WO2013031512A1 - 医療機器システム - Google Patents

医療機器システム Download PDF

Info

Publication number
WO2013031512A1
WO2013031512A1 PCT/JP2012/070317 JP2012070317W WO2013031512A1 WO 2013031512 A1 WO2013031512 A1 WO 2013031512A1 JP 2012070317 W JP2012070317 W JP 2012070317W WO 2013031512 A1 WO2013031512 A1 WO 2013031512A1
Authority
WO
WIPO (PCT)
Prior art keywords
processor
medical device
setting
endoscope
setting content
Prior art date
Application number
PCT/JP2012/070317
Other languages
English (en)
French (fr)
Inventor
剛 浦崎
龍 大島
宏 玉井
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to CN201280015132.0A priority Critical patent/CN103458767B/zh
Priority to EP12828116.9A priority patent/EP2674099B1/en
Priority to JP2013519894A priority patent/JP5331948B2/ja
Publication of WO2013031512A1 publication Critical patent/WO2013031512A1/ja
Priority to US13/886,700 priority patent/US8817077B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00193Optical arrangements adapted for stereoscopic vision
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00194Optical arrangements adapted for three-dimensional imaging

Definitions

  • the present invention relates to a medical device system, and more particularly, to a medical device system including two medical devices that share at least some of the settings.
  • endoscope systems have been widely used.
  • endoscope systems such as a stereoscopic endoscope system capable of observing a subject in three dimensions, a frame sequential endoscope system, and a simultaneous endoscope system.
  • the stereoscopic endoscope system processes two endoscope images in order to generate an observation image by combining two endoscope images. It is constructed by combining two processors.
  • a simultaneous endoscope system when a simultaneous endoscope system is constructed, the system is constructed by connecting peripheral devices such as a monitor and a light source device to the simultaneous processor.
  • peripheral systems such as a monitor and a light source device are connected to a frame sequential processor to construct the system.
  • an object of the present invention is to provide a medical device system that does not require a common setting when a system is constructed using two medical devices.
  • the medical device system is determined to have a higher priority order based on a predetermined operation in a medical device system including a first medical device and a second medical device that have at least some common settings.
  • transmitting means for transmitting the setting contents of the first medical device to the second medical device determined to have a lower priority, and in the second medical device, the received first medical device
  • Setting content changing means for changing a setting common to the setting content of the second medical device among the setting content to the setting content of the received first medical device.
  • FIG. 1 is a diagram illustrating a configuration of a stereoscopic endoscope system including an internal configuration of a stereoscopic endoscope and connection of liquid crystal shutter glasses according to a first embodiment of the present invention.
  • FIG. The block block diagram of the endoscope system 1 which shows the connection relation between processor 12A, 12B and another apparatus except the three-dimensional endoscope 11 and the liquid-crystal shutter spectacles 15 concerning the 1st Embodiment of this invention. It is. It is a flowchart which shows the example of the setting process of the endoscope system 1 concerning the 1st Embodiment of this invention. It is a figure which shows the example of the parent-child setting screen in each processor concerning the 1st Embodiment of this invention.
  • FIG. 1A shows the structure of the endoscope system concerning the 2nd Embodiment of this invention.
  • FIG. 1A shows the connection relation of processor 52A, 52B and another apparatus except the endoscope 51A, 51B concerning the 2nd Embodiment of this invention.
  • FIG. 1 is a diagram showing a configuration of a stereoscopic endoscope system including an internal configuration of a stereoscopic endoscope and connection of liquid crystal shutter glasses according to the present embodiment.
  • the stereoscopic endoscope system 1 mainly includes a stereoscopic endoscope 11, two processors 12 ⁇ / b> A and 12 ⁇ / b> B, a 3D synthesis device 13, and a monitor 14.
  • This is a configured medical device system.
  • the two processors 12A and 12B that are medical devices are used in the stereoscopic endoscope system.
  • the stereoscopic endoscope 11 includes an elongated insertion portion 11a and an operation portion 11b.
  • the stereoscopic endoscope 11 includes two optical systems having different parallaxes on the distal end side of the insertion portion 11a.
  • An optical image is transmitted to the imaging device, and an imaging signal of each imaging device is output.
  • the two processors 12A and 12B each process the imaging signals output from the two imaging devices of the stereoscopic endoscope 11 and output video signals.
  • the 3D synthesis device 13 is a scan converter that converts the scanning of the video signals from the processors 12A and 12B, and switches and outputs the video signals.
  • the monitor 14 is an image display device that receives a video signal output from the 3D synthesis device 13 and alternately displays left and right images.
  • the stereoscopic endoscope system 1 further includes liquid crystal shutter glasses 15 for viewing the display screen of the monitor 14 and an opening / closing control device 16 for controlling the shutter opening / closing of the liquid crystal shutter glasses 15. It is configured.
  • a light source device 17 is connected to a processor 12A as a parent processor via a cable 17A.
  • a plurality of other peripheral devices 18a, 18b, and the like are connected to the processor 12A as a parent processor (hereinafter also referred to as a parent device) via a connection cable 18A.
  • the peripheral devices are, for example, a gas supply device, a digital image recording device (DVR), a printer, a filing device, and the like.
  • DVR digital image recording device
  • a keyboard 19 is connected to the processor 12A.
  • a foot switch is also connected to the processor 12A.
  • operation devices such as a keyboard 19 and a foot switch connected to the processor 12A that is a parent machine are used.
  • the processor 12A is connected to the server device 41 (FIG. 2).
  • the server device 41 is a server device in a hospital, for example, and includes a storage device having a storage capacity capable of storing various data.
  • camera connectors 11Ra and 11Lb of the camera cables 11R and 11L extending from the operation unit 11b are connected to the re-sector pulls 23a and 23b of the processors 12A and 12B, respectively.
  • the signal cable 25a extending from the connector 24a can be connected to the signal connector 26a or 26b of the 3D synthesis device 13.
  • the signal cable 25b extending from the connector 24b can be connected to the signal connector 26a or 26b of the 3D synthesis device 13.
  • the signal cable 25a is connected to the signal connector 26a
  • the signal cable 25b is connected to the signal connector 26b.
  • the camera connectors 11Ra and 11Lb of the camera cables 11R and 11L may be connected to either of the processor pulls 23a and 23b of the processors 12A and 12B, and the processors 12A and 12B are also 3D synthesized.
  • the signal connectors 26a and 26b of the device 13 are configured to be connected to either one.
  • the 3D composition device 13 is connected to the monitor 14 by a monitor cable 27. Further, in the 3D synthesis device 13, the branch cable of the monitor cable 27 is connected to the opening / closing control device 16.
  • the opening / closing control device 16 opens and closes the shutter of the liquid crystal shutter glasses 15 so that the user can observe two images displayed alternately on the monitor 14 as a subject image having a stereoscopic effect.
  • the processors 12A and 12B are connected by a signal cable 28 so as to be synchronized in control.
  • the processors 12A and 12B are connected to the 3D synthesis device 13 by synchronization cables 29R and 29L, respectively, in order to receive an image synchronization signal.
  • Each processor can enable or disable the genlock, that is, matching the horizontal and vertical synchronizing signals of the video signal to the external signal. Therefore, when the user uses the two processors 12A and 12B in cooperation with each other as a stereoscopic endoscope system, the genlock is enabled, and when each processor is used stand-alone, the genlock is disabled.
  • the stereoscopic endoscope 11 includes a right optical system 31R that captures the right optical image of the subject and a left optical system 31L that captures the left optical image of the subject on the distal end side of the insertion portion 11a.
