WO2013031678A1 - Curable resin composition - Google Patents

Curable resin composition Download PDF

Info

Publication number
WO2013031678A1
WO2013031678A1 PCT/JP2012/071425 JP2012071425W WO2013031678A1 WO 2013031678 A1 WO2013031678 A1 WO 2013031678A1 JP 2012071425 W JP2012071425 W JP 2012071425W WO 2013031678 A1 WO2013031678 A1 WO 2013031678A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
curable resin
resin composition
group
Prior art date
Application number
PCT/JP2012/071425
Other languages
French (fr)
Japanese (ja)
Inventor
佑基 比舎
泰則 林
慶次 後藤
公彦 依田
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to CN201280041431.1A priority Critical patent/CN103764701A/en
Priority to JP2013531280A priority patent/JP6035241B2/en
Priority to KR1020147002780A priority patent/KR101942546B1/en
Publication of WO2013031678A1 publication Critical patent/WO2013031678A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09J175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas

Definitions

  • the present invention relates to a curable resin composition.
  • Examples of touch panels mounted on a display body such as an LCD include a resistance film type, a capacitance type, an electromagnetic induction type, and an optical type. On these touch panels, there are cases where a decorative board for improving the appearance design and an icon sheet for designating a touch position are pasted together.
  • the capacitive touch panel has a structure in which a transparent electrode is formed on a transparent substrate and a transparent plate is bonded thereon.
  • the UV curable resin of Patent Document 2 is a highly elastic resin based on a rigid skeleton monomer such as isobornyl (meth) acrylate, it can withstand expansion and contraction of an adherend in a high temperature reliability test. It is considered that peeling cannot occur.
  • the present inventors have a compound having one mercapto group in the molecule which is one or more selected from the group consisting of alkanethiol and carboxythiol in the compound having a mercapto group which is one component of the curable resin composition. It has been confirmed that a curable resin composition having high adhesion durability can be obtained when using (for example, see Examples described later). On the other hand, in Patent Documents 3 to 5 described above, since such a specific type of compound having a mercapto group is not used, it is considered that the flexibility and adhesiveness of the curable resin composition cannot be controlled.
  • a curable resin composition is provided.
  • the curable resin composition which contains (meth) acrylates other than said (A) and (B) as a (E) component further to the said curable resin composition is provided.
  • the curable resin composition whose said (E) component is a trimethylol propane tri (meth) acrylate and / or tricyclodecane dimethanol (meth) acrylate is provided.
  • numerator of said (C) is alkanethiol shown by following formula (1) is provided.
  • the adhesive composition which consists of the said curable resin composition is provided.
  • the hardening body of the said adhesive composition is provided.
  • covered or joined by the said hardening body is provided.
  • the adherend is at least one selected from the group consisting of triacetylcellulose, fluoropolymer, polyester, polycarbonate, polyolefin, glass, and metal.
  • the touch-panel laminated body formed by bonding a to-be-adhered body with the said adhesive composition is provided.
  • the liquid crystal panel laminated body which bonded together the to-be-adhered body with the said adhesive composition is provided.
  • the display using the said touchscreen laminated body is provided.
  • the display using the said liquid crystal panel laminated body is provided.
  • the curable resin composition of the present invention exhibits high adhesion durability.
  • the polyfunctional (meth) acrylate means (meth) acrylate in which two or more (meth) acryloyl groups are contained in one molecule.
  • the monofunctional (meth) acrylate means (meth) acrylate in which one (meth) acryloyl group is contained in one molecule.
  • a liquid oligomer having a (meth) acryloyl group is preferable.
  • this liquid oligomer an oligomer having at least two (meth) acryloyl groups in the molecule can be suitably used from the viewpoint of curability.
  • the number of (meth) acryloyl groups in one molecule is preferably 2 to 6, more preferably 2 to 4, and most preferably 2.
  • the (meth) acryloyl group may be located at both ends or one end of the oligomer of the component (A).
  • the (meth) acryloyl group refers to an acryloyl group or a methacryloyl group.
  • the oligomer having a (meth) acryloyl group is not particularly limited, and examples thereof include urethane (meth) acrylate oligomers, polyester (meth) acrylate oligomers, polyether (meth) acrylate oligomers, and epoxy (meth) acrylates. Examples thereof include one or more (meth) acrylate oligomers selected from the group consisting of oligomers, diene polymer (meth) acrylate oligomers, and hydrogenated products of diene polymer (meth) acrylates.
  • the main chain skeleton of the oligomer having a (meth) acryloyl group is not particularly limited.
  • a urethane type (meth) acrylate oligomer means the (meth) acrylate oligomer which has a urethane bond in a molecule
  • the urethane-based (meth) acrylate oligomer is obtained by, for example, esterifying a polyurethane oligomer obtained by reaction of polybutadienediol, polyether polyol, polyester polyol, polycarbonate diol, and the like with polyisocyanate with (meth) acrylic acid. Obtainable.
  • Polybutadiene-modified urethane (meth) acrylate obtained by (meth) acryl modification of polybutadiene is also included in the urethane (meth) acrylate oligomer.
  • Hydrogenated polybutadiene-modified urethane (meth) acrylate obtained by (meth) acryl modification of hydrogenated polybutadiene is also included in the urethane (meth) acrylate oligomer.
  • Urethane (meth) acrylate oligomers include 1,2-polybutadiene modified urethane (meth) acrylate oligomers, polyester urethane (meth) acrylate oligomers, dibutylene glycol urethane (meth) acrylate oligomers, and polycarbonate urethane (meth).
  • An acrylate oligomer, a polyether urethane type (meth) acrylate oligomer, etc. are mentioned.
  • Polyester-based (meth) acrylate oligomers can be produced by, for example, esterifying hydroxyl groups of polyester oligomers having hydroxyl groups at both ends obtained by condensation of polyvalent carboxylic acids and polyhydric alcohols with (meth) acrylic acid, It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a carboxylic acid with (meth) acrylic acid.
  • the polyether (meth) acrylate oligomer can be obtained, for example, by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid.
  • the epoxy-based (meth) acrylate oligomer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it.
  • a carboxyl-modified epoxy (meth) acrylate oligomer obtained by partially modifying this epoxy-based (meth) acrylate oligomer with a dibasic carboxylic acid anhydride can also be used.
  • diene polymer (meth) acrylate oligomer examples include, for example, SBR di (meth) acrylate obtained by (meth) acryl modification of a liquid styrene-butadiene copolymer and polymethrene obtained by (meth) acryl modification of polyisoprene.
  • examples include isoprene (meth) acrylate.
  • An oligomer having a skeleton of a hydrogenated product of a diene polymer (meth) acrylate for example, by esterifying hydroxyl groups of hydrogenated polybutadiene or hydrogenated polyisoprene with hydroxyl groups at both ends with (meth) acrylic acid.
  • the liquid oligomer which has the said (meth) acryloyl group may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the liquid oligomers from the viewpoint of curability and the like, urethane (meth) acrylate oligomers are preferable, and bifunctional urethane (meth) acrylate oligomers are more preferable.
  • the bifunctional urethane (meth) acrylate oligomer means that two (meth) acryloyl groups are contained in one molecule of the urethane (meth) acrylate oligomer.
  • the bifunctional urethane-based (meth) acrylate oligomer can be obtained by esterifying a polyurethane oligomer with (meth) acrylic acid.
  • the polyurethane oligomer can be obtained by reacting a polyether polyol, polyester polyol, polycarbonate diol or the like having two hydroxy groups in the molecule with a polyisocyanate.
  • polyether polyol having two hydroxy groups examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol (polybutylene glycol), polyhexamethylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, neo A compound obtained by adding ethylene oxide or propylene oxide to pentyl glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxycyclohexyl) propane, bisphenol A, or the like can be used.
  • polyester polyol having two hydroxy groups can be obtained, for example, by reacting an alcohol component and an acid component.
  • Polyester polyols having two hydroxy groups include, for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol (polybutylene glycol), 1,3-butylene glycol, 1,4-butylene glycol, 1,6-hexanediol, neo A compound in which ethylene oxide or propylene oxide is added to pentyl glycol, 1,4-cyclohexanedimethanol, 2,2-bis (4-hydroxycyclohexyl) propane, bisphenol A or the like, or a compound in which ⁇ -caprolactone is added, etc.
  • dibasic acids such as adipic acid, sebacic acid, azelaic acid, and dodecanedicarboxylic acid and their anhydrides can be used as an acid component, and the alcohol component and the acid component can be reacted and used.
  • a compound obtained by simultaneously reacting the above-mentioned alcohol component, acid component, and ⁇ -caprolactone can also be used as the polyester polyol.
  • the weight average molecular weight and number average molecular weight of the urethane-based (meth) acrylate oligomer are preferably 500 to 100,000, more preferably 1,000 to 50,000 in view of handling properties. This value is not particularly limited, but may be, for example, 500, 1000, 2000, 3000, 4000, 5000, 7000, 10000, 20000, 30000, 40000, 50000, or 100000, and within the range of any of these values. There may be.
  • the average molecular weight is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method.
  • the average molecular weight was determined by preparing a calibration curve with commercially available standard polystyrene using GPC system (SC-8010 manufactured by Tosoh Corporation) using tetrahydrofuran as a solvent under the following conditions. .
  • Flow rate 1.0 ml / min
  • Set temperature 40 ° C
  • Sample injection volume 100 ⁇ l (sample solution concentration 1 mg / ml)
  • Liquid feeding pressure 39 kg / cm 2
  • Detector RI detector
  • the urethane-based (meth) acrylate oligomer may be represented by the following general formula (1), for example.
  • R ′ in the general formula is H or CH 3
  • the following structure in which butadiene is hydrogenated may be selected.
  • R ′ is a compound of CH 3
  • R ′ is a compound of H
  • R ′ is H
  • a structure in which the above butadiene is hydrogenated The compounds selected from can be purchased, for example, from Nippon Soda Co., Ltd. (brands are TE-2000, TEA-1000, TEAI-1000 in this order).
  • (meth) acrylates having a homopolymer glass transition temperature of ⁇ 100 to 60 ° C. include lauryl (meth) acrylate (acrylate homopolymer glass transition temperature: acrylate-30 ° C., methacrylate homopolymer glass transition temperature: ⁇ 65 ° C.
  • These (meth) acrylates can be used alone or in combination of two or more.
  • the above -100 to 60 ° C is, for example, -100, -90, -80, -70, -60, -50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50 Or 60 ° C., or in the range of any of these values.
  • Glass transition refers to a change in which a substance such as glass, which is liquid at high temperatures, suddenly increases its viscosity in a certain temperature range due to a temperature drop, almost loses fluidity and becomes an amorphous solid.
  • a measuring method of a glass transition temperature Generally, the glass transition temperature computed from the thermogravimetry, the differential scanning calorimetry, the differential calorimetry, and the dynamic viscoelasticity measurement is pointed out. Among these, dynamic viscoelasticity measurement is preferable.
  • the glass transition temperature of the (meth) acrylate homopolymer is described in J. Org. Brandrup, E.M. H. Immersut, Polymer Handbook, 2nd Ed. , J .; Wiley, New York 1975, photocuring technology data book (Technonet Books), etc.
  • the compound of the general formula (2) is preferable in terms of high adhesiveness.
  • Formula (2) Z—O—R 1 [Wherein, Z represents a (meth) acryloyl group, and R 1 represents a functional group having an aromatic ring or a hydrocarbon group having 9 to 20 carbon atoms. ]
  • the compound of the general formula (2) further improves the flexibility of the cured product and further improves the adhesion to polyethylene terephthalate and the like.
  • an ester of (meth) acrylic acid having an aromatic ring such as nonylphenyl group, nonylphenoxypolyethylene glycol group, phenoxy group, phenoxyethylene glycol group, nonyl group, isononyl group, Hydrocarbon groups having 9 to 20 carbon atoms such as decyl group, isodecyl group, dodecyl group, lauryl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicodecyl group, etc.
  • esters of (meth) acrylic acid examples thereof include esters of (meth) acrylic acid.
  • a linear or branched alkyl group having 9 to 20 carbon atoms is preferred, an alkyl group having 10 to 16 carbon atoms is more preferred, an alkyl group having 11 to 14 carbon atoms is most preferred, and lauryl
  • One or more selected from the group consisting of a group and an isostearyl group is preferred.
  • One or more of these (meth) acrylates can be used.
  • the number of aromatic rings is, for example, 1, 2, or 3, and preferably one.
  • Examples of the mercapto group-containing compound in the present embodiment include the following materials.
  • Alkanethiol is a thiol having an alkyl group.
  • the alkyl group may be a straight chain structure or a branched structure.
  • alkanethiols represented by the following formula (1) are preferable.
  • decanethiol and / or dodecanethiol are preferred.
  • Carboxythiol is a thiol having a carboxyl group.
  • carboxythiol represented by the following formula (2) is preferable.
  • ROOC (CH 2 ) p SH Formula (2) R is hydrogen or a hydrocarbon group having 1 to 19 carbon atoms, p is an integer
  • the R hydrocarbon group preferably has 2 to 16 carbon atoms, and more preferably 5 to 12 carbon atoms.
  • P is preferably from 1 to 30, and more preferably from 1 to 2.
  • carboxythiol examples include thioglycolic acid, ⁇ -mercaptopropionic acid, thioglycolic acid ester (methyl thioglycolate, octyl thioglycolate, etc.), ⁇ -mercaptopropionic acid ester (methyl-3-mercaptopropionate, methyl- 3-mercaptopropionate, n-octyl-3-mercaptopropionate, stearyl-3-mercaptopropionate) and the like.
  • carboxythiols thioglycolic acid and / or ⁇ -mercaptopropionic acid are preferred.
  • the photopolymerization agent is not particularly limited as long as it initiates polymerization of (meth) acrylate having a homopolymer glass transition temperature of ⁇ 100 to 60 ° C.
  • Examples of the photopolymerization initiator include an ultraviolet polymerization initiator and a visible light polymerization initiator, both of which are used without limitation.
  • Examples of the ultraviolet polymerization initiator include benzoin, benzophenone, and acetophenone.
  • Examples of visible light polymerization initiators include acylphosphine oxide, thioxanthone, metallocene, quinone, and ⁇ -aminoalkylphenone.
  • Photopolymerization initiators include benzophenone, 4-phenylbenzophenone, benzoylbenzoic acid, 2,2-diethoxyacetophenone, bisdiethylaminobenzophenone, benzyl, benzoin, benzoylisopropyl ether, benzyldimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, thioxanthone 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 1- (4-isopropylphenyl) 2-hydroxy-2-methylpropan-1-one 1- (4- (2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-2-methyl-1-phenyl Rupropan-1-one, camphorquinone, 2,4,6-tri
  • the curable resin composition of the present embodiment has (A) a urethane-based (meth) acrylate oligomer, a polyester-based (meth) as the component (E) for the purpose of further improving the adhesion to each adherend.
  • (E) component ((meth) acrylates other than (A) and (B)) monofunctional (meth) acrylate, polyfunctional such as bifunctional, trifunctional, tetrafunctional, pentafunctional, and hexafunctional ( It can be used in various ways such as (meth) acrylate. Among these, monofunctional (meth) acrylate or bifunctional (meth) acrylate is preferable.
  • (E) component of this embodiment as monofunctional (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, stearyl (meth) acrylate, tetrahydrofurfuryl (meth) ) Acrylate, caprolactone modified tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate, phenoxyethyl (meth) ) Acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonyl Enoxyethyl (meth) acryl
  • dicyclopentenyloxyethyl (meth) acrylate dicyclosilane is used for the purpose of improving adhesiveness to polyolefins including cycloolefin polymers.
  • examples thereof include (meth) acrylates having a dicyclopentenyl group such as cyclopentenyloxypropyl (meth) acrylate and dicyclopentenyl (meth) acrylate.
  • (meth) acrylates and / or isobornyl (meth) acrylates having a dicyclopentenyl group are more preferable in terms of improving the adhesion to cycloolefin.
  • the polyfunctional (meth) acrylate di (meth) acrylated isocyanurate, tri (meth) acrylated isocyanurate, 1,3-dibutylene glycol di (meth) Acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, EO (ethylene oxide) modified bisphenol A di (meth) acrylate , Diethylene glycol di (meth) acrylate, ECH (epichlorohydrin) modified hexahydrophthalic acid di (meth) acrylate, neopentyl glycol di (meth) acrylate, EO modified neopentyl glycol di (meth) acrylate, caprolactone modified hydroxypivalin Acid Este Luneopentyl glycol di (
  • examples of the polyfunctional (meth) acrylate include (meth) acrylate having a dicyclopentenyl group such as dicyclopentenyl di (meth) acrylate.
  • examples of the polyfunctional (meth) acrylates in the component (E) trimethylolpropane tri (meth) acrylate and / or tricyclodecane dimethanol (meth) acrylate is more preferable in terms of oligomer solubility.
  • a silane coupling agent can be contained for the purpose of improving the adhesion to glass.
  • the curable resin composition of this embodiment includes (A) a urethane (meth) acrylate oligomer, a polyester (meth) acrylate oligomer, a polyether (meth) acrylate oligomer, an epoxy (meth) acrylate oligomer, and a diene polymer system.
  • the curable resin composition of the present embodiment can be cured by ultraviolet rays or visible light.
  • the mass ratio of the component (A) and the component (B) is such that the adhesiveness is increased and the curability is improved.
  • the numerical value of the component (A) when expressing this ratio is not particularly limited, and may be, for example, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 95, It may be within the range of these values.
  • the numerical value of the component (B) when expressing this ratio is not particularly limited, and may be, for example, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 95, and It may be within the range of any value.
  • Component (C) is preferably used in an amount of 0.01 to 10 parts by weight per 100 parts by weight of component (A), component (B) and component (E) used as necessary. 1 to 8 parts by mass is more preferable.
  • the amount used is not particularly limited, and may be, for example, 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 15, either It may be within the range of the value of.
  • Component (D) is preferably used in an amount of 0.1 to 20 parts by weight per 100 parts by weight of component (A), component (B), and component (E) used as necessary. 2 to 10 parts by mass is more preferable.
  • the amount used is not particularly limited, but may be, for example, 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25. May be within the range of any of these values.
  • the amount of component (E) used is preferably 1 to 30 parts by weight, more preferably 5 to 15 parts by weight, based on a total of 100 parts by weight of component (A) and component (B).
  • the amount used is not particularly limited, and may be, for example, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, or 35. It may be within the range of values.
  • the curable resin composition of this embodiment can use various paraffins in order to quickly cure the portion in contact with air.
  • a commercially available antioxidant containing a polymerization inhibitor can be used.
  • the curable resin composition in this embodiment can be used as an adhesive composition.
  • a to-be-adhered body can be joined or coat
  • the cured product is obtained, for example, by irradiating the adhesive composition with UV.
  • a to-be-adhered body about various materials of a to-be-adhered body, 1 or more types chosen from the group which consists of polyolefin, glass, a metal, such as a triacetyl cellulose, a fluorine-type polymer, polyester, a polycarbonate, a cycloolefin polymer, is preferable, and consists of a polycarbonate, polyolefin, glass.
  • a metal such as a triacetyl cellulose, a fluorine-type polymer, polyester, a polycarbonate, a cycloolefin polymer, is preferable, and consists of a polycarbonate, polyolefin, glass.
  • a metal such as a triacetyl cellulose, a fluorine-type polymer, polyester, a polycarbonate, a cycloolefin polymer, is preferable, and consists of a polycarbonate, polyolefin, glass.
  • the cured body bonded with the curable resin composition of the present embodiment can be reworked (reused) after being completely cured.
  • the rework method is not particularly limited, but the adherends are disassembled by applying a load of 0.01 to 100 N between the one or two kinds of adherends bonded together, and the adherend after disassembly The body can be reused.
  • a (meth) acrylate oligomer (A) that is at least one selected from the group consisting of oligomers having a skeleton of an acrylate hydrogenated product, (A-1) 1,2-polybutadiene-modified urethane methacrylate oligomer (“TE-2000” manufactured by Nippon Soda Co., Ltd.) (Number average molecular weight 2000 in terms of polystyrene by GPC, bifunctional methacrylate oligomer).
  • A-2) Mixture of acrylic ester polymer and urethane acrylate oligomer (“PM-654” manufactured by Osaka Organic Chemical Industry Co., Ltd.) (Number average molecular weight of 20000 in terms of polystyrene by GPC, bifunctional acrylate oligomer) (A-3) Polyester urethane acrylate oligomer (“KHP-17” manufactured by Negami Kogyo Co., Ltd.) (weight average molecular weight 40000 in terms of polystyrene by GPC, bifunctional acrylate oligomer) (A-4) Dibutylene glycol urethane-based acrylate oligomer (“UV-3000B” manufactured by Nippon Synthetic Chemical Co., Ltd.
  • PET Polyethylene terephthalate
  • PET adhesion evaluation (peeling adhesive strength between polyethylene terephthalate test pieces)
  • Biaxially stretched PET film (Lumirror T60, average thickness 190 ⁇ m, manufactured by Toray Industries, Inc.) test pieces (50 mm ⁇ 10 mm ⁇ 0. 19 mm) were bonded using a curable resin composition as an adhesive composition, with an adhesive layer thickness of 30 ⁇ m and an adhesive area of 40 mm long ⁇ 10 mm wide. After curing by light irradiation, by pulling the two non-adhered film end portions of the test piece bonded with an adhesive, the film-adhered portions are peeled off, and the initial 180 ° peel adhesion strength was measured.
  • the light irradiation conditions followed the method described in [Photocurability].
  • the peel adhesion strength (unit: N / cm) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min.
  • the tensile shear bond strength (unit: MPa) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min.
  • the bond strength was measured.
  • the light irradiation conditions followed the method described in [Photocurability].
  • the peel adhesion strength (unit: N / cm) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min.
  • Triacetylcellulose (TAC) film (average thickness 40 ⁇ m, manufactured by Fuji Film) test piece (width 50 mm ⁇ length 10 mm ⁇ A thickness of 0.04 mm was bonded to each other with the adhesive layer having a thickness of 10 ⁇ m and a bonding area of 40 mm in length and 10 mm in width by using the curable resin composition as an adhesive composition. After curing by light irradiation, by pulling the two end portions of the film that are not in close contact with the test piece bonded with the adhesive composition, the portions where the films are in close contact are peeled off, and the initial 180 ° peeling is performed.
  • the bond strength was measured.
  • the light irradiation conditions followed the method described in [Photocurability].
  • the peel adhesive strength (unit: N / cm) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 50 mm / min.
  • PVDF film (average thickness 40 ⁇ m, “DX film” manufactured by Denki Kagaku Kogyo Co., Ltd.) test piece (width 50 mm ⁇ length 10 mm ⁇ thickness) 0.04 mm) were bonded to each other using a curable resin composition as an adhesive composition with an adhesive layer thickness of 10 ⁇ m and an adhesive area of 40 mm long ⁇ 10 mm wide. After curing by light irradiation, by pulling the two end portions of the film that are not in close contact with the test piece bonded with the adhesive composition, the portions where the films are in close contact are peeled off, and the initial 180 ° peeling is performed.
  • the bond strength was measured.
  • the light irradiation conditions followed the method described in [Photocurability].
  • the peel adhesive strength (unit: N / cm) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 50 mm / min.
  • the tensile shear bond strength (unit: MPa) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min.
  • an adhesive composition “G-55” manufactured by Denki Kagaku Kogyo Co., Ltd. was used on the Tempax test piece side, and a galvanized steel sheet (width 100 mm ⁇ length 25 mm ⁇ A thickness of 2.0 mm, manufactured by Engineering Test Service Co., Ltd.) was adhered.
  • the galvanized steel sheet was chucked, and the initial tensile shear bond strength was measured.
  • the tensile shear bond strength (unit: MPa) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min.
  • Tempax glasses 25 mm x 25 mm x 2 mm were used as curable resin compositions as adhesive compositions, The adhesive layer was bonded and cured with a thickness of 100 ⁇ m and an adhesive area of 1.0 mm 2 . The light irradiation conditions followed the method described in [Photocurability]. After curing, the test piece bonded with the adhesive composition was exposed to an environment of 85 ° C. and 85% relative humidity for 1000 hours using a constant temperature and humidity chamber. The tensile shear bond strength was measured using the test piece after exposure. The appearance of the bonded part was visually observed to determine whether it was yellowed.
  • an adhesive composition “G-55” manufactured by Denki Kagaku Kogyo Co., Ltd. was used on the Tempax test piece side, and a galvanized steel sheet (width 100 mm ⁇ length 25 mm ⁇ thickness 2.0 mm, manufactured by Engineering Test Service Co., Ltd.) ) was adhered.
  • the galvanized steel sheet was chucked, and the initial tensile shear bond strength was measured.
  • the tensile shear bond strength (unit: MPa) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min.
  • the present invention has high adhesiveness. Since the present invention has such flexibility that it can follow the deformation of the adherend in a heated atmosphere, it has a high resistance to moist heat. When DMDO which is a compound having two or more mercapto groups is used, flexibility and adhesiveness are small.
  • the present invention since bubbles are hardly mixed, sufficient adhesion can be imparted, and a transparent substrate can be bonded or a printed portion can be bonded. Since the present invention has a high resistance to moist heat, it can be used in a heated atmosphere. The present invention has great industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a curable resin composition exhibiting high adhesion durability. The curable resin composition contains: a (meth)acrylate oligomer (A) selected from the group consisting of urethane-based (meth)acrylate oligomers, polyester-based (meth)acrylate oligomers, polyether-based (meth)acrylate oligomers, epoxy-based (meth)acrylate oligomers, diene polymer-based (meth)acrylate oligomers, and oligomers having a backbone of the hydrogenated product of a diene polymer-based (meth)acrylate; a (meth)acrylate (B) exhibiting a homopolymer glass transition temperature of -100°C to 60°C; one or more compounds (C) having one mercapto group per molecule, the compound(s) being selected from the group consisting of alkanethiols and carboxythiols; and a photopolymerization initiator (D).

