し、シリコーン封止材に対する接着力及び耐候性に優れた太陽電池モジュールの製造方法、太陽電池裏面封止シートおよび太陽電池モジュールを提供することである。
 本発明の太陽電池モジュールの製造方法は、かかる課題を解決するために、次の構成を有する。すなわち、
シリケートの加水分解生成物及びシリカ微粒子の少なくとも一つを含む塗料を基材フィルムの少なくとも片面に塗工してケイ素酸化物層を形成し、該ケイ素酸化物層とシリコーン封止材層とを接着する太陽電池モジュールの製造方法、である。
 本発明の太陽電池裏面封止シートは、かかる課題を解決するために、次の構成を有する。すなわち、
シリケートの加水分解生成物及びシリカ微粒子の少なくとも一つを含む塗料を基材フィルムの少なくとも片面に塗工して形成したケイ素酸化物層を有する太陽電池裏面封止シート、である。
 本発明の太陽電池モジュールは、かかる課題を解決するために、次の構成を有する。すなわち、
前記ケイ素酸化物層とシリコーン封止材層が直接積層された太陽電池モジュール、である。
 本発明の太陽電池モジュールの製造方法は、前記シリケートがブチルシリケートであることが好ましい。
 本発明の太陽電池モジュールの製造方法は、前記基材フィルムが無機系顔料を含むことが好ましい。
 本発明の太陽電池モジュールの製造方法は、前記基材フィルムが前記ケイ素酸化物層を形成した面とは反対側の面に紫外線吸収剤を含む樹脂層を有することが好ましい。
 本発明の太陽電池モジュールの製造方法は、前記基材フィルムが紫外線吸収剤を含む樹脂層を有し、前記ケイ素酸化物層を形成した面が該樹脂層側であることが好ましい。
 本発明によれば、長期にわたる過酷な屋外環境下での使用に耐え得る、シリコーン封止材に対する接着力及び耐候性に優れた太陽電池モジュールの製造方法、太陽電池裏面封止シートおよび太陽電池モジュールが得られる。
 本発明の太陽電池モジュールの製造方法は、シリケートの加水分解生成物及びシリカ微粒子の少なくとも一つを含む塗料を基材フィルムの少なくとも片面に塗工してケイ素酸化物層を形成し、該ケイ素酸化物層とシリコーン封止材層とを接着することを特徴とする。このような製造方法を適用することで、基材フィルムとシリコーン封止材層との間の優れた接着力が得られ、さらには耐候性に優れた太陽電池モジュールが得られるものである。
[基材フィルム]
 本発明の太陽電池裏面封止シートにおいて、シリコーン封止材層と接する側の面に配するケイ素酸化物層を形成する際の基材フィルムとしては種々の樹脂フィルムを用いることができる。具体的には、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)などのポリエステル樹脂フィルムやポリカーボネート、ポリメチルメタクリレート、ポリアクリレート、ポリプロピレン、ポリエチレンなどの樹脂フィルム、これらの樹脂を混合した樹脂フィルムが挙げられる。中でも強度、寸法安定性、熱安定性に優れていることからポリエステル樹脂フィルムが好ましく、さらに安価であることからPETやPEN等のポリエチレンテレフタレートフィルムが特に好ましい。また、ポリエステル系樹脂は共重合体であっても良く、共重合成分としては、例えば、プロピレングリコール、ジエチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール等のジオール成分、イソフタル酸、アジピン酸、アゼライン酸、セバシン酸およびそのエステル形成性誘導体のジカルボン酸成分などを使用することができる。
 本発明の太陽電池裏面封止シートは外気に直接曝される環境下に用いられる観点から基材フィルムとしては耐加水分解性に優れる樹脂フィルム、すなわち耐加水分解性フィルムであることが好ましい。通常、ポリエステル樹脂フィルムはモノマーを縮合重合させたいわゆるポリマーを原料として製膜されるものであるが、モノマーとポリマーの中間に位置づけられるオリゴマーが1.5~2質量%程度含まれている。オリゴマーの代表的なものは環状三量体であり、その含有量が多いフィルムは屋外などの長期暴露において機械的強度の低下や、雨水等による加水分解の進行に伴う亀裂、材破などを生じる。これに対して耐加水分解性フィルムにおいては、固相重合法で重合して得られる環状三量体の含有量が1.0質量%以下のポリエステル樹脂を原料としてポリエステル樹脂フィルムを製膜することで、高温高湿度下での加水分解を抑制することが可能であり、さらに耐熱性及び耐候性にも優れたフィルムが得られる。上記環状三量体含有量の測定は、例えばポリマー100mgをオルトクロロフェノール2mLに溶解させた溶液を用いて、液体クロマトグラフィーにて測定することで樹脂質量に対する含有量(質量%)を測定する方法で求められる。
 また、太陽電池裏面封止シートを構成する樹脂フィルムには、必要に応じて、例えば、帯電防止剤、紫外線吸収剤、安定剤、酸化防止剤、可塑剤、滑剤、充填剤、着色顔料等の添加剤を、本発明の効果を損なわない範囲内で添加した樹脂フィルム等も用いることができる。