  • the light incident end face of the right image transmission optical system 32R such as a relay lens is disposed at the imaging position of the right optical system 31R, and the right optical image of the subject is incident and transmitted to the rear end side of the insertion portion 11a. Is done.
  • a right imaging optical system 33R and a right imaging device CCD (charge imaging element) 34R are arranged on the light emitting end face of the right image transmission optical system 32R, and the right side of the subject is placed on the imaging surface of the CCD 34R. An optical image is formed.
  • CCD charge imaging element
  • a left imaging optical system 33L and a left imaging device CCD 34L are arranged on the light emitting end face of the left image transmission optical system 32L, and a left optical image of the subject is formed on the imaging surface of the CCD 34L. It is like that.
  • the right optical system 31R, the right image transmission optical system 32R, the right imaging optical system 33R, and the CCD 34R have an imaging device that images the inside of the body cavity, constitutes one endoscope that outputs an imaging signal, and the left The optical system 31L, the left image transmission optical system 32L, the left imaging optical system 33L, and the CCD 34L also have an imaging device that images the inside of the body cavity and constitute another endoscope that outputs an imaging signal.
  • the stereoscopic endoscope 11 is provided with an illumination optical system, and transmits illumination light from the light source device 17 to the tip to illuminate the subject.
  • the stereoscopic endoscope 11 includes an ID memory 35R that outputs a right identification signal indicating that “the image has been picked up by the CCD 34R that is the right image pickup device”, and “the left image pickup device”. And an ID memory 35 ⁇ / b> L that outputs a left identification signal indicating that “the image is captured by the CCD 34 ⁇ / b> L”.
  • the ID memory 35R and the ID memory 35L are configured to output a Low / High signal as a right / left identification signal, as will be described later.
  • endoscope identification information that is, ID information is also stored in the ID memory 35R and the ID memory 35L.
  • the ID memories 35R and 35L may be incorporated in the camera connectors 11Ra and 11Lb. Further, instead of the ID memory, a pull-up resistor may be used to detect left / right identification and endoscope identification.
  • the stereoscopic endoscope 11 connects the camera connectors 11Ra and 11Lb to the re-sector pulls 23a and 23b of the processor 12A or the processor 12B, so that the CCD 34R, 34L is controlled and driven by a drive circuit (not shown) in the processors 12A and 12B. Then, the CCDs 34R and 34L that are controlled and driven photoelectrically convert the formed optical image of the subject to accumulate electric charges.
  • the electric charges accumulated in the CCDs 34R and 34L are read out as imaging signals by the drive circuit, and the video signal conversion circuits in the processors 12A and 12B are connected to the camera cables 11R and 11L through signal lines.
  • the video signal is converted to a standard video signal by this video signal conversion circuit and transmitted to the 3D synthesis device 13.
  • the processor 12A is connected to a first endoscope including a CCD 34R and the like, and constitutes a processor as a medical device that processes an imaging signal from the endoscope and outputs an image signal.
  • the processor 12B includes a CCD 34L.
  • a processor as a medical device that is connected to a second endoscope including the above and processes an imaging signal from the endoscope and outputs an image signal is configured.
  • the right identification signal of the ID memory 35R is transmitted through a signal line inserted through the camera cable 11R and transmitted to the 3D synthesis device 13 through the processor 12A or 12B.
  • the left identification signal of the ID memory 35L is also transmitted through a signal line inserted through the camera cable 11L and transmitted to the 3D synthesis device 13 via the processor 12A or 12B.
  • the 3D composition device 13 constitutes a three-dimensional image generation device that generates a three-dimensional image from two image signals.
  • the 3D synthesis device 13 outputs the video signals from the processors 12A and 12B to the monitor 14 while switching the video signals.
  • the monitor 14 alternately displays left and right images on the display screen based on the input video signal.
  • the opening / closing control device 16 has an infrared transmitter (not shown).
  • the liquid crystal shutter glasses 15 have an infrared receiver (not shown), and are configured to switch between opening and closing of the liquid crystal shutters 15R and 15L by infrared communication with the opening / closing control device 16.
  • the liquid crystal shutter glasses 15 open the right liquid crystal shutter 15R and close the left liquid crystal shutter 15L while the right eye image is displayed on the monitor 14, and the image of the monitor 14 only with the right eye. Can be observed.
  • the liquid crystal shutter glasses 15 open the left liquid crystal shutter 15L, close the right eye liquid crystal shutter 15R, and observe the image on the monitor 14 only with the left eye. be able to.
  • FIG. 2 is a block configuration diagram of the endoscope system 1 showing a connection relationship between the processors 12A and 12B and other devices, excluding the stereoscopic endoscope 11 and the liquid crystal shutter glasses 15.
  • the signal cable 28 connecting the processors 12A and 12B includes a control system signal line CL.
  • the signal cables 25a and 25b connecting the processors 12A and 12B and the 3D synthesis apparatus 13 include video signal system signal lines IL.
  • a monitor cable 27 that connects the 3D composition device 13 and the monitor 14 includes a 3D image system signal line OL.
  • Synchronization cables 29R and 29L that transmit a synchronization signal from the 3D synthesis device 13 to the processors 12A and 12B include a signal line SL for synchronization.
  • the processor 12A is set as a master unit
  • the processor 12B is set as a slave unit
  • the slave unit is automatically set.
  • the monitor 14 may display a menu screen as well as a case where a subject image is displayed three-dimensionally.
  • the menu screen is used, for example, for the user to make various settings.
  • the menu screen can also synthesize the video signals from the two processors 12A and 12B and display them on the monitor 14, but the displayed menu screen does not have to be a stereoscopic display and may be a so-called 2D. Therefore, when displaying the menu screen, the master unit (in this case, the processor 12A) can set or instruct the 3D composition device 13 so that the video output to the monitor 14 outputs only the video signal of the master unit. It has become.
  • the user can set so that the 3D synthesis device 13 outputs only the video signal from the parent device to the monitor 14. Therefore, when the user makes such setting or instruction to the master unit, the 3D synthesis device 13 outputs only the video signal from the master unit to the monitor 14 when displaying the menu screen.
  • a still image may be displayed on the monitor 14.
  • a still image can be acquired and displayed on the monitor 14.
  • the video signals from the two processors 12A and 12B are combined and displayed on the monitor 14.
  • the combined still image may be displayed in a blurred manner (that is, flickering).
  • the master unit (here, the processor 12A) may set or instruct the 3D composition device 13 to output only the video signal of the master unit to the monitor 14. It can be done. That is, the user can set the 3D composition device 13 to output only the video signal from the master unit to the monitor 14 when displaying a still image. Therefore, when the user makes such settings or instructions to the master unit, the 3D synthesis device 13 outputs only the video signal from the master unit to the monitor 14 when displaying a still image.
  • the clocks of the two processors 12A and 12B are adjusted, that is, the time is adjusted. Since the time of 12A and 12B sometimes shifts, the clock display displayed on the screen of the monitor 14 may be blurred. Therefore, the master unit (here, the processor 12A) can set or instruct the 3D composition device 13 so that only the clock display of the master unit is output.
  • the master unit in this case, the processor 12A
  • the processor 12A outputs an adjustment signal for changing the setting so as to increase the brightness of the monitor 14.
  • the system when the system is used as a stereoscopic endoscope system, the user's operation is performed on the parent machine, so that the child machine (in this case, the processor 12B) has its operation panel lamp, for example, LED ( Turn off the light-emitting diode lamp. Therefore, since only the LED lamp of the operation panel of the parent device is turned on and the LED lamp of the operation panel of the child device is turned off, the user does not operate the child device by mistake. When there is a peripheral device connected to the child processor, the parent processor does not control the peripheral device connected to the child processor.