Description

硬化性樹脂組成物Curable resin composition
本発明は、硬化性樹脂組成物に関する。 The present invention relates to a curable resin composition.
LCD等の表示体の上に搭載するタッチパネルには、抵抗膜式、静電容量式、電磁誘導式、光学式等がある。これらのタッチパネルの上には、見た目のデザイン性を良くするための化粧板や、タッチする位置を指定するアイコンシートを貼り合わせる場合がある。静電容量式タッチパネルは、透明基板の上に透明電極を形成し、その上に透明板を貼り合わせた構造を有している。 Examples of touch panels mounted on a display body such as an LCD include a resistance film type, a capacitance type, an electromagnetic induction type, and an optical type. On these touch panels, there are cases where a decorative board for improving the appearance design and an icon sheet for designating a touch position are pasted together. The capacitive touch panel has a structure in which a transparent electrode is formed on a transparent substrate and a transparent plate is bonded thereon.
近年LCD等の表示体のガラスが薄くなってきている。ガラスが薄くなると外部応力でLCDが変形しやすくなる。この薄いガラスのLCD等の表示体と、アクリル板やポリカーボネート板等の光学機能材料とを貼り合わせる場合、ガラスとアクリル等の線膨張の違いや、アクリル板やポリカーボネート等のプラスチック成型材の成型時の歪みにより、耐熱試験や耐湿試験において成型歪みの緩和や吸湿/乾燥が起こり、寸法変化や反り等の面精度変化が起きる。従来の接着剤(例えば、特許文献1)でこの変形を抑えようとした場合は、接着面が剥がれたり、LCDが割れたり、LCDが表示ムラになったりするという課題があった。
そのような課題解決策として、特許文献2のようなUV硬化型樹脂がある。
In recent years, the glass of a display body such as an LCD has become thinner. When the glass becomes thinner, the LCD is easily deformed by external stress. When this thin glass LCD or other optical display material is bonded to an optical functional material such as an acrylic plate or a polycarbonate plate, the difference in linear expansion between the glass and acrylic or the molding of a plastic molding material such as an acrylic plate or polycarbonate Due to this distortion, mold distortion is relaxed and moisture absorption / drying occurs in the heat resistance test and moisture resistance test, and surface accuracy changes such as dimensional changes and warpage occur. When trying to suppress this deformation with a conventional adhesive (for example, Patent Document 1), there are problems that the adhesive surface is peeled off, the LCD is cracked, or the LCD becomes uneven in display.
As a solution for such a problem, there is a UV curable resin as in Patent Document 2.
また、化粧板とタッチパネルの貼り合わせ、アイコンシートとタッチパネルの貼り合わせ、静電容量式タッチパネルにおける透明電極を形成した透明基板と透明板の貼り合わせ等の用途では、使用環境を想定した加温雰囲気での被着体の変形に追随できる程の柔軟性を有することが望ましいとされている。柔軟性を付与するものとして、特許文献3のような、ジエン系重合体とメルカプト基を2個有する化合物を必須成分とした硬化性樹脂組成物がある。また、メルカプト基を有する化合物を含有するものとして、特許文献4や特許文献5のような硬化性樹脂組成物がある。 In addition, in applications such as bonding of decorative plates and touch panels, bonding of icon sheets and touch panels, and bonding of transparent substrates and transparent plates with transparent electrodes in capacitive touch panels, a heated atmosphere that assumes the usage environment It is desirable to have such flexibility that it can follow the deformation of the adherend. As what gives a softness | flexibility, there exists a curable resin composition which used the compound which has a diene polymer and two mercapto groups like patent document 3 as an essential component. Moreover, there exist curable resin compositions like patent document 4 and patent document 5 as what contains the compound which has a mercapto group.
特開2004-77887号公報Japanese Patent Laid-Open No. 2004-77887 特開昭64-85209号公報JP-A 64-85209 特開2009-256465号公報JP 2009-256465 A 国際公開第2010/027041パンフレットInternational Publication No. 2010/027041 Pamphlet 特開2011-26492号公報JP 2011-26492 A
しかしながら、上記特許文献2のUV硬化型樹脂は、イソボルニル(メタ)アクリレートのような剛直な骨格モノマーをベースとした高弾性樹脂であるが故、高温信頼性試験において被着体の膨張収縮に耐えることができず剥がれを生じてしまうと考えられる。 However, since the UV curable resin of Patent Document 2 is a highly elastic resin based on a rigid skeleton monomer such as isobornyl (meth) acrylate, it can withstand expansion and contraction of an adherend in a high temperature reliability test. It is considered that peeling cannot occur.
また、本発明者らは硬化性樹脂組成物の一成分であるメルカプト基を有する化合物に、アルカンチオール及びカルボキシチオールからなる群から選ばれる1種以上である分子内にメルカプト基を1個有する化合物を使用した場合に、高い接着耐久性の硬化性樹脂組成物が得られることを確認している(例えば、後述の実施例参照)。一方で、上記特許文献3~5では、そのような特定の種類のメルカプト基を有する化合物を使用していないため、硬化性樹脂組成物の柔軟性、接着性等の制御ができないと考えられる。 In addition, the present inventors have a compound having one mercapto group in the molecule which is one or more selected from the group consisting of alkanethiol and carboxythiol in the compound having a mercapto group which is one component of the curable resin composition. It has been confirmed that a curable resin composition having high adhesion durability can be obtained when using (for example, see Examples described later). On the other hand, in Patent Documents 3 to 5 described above, since such a specific type of compound having a mercapto group is not used, it is considered that the flexibility and adhesiveness of the curable resin composition cannot be controlled.
本発明は、例えば、タッチパネル等の表示体に使用される化粧板やアイコンシートを貼り合わせる場合、静電容量タッチパネルにおける透明電極を形成した透明基板を貼り合わせる場合、印刷された部分を貼り合わせる場合に、十分な接着性を付与することが困難であるという従来技術の課題、或いは表示体と光学機能材料とを貼り合わせた場合に、接着面が剥がれたり、表示体のガラスが割れたりするという従来技術の課題を解決する硬化性樹脂組成物の提供を目的とする。 In the present invention, for example, when pasting a decorative board or icon sheet used for a display body such as a touch panel, pasting a transparent substrate on which a transparent electrode is formed in a capacitive touch panel, pasting a printed portion In addition, it is difficult to impart sufficient adhesiveness, or when the display body and the optical functional material are bonded together, the adhesive surface peels off or the glass of the display body is broken. It aims at providing the curable resin composition which solves the subject of a prior art.
即ち、本発明によれば、(A)ウレタン系(メタ)アクリレートオリゴマー、ポリエステル系(メタ)アクリレートオリゴマー、ポリエーテル系(メタ)アクリレートオリゴマー、エポキシ系(メタ)アクリレートオリゴマー、ジエン重合体系(メタ)アクリレートオリゴマー、及び、ジエン重合体系(メタ)アクリレートの水素添加物の骨格を有するオリゴマーからなる群から選ばれる1種以上である(メタ)アクリレートオリゴマー、(B)ホモポリマーガラス転移温度が-100~60℃を示す(メタ)アクリレート、(C)アルカンチオール及びカルボキシチオールからなる群から選ばれる1種以上である分子内にメルカプト基を1個有する化合物、及び(D)光重合開始剤、を含有してなる硬化性樹脂組成物が提供される。 That is, according to the present invention, (A) urethane (meth) acrylate oligomer, polyester (meth) acrylate oligomer, polyether (meth) acrylate oligomer, epoxy (meth) acrylate oligomer, diene polymer system (meth) One or more (meth) acrylate oligomers selected from the group consisting of acrylate oligomers and oligomers having a skeleton of a hydrogenated product of a diene polymer (meth) acrylate, and (B) a homopolymer glass transition temperature of −100 to Contains a compound having one mercapto group in the molecule which is one or more selected from the group consisting of (meth) acrylate, (C) alkanethiol and carboxythiol, and (D) a photopolymerization initiator. A curable resin composition is provided.
また本発明によれば、上記硬化性樹脂組成物に更に、(E)成分として、上記(A)と(B)以外の(メタ)アクリレートを含有する硬化性樹脂組成物が提供される。また本発明によれば、上記(E)成分が、トリメチロールプロパントリ(メタ)アクリレート及び/又はトリシクロデカンジメタノール(メタ)アクリレートである硬化性樹脂組成物が提供される。また本発明によれば、上記(C)の分子内にメルカプト基を1個含有する化合物が、下記式(1)で示されるアルカンチオールである硬化性樹脂組成物が提供される。
2n+1SH  式(1)
(nは4~19の整数)
また本発明によれば、(C)の分子内にメルカプト基を1個含有する化合物が、下記式(2)で示されるカルボキシチオールである該硬化性樹脂組成物が提供される。
ROOC(CHSH  式(2)
(Rは水素又は炭素数1~19の炭化水素基、pは整数)
また本発明によれば、上記(A)成分の重量平均分子量が500~100000である硬化性樹脂組成物が提供される。また本発明によれば、上記(A)成分の数平均分子量が500~100000である硬化性樹脂組成物が提供される。また本発明によれば、上記硬化性樹脂組成物からなる接着剤組成物が提供される。また本発明によれば、上記接着剤組成物の硬化体が提供される。また本発明によれば、上記硬化体により被着体が被覆又は接合された複合体が提供される。また本発明によれば、上記被着体がトリアセチルセルロース、フッ素系ポリマー、ポリエステル、ポリカーボネート、ポリオレフィン、ガラス、及び、金属からなる群から選ばれる1種以上である複合体が提供される。また本発明によれば、上記接着剤組成物により被着体を貼り合わせてなるタッチパネル積層体が提供される。また本発明によれば、上記接着剤組成物により被着体を貼り合わせた液晶パネル積層体が提供される。また本発明によれば、上記タッチパネル積層体を用いたディスプレイが提供される。また本発明によれば、上記液晶パネル積層体を用いたディスプレイが提供される。
Moreover, according to this invention, the curable resin composition which contains (meth) acrylates other than said (A) and (B) as a (E) component further to the said curable resin composition is provided. Moreover, according to this invention, the curable resin composition whose said (E) component is a trimethylol propane tri (meth) acrylate and / or tricyclodecane dimethanol (meth) acrylate is provided. Moreover, according to this invention, the curable resin composition whose compound which contains one mercapto group in the molecule | numerator of said (C) is alkanethiol shown by following formula (1) is provided.
C n H 2n + 1 SH Formula (1)
(N is an integer from 4 to 19)
Moreover, according to this invention, this curable resin composition whose compound which contains one mercapto group in the molecule | numerator of (C) is the carboxythiol shown by following formula (2) is provided.
ROOC (CH 2 ) p SH Formula (2)
(R is hydrogen or a hydrocarbon group having 1 to 19 carbon atoms, p is an integer)
According to the present invention, there is also provided a curable resin composition in which the weight average molecular weight of the component (A) is 500 to 100,000. Further, according to the present invention, there is provided a curable resin composition in which the number average molecular weight of the component (A) is 500 to 100,000. Moreover, according to this invention, the adhesive composition which consists of the said curable resin composition is provided. Moreover, according to this invention, the hardening body of the said adhesive composition is provided. Moreover, according to this invention, the composite_body | complex by which the to-be-adhered body was coat | covered or joined by the said hardening body is provided. According to the present invention, there is also provided a composite in which the adherend is at least one selected from the group consisting of triacetylcellulose, fluoropolymer, polyester, polycarbonate, polyolefin, glass, and metal. Moreover, according to this invention, the touch-panel laminated body formed by bonding a to-be-adhered body with the said adhesive composition is provided. Moreover, according to this invention, the liquid crystal panel laminated body which bonded together the to-be-adhered body with the said adhesive composition is provided. Moreover, according to this invention, the display using the said touchscreen laminated body is provided. Moreover, according to this invention, the display using the said liquid crystal panel laminated body is provided.
本発明の硬化性樹脂組成物は、高い接着耐久性を示す。 The curable resin composition of the present invention exhibits high adhesion durability.
以下、本発明の実施の形態について詳細に説明する。
多官能(メタ)アクリレートとは、1分子中に、(メタ)アクリロイル基が2個以上含まれている(メタ)アクリレートを意味する。単官能(メタ)アクリレートとは、1分子中に、(メタ)アクリロイル基が1個含まれている(メタ)アクリレートを意味する。
Hereinafter, embodiments of the present invention will be described in detail.
The polyfunctional (meth) acrylate means (meth) acrylate in which two or more (meth) acryloyl groups are contained in one molecule. The monofunctional (meth) acrylate means (meth) acrylate in which one (meth) acryloyl group is contained in one molecule.
((A)成分:ウレタン系(メタ)アクリレートオリゴマー、ポリエステル系(メタ)アクリレートオリゴマー、ポリエーテル系(メタ)アクリレートオリゴマー、エポキシ系(メタ)アクリレートオリゴマー、ジエン重合体系(メタ)アクリレートオリゴマー、及び、ジエン重合体系(メタ)アクリレートの水素添加物の骨格を有するオリゴマー)
(A)成分のオリゴマーとしては、(メタ)アクリロイル基を有する液状オリゴマーが好ましい。この液状オリゴマーとしては、硬化性の観点から、分子内に少なくとも2個の(メタ)アクリロイル基を有するオリゴマーを、好適に用いることができる。1分子中の(メタ)アクリロイル基の個数は、2~6個が好ましく、2~4個がより好ましく、2個が最も好ましい。(メタ)アクリロイル基は、(A)成分のオリゴマーの両末端又は片末端に位置していてもよい。(メタ)アクリロイル基とは、アクリロイル基又はメタクリロイル基を指す。
((A) component: urethane (meth) acrylate oligomer, polyester (meth) acrylate oligomer, polyether (meth) acrylate oligomer, epoxy (meth) acrylate oligomer, diene polymer (meth) acrylate oligomer, and Diene polymer system (meth) acrylate hydrogenated oligomers)
As the oligomer of component (A), a liquid oligomer having a (meth) acryloyl group is preferable. As this liquid oligomer, an oligomer having at least two (meth) acryloyl groups in the molecule can be suitably used from the viewpoint of curability. The number of (meth) acryloyl groups in one molecule is preferably 2 to 6, more preferably 2 to 4, and most preferably 2. The (meth) acryloyl group may be located at both ends or one end of the oligomer of the component (A). The (meth) acryloyl group refers to an acryloyl group or a methacryloyl group.
(メタ)アクリロイル基を有するオリゴマーとしては、特に制限はないが、例えば、ウレタン系(メタ)アクリレートオリゴマー、ポリエステル系(メタ)アクリレートオリゴマー、ポリエーテル系(メタ)アクリレートオリゴマー、エポキシ系(メタ)アクリレートオリゴマー、ジエン重合体系(メタ)アクリレートオリゴマー、及び、ジエン重合体系(メタ)アクリレートの水素添加物なからなる群から選ばれる1種以上である(メタ)アクリレートオリゴマー等を挙げることができる。 The oligomer having a (meth) acryloyl group is not particularly limited, and examples thereof include urethane (meth) acrylate oligomers, polyester (meth) acrylate oligomers, polyether (meth) acrylate oligomers, and epoxy (meth) acrylates. Examples thereof include one or more (meth) acrylate oligomers selected from the group consisting of oligomers, diene polymer (meth) acrylate oligomers, and hydrogenated products of diene polymer (meth) acrylates.
(メタ)アクリロイル基を有するオリゴマーの主鎖骨格は、特に制限はないが、例えば、ポリブタジエン、ポリブタジエンの水素添加物、ポリイソプレン、ポリイソプレンの水素添加物、ポリエステル、ジブチレングリコール、ポリカーボネート、及びポリエーテルから選ばれる1種以上であってもよい。 The main chain skeleton of the oligomer having a (meth) acryloyl group is not particularly limited. For example, polybutadiene, hydrogenated polybutadiene, polyisoprene, hydrogenated polyisoprene, polyester, dibutylene glycol, polycarbonate, and polybutadiene It may be one or more selected from ethers.