 添加剤を添加した樹脂フィルムの具体例としては、前述のポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)などのポリエステル樹脂やポリカーボネート、ポリメチルメタクリレート、ポリアクリレート、ポリプロピレン、ポリエチレンなどの樹脂フィルム、これらの樹脂を混合した樹脂フィルムに白色顔料を練り込んだ樹脂原料を製膜した白色フィルムが挙げられる。白色顔料としては、酸化チタンや酸化亜鉛などの無機系顔料を好ましく利用することができ、混錬することで白色度が80%以上、不透明度が80%以上の白色フィルムとすることができる。白色フィルムは、バックシートまで入射してきた光を反射させて半導体素子におけるエネルギー変換を補助する目的で用いられ、セルに近い層に配されるのが好ましい。基材フィルムとして好ましく用いられる白色フィルムは、太陽光を反射させ発電効率を向上させる為に使用する。白色フィルムは、好ましくは、波長λ=550nmの反射率が、30%以上のフィルムであり、より好ましくは、反射率が40%以上のフィルム、さらに好ましくは、反射率が50%以上のフィルムである。中でも、強度、寸法安定性、熱安定性に優れていることからPETやPEN等のポリエステル樹脂フィルムが好ましく、さらに安価であることからポリエチレンテレフタレートフィルムが特に好ましい。ポリエステル系樹脂フィルムを構成するポリエステル系樹脂は、その構成単位の80モル%以上がエチレンテレフタレートであるポリエチレンテレフタレートや、その構成単位の80モル%以上がエチレンナフタレートであるポリエチレンナフタレートや、その構成単位の80モル%以上がポリ乳酸であるポリ乳酸フィルム等で代表されるが、特に限定されない。また、ポリエステル系樹脂は共重合体であっても良く、共重合成分としては、例えば、プロピレングリコール、ジエチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール等のジオール成分、イソフタル酸、アジピン酸、アゼライン酸、セバシン酸およびそのエステル形成性誘導体のジカルボン酸成分などを使用することができる。
 上記の太陽電池裏面封止シート用の樹脂フィルムの厚さは、特に制限されるものではないが、封止シートの耐電圧特性、コスト等を勘案すると、1~250μmの範囲が好ましい。
 また、基材フィルムには水蒸気バリア性を付与する目的で蒸着法等により少なくとも一層の無機酸化物層が形成されている水蒸気遮断性フィルムを用いても良い。本発明における「水蒸気遮断性フィルム」とはJIS K 7129 (2000)に記載のB法にて測定される水蒸気透過率が5g/(m・day)以下の樹脂フィルムである。水蒸気遮断性フィルムとしては、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)などのポリエステル樹脂フィルムやポリプロピレンなどのオレフィン系フィルムの少なくとも一方の表面に、蒸着法等により少なくとも一層の金属薄膜層や無機酸化物層を設けたフィルムが挙げられるが、太陽電池裏面封止シートとしては、電気絶縁性が高いことが要求されるため、導電性層である金属薄膜層ではなく、無機酸化物層の方が好ましい。蒸着等により無機酸化物層が設けられたフィルムのガスバリア性は、少なくとも基材であるポリエステル系樹脂フィルムの熱寸法安定性に起因するため、ポリエステル系樹脂フィルムは二軸方向に延伸されたフィルムであることが好ましい。
 さらに、樹脂フィルムには必要に応じて、例えば、コロナ放電やプラズマ放電等の放電処理、あるいは酸処理等の表面処理を行ってもよい。
 また、樹脂フィルムには必要に応じて、後述する耐候・紫外線遮断性樹脂層が積層されていてもよい。
[ケイ素酸化物層]
 本発明の太陽電池モジュールの製造方法において、シリケートの加水分解生成物及びシリカ微粒子の少なくとも一つを含む塗料を前述した基材フィルムの少なくとも片面に塗工してケイ素酸化物層を形成する。シリケートとしては、エチルシリケート、プロピルシリケート、ブチルシリケートが好ましく、ブチルシリケートがより好ましい。
このとき使用する塗料は、イソプロピルアルコール、n-ブチルアルコール、トルエン等の溶剤に溶解し、これを塗工乾燥することによりケイ素酸化物層を形成できる。
 このようにして形成したケイ素酸化物層は、封止材に対する易接着層として機能する。ケイ素酸化物層は太陽電池モジュールを形成する際にシリコーン封止材層と熱圧着工程で接着することが好ましく、またその接着強度は長期に亘り屋外で曝露される環境下でも維持することが要求される。従って、封止材に対する易接着層は耐候性を有する材料であることが好ましく、かかる観点からケイ素酸化物層が好ましく適用される。
 本発明におけるケイ素酸化物層の厚みは特に限定されないが、生産性やコストを勘案すると0.05~0.4μmの範囲が好ましい。
 ケイ素酸化物層を基材フィルム上に形成する方法は特に制限されるべきものではなく、既知のコーティング手法を種々用いることができる。例えば、ロールコーティング法、ディップコーティング法、バーコーティング法、ダイコーティング法およびグラビアロールコーティング法等や、これらを組み合わせた方法を利用することができる。中でも、グラビアロールコーティング法は、コーティング層形成組成物の安定性を増すので好ましい方法である。
[その他添加剤]
 さらに、本発明にかかるケイ素酸化物を含むコーティング液には、その特性を損なわない限りにおいて、熱安定剤、酸化防止剤、強化剤、劣化防止剤、耐候剤、難燃剤、可塑剤、離型剤、滑剤、架橋助剤、顔料分散剤、消泡剤、レベリング剤、紫外線吸収剤、光安定剤、増粘剤、接着改良剤、つや消し剤などを添加してもよい。
 使用できる熱安定剤、酸化防止剤及び劣化防止剤としては、例えばヒンダードフェノール類、リン化合物、ヒンダードアミン類、硫黄化合物、銅化合物、アルカリ金属のハロゲン化物あるいはこれらの混合物が挙げられる。