  • the child machine in this case, the processor 12B
  • the child machine has its operation panel lamp, for example, LED ( Turn off the light-emitting diode lamp. Therefore, since only the LED lamp of the operation panel of the parent device is turned on and the LED lamp of the operation panel of the child device is turned off, the user does not operate the child device by mistake.
  • the parent processor does not control the peripheral device connected to the child processor.
  • FIG. 3 is a flowchart illustrating an example of setting processing of the endoscope system 1.
  • FIGS. 1 and 2 After the processors 12A and 12B and other devices are connected, there is a parent-child setting process for setting which processor is a parent device and which processor is a child device. Performed (S1). Each processor has a parent-child setting function.
  • the processor 12A is a parent device and the processor 12B is a child device, the parent and child are set for each processor on the setting screen of each processor.
  • FIG. 4 is a diagram showing an example of a parent-child setting screen in each processor.
  • FIG. 4 shows a setting window displayed on the screen of the monitor 14 by performing, for example, a predetermined operation on the processor 12A.
  • a window 42 displayed on the screen of the monitor 14 is a window for setting various operations.
  • a setting field for setting an operation mode in a frame 43 for setting a processor operation in the various operations. 44 is displayed.
  • the window 42 of FIG. 4 is displayed on the screen of the monitor 14, and the user sets the processor 12B as a “child”.
  • “Link_Slave” is input or selected in the setting field 44 and registered in the processor 12B.
  • the processor 12A set as the “parent” has a higher priority than the processor 12B set as the “child”, and the processor 12B set as the “child” has the processor 12A set as the “parent”. Higher priority. That is, by the process of S1, the processor 12A is determined to have a higher priority, and the processor 12B is determined to have a lower priority.
  • the processor functioning as the parent device determines whether or not the two processors 12A and 12B are correctly set to “parent” and “child”, respectively. Determine (S2).
  • the processor 12A set as the “parent” performs the determination process.
  • This determination is performed by the processor 12A communicating with the processor 12B via the signal cable 28 serving as the control line CL to obtain information on the operation mode of the processor 12B and comparing it with its own operation mode.
  • the parent processor transmits its setting information to the child processor (S3).
  • the processor 12A transmits its setting information to the processor 12B.
  • the setting information transmitted in S3 is setting information regarding image quality settings such as color tone and video output settings such as aspect ratio.
  • the processors 12A and 12B need to share at least some settings. That is, in the process of S3, based on the predetermined operation in S1, the setting content of the processor 12A that is the medical device determined to be the higher priority is transmitted to the processor 12B that is the medical device determined to be the lower priority.
  • a transmission unit is configured.
  • the child processor updates its own setting information to the received parent processor setting information (S5).
  • the processor 12B updates its own setting information with the setting information from the processor 12A.
  • the child processor updates its own setting information for all the setting information received from the parent processor, but the parent processor sends setting information including information that needs to be updated in the child processor.
  • the child processor may extract only the information that needs to be updated from the received setting information to update the setting information. That is, the child processor may select or extract setting information that is common to the parent processor from the received setting information, and update only the settings that are common to its own setting contents. That is, in the processing of S5, in the child processor, among the received parent processor settings, settings common to the child processor settings (for example, settings such as image quality settings and video output settings) are received.
  • a setting content changing unit for changing to contents is configured. Note that the processing of S3 and S5 constitutes a setting content changing unit that transmits the setting contents of the parent processor to the child processor and changes the setting contents of the child processor based on the received setting contents of the parent processor. You can also.
  • the child processor turns off the LED lamp of its own operation panel after the process of S5.
  • the parent processor confirms the connected stereoscopic endoscope 11 and 3D composition device 13 in order to operate correctly as a stereoscopic endoscope system. Done. Specifically, the processor 12A, which is the parent processor, determines whether the right and left of the connected endoscope are correct, whether the ID of the connected endoscope is the same, and whether the 3D synthesis device is connected, Confirm. If these confirmations are made, the left and right sides of the connected stereoscopic endoscope are connected in reverse, the two stereoscopic endoscopes are not connected, and the 3D composition device is also connected correctly. Therefore, the user can correctly perform the stereoscopic view.
  • the processor 12A which is the parent processor, determines whether the right and left of the connected endoscope are correct, whether the ID of the connected endoscope is the same, and whether the 3D synthesis device is connected, Confirm. If these confirmations are made, the left and right sides of the connected stereoscopic endoscope are connected in reverse, the two stereoscopic endo
  • the processor 12A and the processor 12B can realize a function as a stereoscopic endoscope system in cooperation with each other.
  • the parent processor operates in cooperation with the child processor as a stereoscopic endoscope system, the parent processor controls the monitor, the keyboard, and various peripheral devices.
  • the first embodiment is an example in which two processors are used in cooperation with each other in the stereoscopic endoscope system.
  • the two processors are used simultaneously.
  • This is an example in which both of the endoscope system and the frame sequential type endoscope system can be used and peripheral devices are shared.
  • FIG. 5 is a diagram showing a configuration of the endoscope system according to the present embodiment.
  • the endoscope system 1A according to the present embodiment includes two endoscopes 51A and 51B, two processors 52A and 52B, a monitor 53, a light source device 54, a keyboard 55, and the like. Therefore, the medical device system is mainly configured. Peripheral devices such as the monitor 53 are connected to a processor 52A set as a master unit as will be described later.
  • the endoscopes 51A and 51B have elongated insertion portions 51Aa and 51Ba and operation portions 51Ab and 51Bb, respectively, have an optical system at the distal end side of the insertion portion, and an imaging device such as a CCD that images the inside of the body cavity. The optical image is transmitted until the imaging signal of the imaging device is output.
  • the endoscope 51A is an endoscope that can be connected to the processor 52A
  • the endoscope 51B is an endoscope that can be connected to the processor 52B.
  • the processor 52A performs signal processing on the imaging signal output from the imaging device of the connected endoscope 51A and outputs a video signal that is an image signal.
  • the processor 52B performs signal processing on the imaging signal output from the imaging device of the connected endoscope 51B and outputs a video signal that is an image signal.
  • the monitor 53 is an image display device that is connected to the processor 52A and receives an image signal to display an image.
  • the processor 52A can detect the endoscope connection state in the processor 52B by communicating with the processor 52B.
  • the processor 52A connects the circuit connection with the peripheral device to the processor 52A.
  • the processor 52A internally connects the circuit with peripheral devices to the processor 52B. Switch to connection.
  • the configuration will be described assuming that the processor 52A is set as a parent processor and the processor 52B is set as a child processor.
  • the keyboard 55 is connected to a processor 52A as a parent processor.
  • the light source device 54 is a device that supplies illumination light to the endoscopes 51A and 51B, and is a so-called universal light source device that supports both simultaneous type and frame sequential type, and is connected to the processor 52A via a signal cable 54A. ing.
  • a plurality of other peripheral devices 56a, 56b, and the like are connected to the processor 52A as the parent processor via a connection cable 56A.
  • the peripheral devices are, for example, a gas supply device, a digital image recording device (DVR), a printer, a filing device, and the like.
  • the processor 52A is connected to the server device 81 (FIG. 6).
  • the server device 81 is a server device in a hospital, for example, and includes a storage device having a storage capacity capable of storing various data.
  • the camera connectors 61Aa and 61Bb of the camera cables 61A and 61B extending from the operation units 51Ab and 51Bb of the endoscopes 51A and 51B are connected to the lower sector pulls 62a and 62b of the processors 52A and 52B, respectively.