ウレタン系(メタ)アクリレートオリゴマーは、例えば、分子内にウレタン結合を有する(メタ)アクリレートオリゴマーをいう。ウレタン系(メタ)アクリレートオリゴマーは、例えば、ポリブタジエンジオール、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートジオール等と、ポリイソシアナートとの反応によって得られるポリウレタンオリゴマーを、(メタ)アクリル酸でエステル化することにより得ることができる。ポリブタジエンを(メタ)アクリル変性して得られるポリブタジエン変性ウレタン系(メタ)アクリレートも、ウレタン系(メタ)アクリレートオリゴマーに含まれる。水素添加したポリブタジエンを(メタ)アクリル変性して得られる水素添加ポリブタジエン変性ウレタン系(メタ)アクリレートも、ウレタン系(メタ)アクリレートオリゴマーに含まれる。ウレタン系(メタ)アクリレートオリゴマーとしては、1,2-ポリブタジエン変性ウレタン系(メタ)アクリレートオリゴマー、ポリエステルウレタン系(メタ)アクリレートオリゴマー、ジブチレングリコールウレタン系(メタ)アクリレートオリゴマー、ポリカーボネートウレタン系(メタ)アクリレートオリゴマー、ポリエーテルウレタン系(メタ)アクリレートオリゴマー等が挙げられる。 A urethane type (meth) acrylate oligomer means the (meth) acrylate oligomer which has a urethane bond in a molecule | numerator, for example. The urethane-based (meth) acrylate oligomer is obtained by, for example, esterifying a polyurethane oligomer obtained by reaction of polybutadienediol, polyether polyol, polyester polyol, polycarbonate diol, and the like with polyisocyanate with (meth) acrylic acid. Obtainable. Polybutadiene-modified urethane (meth) acrylate obtained by (meth) acryl modification of polybutadiene is also included in the urethane (meth) acrylate oligomer. Hydrogenated polybutadiene-modified urethane (meth) acrylate obtained by (meth) acryl modification of hydrogenated polybutadiene is also included in the urethane (meth) acrylate oligomer. Urethane (meth) acrylate oligomers include 1,2-polybutadiene modified urethane (meth) acrylate oligomers, polyester urethane (meth) acrylate oligomers, dibutylene glycol urethane (meth) acrylate oligomers, and polycarbonate urethane (meth). An acrylate oligomer, a polyether urethane type (meth) acrylate oligomer, etc. are mentioned.
ポリエステル系(メタ)アクリレートオリゴマーは、例えば、多価カルボン酸と多価アルコールの縮合により得られる両末端に水酸基を有するポリエステルオリゴマーの水酸基を(メタ)アクリル酸でエステル化することにより、或いは、多価カルボン酸にアルキレンオキシドを付加して得られるオリゴマーの末端の水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。 Polyester-based (meth) acrylate oligomers can be produced by, for example, esterifying hydroxyl groups of polyester oligomers having hydroxyl groups at both ends obtained by condensation of polyvalent carboxylic acids and polyhydric alcohols with (meth) acrylic acid, It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a carboxylic acid with (meth) acrylic acid.
ポリエーテル系(メタ)アクリレートオリゴマーは、例えば、ポリエーテルポリオールの水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。 The polyether (meth) acrylate oligomer can be obtained, for example, by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid.
エポキシ系(メタ)アクリレートオリゴマーは、例えば、比較的低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂のオキシラン環に、(メタ)アクリル酸を反応し、エステル化することにより得ることができる。又、このエポキシ系(メタ)アクリレートオリゴマーを部分的に二塩基性カルボン酸無水物で変性したカルボキシル変性型のエポキシ(メタ)アクリレートオリゴマーも用いることができる。 The epoxy-based (meth) acrylate oligomer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it. A carboxyl-modified epoxy (meth) acrylate oligomer obtained by partially modifying this epoxy-based (meth) acrylate oligomer with a dibasic carboxylic acid anhydride can also be used.
ジエン重合体系(メタ)アクリレートオリゴマーとしては、例えば、液状スチレン-ブタジエン共重合体を(メタ)アクリル変性して得られるSBRジ(メタ)アクリレート、ポリイソプレンを(メタ)アクリル変性して得られるポリイソプレンジ(メタ)アクリレート等が挙げられる。 Examples of the diene polymer (meth) acrylate oligomer include, for example, SBR di (meth) acrylate obtained by (meth) acryl modification of a liquid styrene-butadiene copolymer and polymethrene obtained by (meth) acryl modification of polyisoprene. Examples include isoprene (meth) acrylate.
ジエン重合体系(メタ)アクリレートの水素添加物の骨格を有するオリゴマーは、例えば、両末端に水酸基を有する、水素添加ポリブタジエン又は水素添加ポリイソプレンの水酸基を、(メタ)アクリル酸でエステル化することにより得ることができる。 An oligomer having a skeleton of a hydrogenated product of a diene polymer (meth) acrylate, for example, by esterifying hydroxyl groups of hydrogenated polybutadiene or hydrogenated polyisoprene with hydroxyl groups at both ends with (meth) acrylic acid. Obtainable.
本実施形態においては、上記(メタ)アクリロイル基を有する液状オリゴマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。液状オリゴマーの中では、硬化性等の観点から、ウレタン系(メタ)アクリレートオリゴマーが好ましく、2官能ウレタン系(メタ)アクリレートオリゴマーがより好ましい。2官能ウレタン系(メタ)アクリレートオリゴマーとは、ウレタン系(メタ)アクリレートオリゴマーの1分子中に、(メタ)アクリロイル基が2個含まれていることを意味する。 In this embodiment, the liquid oligomer which has the said (meth) acryloyl group may be used individually by 1 type, and may be used in combination of 2 or more type. Among the liquid oligomers, from the viewpoint of curability and the like, urethane (meth) acrylate oligomers are preferable, and bifunctional urethane (meth) acrylate oligomers are more preferable. The bifunctional urethane (meth) acrylate oligomer means that two (meth) acryloyl groups are contained in one molecule of the urethane (meth) acrylate oligomer.
2官能ウレタン系(メタ)アクリレートオリゴマーは、ポリウレタンオリゴマーを、(メタ)アクリル酸でエステル化することにより得ることができる。ポリウレタンオリゴマーは、分子内にヒドロキシ基2個を有する、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートジオール等と、ポリイソシアナートとの反応により、得ることができる。 The bifunctional urethane-based (meth) acrylate oligomer can be obtained by esterifying a polyurethane oligomer with (meth) acrylic acid. The polyurethane oligomer can be obtained by reacting a polyether polyol, polyester polyol, polycarbonate diol or the like having two hydroxy groups in the molecule with a polyisocyanate.
ヒドロキシ基2個を有するポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール(ポリブチレングリコール)、ポリヘキサメチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン、ビスフェノールA等に、エチレンオキシド又はプロピレンオキシド等が付加した化合物等を用いることができる。 Examples of the polyether polyol having two hydroxy groups include polyethylene glycol, polypropylene glycol, polytetramethylene glycol (polybutylene glycol), polyhexamethylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, neo A compound obtained by adding ethylene oxide or propylene oxide to pentyl glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxycyclohexyl) propane, bisphenol A, or the like can be used.
ヒドロキシ基2個を有するポリエステルポリオールは、例えば、アルコール成分と酸成分とを反応させて得ることができる。ヒドロキシ基2個を有するポリエステルポリオールは、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール(ポリブチレングリコール)、1,3-ブチレングリコール、1,4-ブチレングリコール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン、ビスフェノールA等に、エチレンオキシド又はプロピレンオキシド等が付加した化合物、或いは、ε-カプロラクトンが付加した化合物等をアルコール成分とし、アジピン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸等の二塩基酸及びその無水物を酸成分とし、アルコール成分と酸成分を反応させて使用することができる。上記のアルコール成分、酸成分、及び、ε-カプロラクトンの三者を同時に反応させることによって得られる化合物も、ポリエステルポリオールとして使用することができる。 The polyester polyol having two hydroxy groups can be obtained, for example, by reacting an alcohol component and an acid component. Polyester polyols having two hydroxy groups include, for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol (polybutylene glycol), 1,3-butylene glycol, 1,4-butylene glycol, 1,6-hexanediol, neo A compound in which ethylene oxide or propylene oxide is added to pentyl glycol, 1,4-cyclohexanedimethanol, 2,2-bis (4-hydroxycyclohexyl) propane, bisphenol A or the like, or a compound in which ε-caprolactone is added, etc. As an alcohol component, dibasic acids such as adipic acid, sebacic acid, azelaic acid, and dodecanedicarboxylic acid and their anhydrides can be used as an acid component, and the alcohol component and the acid component can be reacted and used. A compound obtained by simultaneously reacting the above-mentioned alcohol component, acid component, and ε-caprolactone can also be used as the polyester polyol.
ウレタン系(メタ)アクリレートオリゴマーの重量平均分子量や数平均分子量は、ハンドリング性等の点で、500~100000が好ましく、1000~50000がより好ましい。この値は特に限定されないが、例えば500、1000、2000、3000、4000、5000、7000、10000、20000、30000、40000、50000、又は100000であってもよく、それらいずれかの値の範囲内であってもよい。平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によって測定される標準ポリスチレン換算の値である。具体的には、平均分子量は、下記の条件にて、溶剤としてテトラヒドロフランを用い、GPCシステム(東ソ-社製SC-8010)を使用し、市販の標準ポリスチレンで検量線を作成して求めた。
 流速:1.0ml/min
 設定温度:40℃
 カラム構成:東ソー社製「TSK guardcolumn MP(×L)」6.0mmID×4.0cm1本、および東ソー社製「TSK-GELMULTIPOREHXL-M」7.8mmID×30.0cm(理論段数16,000段)2本、計3本(全体として理論段数32,000段)、
 サンプル注入量:100μl(試料液濃度1mg/ml)
 送液圧力:39kg/cm2
 検出器:RI検出器
The weight average molecular weight and number average molecular weight of the urethane-based (meth) acrylate oligomer are preferably 500 to 100,000, more preferably 1,000 to 50,000 in view of handling properties. This value is not particularly limited, but may be, for example, 500, 1000, 2000, 3000, 4000, 5000, 7000, 10000, 20000, 30000, 40000, 50000, or 100000, and within the range of any of these values. There may be. The average molecular weight is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method. Specifically, the average molecular weight was determined by preparing a calibration curve with commercially available standard polystyrene using GPC system (SC-8010 manufactured by Tosoh Corporation) using tetrahydrofuran as a solvent under the following conditions. .
Flow rate: 1.0 ml / min
Set temperature: 40 ° C
Column configuration: “TSK guardcolumn MP (× L)” manufactured by Tosoh Corp. 6.0 mm ID × 4.0 cm 1 and “TSK-GELMULTIPOREHXL-M” 7.8 mm ID × 30.0 cm (16,000 theoretical plates) manufactured by Tosoh Corp. 2, 3 in total (32,000 theoretical plates as a whole)
Sample injection volume: 100 μl (sample solution concentration 1 mg / ml)
Liquid feeding pressure: 39 kg / cm 2
Detector: RI detector
本実施形態においてウレタン系(メタ)アクリレートオリゴマーは、例えば、下記一般式(1)により表されるものであってもよい。
Figure JPOXMLDOC01-appb-C000001
(一般式のR'は、H又はCH
但し、下記に示す、ブタジエン構造の代わりに、
Figure JPOXMLDOC01-appb-I000002
下記に示す、ブタジエンを水素添加した構造を選択しても良い。
Figure JPOXMLDOC01-appb-I000003
なお上記一般式(1)において、R'がCHの化合物、R'がHの化合物、又はR'がHで、且つ上記に示すブタジエン構造の代わりに、上記に示すブタジエンを水素添加した構造を選択した化合物は、例えば、日本曹達社から購入することができる(銘柄は、順にTE-2000、TEA-1000、TEAI-1000)。
In this embodiment, the urethane-based (meth) acrylate oligomer may be represented by the following general formula (1), for example.
Figure JPOXMLDOC01-appb-C000001
(R ′ in the general formula is H or CH 3 )
However, instead of the butadiene structure shown below,
Figure JPOXMLDOC01-appb-I000002
The following structure in which butadiene is hydrogenated may be selected.
Figure JPOXMLDOC01-appb-I000003
In the above general formula (1), R ′ is a compound of CH 3 , R ′ is a compound of H, or R ′ is H, and instead of the above butadiene structure, a structure in which the above butadiene is hydrogenated The compounds selected from can be purchased, for example, from Nippon Soda Co., Ltd. (brands are TE-2000, TEA-1000, TEAI-1000 in this order).
((B)成分:ホモポリマーガラス転移温度が-100~60℃を示す(メタ)アクリレート)
ホモポリマーガラス転移温度が-100~60℃を示す(メタ)アクリレートとしては、ラウリル(メタ)アクリレート(アクリレートのホモポリマーガラス転移温度:アクリレート-30℃、メタクリレートのホモポリマーガラス転移温度:-65℃)、2-エチルヘキシル(メタ)アクリレート(アクリレートのホモポリマーガラス転移温度:-85℃、メタクリレートのホモポリマーガラス転移温度:-10℃)、n-ブチル(メタ)アクリレート(メタクリレートのホモポリマーガラス転移温度:20℃)、i-ブチル(メタ)アクリレート(メタクリレートのホモポリマーガラス転移温度:20℃)、t-ブチル(メタ)アクリレート(メタクリレートのホモポリマーガラス転移温度:20℃)、メトキシエチル(メタ)アクリレート(アクリレートのホモポリマーガラス転移温度:-50℃)、エチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート(ホモポリマーガラス転移温度:25℃)、2-ヒドロキシエチル(メタ)アクリレート(メタクリレートのホモポリマーガラス転移温度:55℃)、2-ヒドロキシプロピル(メタ)アクリレート(アクリレートのホモポリマーガラス転移温度:-7℃、メタクリレートのホモポリマーガラス転移温度:26℃)、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート(アクリレートのホモポリマーガラス転移温度:-80℃)、イソオクチル(メタ)アクリレート(アクリレートのホモポリマーガラス転移温度:-58℃、メタクリレートのホモポリマーガラス転移温度:-30℃)、イソステアリル(メタ)アクリレート(アクリレートのホモポリマーガラス転移温度:-18℃、メタクリレートのホモポリマーガラス転移温度:30℃)、イソノニル(メタ)アクリレート(アクリレートのホモポリマーガラス転移温度:-58℃、メタクリレートのホモポリマーガラス転移温度:-30℃)、ノニルフェノキシポリエチレングリコール(-(CHCHO)-構造を有する、n=1~17)(メタ)アクリレート(ホモポリマーガラス転移点:-25~20℃)、フェノキシエチレングリコールアクリレート(ホモポリマーガラス転移点:-25~30℃)等が挙げられる。これらの(メタ)アクリレートは1種類又は2種類以上を使用できる。上記-100~60℃は、例えば-100、-90、-80、-70、-60、-50、-40、-30、-20、-10、0、10、20、30、40、50、又は60℃であってもよく、それらいずれかの値の範囲内であってもよい。
((B) component: (meth) acrylate having a homopolymer glass transition temperature of −100 to 60 ° C.)
Examples of (meth) acrylates having a homopolymer glass transition temperature of −100 to 60 ° C. include lauryl (meth) acrylate (acrylate homopolymer glass transition temperature: acrylate-30 ° C., methacrylate homopolymer glass transition temperature: −65 ° C. ), 2-ethylhexyl (meth) acrylate (homopolymer glass transition temperature of acrylate: −85 ° C., homopolymer glass transition temperature of methacrylate: −10 ° C.), n-butyl (meth) acrylate (homopolymer glass transition temperature of methacrylate) : 20 ° C), i-butyl (meth) acrylate (homopolymer glass transition temperature of methacrylate: 20 ° C), t-butyl (meth) acrylate (homopolymer glass transition temperature of methacrylate: 20 ° C), methoxyethyl (meth) Acrylate ( Chlorate homopolymer glass transition temperature: −50 ° C., ethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate (homopolymer glass transition temperature: 25 ° C), 2-hydroxyethyl (meth) acrylate (homopolymer glass transition temperature of methacrylate: 55 ° C), 2-hydroxypropyl (meth) acrylate (homopolymer glass transition temperature of acrylate: -7 ° C, homopolymer glass of methacrylate) Transition temperature: 26 ° C., 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate (acrylate homopolymer glass transition temperature: −80 ° C.), isooctyl (meth) acrylate (acrylate homopolymer) Limer glass transition temperature: −58 ° C., methacrylate homopolymer glass transition temperature: −30 ° C., isostearyl (meth) acrylate (acrylate homopolymer glass transition temperature: −18 ° C., methacrylate homopolymer glass transition temperature: 30 ° C), isononyl (meth) acrylate (homopolymer glass transition temperature of acrylate: -58 ° C, homopolymer glass transition temperature of methacrylate: -30 ° C), nonylphenoxypolyethylene glycol (-(CH 2 CH 2 O) n -structure And n = 1 to 17) (meth) acrylate (homopolymer glass transition point: −25 to 20 ° C.), phenoxyethylene glycol acrylate (homopolymer glass transition point: −25 to 30 ° C.), and the like. These (meth) acrylates can be used alone or in combination of two or more. The above -100 to 60 ° C is, for example, -100, -90, -80, -70, -60, -50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50 Or 60 ° C., or in the range of any of these values.
ガラス転移とは、高温では液体であるガラス等の物質が温度降下により、ある温度範囲で急激にその粘度を増し、ほとんど流動性を失って非晶質固体になるという変化を指す。ガラス転移温度の測定方法としては特に限定はないが、一般に熱重量測定、示差走査熱量測定、示差熱測定、動的粘弾性測定より算出されたガラス転移温度を指す。これらの中では、動的粘弾性測定が好ましい。 Glass transition refers to a change in which a substance such as glass, which is liquid at high temperatures, suddenly increases its viscosity in a certain temperature range due to a temperature drop, almost loses fluidity and becomes an amorphous solid. Although there is no limitation in particular as a measuring method of a glass transition temperature, Generally, the glass transition temperature computed from the thermogravimetry, the differential scanning calorimetry, the differential calorimetry, and the dynamic viscoelasticity measurement is pointed out. Among these, dynamic viscoelasticity measurement is preferable.