 使用できる強化剤としては、例えばクレー、タルク、炭酸カルシウム、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、珪酸カルシウム、アルミン酸ナトリウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、ガラスバルーン、カーボンブラック、酸化亜鉛、ゼオライト、ハイドロタルサイト、金属繊維、金属ウィスカー、セラミックウィスカー、チタン酸カリウムウィスカー、窒化ホウ素、グラファイト、ガラス繊維、炭素繊維などが挙げられる。
 使用できる紫外線吸収剤としては、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤が例示できる。具体的には、例えば、サリチル酸系のp-t-ブチルフェニルサリシレート、p-オクチルフェニルサリシレート、ベンゾフェノン系の2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニル)メタン、ベンゾトリアゾール系の2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2Hベンゾトリアゾール-2-イル)フェノール]、シアノアクリレート系のエチル-2-シアノ-3,3’-ジフェニルアクリレート)、その他として、および2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノールなどやこれらの変性物、重合物、誘導体などが例示できる。
 使用できる光安定化剤としては、ヒンダードアミン系等の光安定化剤が挙げられる。具体的には、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)〔[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル〕ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、メチル(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、デカン二酸ビス[2,2,6,6-テトラメチル-1-オクチルオキシ]-4-ピペリジニル]エステルなどやこれらの変性物、重合物、誘導体などが例示できる。
[太陽電池裏面封止シート]
 基材フィルムにケイ素酸化物層を形成して得られるシートは太陽電池裏面封止シートとして用いられる。本発明における太陽電池裏面封止シートは、基材フィルムのケイ素酸化物層を形成した面と反対側の面に他の樹脂フィルムを積層した形態としてもよい。積層した形態とする手法としては、既知のドライラミネート法を用いた貼り合わせが適用できる。ドライラミネート法を用いた貼り合わせには、主剤および架橋剤の2つの樹脂を希釈溶媒で希釈して調合した接着剤が用いられる。具体的には、ポリエーテルポリウレタン系、ポリエステルポリウレタン系、ポリエステル系、ポリエポキシ系樹脂などを主剤とし、架橋剤としては活性水酸基との反応性に富み、その反応速度及び初期接着力の発現が早いイソシアネート基含有ポリマーを用いることが好ましい。ただし、これらの接着剤から形成される接着剤層には、接着強度が長期間の屋外使用で劣化することに起因するデラミネーションなどを生じないこと、光線反射率の低下につながる黄変を生じないことなどが要求される。そのような観点から、接着剤層の形成に用いる樹脂としては芳香環を含有しない、あるいは含有量の少ない脂肪族系樹脂あるいは脂環族系樹脂が好ましい。また、接着剤層の厚みとしては、好ましくは1~10μmの範囲である。接着剤層の厚みがこの好ましい範囲であると十分な接着強度が得られる一方、生産コストが上がることもない。
 太陽電池裏面封止シートには水蒸気遮断性、光反射性、長期耐湿熱・耐候耐久性、封止材に対する接着力、電気絶縁性などに代表される種々の特性が要求される。現在、これらの要求特性を満たすべく、機能分割の考え方に則って、種々の機能性フィルム、蒸着、ウェットコーティングなどの加工技術を組み合わせた各社各様のシート設計(積層設計)がなされている。
 本発明では、基材フィルムに耐加水分解性を有するフィルム、白色フィルム、無機酸化物蒸着層を有するフィルム、外層側耐候・紫外線遮断性樹脂層(フィルム、樹脂塗布層など)の1つ以上を積層することにより、各種要求特性を満たす太陽電池裏面封止シートとしても良い。好ましくは、太陽電池裏面封止シートの基材フィルムがケイ素酸化物層を形成した面と反対側の面に耐候・紫外線遮断性樹脂層を有することである。また、基材フィルムが耐候・紫外線遮断性樹脂層を有し、該樹脂層側にケイ素酸化物層を形成した構成であっても良い。特に、耐加水分解性を有するフィルムを基材フィルムとし、この基材フィルムに、耐候・紫外線遮断性樹脂層を形成した耐加水分解性・耐候性フィルムを積層する設計あるいは基材フィルムが耐候・紫外線遮断性樹脂層(以降、単に樹脂層と記す場合もある)を有する設計が好ましい。
[耐候・紫外線遮断性樹脂層]