  • the endoscope 51A is an endoscope used in a simultaneous endoscope system
  • the endoscope 51B is an endoscope used in a frame sequential endoscope system.
  • the processor 52A is a simultaneous processor, and the processor 52B is a frame sequential processor.
  • the processors 52A and 52B which are medical devices, are connected to each other by signal cables 57 and 58.
  • the monitor 53 and the processor 52A are connected by a signal cable 53A.
  • FIG. 6 is a block configuration diagram of the endoscope system 1A showing a connection relationship between the processors 52A and 52B and other devices, excluding the endoscopes 51A and 51B.
  • the signal cable 57 for communication connecting the processors 52A and 52B and the signal cable 54A connecting the processor 52A and the light source device 54 include a control system signal line CL1.
  • a signal cable 53A that connects the processor 52A and the monitor 53, and a signal cable 58 that connects the processor 52A and the processor 52B include a video signal signal line IL1.
  • the video output terminal of the processor 52B and the external input terminal of the processor 52A are connected by a signal cable 58.
  • the processor 52A is set as a master unit, the processor 52B is set as a slave unit, and the slave unit is automatically set.
  • the system having the configuration shown in FIGS. 5 and 6 is used as a simultaneous endoscope system
  • the user turns on the power of the processor 52A and further turns on the power of the light source device 54 and other peripheral devices.
  • the endoscope 51A can be connected to the processor 52A and used as a simultaneous endoscope system.
  • the processor 52A can detect that the endoscope 51A is connected, so the system including the processor 52A operates as a simultaneous endoscope system.
  • the user turns on the power of the processors 52A and 52B, and further, the light source device 54 and other peripheral devices.
  • the endoscope 51B can be connected to the processor 52B by turning on the power of the, and can be used as a field sequential endoscope system.
  • the processor 52A can detect that the endoscope 51A is not connected, and the processor 52A communicates with the processor 52B via the signal cable 57 to transmit the endoscope 51B to the processor 52B. Therefore, the processor 52A switches the various peripheral devices to be connected to the processor 52B, and the system including the processor 52B operates as a frame sequential endoscope system. To do.
  • the processor 52A switches the circuit connection with the peripheral device to be connected to the processor 52A.
  • the light source device 54 is controlled by a light source control signal from the processor 52A in the case of a simultaneous system, and is controlled by a light source control signal from the processor 52B in the case of a frame sequential system.
  • a light source control signal selector switch is provided in the parent processor 52A so as to receive a control signal from the processor 52B. ing.
  • FIG. 7 is a diagram for explaining a changeover switch for a light source control signal.
  • the processor 52A which is the parent processor, has a changeover switch 71, and the changeover switch 71 is a switch with two inputs and one output.
  • the selector switch 71 the light source control signal LD1 from the processor 52A to the light source device 54 is input to one of the two input terminals of the selector switch 71, and the control signal LD2 from the processor 52B to the light source device 54 is input to the selector switch 71. It is connected so that it may input into the other of two input terminals.
  • the output of the changeover switch 71 is supplied to the light source device 54.
  • the processor 52A When the endoscope 51A is connected and operates as a simultaneous system, the processor 52A, which is a parent processor, inputs a light source control signal from the processor 52A to the light source device 54 and outputs the light source control signal to the light source device 54. Then, the changeover switch 71 is switched.
  • the processor 52A When the endoscope 51B is connected to the processor 52B and operates as a frame sequential system, the processor 52A outputs a light source control signal from the processor 52B to the light source device 4 as indicated by a dotted line in FIG.
  • the changeover switch 71 is switched so as to input and output to the light source device 54.
  • the changeover switch 71 is switched by a switching control signal LDS from a control unit in the processor 52A.
  • the selector switch 71 is not provided in the frame sequential processor 52B, but the frame sequential processor 52B may also be the master unit.
  • the changeover switch 71 may be provided also in the processor 52B so that it can be done.
  • the endoscope system 1A when used as a simultaneous system, the user's operation is performed on the parent machine, so that the child machine may turn off the lamp of its operation panel. . Therefore, only the operation switch on the operation panel of the parent device is turned on and the operation panel of the child device is turned off, so that the user does not operate the child device by mistake.
  • operation-related devices such as a keyboard 55 and a foot switch (not shown) are connected to the parent processor. What is used is used. Therefore, even when the child processor is used, input or the like can be performed with the keyboard connected to the parent processor. That is, an input device connected to a higher priority processor is validated, and information input from the input device is transmitted to a lower priority processor.
  • the setting process in the endoscope system 1A is the same as the process in FIG. 3, and will be described with reference to FIG.
  • a parent-child setting process is performed (S1).
  • S1 is the same as the process described in the first embodiment.
  • the processor 52A is set as a parent device and the processor 52B is set as a child device.
  • the setting of the parent and child is set by the setting screen of each processor, the operation panel of each processor, or a dedicated changeover switch.
  • the processor that functions as a parent machine is the two processors 52A and 52B. It is determined whether or not “parent” and “child” are correctly set (S2).
  • This determination is performed by the processor 52A communicating with the processor 52B via the signal cable 57, which is the control line CL1, to obtain information on the operation mode of the processor 52B and comparing it with its own operation mode.
  • the parent processor transmits its setting information to the child processor (S3).
  • the processor 52A transmits its own setting information to the processor 52B.
  • the setting information transmitted in S3 is setting information regarding video output settings such as aspect ratio and connection settings with various peripheral devices connected to the parent processor. Since peripheral devices such as the monitor 53 are connected to the parent processor, the child processors are also set to the same setting contents as the settings of the parent processor on the peripheral devices.
  • the processors 52A and 52B need to share at least some of the settings.
  • the child processor updates its own setting information to the received parent processor setting information (S5).
  • the processor 52B updates its own setting information with the setting information from the processor 52A.
  • the child processor updates its own setting information for all the setting information received from the parent processor, but the parent processor transmits setting information including setting information that needs to be updated in the child processor.
  • the child processor may extract only the setting information that needs to be updated from the received setting information, and update the setting information. That is, the child processor may select or extract setting information that is common to the parent processor from the received setting information, and update only the settings that are common to its own setting contents.
  • a setting content changing unit for changing to the setting content of the parent processor is configured.
  • the endoscope 51A is connected to the processor 52A.
  • the endoscope system 1A can be used as a simultaneous endoscope system.
  • the processor 52A When the endoscope 51A is connected to the processor 52A and the endoscope system 1A is used as a simultaneous endoscope system, the processor 52A directly controls peripheral devices connected to itself.
  • the endoscope system 1A When the endoscope system 1A is used as a simultaneous endoscope system, if the power of the processor 52B is turned on, the processor 52B may turn off its own operation panel. Further, when the endoscope system 1A is used as a frame sequential endoscope system, the endoscope system 1A is configured as a frame sequential endoscope system by connecting the endoscope 1B to the processor 52B. Can be used.
  • the operation signal and the control signal from the processor 52B are sent to the monitor 53 via the processor 52A.
  • the peripheral devices connected to the parent processor are appropriately controlled. Can be used. Note that the image quality setting of the monitor 53 may be switched according to the simultaneous type and the frame sequential type.
  • the processor 52A set as the parent processor controls the peripheral devices, and the frame sequential endoscope is used.
  • the parent processor switches the connection with the keyboard, monitor, and other peripheral devices to the child processor, and the processor 52B set as the child processor via the parent processor is based on the same settings as the parent processor. Control peripheral devices.