(メタ)アクリレートのホモポリマーのガラス転移温度は、J. Brandrup, E. H. Immergut, Polymer Handbook, 2nd Ed.,J. Wiley, New York 1975、光硬化技術データブック(テクノネットブックス社)等に記載されている。 The glass transition temperature of the (meth) acrylate homopolymer is described in J. Org. Brandrup, E.M. H. Immersut, Polymer Handbook, 2nd Ed. , J .; Wiley, New York 1975, photocuring technology data book (Technonet Books), etc.
これらのホモポリマーガラス転移温度が-100~60℃を示す紫外線硬化性化合物の中では、接着性が大きい点で、一般式(2)の化合物が好ましい。
一般式(2) Z-O-R
〔式中、Zは(メタ)アクリロイル基を示し、R1 は芳香族環を有する官能基又は炭素数9~20個の炭化水素基を表す。〕
Among these ultraviolet curable compounds having a homopolymer glass transition temperature of −100 to 60 ° C., the compound of the general formula (2) is preferable in terms of high adhesiveness.
Formula (2) Z—O—R 1
[Wherein, Z represents a (meth) acryloyl group, and R 1 represents a functional group having an aromatic ring or a hydrocarbon group having 9 to 20 carbon atoms. ]
一般式(2)の化合物は、硬化物の柔軟性を一層向上させてポリエチレンテレフタレート等への密着性を一層向上させる。一般式(2)の化合物としては、ノニルフェニル基、ノニルフェノキシポリエチレングリコール基、フェノキシ基、フェノキシエチレングリコール基等の、芳香族環を有する(メタ)アクリル酸のエステルや、ノニル基、イソノニル基、デシル基、イソデシル基、ドデシル基、ラウリル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基やノナデシル基、エイコデシル基等の、炭素数が9~20個の炭化水素基を有する(メタ)アクリル酸のエステルが挙げられる。これらの中では、炭素数が9~20個の直鎖又は分岐のアルキル基が好ましく、炭素数10~16個のアルキル基がより好ましく、炭素数11~14個のアルキル基が最も好ましく、ラウリル基、及び、イソステアリル基からなる群から選ばれる1種以上が好ましい。これらの(メタ)アクリレートは1種以上を使用できる。芳香族環の数は、例えば1、2、又は3であり、好ましくは1つである。 The compound of the general formula (2) further improves the flexibility of the cured product and further improves the adhesion to polyethylene terephthalate and the like. As the compound of the general formula (2), an ester of (meth) acrylic acid having an aromatic ring such as nonylphenyl group, nonylphenoxypolyethylene glycol group, phenoxy group, phenoxyethylene glycol group, nonyl group, isononyl group, Hydrocarbon groups having 9 to 20 carbon atoms such as decyl group, isodecyl group, dodecyl group, lauryl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicodecyl group, etc. Examples thereof include esters of (meth) acrylic acid. Of these, a linear or branched alkyl group having 9 to 20 carbon atoms is preferred, an alkyl group having 10 to 16 carbon atoms is more preferred, an alkyl group having 11 to 14 carbon atoms is most preferred, and lauryl One or more selected from the group consisting of a group and an isostearyl group is preferred. One or more of these (meth) acrylates can be used. The number of aromatic rings is, for example, 1, 2, or 3, and preferably one.
((C)成分:メルカプト基を1個有する化合物)
本実施形態におけるメルカプト基含有化合物は、以下のような材料が挙げられる。
(Component (C): Compound having one mercapto group)
Examples of the mercapto group-containing compound in the present embodiment include the following materials.
((C1)成分:アルカンチオール)
アルカンチオールは、アルキル基を有するチオールである。アルキル基は、直鎖構造でも分岐構造でも良い。アルカンチオールの中では、下記式(1)で示されるアルカンチオールが好ましい。
2n+1SH  式(1)
(nは整数)
nは4~19が好ましく、6~12がより好ましい。
((C1) component: alkanethiol)
Alkanethiol is a thiol having an alkyl group. The alkyl group may be a straight chain structure or a branched structure. Among the alkanethiols, alkanethiols represented by the following formula (1) are preferable.
C n H 2n + 1 SH Formula (1)
(N is an integer)
n is preferably from 4 to 19, and more preferably from 6 to 12.
アルカンチオールの中では、デカンチオール及び/又はドデカンチオールが好ましい。 Of the alkanethiols, decanethiol and / or dodecanethiol are preferred.
((C2)成分:カルボキシチオール)
カルボキシチオールは、カルボキシル基を有するチオールである。カルボキシチオールの中では、下記式(2)で示されるカルボキシチオールが好ましい。
ROOC(CHSH  式(2)
(Rは水素又は炭素数1~19の炭化水素基、pは整数)
上記Rの炭化水素基の炭素数は、2~16が好ましく、5~12がより好ましい。
上記pは1~30が好ましく、1~2がより好ましい。
((C2) component: carboxythiol)
Carboxythiol is a thiol having a carboxyl group. Among carboxythiols, carboxythiol represented by the following formula (2) is preferable.
ROOC (CH 2 ) p SH Formula (2)
(R is hydrogen or a hydrocarbon group having 1 to 19 carbon atoms, p is an integer)
The R hydrocarbon group preferably has 2 to 16 carbon atoms, and more preferably 5 to 12 carbon atoms.
P is preferably from 1 to 30, and more preferably from 1 to 2.
カルボキシチオールとしては、チオグリコール酸、β-メルカプトプロピオン酸、チオグリコール酸エステル(チオグリコール酸メチル、チオグリコール酸オクチル等)、β-メルカプトプロピオン酸エステル(メチル-3-メルカプトプロピオネート、メチル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート、ステアリル-3-メルカプトプロピオネート)等が挙げられる。カルボキシチオール中では、チオグリコール酸及び/又はβ-メルカプトプロピオン酸が好ましい。 Examples of carboxythiol include thioglycolic acid, β-mercaptopropionic acid, thioglycolic acid ester (methyl thioglycolate, octyl thioglycolate, etc.), β-mercaptopropionic acid ester (methyl-3-mercaptopropionate, methyl- 3-mercaptopropionate, n-octyl-3-mercaptopropionate, stearyl-3-mercaptopropionate) and the like. Among carboxythiols, thioglycolic acid and / or β-mercaptopropionic acid are preferred.
((D)成分:光重合開始剤)
本実施形態の光重合開始剤としては以下のようなものが挙げられる。光重合剤としては、ホモポリマーガラス転移温度が-100~60℃を示す(メタ)アクリレートの重合を開始させるものであれば特に制限はない。
((D) component: photopolymerization initiator)
The following are mentioned as a photoinitiator of this embodiment. The photopolymerization agent is not particularly limited as long as it initiates polymerization of (meth) acrylate having a homopolymer glass transition temperature of −100 to 60 ° C.
光重合開始剤としては、紫外線重合開始剤や可視光重合開始剤等が挙げられるが、どちらも制限無く用いられる。紫外線重合開始剤としては、ベンゾイン系、ベンゾフェノン系、アセトフェノン系等が挙げられる。可視光重合開始剤としては、アシルホスフィンオキサイド系、チオキサントン系、メタロセン系、キノン系、α-アミノアルキルフェノン系等が挙げられる。 Examples of the photopolymerization initiator include an ultraviolet polymerization initiator and a visible light polymerization initiator, both of which are used without limitation. Examples of the ultraviolet polymerization initiator include benzoin, benzophenone, and acetophenone. Examples of visible light polymerization initiators include acylphosphine oxide, thioxanthone, metallocene, quinone, and α-aminoalkylphenone.
光重合開始剤としては、ベンゾフェノン、4-フェニルベンゾフェノン、ベンゾイル安息香酸、2,2-ジエトキシアセトフェノン、ビスジエチルアミノベンゾフェノン、ベンジル,ベンゾイン、ベンゾイルイソプロピルエーテル、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、チオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、1-(4-イソプロピルフェニル)2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1―プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、カンファーキノン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル―2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン-1、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モリフォリン-4-イル-フェニル)-ブタン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド等が挙げられる。 Photopolymerization initiators include benzophenone, 4-phenylbenzophenone, benzoylbenzoic acid, 2,2-diethoxyacetophenone, bisdiethylaminobenzophenone, benzyl, benzoin, benzoylisopropyl ether, benzyldimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, thioxanthone 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 1- (4-isopropylphenyl) 2-hydroxy-2-methylpropan-1-one 1- (4- (2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-2-methyl-1-phenyl Rupropan-1-one, camphorquinone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-methyl-1- (4- (methylthio) phenyl ) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone-1,2-dimethylamino-2- (4-methyl-benzyl) ) -1- (4-Morifolin-4-yl-phenyl) -butan-1-one, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, and the like.
((E)成分:(A)と(B)以外の(メタ)アクリレート)
本実施形態の硬化性樹脂組成物は、特に各被着体に対する接着性を一層向上させることを目的に、(E)成分として、(A)ウレタン系(メタ)アクリレートオリゴマー、ポリエステル系(メタ)アクリレートオリゴマー、ポリエーテル系(メタ)アクリレートオリゴマー、エポキシ系(メタ)アクリレートオリゴマー、ジエン重合体系(メタ)アクリレートオリゴマー、及び、ジエン重合体系(メタ)アクリレートの水素添加物の骨格を有するオリゴマーや、(B)ホモポリマーガラス転移温度が-100~60℃を示す(メタ)アクリレート以外の(メタ)アクリレートを含有することができる。
((E) component: (meth) acrylates other than (A) and (B))
The curable resin composition of the present embodiment has (A) a urethane-based (meth) acrylate oligomer, a polyester-based (meth) as the component (E) for the purpose of further improving the adhesion to each adherend. An acrylate oligomer, a polyether-based (meth) acrylate oligomer, an epoxy-based (meth) acrylate oligomer, a diene polymer (meth) acrylate oligomer, and an oligomer having a hydrogenated skeleton of a diene polymer (meth) acrylate, B) A (meth) acrylate other than (meth) acrylate having a homopolymer glass transition temperature of −100 to 60 ° C. may be contained.
この(E)成分((A)と(B)以外の(メタ)アクリレート)としては、単官能(メタ)アクリレートや、2官能、3官能、4官能、5官能、6官能等の多官能(メタ)アクリレート等、様々に用いることが可能である。これらの中では単官能(メタ)アクリレート若しくは2官能(メタ)アクリレートが好ましい。 As this (E) component ((meth) acrylates other than (A) and (B)), monofunctional (meth) acrylate, polyfunctional such as bifunctional, trifunctional, tetrafunctional, pentafunctional, and hexafunctional ( It can be used in various ways such as (meth) acrylate. Among these, monofunctional (meth) acrylate or bifunctional (meth) acrylate is preferable.
本実施形態の(E)成分の中で、単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ステアリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、ノニルフェノキシテトラエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブトキシトリエチレングリコール(メタ)アクリレート、2-エチルヘキシルポリエチレングリコール(メタ)アクリレート、ノニルフェニルポリプロピレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、グリシジル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エピクロロヒドリン(以下ECHと略記)変性ブチル(メタ)アクリレート、エピクロロヒドリン(以下ECHと略記)変性フェノキシ(メタ)アクリレート、エチレンオキサイド(以下EOと略記)変性フタル酸(メタ)アクリレート、EO変性コハク酸(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、モルホリノ(メタ)アクリレート、EO変性リン酸(メタ)アクリレート等が挙げられる。イミド(メタ)アクリレート(製品名:M-140、東亞合成社製)のようなイミド基を有する(メタ)アクリレート等も挙げられる。 Among the (E) component of this embodiment, as monofunctional (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, stearyl (meth) acrylate, tetrahydrofurfuryl (meth) ) Acrylate, caprolactone modified tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate, phenoxyethyl (meth) ) Acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonyl Enoxyethyl (meth) acrylate, nonylphenoxytetraethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, butoxyethyl (meth) acrylate, butoxytriethylene glycol (meth) acrylate, 2-ethylhexyl polyethylene Glycol (meth) acrylate, nonylphenyl polypropylene glycol (meth) acrylate, methoxydipropylene glycol (meth) acrylate, glycidyl (meth) acrylate, glycerol (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, Epichlorohydrin (hereinafter abbreviated as ECH) modified butyl (Meth) acrylate, epichlorohydrin (hereinafter abbreviated as ECH) modified phenoxy (meth) acrylate, ethylene oxide (hereinafter abbreviated as EO) modified phthalic acid (meth) acrylate, EO modified succinic acid (meth) acrylate, caprolactone modified 2- Examples thereof include hydroxyethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, morpholino (meth) acrylate, and EO-modified phosphoric acid (meth) acrylate. Examples thereof include (meth) acrylate having an imide group such as imide (meth) acrylate (product name: M-140, manufactured by Toagosei Co., Ltd.).
上記(E)成分の中で、単官能(メタ)アクリレートとしては、シクロオレフィンポリマーを始めとするポリオレフィン等への接着性を向上させることを目的として、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニルオキシプロピル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート等を初めとするジシクロペンテニル基を有する(メタ)アクリレート等も挙げられる。 Among the above components (E), as the monofunctional (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclosilane is used for the purpose of improving adhesiveness to polyolefins including cycloolefin polymers. Examples thereof include (meth) acrylates having a dicyclopentenyl group such as cyclopentenyloxypropyl (meth) acrylate and dicyclopentenyl (meth) acrylate.
(E)成分中の単官能(メタ)アクリレートの中では、シクロオレフィンへの接着性を向上する点で、ジシクロペンテニル基を有する(メタ)アクリレート及び/又はイソボルニル(メタ)アクリレートがより好ましい。 Among the monofunctional (meth) acrylates in the component (E), (meth) acrylates and / or isobornyl (meth) acrylates having a dicyclopentenyl group are more preferable in terms of improving the adhesion to cycloolefin.
本実施形態の(E)成分の中で、多官能(メタ)アクリレートとしては、ジ(メタ)アクリル化イソシアヌレート、トリ(メタ)アクリル化イソシアヌレート、1,3-ジブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、EO(エチレンオキシド)変性ビスフェノールAジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ECH(エピクロロヒドリン)変性ヘキサヒドロフタル酸ジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ECH変性フタル酸ジアクリレート、ポリ(エチレングリコールーテトラメチレングリコール)ジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ECH変性プロピレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ECH変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス((メタ)アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレートが挙げられる。 Among the (E) component of the present embodiment, as the polyfunctional (meth) acrylate, di (meth) acrylated isocyanurate, tri (meth) acrylated isocyanurate, 1,3-dibutylene glycol di (meth) Acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, EO (ethylene oxide) modified bisphenol A di (meth) acrylate , Diethylene glycol di (meth) acrylate, ECH (epichlorohydrin) modified hexahydrophthalic acid di (meth) acrylate, neopentyl glycol di (meth) acrylate, EO modified neopentyl glycol di (meth) acrylate, caprolactone modified hydroxypivalin Acid Este Luneopentyl glycol di (meth) acrylate, stearic acid modified pentaerythritol di (meth) acrylate, ECH modified phthalic acid diacrylate, poly (ethylene glycol-tetramethylene glycol) di (meth) acrylate, polyethylene glycol di (meth) acrylate , Polypropylene glycol di (meth) acrylate, ECH modified propylene glycol di (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, tripropylene glycol di (meth) acrylate, triglycerol di (meth) acrylate, ECH modified glycerol tri (Meth) acrylate, pentaerythritol tri (meth) acrylate, EO-modified tri (meth) acrylate phosphate, trimethylolpropane tri ( Acrylate), caprolactone-modified trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) acrylate, tris ((meth) acryloxyethyl) isocyanurate, di Examples include pentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, and pentaerythritol ethoxytetra (meth) acrylate.
上記(E)成分の中で、多官能(メタ)アクリレートとしては、ジシクロペンテニルジ(メタ)アクリレート等を初めとするジシクロペンテニル基を有する(メタ)アクリレート等も挙げられる。