 耐候・紫外線遮断性樹脂層としては、紫外線吸収剤を含む樹脂層が挙げられる。紫外線吸収剤を含む樹脂層を形成する樹脂としては、フッ素含有樹脂、アクリル樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂などを用いることができる。具体的には、フッ素含有樹脂としてはポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、エチレンーテトラフルオロエチレン共重合樹脂(ETFE)、エチレンークロロトリフルオロエチレン共重合樹脂(ECTFE)、テトラフルオロエチレンーパーフルオロアルキルビニルエーテル共重合樹脂(PFA)など、アクリル樹脂としてはポリメチルメタクリレート、ポリアクリレート、アクリルポリオール樹脂を各種架橋剤を用いて架橋したアクリル樹脂など、ポリエステル樹脂としては、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)など、ポリオレフィン樹脂としては、ポリプロピレン、ポリエチレン、エチレン-ビニルアセテート(EVA)、環状オレフィン樹脂など、ポリアミド樹脂としては、ナイロン6、ナイロン6,6、ナイロン11、ナイロン12などを例示することができる。
 次にこれらの樹脂に配合する紫外線吸収剤としては、無機系紫外線吸収剤や有機系紫外線吸収剤を用いる。無機系紫外線吸収剤としては、白色顔料としても用いることができる酸化チタン、酸化亜鉛や、黒色顔料としても用いることができるカーボンブラックなどが例示でき、有機系紫外線吸収剤としては、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤が例示できる。有機系紫外線吸収剤は具体的には、例えば、サリチル酸系のp-t-ブチルフェニルサリシレート、p-オクチルフェニルサリシレート、ベンゾフェノン系の2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニル)メタン、ベンゾトリアゾール系の2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2Hベンゾトリアゾール-2-イル)フェノール]、シアノアクリレート系のエチル-2-シアノ-3,3’-ジフェニルアクリレート)、その他として、および2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノールなどやこれらの変性物、重合物、誘導体などが例示できる。本発明の用途である太陽電池モジュールは20年、場合によってはそれ以上の長期に亘って屋外で使用されることから用いる紫外線吸収剤としては無機系紫外線吸収剤の方が、耐久性の観点で好ましい。
[耐候・紫外線遮断性樹脂層に用いられる光安定化剤]
 また、同様に前記耐候・紫外線遮断性樹脂層に好ましく用いられる光安定化剤としては、ヒンダードアミン系等の光安定化剤が挙げられる。具体的には、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)〔[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル〕ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、メチル(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、デカン二酸ビス[2,2,6,6-テトラメチル-1-オクチルオキシ]-4-ピペリジニル]エステルなどやこれらの変性物、重合物、誘導体などが例示できる。
 本発明では、上記の記載のうち、樹脂層に紫外線吸収剤及び光安定化剤を共重合させたアクリルポリオール系樹脂を用いることが好ましい。また、紫外線吸収剤及び光安定化剤を共重合させたアクリルポリオール系樹脂と無機系紫外線吸収剤を混合して樹脂層を形成すると紫外線遮断性能がより向上することからさらに好ましい。
[耐候・紫外線遮断性樹脂層に用い得るその他の添加剤]
 また、前記の耐候・紫外線遮断性樹脂層には、必要に応じて、例えば、帯電防止剤、安定剤、酸化防止剤、強化剤、可塑剤、滑剤、充填剤、着色顔料等の添加剤を、本発明の効果を損なわない範囲内で添加することができる。例えば、熱安定剤、酸化防止剤及び劣化防止剤としては、ヒンダードフェノール類、リン化合物、ヒンダードアミン類、硫黄化合物、銅化合物、アルカリ金属のハロゲン化物あるいはこれらの混合物が挙げられる。
 強化剤としては、例えばクレー、タルク、炭酸カルシウム、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、珪酸カルシウム、アルミン酸ナトリウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、ガラスバルーン、カーボンブラック、酸化亜鉛、ゼオライト、ハイドロタルサイト、金属繊維、金属ウィスカー、セラミックウィスカー、チタン酸カリウムウィスカー、窒化ホウ素、グラファイト、ガラス繊維、炭素繊維などが挙げられる。
 耐候・紫外線遮断性樹脂層の態様として、次のようなフィルム、コーティング層が例示できる。例えば、酸化チタン、あるいはカーボンブラックを含有するポリフッ化ビニルフィルム、ポリフッ化ビニリデンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、エチレン-ビニルアセテートフィルムをフィルムとして例示できる。また、酸化チタン、あるいはカーボンブラックを含有するテトラフルオロエチレン系共重合樹脂含有塗料、アクリルポリオール樹脂とポリイソシアネート系樹脂を含有する塗料を用いて形成するコーティング層が例示できる。
 中でも太陽電池裏面封止シートの製造コスト、耐紫外線性を両立する手段としては、酸化チタン、あるいはカーボンブラックを含有するテトラフルオロエチレン系共重合樹脂含有塗料、アクリルポリオール樹脂とポリイソシアネート系樹脂を含有する塗料を用いて形成するコーティング層が好ましい。