  • the user can use the simultaneous and frame sequential type endoscope system in the single endoscope system 1A. Can be used.
  • FIG. 8 is a diagram for explaining display on the screen of the monitor 14. As shown in FIG. 8, various information can be displayed on the screen 14a of the monitor 14 together with the endoscopic image.
  • the screen 14a is an octagonal endoscope image display area 101 for displaying an endoscope image, an image information display area 102 for displaying various information related to the image, and an operation state display for displaying the operation state of peripheral devices and the like.
  • An area 103 and a zoom state display area 104 for displaying the zoom state are included.
  • the endoscope image display area 101 an image of a subject obtained by imaging with an imaging device of an endoscope is displayed.
  • image information display area 102 information such as identification information (namely, ID), name, sex, age, date of birth, date of photographing, time, etc. of a patient as a subject is displayed.
  • ID identification information
  • name namely, ID
  • sex name
  • age date of birth
  • date of photographing time, etc.
  • the patient name is displayed in both Chinese characters and half-width alphanumeric characters.
  • the user can freely input a comment, and the input comment is displayed in the image information display area 102.
  • a frequently input comment can be registered, and the timing at which the registered comment is input is also set. Be able to.
  • the timing at which a comment is input can be set corresponding to a specific event. For example, a default comment such as a hospital name from which an image is taken can be input as a comment at the timing of an examination end event.
  • the image information display area 102 various types of information can be displayed, but the user can select and set the displayed information for each user. Further, the display state can be set to be changed in accordance with the set predetermined event. For example, at the time of preparation before the start of the inspection, information on all display items is displayed, and the user can input all the items, but when the inspection is started and an inspection start event is detected, Only the information selected by the user can be displayed in the image information display area 102. Therefore, various types of information can be displayed in the image information display area 102, but the user can change the information displayed or deleted according to a desired event.
  • FIG. 8 shows an example of icon display of a recording device and icon display of a pump of a peripheral device when an endoscopic image recorded on the recording device is displayed.
  • function icons for playback, stop, pause, and frame advance for operation of the recording device are displayed, but one of the icons being operated is displayed, and the user confirms the operation state during the operation. be able to.
  • the pump if a pump for supplying air provided in the light source device 17 is operating, a corresponding icon (Air) is displayed, and if the pump of the gas supplying device is operating, it corresponds to that.
  • An icon (Gas) is displayed. In FIG. 8, all these icons are displayed, but only the icon of the function or device in operation is displayed.
  • the display of these icons displayed in the operation state display area 103 can be set by selecting either a constant display or a set time display.
  • the operation state display area 103 always displays an icon corresponding to the function being operated or the pump.
  • the set time display is selected and set, an icon corresponding to the function or pump whose operation has changed is displayed in the operation state display area 103 for a preset time, and then disappears. Become.
  • the zoom state display area 104 is displayed when an endoscope having a zoom function is connected.
  • the current zoom position is between a wide angle (W) and a telephoto (T).
  • W wide angle
  • T telephoto
  • the position is indicated by the position of the square icon.
  • a plurality of switches provided in the endoscope and one or more foot switches connected to a processor or the like can be assigned various functions and can be changed.
  • Information indicating which function is assigned to which switch can be displayed on the screen 14a so that the user can confirm the function of each switch.
  • the release button function is assigned to the switch 1 of the operation unit of the endoscope
  • the recording button function is assigned to the switch 2 of the operation unit
  • the print function is assigned to the foot switch 1, and so on.
  • Various functions are assigned to various buttons.
  • the user can confirm the specifications of the connected endoscope on the screen 14a.
  • a window for displaying endoscope information is displayed on the screen 14a.
  • the endoscope model name, serial number, channel diameter, tip diameter, insertion portion diameter, and the like are displayed, and along with each diameter, the outer peripheral length of each portion is also displayed side by side.
  • the outer peripheral length display for example, fr (French)
  • the diameter display for example, mm (millimeter)
  • Message system function Various messages can be displayed on the screen 14.
  • the message is, for example, an error message.
  • a predetermined message window 111 appears on the screen 14a and a message such as an error message is displayed, as indicated by a one-dot chain line.
  • the message has a predetermined priority.
  • the number of message windows 111 is determined in advance. When the number of messages to be displayed exceeds the predetermined number, only the predetermined number of messages from the highest priority can be displayed. Therefore, when a plurality of messages are generated, a message with the highest priority is displayed, and a message with a lower priority is not hidden and displayed with a message with a higher priority. In other words, the message window 111 having a high priority is displayed on the message window 111 having a low priority. For example, when the cause of the error corresponding to the highest priority message is removed, the message window 111 corresponding to the error message disappears, but the message window 111 of the next highest priority message appears. Display control is performed as described above.
  • an error message when a peripheral device is erroneously connected is also displayed.
  • a plurality of peripheral devices are connected to the parent processor, and a plurality of connectors of the same type exist. For example, since there are a plurality of common standard connectors such as USB (UniversalUniversSerial Bus), the user may connect the peripheral device to the wrong connector.
  • USB UniversalUniversSerial Bus
  • the parent processor obtains type information of the peripheral device by communicating with the peripheral device, and checks whether the correct peripheral device is connected for each connector. If an incorrect peripheral device is connected, an error message window 111 is displayed on the screen 14a to warn the user.
  • the light source device 17 has a pump for supplying air and is used for sending carbon dioxide into the body.
  • a gas delivery device may be connected.
  • the gas supply device When the gas supply device is operating, if the pump for air supply of the light source device 17 is operated, the carbon dioxide concentration in the body cavity will decrease, so in order to control the carbon dioxide concentration not to decrease, Exclusive control of the pump of the light source device 17 and the pump of the gas supply device is performed.
  • the parent processor validates the later instruction, stops the pump of the light source device 17, Control to validate later instructions is performed, such as turning on the pump of the gas delivery device.
  • the operating pump is displayed as an icon on the screen 14a as described above.
  • Each processor has a function of storing information of the connected endoscope. That is, each processor records endoscope connection history information in a nonvolatile memory as log data.
  • the parent processor since each peripheral device records its own operation log data, the parent processor has a function of collecting log data of a plurality of connected peripheral devices and transmitting the collected log data to the server device 41. .
  • the parent processor sends the time information to each peripheral device so that the clock of each peripheral device is synchronized with its own clock. Yes.
  • a key for operating a specific function of a specific peripheral device may be provided on the keyboard 19.
  • the keyboard 19 is provided with a dedicated key for enabling the PIP (Picture In Picture) function and the POP (Picture Out Picture) function and a display channel changeover switch of the monitor 14 for the monitor 14. In this way, the user can operate the peripheral device from the keyboard 19 without directly operating the peripheral device.
  • peripheral device is connected to the connector on a one-to-one basis on the parent processor, but also a plurality of peripheral devices may be connected to one connector in a daisy chain.
  • the parent processor displays an error message.
  • the parent processor can control only one recording device. In such a case, an error message as described above is displayed.
  • the parent processor covers a large screen on the screen 14a as shown by a one-dot chain line in FIG.
  • a failure display window 112 is displayed to notify the user that a failure has been detected.
  • the parent processor can display a list of devices constituting the endoscope system 1 according to a predetermined operation. For example, when the user performs a predetermined operation on the keyboard 19, type information, a serial number, etc., such as a processor, a light source device, an endoscope, a printer, and a recording device, are displayed on the screen 14 a as system configuration information. Is displayed in a list format.