上記(E)成分中の多官能(メタ)アクリレートの中では、オリゴマー溶解性の点で、トリメチロールプロパントリ(メタ)アクリレート及び/又はトリシクロデカンジメタノール(メタ)アクリレートがより好ましい。
Among the above component (E), examples of the polyfunctional (meth) acrylate include (meth) acrylate having a dicyclopentenyl group such as dicyclopentenyl di (meth) acrylate.
Among the polyfunctional (meth) acrylates in the component (E), trimethylolpropane tri (meth) acrylate and / or tricyclodecane dimethanol (meth) acrylate is more preferable in terms of oligomer solubility.
本実施形態ではガラスへの密着力を向上させる目的で、シランカップリング剤を含有することができる。 In the present embodiment, a silane coupling agent can be contained for the purpose of improving the adhesion to glass.
本実施形態の硬化性樹脂組成物は、(A)ウレタン系(メタ)アクリレートオリゴマー、ポリエステル系(メタ)アクリレートオリゴマー、ポリエーテル系(メタ)アクリレートオリゴマー、エポキシ系(メタ)アクリレートオリゴマー、ジエン重合体系(メタ)アクリレートオリゴマー、及び、ジエン重合体系(メタ)アクリレートの水素添加物の骨格を有するオリゴマーからなる群から選ばれる1種以上である(メタ)アクリレートオリゴマー、(B)ホモポリマーガラス転移温度が-100~60℃を示す(メタ)アクリレート、(C)メルカプト基を1個有する化合物、(D)光重合開始剤を必須成分として含有する。本実施形態の硬化性樹脂組成物は、紫外線若しくは可視光による硬化を可能とする。 The curable resin composition of this embodiment includes (A) a urethane (meth) acrylate oligomer, a polyester (meth) acrylate oligomer, a polyether (meth) acrylate oligomer, an epoxy (meth) acrylate oligomer, and a diene polymer system. (Meth) acrylate oligomer and (meth) acrylate oligomer selected from the group consisting of oligomers having a skeleton of a hydrogenated product of diene polymer (meth) acrylate (meth) acrylate, and (B) homopolymer glass transition temperature. It contains (meth) acrylate having a temperature of −100 to 60 ° C., (C) a compound having one mercapto group, and (D) a photopolymerization initiator as essential components. The curable resin composition of the present embodiment can be cured by ultraviolet rays or visible light.
本実施形態の硬化性樹脂組成物において、(A)成分と(B)成分との質量比率は、接着性が高くなり、硬化性が良くなる点で、(A)成分と(B)成分の合計100質量部中、(A)成分:(B)成分=10~95:90~5が好ましく、(A)成分:(B)成分=25~90:75~10がより好ましい。この比率を表すときの(A)成分の数値は特に限定されないが、例えば、5、10、20、30、40、50、60、70、80、90、又は95であってもよく、それらいずれかの値の範囲内であってもよい。またこの比率を表すときの(B)成分の数値は特に限定されないが、例えば、5、10、20、30、40、50、60、70、80、90、又は95であってもよく、それらいずれかの値の範囲内であってもよい。 In the curable resin composition of the present embodiment, the mass ratio of the component (A) and the component (B) is such that the adhesiveness is increased and the curability is improved. In a total of 100 parts by mass, (A) component: (B) component = 10 to 95:90 to 5 is preferable, and (A) component: (B) component = 25 to 90:75 to 10 is more preferable. The numerical value of the component (A) when expressing this ratio is not particularly limited, and may be, for example, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 95, It may be within the range of these values. In addition, the numerical value of the component (B) when expressing this ratio is not particularly limited, and may be, for example, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 95, and It may be within the range of any value.
(C)成分の使用量は、(A)成分と(B)成分と必要に応じて使用する(E)成分の合計100質量部に対して、0.01~10質量部が好ましく、0.1~8質量部がより好ましい。この使用量は特に限定されないが、例えば、0.01、0.05、0.1、0.5、1、2、3、4、5、6、7、8、9、10、又は15であってもよく、それらいずれかの値の範囲内であってもよい。 Component (C) is preferably used in an amount of 0.01 to 10 parts by weight per 100 parts by weight of component (A), component (B) and component (E) used as necessary. 1 to 8 parts by mass is more preferable. The amount used is not particularly limited, and may be, for example, 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 15, either It may be within the range of the value of.
(D)成分の使用量は、(A)成分と(B)成分と必要に応じて使用する(E)成分の合計100質量部に対して、0.1~20質量部が好ましく、0.2~10質量部がより好ましい。この使用量は特に限定されないが、例えば、0.01、0.05、0.1、0.5、1、2、3、4、5、6、7、8、9、10、15、20、又は25であってもよく、それらいずれかの値の範囲内であってもよい。 Component (D) is preferably used in an amount of 0.1 to 20 parts by weight per 100 parts by weight of component (A), component (B), and component (E) used as necessary. 2 to 10 parts by mass is more preferable. The amount used is not particularly limited, but may be, for example, 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25. May be within the range of any of these values.
(E)成分の使用量は、(A)成分と(B)成分の合計100質量部に対して、1~30質量部が好ましく、5~15質量部がより好ましい。この使用量は特に限定されないが、例えば0.1、1、2、3、4、5、6、7、8、9、10、15、20、30、又は35であってもよく、それらいずれかの値の範囲内であってもよい。 The amount of component (E) used is preferably 1 to 30 parts by weight, more preferably 5 to 15 parts by weight, based on a total of 100 parts by weight of component (A) and component (B). The amount used is not particularly limited, and may be, for example, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, or 35. It may be within the range of values.
更に、本実施形態の硬化性樹脂組成物は空気に接している部分の硬化を迅速にするために、各種パラフィン類を使用することができる。 Furthermore, the curable resin composition of this embodiment can use various paraffins in order to quickly cure the portion in contact with air.
更に、貯蔵安定性を維持する目的で、重合禁止剤を含む市販の酸化防止剤等を使用することができる。 Furthermore, for the purpose of maintaining storage stability, a commercially available antioxidant containing a polymerization inhibitor can be used.
尚、これらの他にも所望によりエラストマー、可塑剤、充填剤、着色剤又は防錆剤等の既に知られている物質を使用することもできる。 In addition to these, known substances such as elastomers, plasticizers, fillers, colorants, and rust inhibitors may be used as desired.
本実施形態における硬化性樹脂組成物は、接着剤組成物として使用できる。また一実施形態では、接着剤組成物の硬化体により、被着体を接合又は被覆して複合体を作製することができる。硬化体は、例えば、接着剤組成物をUV照射して得られる。被着体の各種材料については、トリアセチルセルロース、フッ素系ポリマー、ポリエステル、ポリカーボネート、シクロオレフィンポリマー等のポリオレフィン、ガラス、金属からなる群から選ばれる1種以上が好ましく、ポリカーボネート、ポリオレフィン、ガラスからなる群から選ばれる1種以上がより好ましい。 The curable resin composition in this embodiment can be used as an adhesive composition. Moreover, in one Embodiment, a to-be-adhered body can be joined or coat | covered with the hardening body of an adhesive composition, and a composite_body | complex can be produced. The cured product is obtained, for example, by irradiating the adhesive composition with UV. About various materials of a to-be-adhered body, 1 or more types chosen from the group which consists of polyolefin, glass, a metal, such as a triacetyl cellulose, a fluorine-type polymer, polyester, a polycarbonate, a cycloolefin polymer, is preferable, and consists of a polycarbonate, polyolefin, glass. One or more selected from the group is more preferred.
本実施形態の硬化性樹脂組成物にて接着した硬化体は、完全硬化させた後にリワーク(再利用)することが可能である。リワークの方法としては特に制限は無いが、貼り合わされた1種又は2種の被着体間に0.01~100Nの荷重を負荷することにより被着体同士を解体し、解体後の被着体を再利用することが可能となる。 The cured body bonded with the curable resin composition of the present embodiment can be reworked (reused) after being completely cured. The rework method is not particularly limited, but the adherends are disassembled by applying a load of 0.01 to 100 N between the one or two kinds of adherends bonded together, and the adherend after disassembly The body can be reused.
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。また、上記実施形態に記載の構成を組み合わせて採用することもできる。 As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above are also employable. Moreover, it is also possible to adopt a combination of the configurations described in the above embodiments.
以下に、実験例をあげて、本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。尚、実施例に記載の硬化性樹脂組成物中の各成分には以下の化合物を選択した。 Hereinafter, the present invention will be described in more detail with reference to experimental examples, but the present invention is not limited thereto. In addition, the following compounds were selected as each component in the curable resin composition as described in an Example.
ウレタン系(メタ)アクリレートオリゴマー、ポリエステル系(メタ)アクリレートオリゴマー、ポリエーテル系(メタ)アクリレートオリゴマー、エポキシ系(メタ)アクリレートオリゴマー、ジエン重合体系(メタ)アクリレートオリゴマー、及び、ジエン重合体系(メタ)アクリレートの水素添加物の骨格を有するオリゴマーからなる群から選ばれる1種以上である(メタ)アクリレートオリゴマー(A)として、
(A-1)1,2-ポリブタジエン変性ウレタン系メタクリレートオリゴマー(日本曹達社製「TE-2000」)(GPCによるポリスチレン換算の数平均分子量2000、2官能のメタクリレートオリゴマー)。
(A-2)アクリル酸エステル重合体とウレタン系アクリレートオリゴマーの混合物(大阪有機化学工業社製「PM-654」)(GPCによるポリスチレン換算の数平均分子量20000、2官能のアクリレートオリゴマー)
(A-3)ポリエステルウレタン系アクリレートオリゴマー(根上工業社製「KHP-17」)(GPCによるポリスチレン換算の重量平均分子量40000、2官能のアクリレートオリゴマー)
(A-4)ジブチレングリコールウレタン系アクリレートオリゴマー(日本合成化学社製「UV-3000B」(GPCによるポリスチレン換算の重量平均分子量18000、2官能のアクリレートオリゴマー)
(A-5)ポリカーボネートウレタン系アクリレートオリゴマー(根上工業社製「UN-9000PEP」) (GPCによるポリスチレン換算の重量平均分子量5000、2官能のアクリレートオリゴマー)
(A-6)ポリエーテルウレタン系アクリレートオリゴマー(日本合成化学社製「UV-3700B」)(GPCによるポリスチレン換算の重量平均分子量38000、2官能のアクリレートオリゴマー)
ホモポリマーガラス転移温度が-100~60℃を示す(メタ)アクリレート(B)として、
(B-1)EO変性ノニルフェニルアクリレート(東亞合成社製「M-111」:ホモポリマーガラス転移温度:-25℃)
(B-2)イソステアリルアクリレート(大阪有機化学工業社製「ISTA」:ホモポリマーガラス転移温度:-18℃)
(B-3)4-ヒドロキシブチルアクリレート(日本化成社製「4-HBA」:ホモポリマーガラス転移温度:-80℃)
メルカプト基含有化合物(C)として、
(C-1)n-デカンチオール(Aldrich社製「デカンチオール」)
(C-2)n-ドデカンチオール(Aldrich社製「ドデカンチオール」)
(C-3)β-メルカプトプロピオン酸(SC有機化学工業社製「BMPA」)
(C-4)n-オクチル-3-メルカプトプロピオネート(SC有機化学工業社製「NOMP」)
光重合開始剤(D)として、
(D-1)1-ヒドロキシシクロヘキシルフェニルケトン(チバスペシャリティケミカル社製「Irgacure184」)
(D-2)ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(チバスペシャリティケミカル社製「Irgacure819」)
(A)と(B)以外の(メタ)アクリレート(E)として、
(E-1)ジシクロペンテニルアクリレート(日立化成社製「FA-511AS」:ホモポリマーガラス転移温度:120℃)
(E-2)ジシクロペンテニルジアクリレート(新中村化学社製「DCP」:ホモポリマーガラス転移温度:100℃)
(E-3)トリシクロデカンジメタノールアクリレート(日本化薬社製「KAYARADR-684」:ホモポリマーガラス転移温度:150℃)
(E-4)トリメチロールプロパントリアクリレート(新中村化学工業社製「A-TMPT」:ホモポリマーガラス転移温度:>250℃)
(E-5)イソボルニルアクリレート(日立化成工業社製「IBXA」:ホモポリマーガラス転移温度:180℃)
比較例として、
(C-5)DMDO:トリグリコールジメルカプタン(丸善油化社製「DMDO」)
(C-6)3-メルカプトプロピルトリメトキシシラン(信越化学工業社製「KBM-803」)
Urethane (meth) acrylate oligomer, polyester (meth) acrylate oligomer, polyether (meth) acrylate oligomer, epoxy (meth) acrylate oligomer, diene polymer (meth) acrylate oligomer, and diene polymer (meth) As a (meth) acrylate oligomer (A) that is at least one selected from the group consisting of oligomers having a skeleton of an acrylate hydrogenated product,
(A-1) 1,2-polybutadiene-modified urethane methacrylate oligomer (“TE-2000” manufactured by Nippon Soda Co., Ltd.) (Number average molecular weight 2000 in terms of polystyrene by GPC, bifunctional methacrylate oligomer).
(A-2) Mixture of acrylic ester polymer and urethane acrylate oligomer (“PM-654” manufactured by Osaka Organic Chemical Industry Co., Ltd.) (Number average molecular weight of 20000 in terms of polystyrene by GPC, bifunctional acrylate oligomer)
(A-3) Polyester urethane acrylate oligomer (“KHP-17” manufactured by Negami Kogyo Co., Ltd.) (weight average molecular weight 40000 in terms of polystyrene by GPC, bifunctional acrylate oligomer)
(A-4) Dibutylene glycol urethane-based acrylate oligomer (“UV-3000B” manufactured by Nippon Synthetic Chemical Co., Ltd. (weight average molecular weight 18000 in terms of polystyrene by GPC, bifunctional acrylate oligomer))
(A-5) Polycarbonate urethane-based acrylate oligomer (“UN-9000PEP” manufactured by Negami Kogyo Co., Ltd.) (weight average molecular weight of 5000 in terms of polystyrene by GPC, bifunctional acrylate oligomer)
(A-6) Polyether urethane acrylate oligomer (“UV-3700B” manufactured by Nippon Synthetic Chemical Co., Ltd.) (polystyrene equivalent weight average molecular weight 38000, bifunctional acrylate oligomer by GPC)
As (meth) acrylate (B) having a homopolymer glass transition temperature of −100 to 60 ° C.,
(B-1) EO-modified nonylphenyl acrylate (“M-111” manufactured by Toagosei Co., Ltd .: homopolymer glass transition temperature: −25 ° C.)
(B-2) Isostearyl acrylate (“ISTA” manufactured by Osaka Organic Chemical Industry Co., Ltd .: homopolymer glass transition temperature: −18 ° C.)
(B-3) 4-hydroxybutyl acrylate (“4-HBA” manufactured by Nippon Kasei Co., Ltd .: homopolymer glass transition temperature: −80 ° C.)
As the mercapto group-containing compound (C),
(C-1) n-decanethiol (“decanethiol” manufactured by Aldrich)
(C-2) n-dodecanethiol (“Dodecanethiol” manufactured by Aldrich)
(C-3) β-mercaptopropionic acid (“BMPA” manufactured by SC Organic Chemical Industry Co., Ltd.)
(C-4) n-octyl-3-mercaptopropionate (“NOMP” manufactured by SC Organic Chemical Industry)
As a photopolymerization initiator (D),
(D-1) 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Specialty Chemicals)
(D-2) Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (“Irgacure 819” manufactured by Ciba Specialty Chemicals)
As (Meth) acrylate (E) other than (A) and (B),
(E-1) Dicyclopentenyl acrylate (Hitachi Chemical Co., Ltd. “FA-511AS”: homopolymer glass transition temperature: 120 ° C.)
(E-2) Dicyclopentenyl diacrylate (“Nakamura Chemical Co., Ltd.“ DCP ”: homopolymer glass transition temperature: 100 ° C.)
(E-3) Tricyclodecane dimethanol acrylate (“KAYARADR-684” manufactured by Nippon Kayaku Co., Ltd .: homopolymer glass transition temperature: 150 ° C.)
(E-4) Trimethylolpropane triacrylate (“A-TMPT” manufactured by Shin-Nakamura Chemical Co., Ltd .: homopolymer glass transition temperature:> 250 ° C.)
(E-5) Isobornyl acrylate (“IBXA” manufactured by Hitachi Chemical Co., Ltd .: homopolymer glass transition temperature: 180 ° C.)
As a comparative example,
(C-5) DMDO: Triglycol dimercaptan ("DMDO" manufactured by Maruzen Oil Chemical Co., Ltd.)
(C-6) 3-Mercaptopropyltrimethoxysilane (“KBM-803” manufactured by Shin-Etsu Chemical Co., Ltd.)
各種物性は、次のように測定した。 Various physical properties were measured as follows.
〔ガラス転移温度〕動的粘弾性測定により測定した。 [Glass transition temperature] Measured by dynamic viscoelasticity measurement.
〔光硬化性〕温度23℃で測定した。光硬化性に関しては、テンパックスガラス(25×25×2mm)の表面に硬化性樹脂組成物を厚み0.1mmになるように塗布した。その後、無電極放電ランプを使用したフュージョン社製硬化装置を用い、波長365nmのUV光を積算光量2000mJ/cmの条件にて照射し、硬化させた。尚光硬化性の評価はFT-IRから算出した。反応に関与しない帰属を基準ピークとし、1600cm-1等のC=C二重結合帰属ピークの減衰を、照射前後で確認し、算出した。 [Photocurability] Measured at a temperature of 23 ° C. Regarding photocurability, the curable resin composition was applied to the surface of Tempax glass (25 × 25 × 2 mm) to a thickness of 0.1 mm. Thereafter, using a curing device manufactured by Fusion Corporation using an electrodeless discharge lamp, UV light having a wavelength of 365 nm was irradiated and cured under the condition of an integrated light quantity of 2000 mJ / cm 2 . The evaluation of photocurability was calculated from FT-IR. The attribution of the C═C double bond attribution peak such as 1600 cm −1 was confirmed before and after the irradiation, and the calculation was performed with the attribution not involved in the reaction as the reference peak.