[耐候・紫外線遮断性樹脂層の製造方法]
 前記の耐候・紫外線遮断性樹脂層を積層する方法は特に問わないが、溶融押出し積層する方法やその他の樹脂や添加剤を含有する液状塗料を塗布し、熱、光、電子線などにより硬化させるコーティング法や、その他の樹脂や添加剤を含むフィルムと接着剤を用いて貼り合せる前述したドライラミネート法などが例示できる。
 例えば、コーティング法により形成する場合には、コーティング液の溶剤としては、例えば、トルエン、キシレン、酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、メタノール、エタノールおよび水等を例示することができ、該コーティング液の性状としてはエマルジョン型および溶解型のいずれでも良い。
 耐候・紫外線遮断性樹脂層を形成する方法は特に制限されるべきものではなく、公知のコーティング手法を用いることができる。コーティング手法としては、種々の方法を適用することができ、例えば、ロールコーティング法、ディップコーティング法、バーコーティング法、ダイコーティング法およびグラビアロールコーティング法等や、これらを組み合わせた方法を利用することができる。中でも、グラビアロールコーティング法は、コーティング層形成組成物の安定性を増す理由で好ましい方法である。
[太陽電池モジュール]
 上記のようにして作製した太陽電池裏面封止シートを太陽電池モジュールに使用するに際し、太陽電池裏面封止シートのケイ素酸化物層を太陽電池モジュールのシリコーン封止材層に接着させて、太陽電池モジュールに組み込む。
 次に、実施例を挙げて、具体的に本発明の太陽電池モジュールの製造方法について説明する。実施例中で「部」とは、特に注釈のない限り「質量部」であることを意味する。
<特性の評価方法>
 本発明で用いた特性の評価方法は、下記の通りである。
(1)塗布量測定
 耐候・紫外線遮断性樹脂層(樹脂層)の塗布量は、以下の手順で測定した。樹脂層形成後に500cmの面積に切り出し、その試験片の質量を質量Aとした。次に、その試験片から樹脂層をメチルエチルケトンに溶解させ、剥がし取り、再び試験片の質量を測定し、質量Bとした。続いて、下式に基づき、単位面積当たりの塗布量を算出した。この塗布量測定を3つの試験片について行い、その平均値を塗布量とした。
   塗布量[g/m]=(質量A-質量B)×20
(2)封止材層との接着強度の測定
 JIS K 6854-2 (1999)に基づいて、各例で作製した疑似太陽電池モジュールサンプルのシリコーン封止材層と基材フィルムとの接着力を測定した。接着強度試験の試験片の幅は10mmとし、2つの試験片について各々測定を1回行い、2つの測定値の平均値を接着強度の値とした。
(3)耐湿熱性評価
 エスペック(株)製恒温恒湿オーブンを用いて、85℃、85%RHの環境下で1,000時間の湿熱処理を擬似太陽電池モジュールに施した。その後、封止材層と裏面封止シート間の接着強度測定を実施した。
(4)耐紫外線性評価
 岩崎電気(株)製アイスーパーUVテスターSUV-W151を用いて、60℃×50%RH雰囲気にて紫外線強度160mW/cmで240時間、擬似太陽電池モジュールにガラス面側からあるいは外層面(裏面封止シート)側から紫外線照射を行った。その前後の表色系b値の測定を行った。
[ケイ素酸化物層形成用塗料(塗料1)の調製]
 表1の調合液1の欄に示す配合にて、n-ブチルシリケートとエタノールを混合し20分間撹拌後、25℃以下を保つように0.1N塩酸を少しずつ滴下後2時間撹拌し、その後12~24時間容器に蓋をして保管・熟成させ調合液1を得た。次に、別の容器で表1の調合液2の欄に示す配合にて、イソプロピルアルコール、n-ブチルアルコール、トルエンを混合し15分間撹拌後、東レ・ダウコーニング(株)製“トーレシリコーン”(登録商標)SH190を混合し30分間撹拌し調合液2を得た。調合液1と2を混合し、30分間撹拌して固形分濃度1質量%の塗料1を得た。
Figure JPOXMLDOC01-appb-T000001
[ケイ素酸化物層形成用塗料(塗料2)の調製]
 (株)菱和製のポリシリケート系コート剤DM-30(固形分濃度:1質量%)を塗料2とした。
[耐候性コート層形成用塗料(塗料3)の調製]
(i)主剤の調製
 表2の主剤の欄に示す配合にて、(株)日本触媒製の、紫外線吸収剤及び光安定化剤(HALS)がアクリルポリオール樹脂に架橋されたコーティング剤である“ハルスハイブリットポリマー”(登録商標)BK1(固形分濃度:40質量%)に着色顔料および溶剤を一括混合し、ビーズミル機を用いて分散した。その後、可塑剤を添加して、固形分濃度が51質量%である耐候・紫外線遮断性樹脂層形成用の塗料の主剤を得た。
(ii)塗料3の調製
 上記主剤にヌレート型ヘキサメチレンジイソシアネート樹脂である住化バイエルウレタン(株)製“デスモジュール”(登録商標)N3300(固形分濃度:100質量%)を樹脂層形成用主剤塗料との質量比が100/4の比になるように予め計算した量配合し、さらに固形分濃度20質量%(樹脂固形分濃度)の塗料となるように予め算出した希釈剤:酢酸n-プロピルを量りとり、15分間攪拌することにより固形分濃度20質量%(樹脂固形分濃度)の塗料3を得た。
 なお、上記の調製に用いた着色顔料および可塑剤としては下記の製品を使用した。
 白色顔料:テイカ(株)製酸化チタン粒子JR-709