  • the parent processor can set peripheral devices on its own setting screen. As a result, it is not necessary for the user to set peripheral devices by displaying a setting screen on the monitor 14 for each peripheral device. Since the setting screen for the connected peripheral device is included in the setting screen of the parent processor, the user can set each peripheral device using the setting screen.
  • the parent processor can record a still image, but can also record the recorded still image in an external memory.
  • an external memory For example, there is a USB memory as an external memory, but data may not be correctly written to the external memory. Therefore, the parent processor has a simple check function of the connected external memory.
  • the parent processor writes the test data to the external memory and then reads it to check whether it is read correctly, further erases the written data, and then checks whether the data is correctly erased. By executing the processing steps, a simple check function for the external memory is realized.
  • the parent processor has a function of saving the setting contents of itself and peripheral devices in an external memory such as a USB memory. Further, the parent processor has a function of reflecting the setting contents recorded in the external memory in the settings of itself and peripheral devices. Therefore, the user can use the contents set in a certain system in other endoscope systems without inputting the set contents again.
  • the user in order to display the setting screen, the user must enter his / her ID and password to display the setting screen.
  • each processor can also set and register a new era.
  • the user can perform a predetermined operation without operating the keyboard.
  • a predetermined operation on the parent processor a plurality of operation function buttons are displayed on the screen 14a. Each button displayed on the screen can be moved with the up / down / left / right arrow keys on the front panel of the processor, and the user can select the desired function button and the front panel.
  • the selected function is executed. Therefore, the user can instruct a desired operation to the parent processor and various devices without using the keyboard 19.
  • an “inspection” button is provided on the front panel of the processor so that the user can instruct the processor to start a test and to start a test.
  • the inspection starts, the LED lamps on the front panel and keyboard are lit, indicating that the inspection is in progress, and when the “inspection” button is pressed again, it triggers the end of the inspection, The LED lights on the front panel and keyboard turn off.
  • the processor may disable the “inspect” button depending on the setting.
  • the user is confirmed on the screen whether the examination is completed. Therefore, when this confirmation is made, the user can set the processor so that the previous inspection is terminated.
  • the processor records a still image in the internal memory, but can record to a peripheral device such as a printer without stopping the recording operation even when there is no free space in the internal memory.
  • the endoscope is provided with a dedicated button for recording information such as a flag indicating that the image to be recorded or the recorded image is an important image.
  • a release button for normal recording and a second release button for recording that an image is important are provided in the operation unit of the endoscope. I will understand.
  • a dedicated button may be provided in the processor.
  • Each processor has an output terminal to a monitor for a personal computer (hereinafter referred to as PC). Therefore, each processor performs interlace / progressive conversion (hereinafter referred to as IP conversion) for converting an interlaced video signal into a progressive video signal, and also performs frame rate conversion. In order to reduce the circuit scale and processing delay, two conversions are performed using one memory.
  • IP conversion interlace / progressive conversion
  • FIG. 9 is a block diagram showing a configuration of an image processing processor included in each processor.
  • the image processor 91 includes an image processing unit 92 to which a digital video signal is input, a field memory 93, a frame rate conversion unit 94, an IP conversion unit 95, and a monitor output processing unit 96.
  • the image processing unit 92 writes the input video signal into the field memory 93, and the frame rate conversion unit 94 controls the readout timing of the video signal written into the field memory 93.