〔ポリエチレンテレフタレート(PET)接着性評価(ポリエチレンテレフタレート試験片間の剥離接着強さ)〕2軸延伸PETフィルム(ルミラーT60、平均厚さ190μm、東レ社製)の試験片(50mm×10mm×0.19mm)同士を、硬化性樹脂組成物を接着剤組成物として用いて、接着層の厚み30μmで接着面積を縦40mm×横10mmとして接着させた。光照射による硬化後、接着剤で接着した該試験片の、密着されていない2箇所のフィルム端部を引っ張ることで、フィルム同士が密着された部分を剥離させて、初期の180°剥離接着強さを測定した。光照射条件は〔光硬化性〕に記載の方法に従った。尚、剥離接着強さ(単位:N/cm)は、引張試験器を用いて温度23℃、湿度50%の環境下で引張速度10mm/分で測定した。 [Polyethylene terephthalate (PET) adhesion evaluation (peeling adhesive strength between polyethylene terephthalate test pieces)] Biaxially stretched PET film (Lumirror T60, average thickness 190 μm, manufactured by Toray Industries, Inc.) test pieces (50 mm × 10 mm × 0. 19 mm) were bonded using a curable resin composition as an adhesive composition, with an adhesive layer thickness of 30 μm and an adhesive area of 40 mm long × 10 mm wide. After curing by light irradiation, by pulling the two non-adhered film end portions of the test piece bonded with an adhesive, the film-adhered portions are peeled off, and the initial 180 ° peel adhesion strength Was measured. The light irradiation conditions followed the method described in [Photocurability]. The peel adhesion strength (unit: N / cm) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min.
〔ガラス接着性評価(耐熱ガラス試験片間の引張接着強さ)〕耐熱ガラス試験片(25mm×25mm×2.0mm)同士を、厚み80μm×幅12.5mm×長さ25mmのテフロン(登録商標)テープをスペーサーとして用い、硬化性樹脂組成物で接着させた(接着面積3.125cm2)。光照射条件は〔光硬化性〕に記載の方法に従った。上記条件にて接着剤組成物を硬化させた後、更に、試験片の両面に電気化学工業社製接着剤組成物「G-55」を使用し、亜鉛メッキ鋼板(100mm×25mm×2.0mm、エンジニアリングテストサービス社製)を接着させた。硬化後、接着剤組成物で接着した該試験片を用いて、亜鉛メッキ鋼板をチャックして、初期の引張剪断接着強さを測定した。引っ張り剪断接着強さ(単位:MPa)は、引張試験器を用いて温度23℃、湿度50%の環境下で引張速度10mm/分で測定した。 [Evaluation of Glass Adhesion (Tensile Adhesive Strength Between Heat-Resistant Glass Specimens)] Heat-resistant glass test pieces (25 mm × 25 mm × 2.0 mm) were joined to Teflon (registered trademark) with a thickness of 80 μm × width of 12.5 mm × length of 25 mm. ) The tape was used as a spacer and adhered with a curable resin composition (adhesion area 3.125 cm 2 ). The light irradiation conditions followed the method described in [Photocurability]. After the adhesive composition was cured under the above conditions, an adhesive composition “G-55” manufactured by Denki Kagaku Kogyo Co., Ltd. was used on both sides of the test piece, and a galvanized steel sheet (100 mm × 25 mm × 2.0 mm) was used. , Manufactured by Engineering Test Service). After the curing, using the test piece bonded with the adhesive composition, the galvanized steel sheet was chucked, and the initial tensile shear bond strength was measured. The tensile shear bond strength (unit: MPa) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min.
〔シクロオレフィンポリマー(COP)接着性評価(シクロオレフィンポリマー試験片間の剥離接着強さ)〕COPフィルム(ZEONOR、平均厚さ40μm、日本ゼオン社製)の試験片(50mm×10mm×0.04mm)同士を、硬化性樹脂組成物を接着剤組成物として用いて、接着層の厚み10μmで接着面積を縦40mm×横10mmとして接着させた。光照射による硬化後、接着剤組成物で接着した該試験片の、密着されていない2箇所のフィルム端部を引っ張ることで、フィルム同士が密着された部分を剥離させて、初期の180°剥離接着強さを測定した。光照射条件は〔光硬化性〕に記載の方法に従った。尚、剥離接着強さ(単位:N/cm)は、引張試験器を用いて温度23℃、湿度50%の環境下で引張速度10mm/分で測定した。 [Cycloolefin polymer (COP) adhesion evaluation (peel adhesion strength between cycloolefin polymer test pieces)] Test piece (50 mm × 10 mm × 0.04 mm) of COP film (ZEONOR, average thickness 40 μm, manufactured by Nippon Zeon Co., Ltd.) ) Were bonded using a curable resin composition as an adhesive composition, with an adhesive layer thickness of 10 μm and an adhesive area of 40 mm long × 10 mm wide. After curing by light irradiation, by pulling the two end portions of the film that are not in close contact with the test piece bonded with the adhesive composition, the portions where the films are in close contact are peeled off, and the initial 180 ° peeling is performed. The bond strength was measured. The light irradiation conditions followed the method described in [Photocurability]. The peel adhesion strength (unit: N / cm) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min.
〔トリアセチルセルロース接着性評価(トリアセチルセルロース試験片間の剥離接着強さ)〕トリアセチルセルロース(TAC)フィルム(平均厚さ40μm、富士フィルム社製)の試験片(幅50mm×長さ10mm×厚さ0.04mm)同士を、硬化性樹脂組成物を接着剤組成物として用いて、接着層の厚み10μmで接着面積を縦40mm×横10mmとして接着させた。光照射による硬化後、接着剤組成物で接着した該試験片の、密着されていない2箇所のフィルム端部を引っ張ることで、フィルム同士が密着された部分を剥離させて、初期の180°剥離接着強さを測定した。光照射条件は〔光硬化性〕に記載の方法に従った。剥離接着強さ(単位:N/cm)は、引張試験器を用いて温度23℃、湿度50%の環境下で引張速度50mm/分で測定した。 [Triacetylcellulose Adhesion Evaluation (Peeling Adhesive Strength Between Triacetylcellulose Test Pieces)] Triacetylcellulose (TAC) film (average thickness 40 μm, manufactured by Fuji Film) test piece (width 50 mm × length 10 mm × A thickness of 0.04 mm was bonded to each other with the adhesive layer having a thickness of 10 μm and a bonding area of 40 mm in length and 10 mm in width by using the curable resin composition as an adhesive composition. After curing by light irradiation, by pulling the two end portions of the film that are not in close contact with the test piece bonded with the adhesive composition, the portions where the films are in close contact are peeled off, and the initial 180 ° peeling is performed. The bond strength was measured. The light irradiation conditions followed the method described in [Photocurability]. The peel adhesive strength (unit: N / cm) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 50 mm / min.
〔フッ素系ポリマー接着性評価(フッ素フィルム試験片間の剥離接着強さ)〕PVDFフィルム(平均厚さ40μm、電気化学工業社製「DXフィルム」)の試験片(幅50mm×長さ10mm×厚さ0.04mm)同士を、硬化性樹脂組成物を接着剤組成物として用いて、接着層の厚み10μmで接着面積を縦40mm×横10mmとして接着させた。光照射による硬化後、接着剤組成物で接着した該試験片の、密着されていない2箇所のフィルム端部を引っ張ることで、フィルム同士が密着された部分を剥離させて、初期の180°剥離接着強さを測定した。光照射条件は〔光硬化性〕に記載の方法に従った。剥離接着強さ(単位:N/cm)は、引張試験器を用いて温度23℃、湿度50%の環境下で引張速度50mm/分で測定した。 [Fluoropolymer adhesiveness evaluation (peeling adhesion strength between fluorine film test pieces)] PVDF film (average thickness 40 μm, “DX film” manufactured by Denki Kagaku Kogyo Co., Ltd.) test piece (width 50 mm × length 10 mm × thickness) 0.04 mm) were bonded to each other using a curable resin composition as an adhesive composition with an adhesive layer thickness of 10 μm and an adhesive area of 40 mm long × 10 mm wide. After curing by light irradiation, by pulling the two end portions of the film that are not in close contact with the test piece bonded with the adhesive composition, the portions where the films are in close contact are peeled off, and the initial 180 ° peeling is performed. The bond strength was measured. The light irradiation conditions followed the method described in [Photocurability]. The peel adhesive strength (unit: N / cm) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 50 mm / min.
〔ポリカーボネート接着性評価(ポリカーボネート試験片間の引張接着強さ)〕ポリカーボネート(帝人社製「パンライト」)試験片(幅25mm×長さ25mm×厚さ2.0mm)同士を、厚み80μm×幅11.5mm×長さ25mmのテフロン(登録商標)テープをスペーサーとして用い、硬化性樹脂組成物を接着剤組成物として用いて接着させた(接着面積3.125cm2)。光照射条件は〔光硬化性〕に記載の方法に従った。上記条件にて接着剤組成物を硬化させた後、更に、試験片の両面に電気化学工業社製接着剤組成物「G-55」を使用し、亜鉛メッキ鋼板(100mm×25mm×2.0mm、エンジニアリングテストサービス社製)を接着させた。硬化後、接着剤組成物で接着した該試験片を用いて、亜鉛メッキ鋼板をチャックして、初期の引張剪断接着強さを測定した。引っ張り剪断接着強さ(単位:MPa)は、引張試験器を用いて温度23℃、湿度50%の環境下で引張速度10mm/分で測定した。 [Polycarbonate Adhesive Evaluation (Tensile Adhesive Strength Between Polycarbonate Test Pieces)] Polycarbonate (“Panlite” manufactured by Teijin Limited) test pieces (width 25 mm × length 25 mm × thickness 2.0 mm), 80 μm × width A 11.5 mm × 25 mm long Teflon (registered trademark) tape was used as a spacer, and a curable resin composition was used as an adhesive composition (adhesion area 3.125 cm 2 ). The light irradiation conditions followed the method described in [Photocurability]. After the adhesive composition was cured under the above conditions, an adhesive composition “G-55” manufactured by Denki Kagaku Kogyo Co., Ltd. was used on both sides of the test piece, and a galvanized steel sheet (100 mm × 25 mm × 2.0 mm) was used. , Manufactured by Engineering Test Service). After the curing, using the test piece bonded with the adhesive composition, the galvanized steel sheet was chucked, and the initial tensile shear bond strength was measured. The tensile shear bond strength (unit: MPa) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min.
〔金属接着性評価(SPCC試験片間の引張接着強さ)〕SPCC試験片(幅25mm×長さ25mm×厚さ1.6mm)とテンパックスガラス(幅25mm×長さ25mm×厚さ2mm)を、厚み80μm×幅11.5mm×長さ25mmのテフロン(登録商標)テープをスペーサーとして用い、硬化性樹脂組成物を接着剤組成物として用いて接着させた(接着面積3.125cm2)。光照射条件は〔光硬化性〕に記載の方法に従った。上記条件にて接着剤組成物を硬化させた後、更に、テンパックス試験片側に電気化学工業社製接着剤組成物「G-55」を使用し、亜鉛メッキ鋼板(幅100mm×長さ25mm×厚さ2.0mm、エンジニアリングテストサービス社製)を接着させた。硬化後、接着剤組成物で接着した該試験片を用いて、亜鉛メッキ鋼板をチャックして、初期の引張剪断接着強さを測定した。引っ張り剪断接着強さ(単位:MPa)は、引張試験器を用いて温度23℃、湿度50%の環境下で引張速度10mm/分で測定した。 [Metal adhesion evaluation (tensile bond strength between SPCC test pieces)] SPCC test piece (width 25 mm x length 25 mm x thickness 1.6 mm) and Tempax glass (width 25 mm x length 25 mm x thickness 2 mm) Were bonded using a Teflon (registered trademark) tape having a thickness of 80 μm, a width of 11.5 mm and a length of 25 mm as a spacer, and a curable resin composition as an adhesive composition (adhesion area: 3.125 cm 2 ). The light irradiation conditions followed the method described in [Photocurability]. After the adhesive composition was cured under the above conditions, an adhesive composition “G-55” manufactured by Denki Kagaku Kogyo Co., Ltd. was used on the Tempax test piece side, and a galvanized steel sheet (width 100 mm × length 25 mm × A thickness of 2.0 mm, manufactured by Engineering Test Service Co., Ltd.) was adhered. After the curing, using the test piece bonded with the adhesive composition, the galvanized steel sheet was chucked, and the initial tensile shear bond strength was measured. The tensile shear bond strength (unit: MPa) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min.
〔耐湿熱性評価(高温高湿暴露後の耐熱ガラス試験片間の引張接着強さ)〕テンパックスガラス(25mm×25mm×2mm)同士を、硬化性樹脂組成物を接着剤組成物として用いて、接着層の厚み100μmで接着面積を1.0mmとして接着させ硬化させた。光照射条件は〔光硬化性〕に記載の方法に従った。硬化後、接着剤組成物で接着した該試験片を、恒温恒湿槽を用いて、温度85℃、相対湿度85%の環境下に1000時間暴露した。暴露後の試験片を用いて、引張剪断接着強さを測定した。接着部位の外観を目視で観察し、黄変しているか否かを調べた。暴露後、更に、テンパックス試験片側に電気化学工業社製接着剤組成物「G-55」を使用し、亜鉛メッキ鋼板(幅100mm×長さ25mm×厚さ2.0mm、エンジニアリングテストサービス社製)を接着させた。硬化後、接着剤組成物で接着した該試験片を用いて、亜鉛メッキ鋼板をチャックして、初期の引張剪断接着強さを測定した。引っ張り剪断接着強さ(単位:MPa)は、引張試験器を用いて温度23℃、湿度50%の環境下で引張速度10mm/分で測定した。 [Moisture and heat resistance evaluation (tensile bond strength between heat-resistant glass test pieces after exposure to high temperature and high humidity)] Tempax glasses (25 mm x 25 mm x 2 mm) were used as curable resin compositions as adhesive compositions, The adhesive layer was bonded and cured with a thickness of 100 μm and an adhesive area of 1.0 mm 2 . The light irradiation conditions followed the method described in [Photocurability]. After curing, the test piece bonded with the adhesive composition was exposed to an environment of 85 ° C. and 85% relative humidity for 1000 hours using a constant temperature and humidity chamber. The tensile shear bond strength was measured using the test piece after exposure. The appearance of the bonded part was visually observed to determine whether it was yellowed. After exposure, an adhesive composition “G-55” manufactured by Denki Kagaku Kogyo Co., Ltd. was used on the Tempax test piece side, and a galvanized steel sheet (width 100 mm × length 25 mm × thickness 2.0 mm, manufactured by Engineering Test Service Co., Ltd.) ) Was adhered. After the curing, using the test piece bonded with the adhesive composition, the galvanized steel sheet was chucked, and the initial tensile shear bond strength was measured. The tensile shear bond strength (unit: MPa) was measured using a tensile tester at a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min.
〔外観観察(黄変度)〕テンパックスガラス(25mm×25mm×2mm)同士を、硬化性樹脂組成物を接着剤組成物として用いて、接着層の厚み100μmで接着面積を1.0mmとして接着させ硬化させた。光照射条件は〔光硬化性〕に記載の方法に従った。硬化後、接着剤組成物で接着した該試験片をカラー測定装置(SHIMADZU社製「UV-VISIBLE SPECTROPOHOTOMETER」にてΔb値を黄変度とした。 [Observation of appearance (degree of yellowing)] Tempax glass (25 mm × 25 mm × 2 mm), using a curable resin composition as an adhesive composition, with an adhesive layer thickness of 100 μm and an adhesive area of 1.0 mm 2 Glued and cured. The light irradiation conditions followed the method described in [Photocurability]. After curing, the test piece adhered with the adhesive composition was converted into yellowing degree by a color measuring device (“UV-VISABLE SPECTROPOHOTOMETER” manufactured by SHIMADZU).
(実験例)
表1~4に示す組成の硬化性樹脂組成物を調製し、各種物性を測定した。結果を表1~4に示した。
(Experimental example)
Curable resin compositions having the compositions shown in Tables 1 to 4 were prepared, and various physical properties were measured. The results are shown in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
本実験例により、以下のことが判る。本発明は、接着性が大きい。本発明は、加温雰囲気での被着体の変形に追随できる程の柔軟性を有するので、耐湿熱性が大きい。メルカプト基を2個以上有する化合物であるDMDOを使用した場合、柔軟性、接着性が小さい。 The following can be understood from this experimental example. The present invention has high adhesiveness. Since the present invention has such flexibility that it can follow the deformation of the adherend in a heated atmosphere, it has a high resistance to moist heat. When DMDO which is a compound having two or more mercapto groups is used, flexibility and adhesiveness are small.
本発明は、気泡が混入し難いため、十分な接着性を付与でき、透明基板を貼り合わせたり、印刷された部分を貼り合わせたりすることができる。本発明は、耐湿熱性が大きいので、加温雰囲気で使用できる。本発明は、産業上の利用可能性が大きい。 In the present invention, since bubbles are hardly mixed, sufficient adhesion can be imparted, and a transparent substrate can be bonded or a printed portion can be bonded. Since the present invention has a high resistance to moist heat, it can be used in a heated atmosphere. The present invention has great industrial applicability.