 可塑剤:DIC(株)製ポリエステル系可塑剤“ポリサイザー”(登録商標)W-220EL
Figure JPOXMLDOC01-appb-T000002
[ドライラミネート用接着剤の調製]
 硬化剤との反応部位として水酸基を構造中に含む樹脂を主成分とするDIC(株)製の耐湿熱性を有するドライラミネート剤“ディックドライ”(登録商標)TAF-300を36部、硬化剤としてヘキサメチレンジイソシアネート系樹脂を主成分とするDIC(株)製TAFハードナーAH-3を3部、および酢酸エチルを30質量部量りとり、15分間攪拌することにより固形分濃度30質量%のドライラミネート用接着剤を得た。本接着剤を用いてフィルムをドライラミネート法で貼り合わせた後、実施例に記載の通り、エージングを施すことで、水酸基とイソシアネート基が架橋反応し、ウレタン結合を形成した。
(実施例1)
 基材フィルムとして東レ(株)製の環状三量体の含有量が1質量%以下である耐加水分解性ポリエチレンテレフタレートフィルム“ルミラー”(登録商標)X10S(125μm)を準備した。この基材フィルムの一方の面に、コロナ処理を施し、さらにワイヤーバーを用いて塗料1を塗布し、125℃で60秒間乾燥し、乾燥後塗布量が0.1g/m(厚み0.1μm)となるようにケイ素酸化物層を形成した。このようにして太陽電池裏面封止シート1(表3,4中では封止シート1と略記する)を作製した。次に、厚さ3mmの半強化ガラスの上にシリコーン樹脂(引張り弾性率0.09MPa(JIS K 7161(1994)に基づく)、引張り強度0.4MPa(JIS K 7161(1994)に基づく)、屈折率1.402(JIS K 0062(1992)に基づく)、比重(25℃)0.97(JIS Z 8807(1976)に基づく)の2液硬化型樹脂)を積層し、作製した太陽電池裏面封止シート1の内層側面(基材フィルムのケイ素酸化物層を形成した面)が接するように重ね、真空ラミネーターを用いて120℃加熱条件下、30秒真空引き後5分プレス処理し、疑似太陽電池モジュールを作製した。
(実施例2)
 ケイ素酸化物層形成用塗料1の代わりにケイ素酸化物層形成用塗料2を塗布し、乾燥温度を80℃とした他は、実施例1と同様にして太陽電池裏面封止シート2(表3,4中では封止シート2と略記する)を作製した。太陽電池裏面封止シート2を用いた他は、実施例1と同様にして疑似太陽電池モジュールを作製した。
(実施例3)
 実施例1に記載の方法で作製した太陽電池裏面封止シート1のケイ素酸化物層を形成した面とは反対側の面にコロナ処理を施し、さらにワイヤーバーを用いて塗料3を塗布し、150℃で30秒間乾燥し、乾燥後塗布量が3.0g/mとなるように耐候・紫外線遮断性樹脂層を設け、太陽電池裏面封止シート3(表3,4中では封止シート3と略記する)を作製した。太陽電池裏面封止シート3を用いた他は、実施例1と同様にして疑似太陽電池モジュールを作製した。
(実施例4)
 基材フィルムとして東レ(株)製白色ポリエチレンテレフタレートフィルムである“ルミラー”(登録商標)E20(125μm)を用いて、実施例1と同様にしてケイ素酸化物層を形成した。次に、別途、ラミネート用フィルムとして東レ(株)製の環状三量体の含有量が1質量%以下である耐加水分解性ポリエチレンテレフタレートフィルム“ルミラー”(登録商標)X10S(125μm)を準備した。このラミネート用フィルムの一方の面に、コロナ処理を施し、さらにワイヤーバーを用いて塗料3を塗布し、150℃で30秒間乾燥し、乾燥後塗布量が3.0g/mとなるように耐候・紫外線遮断性樹脂層を設けた。次にケイ素酸化物層を形成した白色フィルムのケイ素酸化物層を形成した面とは反対側の面に、ワイヤーバーを用いてドライラミネート用接着剤を塗布し、80℃で45秒間乾燥し、乾燥後塗布量が5.0g/m(厚み5μm)となるようにドライラミネート接着剤層を形成した。次にラミネート用フィルムの耐候・紫外線遮断性樹脂層を形成した面と反対側の面を貼り合わせ、ドライラミネートを行い、太陽電池裏面封止シート4(表3,4中では封止シート4と略記する)を作製した。太陽電池裏面封止シート4を用いた他は、実施例1と同様にして疑似太陽電池モジュールを作製した。
(実施例5)
 ケイ素酸化物層形成用塗料1の代わりに塗料3を塗布し、150℃で30秒間乾燥し、乾燥後塗布量が3.0g/mとなるように耐候・紫外線遮断性樹脂層を設け、さらにその樹脂層上にワイヤーバーを用いて塗料1を塗布し、125℃で60秒間乾燥し、乾燥後塗布量が0.1g/m(厚み0.1μm)となるようにケイ素酸化物層を形成した他は、実施例1と同様にして太陽電池裏面封止シート5(表3,4中では封止シート5と略記する)を作製した。太陽電池裏面封止シート5を用いた他は、実施例1と同様にして疑似太陽電池モジュールを作製した。
(比較例1)
 ケイ素酸化物層を形成しないで、“ルミラー”(登録商標)X10S(東レ(株)製、125μm)を太陽電池裏面封止シート6(表3,4中では封止シート5と略記する)とした他は、実施例1と同様にして、疑似太陽電池モジュールを作製した。
 以上で得られた実施例1~5、比較例1の疑似太陽電池モジュールについて上記の評価方法により特性を評価した。結果を表3,4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明の太陽電池モジュールの製造方法、太陽電池裏面封止シートおよび太陽電池モジュールは、シリコーン封止材に対する接着力及び耐候性に優れることから、有用である。