  • the IP conversion unit 95 generates a progressive video signal based on the video signal from the field memory 93 and performs IP conversion.
  • the field memory 93 stores the odd-field video signal and the even-field video signal
  • the frame rate conversion unit 94 stores the odd-field video signal and the even-field video stored in the field memory 93.
  • the IP converter 95 reads out the progressive video from the latest odd field and the previous even field video signal or the latest even field and the previous odd field video signal read out during the same frame output period. A signal is generated and output to the monitor output processing unit 96.
  • the video signal in the same field is output twice to absorb the frequency shift. Further, when the output frame rate is lower than the input frame rate, a frequency shift is absorbed by providing a video signal of a field that is not output.
  • the IP conversion unit 95 when generating one output frame from the video signals of two fields, the IP conversion unit 95 generates a video signal of the output frame by performing median filter processing using, for example, a three-point median method. Note that the IP conversion unit 95 may perform filter processing that is switched according to the amount of motion, synthesis processing by interpolation calculation, and the like instead of the median filter. As described above, since frame rate conversion and IP conversion are performed using a common field memory, the scale of the processing circuit can be reduced and the processing delay can be reduced.

Abstract

 内視鏡システムは、少なくとも一部の設定が共通なプロセッサ12Aと12Bとを含み、所定の操作に基づき(S1)、上位の優先順に決定されたプロセッサ12Aの設定内容を、下位の優先順位に決定されたプロセッサ12Bへ送信し(S3)、 プロセッサ12Bにおいて、受信したプロセッサ12Aの設定内容のうち、プロセッサ12Bの設定内容と共通する設定を、受信したプロセッサ12Aの設定内容に変更する(S5)。

Description

医療機器システム
 本発明は、医療機器システムに関し、特に、少なくとも一部の設定を共通にする2台の医療機器を含む医療機器システムに関する。
 従来より、内視鏡システム等の医療機器システムが広く利用されている。例えば、内視鏡システムには、被写体を立体的に観察可能な立体視内視鏡システムや、面順次式の内視鏡システム、同時式の内視鏡システム、等、種々の種類がある。 
 例えば、日本特開2004-222937号公報に開示のように、立体視内視鏡システムは、2つの内視鏡画像を合成して観察像を生成するため、2つの内視鏡画像を処理する2台のプロセッサを組み合わせて構築される。
 また、病院等の施設においては、複数の内視鏡用プロセッサが共存しているため、様々に組み合わされて使用される場合がある。例えば、同時式の内視鏡システムを構築する場合は、モニタ、光源装置などの周辺機器を同時式のプロセッサと接続して、そのシステムは構築される。また、面順次式の内視鏡システムを構築する場合は、モニタ、光源装置などの周辺機器を面順次式のプロセッサと接続して、そのシステムは構築される。
 しかし、例えば、立体内視鏡システムの場合、2つの内視鏡画像を処理する2台のプロセッサ間では、各種設定を同期させる、すなわち合わせる、調整を手動でしなければならない。よって、ユーザが立体内視鏡システムを構築する場合、2つの内視鏡画像の色合いなどの画質の設定、各種データの表示内容の設定、ハイビジョンのアスペクト比の設定等を一致させる調整を、2台のプロセッサに対して行う必要がある。
 また、面順次式の内視鏡システムと同時式の内視鏡システムが共存し、2つのシステムに共用できるモニタ、光源装置等の周辺機器がある場合に、周辺機器を共用するときは、各システムを構築するときに、共用する周辺機器への接続切換を手動で行うと共に、プロセッサにおける周辺機器に対する制御に関する設定等も変更しなければならなかった。
 すなわち、複数のプロセッサが共存する場合に、使用目的に合わせてプロセッサと周辺機器が組み合わされる場合に、組合せの変更の度に、設定を行うことは、ユーザにとって繁雑な作業であった。
 そこで、本発明は、2台の医療機器を用いてシステムを構築するときに、共通する設定が不要な医療機器システムを提供することを目的とする。
 本発明の一態様の医療機器システムは、少なくとも一部の設定が共通な第1の医療機器と第2の医療機器を含む医療機器システムにおいて、所定の操作に基づき、上位の優先順位に決定された前記第1の医療機器の設定内容を、下位の優先順位に決定された前記第2の医療機器へ送信する送信手段と、前記第2の医療機器において、受信した前記第1の医療機器の設定内容のうち、前記第2の医療機器の設定内容と共通する設定を、受信した前記第1の医療機器の設定内容に変更する設定内容変更手段と、を備える。
本発明の第1の実施の形態に係わる、立体内視鏡の内部構成と、液晶シャッタ眼鏡の接続も含めた、立体内視鏡システムの構成を示す図である。 本発明の第1の実施の形態に係わる、立体内視鏡11と液晶シャッタ眼鏡15を除いた、プロセッサ12A,12Bと他の装置との接続関係を示す、内視鏡システム1のブロック構成図である。 本発明の第1の実施の形態に係わる、内視鏡システム1の設定処理の例を示すフローチャートである。 本発明の第1の実施の形態に係わる、各プロセッサにおける親子設定画面の例を示す図である。 本発明の第2の実施の形態に係わる内視鏡システムの構成を示す図である。 本発明の第2の実施の形態に係わる、内視鏡51A、51Bを除いた、プロセッサ52A,52Bと他の装置との接続関係を示す、内視鏡システム1Aのブロック構成図である。 本発明の第2の実施の形態に係わる光源制御信号用の切替スイッチを説明するための図である。 モニタ14の画面の表示を説明するための図である。 各プロセッサに含まれる画像処理プロセッサの構成を示すブロック図である。
 以下、図面を参照して本発明の実施の形態を説明する。 
(第1の実施の形態)
(構成)
 図1は、本実施の形態に係わる、立体内視鏡の内部構成と、液晶シャッタ眼鏡の接続も含めた、立体内視鏡システムの構成を示す図である。図1に示すように、本実施の形態の立体視内視鏡システム1は、立体視内視鏡11と、2台のプロセッサ12A、12Bと、3D合成装置13と、モニタ14とから、主として構成されている医療機器システムである。本実施の形態では、医療機器である2台のプロセッサ12A、12Bは、立体内視鏡システムに使用される。
 立体内視鏡11は、細長な挿入部11aと、操作部11bとを有し、挿入部11aの先端側に視差の異なる2つの光学系を有し、体腔内を撮像する2つのCCDなどの撮像装置まで光学像を伝送し、各撮像装置の撮像信号を出力する。2台のプロセッサ12A,12Bは、それぞれ、立体視内視鏡11の2つの撮像装置から出力される撮像信号を信号処理して映像信号を出力する。3D合成装置13は、プロセッサ12Aと12Bからの映像信号の走査を変換すると共に、映像信号を切り換えて出力するスキャンコンバータである。モニタ14は、3D合成装置13から出力される映像信号を入力して左右の画像を交互に表示する画像表示装置である。
 また、立体視内視鏡システム1は、モニタ14の表示画面を見るための液晶シャッタ眼鏡15と、この液晶シャッタ眼鏡15のシャッタ開閉を制御するための開閉制御装置16とを、さらに有して構成されている。 
 後述するように、親プロセッサとしてのプロセッサ12Aには、光源装置17がケーブル17Aを介して接続されている。また、親プロセッサ(以下、親機ともいう)としてのプロセッサ12Aには、他の複数の周辺機器18a、18b、等が接続ケーブル18Aを介して接続されている。周辺機器は、例えば、送ガス装置、デジタル画像記録装置(DVR)、プリンタ、ファイリング装置などである。
 プロセッサ12Aには、キーボード19が接続されている。また、図示しないが、プロセッサ12Aには、フットスイッチも接続されている。システムが立体内視鏡システムとして動作するときは、親機であるプロセッサ12Aに接続されている、キーボード19,フットスイッチなどの操作機器が使用される。
 さらに、プロセッサ12Aは、サーバ装置41と接続されている(図2)。サーバ装置41は、例えば、病院内のサーバ装置であり、各種データを保存可能な記憶容量を有する記憶装置を有する。
 立体視内視鏡11は、操作部11bからそれぞれ延出するカメラケーブル11R,11Lのカメラコネクタ11Ra,11Lbが、それぞれプロセッサ12A、12Bのレセクタプル23a,23bに接続されるようになっている。
 また、プロセッサ12Aは、コネクタ24aから延出する信号ケーブル25aが、3D合成装置13の信号コネクタ26a又は26bに接続可能になっている。一方、プロセッサ12Bもまた、コネクタ24bから延出する信号ケーブル25bが、3D合成装置13の信号コネクタ26a又は26bに接続可能になっている。ここでは、信号ケーブル25aが信号コネクタ26aに接続され、信号ケーブル25bが信号コネクタ26bに接続されている。