Claims (16)

  1.  (A)ウレタン系(メタ)アクリレートオリゴマー、ポリエステル系(メタ)アクリレートオリゴマー、ポリエーテル系(メタ)アクリレートオリゴマー、エポキシ系(メタ)アクリレートオリゴマー、ジエン重合体系(メタ)アクリレートオリゴマー、及び、ジエン重合体系(メタ)アクリレートの水素添加物の骨格を有するオリゴマーからなる群から選ばれる1種以上である(メタ)アクリレートオリゴマー、
     (B)ホモポリマーガラス転移温度が-100~60℃を示す(メタ)アクリレート、
     (C)アルカンチオール及びカルボキシチオールからなる群から選ばれる1種以上である分子内にメルカプト基を1個有する化合物、及び
     (D)光重合開始剤、
     を含有してなる硬化性樹脂組成物。
    (A) Urethane (meth) acrylate oligomer, polyester (meth) acrylate oligomer, polyether (meth) acrylate oligomer, epoxy (meth) acrylate oligomer, diene polymer (meth) acrylate oligomer, and diene polymer (Meth) acrylate oligomer which is at least one selected from the group consisting of oligomers having a skeleton of hydrogenated product of (meth) acrylate,
    (B) (meth) acrylate having a homopolymer glass transition temperature of −100 to 60 ° C.
    (C) one or more compounds selected from the group consisting of alkanethiols and carboxythiols, a compound having one mercapto group in the molecule, and (D) a photopolymerization initiator,
    A curable resin composition comprising:
  2.  更に、(E)成分として、前記(A)と(B)以外の(メタ)アクリレートを含有する請求項1に記載の硬化性樹脂組成物。 Furthermore, the curable resin composition of Claim 1 which contains (meth) acrylates other than said (A) and (B) as (E) component.
  3.  前記(E)成分が、トリメチロールプロパントリ(メタ)アクリレート及び/又はトリシクロデカンジメタノール(メタ)アクリレートである請求項2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 2, wherein the component (E) is trimethylolpropane tri (meth) acrylate and / or tricyclodecane dimethanol (meth) acrylate.
  4.  前記(C)の分子内にメルカプト基を1個含有する化合物が、下記式(1)で示されるアルカンチオールである請求項1~3のいずれか1項に記載の硬化性樹脂組成物。
    2n+1SH  式(1)
    (nは4~19の整数)
    The curable resin composition according to any one of claims 1 to 3, wherein the compound (C) containing one mercapto group in the molecule is an alkanethiol represented by the following formula (1).
    C n H 2n + 1 SH Formula (1)
    (N is an integer from 4 to 19)
  5.  前記(C)の分子内にメルカプト基を1個含有する化合物が、下記式(2)で示されるカルボキシチオールである請求項1~3のいずれか1項に記載の硬化性樹脂組成物。
    ROOC(CHSH  式(2)
    (Rは水素又は炭素数1~19の炭化水素基、pは整数)
    The curable resin composition according to any one of claims 1 to 3, wherein the compound (C) having one mercapto group in the molecule is a carboxythiol represented by the following formula (2).
    ROOC (CH 2 ) p SH Formula (2)
    (R is hydrogen or a hydrocarbon group having 1 to 19 carbon atoms, p is an integer)
  6.  前記(A)成分の重量平均分子量が500~100000である請求項1~5のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 5, wherein the component (A) has a weight average molecular weight of 500 to 100,000.
  7.  前記(A)成分の数量平均分子量が500~100000である請求項1~5のいずれか1項に記載の硬化性樹脂組成物。 6. The curable resin composition according to claim 1, wherein the component (A) has a number average molecular weight of 500 to 100,000.
  8.  前記(A)成分が、ウレタン系(メタ)アクリレートオリゴマーである請求項1~7のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 7, wherein the component (A) is a urethane (meth) acrylate oligomer.
  9.  請求項1~8のいずれか1項に記載の硬化性樹脂組成物からなる接着剤組成物。 An adhesive composition comprising the curable resin composition according to any one of claims 1 to 8.
  10.  請求項9記載の接着剤組成物の硬化体。 A cured product of the adhesive composition according to claim 9.
  11.  請求項10載の硬化体により被着体が被覆又は接合された複合体。 A composite in which an adherend is coated or bonded with the cured body according to claim 10.
  12.  前記被着体がトリアセチルセルロース、フッ素系ポリマー、ポリエステル、ポリカーボネート、ポリオレフィン、ガラス、及び、金属からなる群から選ばれる1種以上である請求項11記載の複合体。 12. The composite according to claim 11, wherein the adherend is at least one selected from the group consisting of triacetylcellulose, fluoropolymer, polyester, polycarbonate, polyolefin, glass, and metal.
  13.  請求項9に記載の接着剤組成物により被着体を貼り合わせてなるタッチパネル積層体。 A touch panel laminate formed by adhering an adherend to the adhesive composition according to claim 9.
  14.  請求項9に記載の接着剤組成物により被着体を貼り合わせた液晶パネル積層体。 A liquid crystal panel laminate in which an adherend is bonded with the adhesive composition according to claim 9.
  15.  請求項13に記載のタッチパネル積層体を用いたディスプレイ。 A display using the touch panel laminate according to claim 13.
  16.  請求項14に記載の液晶パネル積層体を用いたディスプレイ。 A display using the liquid crystal panel laminate according to claim 14.
PCT/JP2012/071425 2011-08-26 2012-08-24 Curable resin composition WO2013031678A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280041431.1A CN103764701A (en) 2011-08-26 2012-08-24 Curable resin composition
JP2013531280A JP6035241B2 (en) 2011-08-26 2012-08-24 Curable resin composition
KR1020147002780A KR101942546B1 (en) 2011-08-26 2012-08-24 Curable resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-185049 2011-08-26
JP2011185049 2011-08-26