Claims (7)

  1.  シリケートの加水分解生成物及びシリカ微粒子の少なくとも一つを含む塗料を基材フィルムの少なくとも片面に塗工してケイ素酸化物層を形成し、該ケイ素酸化物層とシリコーン封止材層とを接着する太陽電池モジュールの製造方法。
  2.  前記シリケートがブチルシリケートである請求項1に記載の太陽電池モジュールの製造方法。
  3.  前記基材フィルムが無機系顔料を含む請求項1又は2に記載の太陽電池モジュールの製造方法。
  4.  前記基材フィルムが前記ケイ素酸化物層を形成した面とは反対側の面に紫外線吸収剤を含む樹脂層を有する請求項1~3のいずれかに記載の太陽電池モジュールの製造方法。
  5.  前記基材フィルムが紫外線吸収剤を含む樹脂層を有し、前記ケイ素酸化物層を形成した面が該樹脂層側である請求項1~4のいずれかに記載の太陽電池モジュールの製造方法。
  6.  シリケートの加水分解生成物及びシリカ微粒子の少なくとも一つを含む塗料を基材フィルムの少なくとも片面に塗工して形成したケイ素酸化物層を有する太陽電池裏面封止シート。
  7.  請求項6に記載のケイ素酸化物層とシリコーン封止材層が直接積層された太陽電池モジュール。
PCT/JP2012/071650 2011-08-30 2012-08-28 太陽電池モジュールの製造方法、太陽電池裏面封止シートおよび太陽電池モジュール WO2013031752A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280041452.3A CN103765611A (zh) 2011-08-30 2012-08-28 太阳能电池模块的制造方法、太阳能电池背面密封片和太阳能电池模块
KR1020147003863A KR20140059197A (ko) 2011-08-30 2012-08-28 태양 전지 모듈의 제조 방법, 태양 전지 이면 밀봉 시트 및 태양 전지 모듈
US14/238,608 US20140190557A1 (en) 2011-08-30 2012-08-28 Method for producing solar cell module, solar cell backside sealing sheet, and solar cell module
IN2271CHN2014 IN2014CN02271A (ja) 2011-08-30 2012-08-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-187249 2011-08-30
JP2011187249 2011-08-30