Publications (1)

Publication Number Publication Date
WO2013031678A1 true WO2013031678A1 (en) 2013-03-07

Family

ID=47756168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071425 WO2013031678A1 (en) 2011-08-26 2012-08-24 Curable resin composition

Country Status (5)

Country Link
JP (1) JP6035241B2 (en)
KR (1) KR101942546B1 (en)
CN (1) CN103764701A (en)
TW (1) TW201317315A (en)
WO (1) WO2013031678A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137087A1 (en) * 2012-03-12 2013-09-19 日立化成株式会社 Photocurable resin composition, image display device, and method for producing image display device
JP2013203843A (en) * 2012-03-28 2013-10-07 Kyoritsu Kagaku Sangyo Kk Photocurable resin composition for laminating decoratively printed front plate and optical display panel or touch panel, and optical display or touch sensor made by laminating using the resin composition
JP2014189575A (en) * 2013-03-26 2014-10-06 Hitachi Chemical Co Ltd Liquid curable resin composition, device for image display, and method for manufacturing device for image display
JP2014189723A (en) * 2013-03-28 2014-10-06 Hitachi Chemical Co Ltd Adhesive resin composition for image display apparatus, adhesive sheet for image display apparatus, method for manufacturing image display apparatus, and image display apparatus
JP2015143021A (en) * 2013-12-27 2015-08-06 トッパン・フォームズ株式会社 laminate and electronic equipment
JP2015160921A (en) * 2014-02-28 2015-09-07 古河電気工業株式会社 Resin composition of sealing of electronic device and electronic device
JP2015162415A (en) * 2014-02-28 2015-09-07 古河電気工業株式会社 Resin composition for sealing electronic device, and electronic device
CN105018016A (en) * 2015-09-03 2015-11-04 侯颖 Preparation method of high-strength adhesive composition for leather
WO2015190552A1 (en) * 2014-06-11 2015-12-17 日本化薬株式会社 Uv-curable resin composition for use in touchscreen, and bonding method and article using said uv-curable resin
WO2015190571A1 (en) * 2014-06-11 2015-12-17 日本化薬株式会社 Uv-curable resin composition for use in touchscreen, and bonding method and article using said uv-curable resin
WO2016104218A1 (en) * 2014-12-22 2016-06-30 日産化学工業株式会社 Photosensitive resin composition and adhesive composition
WO2016190361A1 (en) * 2015-05-26 2016-12-01 デンカ株式会社 Composition
WO2018159110A1 (en) * 2017-02-28 2018-09-07 デクセリアルズ株式会社 Manufacturing method for laminated body, and photocurable resin composition
JP2019151774A (en) * 2018-03-06 2019-09-12 東亞合成株式会社 Active energy ray-curable adhesive composition
WO2022230874A1 (en) * 2021-04-26 2022-11-03 デンカ株式会社 Composition

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6594208B2 (en) * 2013-11-27 2019-10-23 デンカ株式会社 Composition
WO2015190563A1 (en) * 2014-06-11 2015-12-17 日本化薬株式会社 Uv-curable resin composition for use in touchscreen, and bonding method and article using said uv-curable resin
KR101703431B1 (en) * 2014-06-30 2017-02-06 주식회사 엘지화학 Curable Composition
WO2016002388A1 (en) * 2014-06-30 2016-01-07 Dic株式会社 Ultraviolet curable adhesive composition and adhesive film
KR101891729B1 (en) * 2015-01-20 2018-08-24 주식회사 엘지화학 Curable Composition
KR101969339B1 (en) * 2015-06-30 2019-04-16 주식회사 엘지화학 Curable Composition
JP7395096B2 (en) * 2019-06-20 2023-12-11 杉金光電(南京)有限公司 A radical adhesive composition, a protective film for a polarizing plate containing the same, a polarizing plate containing the same, and an image display device containing the same
US20220396645A1 (en) * 2019-12-13 2022-12-15 Nitto Shinko Corporation Curable composition
CN112080241B (en) * 2020-09-24 2021-12-21 广东普赛达密封粘胶有限公司 Photo-curing adhesive and preparation method and application thereof
CN115247030A (en) * 2021-04-28 2022-10-28 王子控股株式会社 Active energy ray-curable adhesive sheet and display device
CN115637111B (en) * 2022-10-28 2024-06-21 上海汉司实业有限公司 Ultraviolet light curing composition and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859302A (en) * 1989-05-11 1996-03-05 Borden Inc Radiation beam curable secondary coating for optical fiber
JP2002525424A (en) * 1998-09-29 2002-08-13 コーニング ソシエテ アノニム Preparation of optical quality organic components, especially organic lenses
JP2010254853A (en) * 2009-04-27 2010-11-11 Bridgestone Corp Energy ray curing type elastomer composition
WO2011158840A1 (en) * 2010-06-16 2011-12-22 旭硝子株式会社 Curable resin composition, laminate comprising same, and process for production of the laminate

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485209A (en) 1987-09-25 1989-03-30 Kemitetsuku Kk Ultraviolet ray curable adhesive composition
US5536529A (en) * 1989-05-11 1996-07-16 Borden, Inc. Ultraviolet radiation-curable coatings for optical fibers and optical fibers coated therewith
JP2592733B2 (en) * 1991-10-04 1997-03-19 東亞合成株式会社 Curable resin composition
JPH08151555A (en) * 1994-11-29 1996-06-11 Sekisui Chem Co Ltd Production of acrylic adhesive double-coated tape.
JP3892936B2 (en) * 1997-05-08 2007-03-14 積水化学工業株式会社 Self-adhesive sheet
JP4982923B2 (en) * 2000-08-15 2012-07-25 Jsr株式会社 Adhesive composition for optical disk
JP2004077887A (en) 2002-06-18 2004-03-11 Sony Corp Display and electronic equipment having display
TW200634043A (en) * 2004-12-03 2006-10-01 Mitsubishi Chem Corp Composition, cured product and article
JP2009256465A (en) 2008-04-16 2009-11-05 Bridgestone Corp Active energy ray-crosslinking type adhesive
JP5446490B2 (en) 2008-06-18 2014-03-19 株式会社リコー Information processing apparatus and program
TWI485214B (en) * 2008-09-05 2015-05-21 Kyoritsu Chemical Co Ltd And a photohardenable resin composition for bonding an optical functional material
JP5716881B2 (en) * 2008-10-04 2015-05-13 スリーボンドファインケミカル株式会社 Photocurable adhesive composition
US9303123B2 (en) * 2009-04-27 2016-04-05 Bridgestone Corporation Energy-ray-curable elastomer composition, material for gasket, gasket, and hard disk device
JP5531482B2 (en) 2009-07-28 2014-06-25 Dic株式会社 Active energy ray-curable resin composition and cured product thereof
WO2014033932A1 (en) * 2012-08-31 2014-03-06 株式会社ダイセル Optical sheet
JP6202472B2 (en) * 2013-11-13 2017-09-27 セイコーエプソン株式会社 Inkjet ink composition, recording method, and recording apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859302A (en) * 1989-05-11 1996-03-05 Borden Inc Radiation beam curable secondary coating for optical fiber
JP2002525424A (en) * 1998-09-29 2002-08-13 コーニング ソシエテ アノニム Preparation of optical quality organic components, especially organic lenses
JP2010254853A (en) * 2009-04-27 2010-11-11 Bridgestone Corp Energy ray curing type elastomer composition
WO2011158840A1 (en) * 2010-06-16 2011-12-22 旭硝子株式会社 Curable resin composition, laminate comprising same, and process for production of the laminate

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137087A1 (en) * 2012-03-12 2013-09-19 日立化成株式会社 Photocurable resin composition, image display device, and method for producing image display device
JP2013203843A (en) * 2012-03-28 2013-10-07 Kyoritsu Kagaku Sangyo Kk Photocurable resin composition for laminating decoratively printed front plate and optical display panel or touch panel, and optical display or touch sensor made by laminating using the resin composition
JP2014189575A (en) * 2013-03-26 2014-10-06 Hitachi Chemical Co Ltd Liquid curable resin composition, device for image display, and method for manufacturing device for image display
JP2014189723A (en) * 2013-03-28 2014-10-06 Hitachi Chemical Co Ltd Adhesive resin composition for image display apparatus, adhesive sheet for image display apparatus, method for manufacturing image display apparatus, and image display apparatus
JP2015143021A (en) * 2013-12-27 2015-08-06 トッパン・フォームズ株式会社 laminate and electronic equipment
US10196547B2 (en) 2014-02-28 2019-02-05 Furukawa Electrics Co., Ltd. Resin composition for sealing electronic device, and electronic device
JP2015160921A (en) * 2014-02-28 2015-09-07 古河電気工業株式会社 Resin composition of sealing of electronic device and electronic device
JP2015162415A (en) * 2014-02-28 2015-09-07 古河電気工業株式会社 Resin composition for sealing electronic device, and electronic device
US10196534B2 (en) 2014-02-28 2019-02-05 Furukawa Electric Co., Ltd. Resin composition for sealing electronic device, and electronic device
WO2015190552A1 (en) * 2014-06-11 2015-12-17 日本化薬株式会社 Uv-curable resin composition for use in touchscreen, and bonding method and article using said uv-curable resin
JPWO2015190552A1 (en) * 2014-06-11 2017-04-20 日本化薬株式会社 UV curable resin composition for touch panel, laminating method and article using the same
WO2015190571A1 (en) * 2014-06-11 2015-12-17 日本化薬株式会社 Uv-curable resin composition for use in touchscreen, and bonding method and article using said uv-curable resin
WO2016104218A1 (en) * 2014-12-22 2016-06-30 日産化学工業株式会社 Photosensitive resin composition and adhesive composition
CN107111231A (en) * 2014-12-22 2017-08-29 日产化学工业株式会社 Photosensitive polymer combination and adhesive composite
JPWO2016104218A1 (en) * 2014-12-22 2017-10-19 日産化学工業株式会社 Photosensitive resin composition and adhesive composition
CN107111231B (en) * 2014-12-22 2020-06-09 日产化学工业株式会社 Photosensitive resin composition and adhesive composition
TWI656170B (en) * 2014-12-22 2019-04-11 日商日產化學工業股份有限公司 Photosensitive resin composition and adhesive composition
US10208184B2 (en) 2014-12-22 2019-02-19 Nissan Chemical Industries, Ltd. Photosensitive resin composition and adhesives composition
WO2016190361A1 (en) * 2015-05-26 2016-12-01 デンカ株式会社 Composition
CN105018016A (en) * 2015-09-03 2015-11-04 侯颖 Preparation method of high-strength adhesive composition for leather
JP2018140601A (en) * 2017-02-28 2018-09-13 デクセリアルズ株式会社 Manufacturing method for laminate, and light curable resin composition
CN110234506A (en) * 2017-02-28 2019-09-13 迪睿合株式会社 The preparation method and Photocurable resin composition of lamilate
WO2018159110A1 (en) * 2017-02-28 2018-09-07 デクセリアルズ株式会社 Manufacturing method for laminated body, and photocurable resin composition
CN110234506B (en) * 2017-02-28 2021-05-11 迪睿合株式会社 Method for producing laminate and photocurable resin composition
JP2019151774A (en) * 2018-03-06 2019-09-12 東亞合成株式会社 Active energy ray-curable adhesive composition
JP7077673B2 (en) 2018-03-06 2022-05-31 東亞合成株式会社 Active energy ray-curable pressure-sensitive adhesive composition
WO2022230874A1 (en) * 2021-04-26 2022-11-03 デンカ株式会社 Composition
JP7434666B2 (en) 2021-04-26 2024-02-20 デンカ株式会社 Composition

Also Published As

Publication number Publication date
CN103764701A (en) 2014-04-30
JP6035241B2 (en) 2016-11-30
KR20140051929A (en) 2014-05-02
JPWO2013031678A1 (en) 2015-03-23
TW201317315A (en) 2013-05-01
KR101942546B1 (en) 2019-01-25

Similar Documents

Publication Publication Date Title
JP6035241B2 (en) Curable resin composition
WO2012043664A1 (en) Curable resin composition
WO2012005169A1 (en) Curable resin composition
JP5964086B2 (en) Curable resin composition
JP5764040B2 (en) Optical UV-curable resin composition, cured product, and display device
JP5925123B2 (en) Curable resin composition
JP6797112B2 (en) Composition
KR102031528B1 (en) Photocurable resin composition and method for manufacturing image display device
JP5847724B2 (en) adhesive
JP5570752B2 (en) Adhesive
WO2012029960A1 (en) Resin composition and adhesive
JP6130154B2 (en) Curable resin composition
JP6088486B2 (en) Curable resin composition
JP6404552B2 (en) Curable resin composition
KR20190092486A (en) Composition
WO2017038845A1 (en) Photocurable resin composition and method for manufacturing image display device
JP2016199663A (en) Ultraviolet-curable adhesive composition and adhesive sheet
JP7329419B2 (en) Active energy ray-curable compression varnish composition
WO2023176023A1 (en) Adhesive sheet and method for manufacturing adhesive sheet
WO2023153152A1 (en) Pressure-sensitive adhesive and pressure-sensitive adhesive sheet
JP2011026512A (en) Sealing agent, liquid crystal element and dye-sensitized solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147002780

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013531280

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827515

Country of ref document: EP

Kind code of ref document: A1