Publications (1)

Publication Number Publication Date
WO2013031752A1 true WO2013031752A1 (ja) 2013-03-07

Family

ID=47756237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071650 WO2013031752A1 (ja) 2011-08-30 2012-08-28 太陽電池モジュールの製造方法、太陽電池裏面封止シートおよび太陽電池モジュール

Country Status (6)

Country Link
US (1) US20140190557A1 (ja)
JP (1) JPWO2013031752A1 (ja)
KR (1) KR20140059197A (ja)
CN (1) CN103765611A (ja)
IN (1) IN2014CN02271A (ja)
WO (1) WO2013031752A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016019705B1 (pt) * 2014-02-27 2022-03-22 Chemetall Gmbh Método de revestimento de superfícies metálicas de substratos com composições aquosas na forma de dispersão e/ou suspensão
KR20180017894A (ko) * 2016-08-11 2018-02-21 엘지전자 주식회사 태양광 발전 모듈

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026625B2 (ja) * 1983-12-28 1990-02-13 Toyo Boseki
JPH07205359A (ja) * 1994-01-07 1995-08-08 Teijin Ltd 複合フイルム
JP2002134770A (ja) * 2000-10-23 2002-05-10 Toppan Printing Co Ltd 太陽電池用裏面保護シート
JP2007109696A (ja) * 2005-10-11 2007-04-26 Toppan Printing Co Ltd 太陽電池用裏面保護シート及び太陽電池モジュール
JP2007150084A (ja) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート、太陽電池モジュール用裏面積層体、および、太陽電池モジュール
WO2010087461A1 (ja) * 2009-01-29 2010-08-05 京セラ株式会社 太陽電池モジュールおよびその製造方法
JP2011046046A (ja) * 2009-08-26 2011-03-10 Fujifilm Corp 積層フィルムおよび複合フィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286860B2 (ja) * 2008-03-19 2013-09-11 凸版印刷株式会社 ガスバリアフィルムの製造方法
EP2110863A1 (de) * 2008-04-15 2009-10-21 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Solarzellenmodul

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026625B2 (ja) * 1983-12-28 1990-02-13 Toyo Boseki
JPH07205359A (ja) * 1994-01-07 1995-08-08 Teijin Ltd 複合フイルム
JP2002134770A (ja) * 2000-10-23 2002-05-10 Toppan Printing Co Ltd 太陽電池用裏面保護シート
JP2007109696A (ja) * 2005-10-11 2007-04-26 Toppan Printing Co Ltd 太陽電池用裏面保護シート及び太陽電池モジュール
JP2007150084A (ja) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート、太陽電池モジュール用裏面積層体、および、太陽電池モジュール
WO2010087461A1 (ja) * 2009-01-29 2010-08-05 京セラ株式会社 太陽電池モジュールおよびその製造方法
JP2011046046A (ja) * 2009-08-26 2011-03-10 Fujifilm Corp 積層フィルムおよび複合フィルム

Also Published As

Publication number Publication date
KR20140059197A (ko) 2014-05-15
IN2014CN02271A (ja) 2015-06-19
JPWO2013031752A1 (ja) 2015-03-23
CN103765611A (zh) 2014-04-30
US20140190557A1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP5540840B2 (ja) 太陽電池裏面封止シート
JP5609115B2 (ja) 太陽電池裏面封止材用フィルム、太陽電池裏面封止材および太陽電池モジュール
US20110108086A1 (en) Backing sheet for photovoltaic modules and method for repairing same
US20090211631A1 (en) Photoluminescent backing sheet for photovoltaic modules
KR101349734B1 (ko) 태양전지 모듈용 백 시트 및 이를 포함하는 태양전지 모듈
US10224445B2 (en) Back sheet, method of manufacturing the same, solar cell module using the same and method of manufacturing solar cell
CA2673018A1 (en) Backing sheet for photovoltaic modules and method for repairing same
CN103072349A (zh) 一种太阳能电池背板复合膜
WO2010061738A1 (ja) 太陽電池用裏面封止シート用フィルム
JP2009200398A (ja) 太陽電池用裏面封止用シートおよびそれを用いた太陽電池モジュール
WO2011068067A1 (ja) 太陽電池裏面封止シート用フィルム
JP2017114937A (ja) ポリイソシアネート硬化型接着性コーティング剤用ポリオール組成物、接着性コーティング剤、その硬化物、接着性シート、及び太陽電池モジュール
JP2013251427A (ja) 太陽電池モジュール裏面封止シート用フィルム
JP5692706B2 (ja) 太陽電池裏面封止シート用フィルム
JP2012186382A (ja) 太陽電池用保護シートとその製造方法、太陽電池用バックシート部材、太陽電池用バックシート及び太陽電池モジュール
WO2013031752A1 (ja) 太陽電池モジュールの製造方法、太陽電池裏面封止シートおよび太陽電池モジュール
JP2018026376A (ja) 太陽電池モジュール用シート、および太陽電池モジュール
JP2014041900A (ja) 太陽電池用保護材及び太陽電池
JP2017110126A (ja) ポリイソシアネート硬化型接着性コーティング剤用ポリオール組成物、接着性コーティング剤、その硬化物、接着性シート、及び太陽電池モジュール
JP2016175223A (ja) ガスバリア性積層体、及びそれを用いた太陽電池モジュール並びに画像表示素子
WO2010106907A1 (ja) 太陽電池裏面封止材用フィルム、それを用いた太陽電池裏面封止材および太陽電池モジュール
JP2012104762A (ja) 太陽電池用バックシート部材及び太陽電池モジュール
JP2013207181A (ja) 太陽電池裏面封止シート及び太陽電池モジュール
JP2015149331A (ja) 太陽電池モジュール
JP6596812B2 (ja) 太陽電池用絶縁シート

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012540199

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14238608

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147003863

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826999

Country of ref document: EP

Kind code of ref document: A1