 尚、本実施の形態では、カメラケーブル11R,11Lのカメラコネクタ11Ra,11Lbは、プロセッサ12A、12Bのレセクタプル23a,23bに対してどちらに接続して良く、また、プロセッサ12A及び12Bもまた3D合成装置13の信号コネクタ26a,26bに対してどちらに接続しても良いように構成されている。
 また、3D合成装置13は、モニタケーブル27によりモニタ14に接続されている。更に、3D合成装置13は、モニタケーブル27の分岐ケーブルが開閉制御装置16に接続されている。
 開閉制御装置16は、液晶シャッタ眼鏡15のシャッタ開閉を行うことによって、モニタ14に交互に表示される2つの画像を、ユーザが立体感のある被写体画像として観察することができるようになっている。 
 また、プロセッサ12Aと12Bとは、信号ケーブル28で接続され、制御における同期が取れるようになっている。
 さらに、プロセッサ12Aと12Bは、それぞれ画像の同期信号を受信するために、同期ケーブル29R,29Lにより、3D合成装置13と接続されている。 
 各プロセッサは、ゲンロック、すなわち映像信号の水平同期信号及び垂直同期信号を外部信号に合わせること、の有効あるいは無効の設定が可能となっている。よって、ユーザは、2台のプロセッサ12A、12Bを連携させて立体内視鏡システムとして使用するときは、ゲンロックを有効とし、各プロセッサをスタンドアローンで使用するときは、ゲンロックを無効とする。
 次に、立体視内視鏡システム1の詳細構成を説明する。 
 立体視内視鏡11は、挿入部11aの先端側に被写体の右の光学像を取り込む右光学系31R及び、被写体の左の光学像を取り込む左光学系31Lを有して構成されている。
 右光学系31Rの結像位置には、リレーレンズ等の右像伝達光学系32Rの光入射端面が配置されており、被写体の右の光学像が入射されて挿入部11aの後端側に伝達される。そして、右像伝達光学系32Rの光出射端面には、右結像光学系33R及び、右撮像装置であるCCD(電荷結像素子)34Rが配置され、このCCD34Rの撮像面に被写体の右の光学像が結像されるようになっている。
 一方、左も同様であり、左光学系31Lの結像位置には、左像伝達光学系32Lの光入射端面が配置されており、被写体の左の光学像が入射されて挿入部11aの後端側に伝達される。そして、左像伝達光学系32Lの光出射端面には、左結像光学系33L及び、左撮像装置であるCCD34Lが配置され、このCCD34Lの撮像面に被写体の左の光学像が結像されるようになっている。 
 よって、右光学系31R、右像伝達光学系32R、右結像光学系33R及びCCD34Rは、体腔内を撮像する撮像装置を有し、撮像信号を出力する1つの内視鏡を構成し、左光学系31L、左像伝達光学系32L、左結像光学系33L及びCCD34Lも、体腔内を撮像する撮像装置を有し、撮像信号を出力する他の1つの内視鏡を構成する。
 尚、図示しないが、立体視内視鏡11は、照明光学系が配設されており、光源装置17からの照明光を先端部まで伝達し、被写体を照明するようになっている。
 また、立体視内視鏡11は、この内部に識別信号発生部として“右撮像装置であるCCD34Rで撮像された”ことを示すための右識別信号を出力するIDメモリ35Rと、“左撮像装置であるCCD34Lで撮像された”ことを示すための左識別信号を出力するIDメモリ35Lとを有して構成される。
 本実施の形態では、これらIDメモリ35R及びIDメモリ35Lは、後述するように右/左の識別信号としてLow/Highの信号を出力するように構成されている。さらに、IDメモリ35R及びIDメモリ35Lには、内視鏡の識別情報、すなわちID情報も記憶されている。 
 尚、IDメモリ35R,35Lは、カメラコネクタ11Ra,11Lbに内蔵されても良い。また、IDメモリの代わりにプルアップ抵抗を用いて、左/右の識別、内視鏡の識別を検知するように構成しても良い。
 立体視内視鏡11は、カメラコネクタ11Ra,11Lbを、プロセッサ12A又はプロセッサ12Bのレセクタプル23a,23bに接続することで、カメラケーブル11R,11Lに挿通配設されている信号線を介してCCD34R,34Lは、プロセッサ12A、12B内の図示しない駆動回路で制御駆動される。そして、制御駆動されたCCD34R,34Lは、結像された被写体の光学像を光電変換して、電荷を蓄積する。
 そして、CCD34R,34Lで蓄積された電荷は、駆動回路にて撮像信号として読み出され、カメラケーブル11R,11Lに挿通配設されている信号線を介してプロセッサ12A、12B内の映像信号変換回路に出力され、この映像信号変換回路で標準的な映像信号に変換されて3D合成装置13に伝達される。
 プロセッサ12Aは、CCD34R等を含む第1の内視鏡と接続され、その内視鏡からの撮像信号を処理して画像信号を出力する、医療機器としてのプロセッサを構成し、プロセッサ12Bは、CCD34L等を含む第2の内視鏡と接続され、その内視鏡からの撮像信号を処理して画像信号を出力する、医療機器としてのプロセッサを構成する。
 また、IDメモリ35Rの右識別信号は、カメラケーブル11Rに挿通配設されている信号線により伝送され、プロセッサ12A又は12Bを介して3D合成装置13に伝達される。一方、IDメモリ35Lの左識別信号もまた、カメラケーブル11Lに挿通配設されている信号線により伝送され、プロセッサ12A又は12Bを介して3D合成装置13に伝達される。
 3D合成装置13は、2つの画像信号により三次元画像を生成する三次元画像生成装置を構成する。 
 3D合成装置13は、プロセッサ12A及び12Bからの映像信号を切り換えながら、モニタ14に出力する。そして、モニタ14は、入力された映像信号に基き、表示画面上に左右の映像を交互に表示する。
 ここで、開閉制御装置16は、図示しない赤外線送信機を有して構成されている。一方、液晶シャッタ眼鏡15は、図示しない赤外線受信機を有し、開閉制御装置16との赤外線通信にて液晶シャッタ15R,15Lの開閉の切り換えを行うようになっている。
 液晶シャッタ眼鏡15は、開閉制御装置16の制御により、モニタ14に右目の映像が表示されている間、右の液晶シャッタ15Rが開き、左の液晶シャッタ15Lが閉じて右目のみでモニタ14の映像を観察することができる。
 一方、逆に液晶シャッタ眼鏡15は、モニタ14に左目の映像が表示されている間、左の液晶シャッタ15Lが開き、右目の液晶シャッタ15Rが閉じて、左目のみでモニタ14の映像を観察することができる。
 図2は、立体内視鏡11と液晶シャッタ眼鏡15を除いた、プロセッサ12A,12Bと他の装置との接続関係を示す、内視鏡システム1のブロック構成図である。 
 プロセッサ12Aと12B間を接続する信号ケーブル28は、制御系の信号線CLを含む。プロセッサ12A,12Bと3D合成装置13とを接続する信号ケーブル25a、25bが、映像信号系の信号線ILを含む。3D合成装置13とモニタ14とを接続するモニタケーブル27が、3D画像系の信号線OLを含む。3D合成装置13からプロセッサ12A、12Bへ同期信号を送信する同期ケーブル29R,29Lは、同期のための信号線SLを含む。 
 後述するように、ここでは、プロセッサ12Aが親機として設定され、プロセッサ12Bは子機として設定され、子機の設定が自動で行われる。
 ところで、モニタ14には、被写体の映像を立体的に表示される場合だけでなく、メニュー画面が表示される場合もある。メニュー画面は、例えばユーザが各種設定を行うために利用される。メニュー画面も2台のプロセッサ12A、12Bからの映像信号を合成してモニタ14に表示することができるが、表示されるメニュー画面は、立体表示である必要はなく、いわゆる2Dでもよい。 
 そこで、メニュー画面を表示するときには、モニタ14への映像出力は、親機の映像信号のみを出力するように、親機(ここではプロセッサ12A)が、3D合成装置13へ設定あるいは指示できるようになっている。 
 すなわち、メニュー画面の表示時には、3D合成装置13が親機からの映像信号のみをモニタ14へ出力するように、ユーザは、設定することができる。よって、ユーザが親機にそのような設定あるいは指示をすると、3D合成装置13は、メニュー画面を表示するときには、親機からの映像信号のみをモニタ14へ出力する。
 また、モニタ14には静止画が表示される場合がある。例えば、ユーザは、立体内視鏡11のフリーズボタンを押すと、静止画を取得することがきで、モニタ14に表示される。2台のプロセッサ12A、12Bからの映像信号は、合成されてモニタ14に表示される。しかし、2台のプロセッサ12A、12Bが取得したそれぞれの静止画の取得タイミングに差があると、合成されて表示される静止画は、ブレて(すなわち、ちらついて)表示される場合がある。
 そこで、静止画を表示するときには、モニタ14への映像出力は、親機の映像信号のみを出力するように、親機(ここではプロセッサ12A)が、3D合成装置13へ設定あるいは指示することができるようになっている。 
 すなわち、静止画の表示時には、3D合成装置13が親機からの映像信号のみをモニタ14へ出力するように、ユーザは、設定することができる。よって、ユーザが親機にそのような設定あるいは指示をすると、3D合成装置13は、静止画を表示するときには、親機からの映像信号のみをモニタ14へ出力する。
 また、2台のプロセッサ12A、12Bを連携させて立体内視鏡システムとして使用するときは、2台のプロセッサ12A、12Bの時計を合わせる、すなわち時刻を合わせる処理が行われるが、2台のプロセッサ12A、12Bの時刻にずれが生じるときがあるため、モニタ14の画面上に表示される時計表示がブレて表示される場合がる。そこで、時計表示は、親機の時計表示のみを出力するように、親機(ここではプロセッサ12A)が、3D合成装置13へ設定あるいは指示することができるようになっている。
 さらにまた、システムが立体内視鏡システムとして使用される場合は、ユーザは、液晶シャッタ眼鏡15を使用してモニタ14を見るため、液晶シャッタ眼鏡15を使用しないで2D表示のモニタ14をみるときに比べて、ユーザには画面が暗く見える。そこで、システムが立体内視鏡システムとして使用される場合は、親機(ここではプロセッサ12A)は、モニタ14の明るさを上げるように設定の変更をする調整信号をモニタ14に出力する。
 さらに、システムが立体内視鏡システムとして使用される場合は、ユーザの操作は、親機に対して行われるので、子機(ここではプロセッサ12B)は、自己の操作パネルのランプ、例えばLED(発光ダイオード)ランプ、を消灯させる。よって、親機の操作パネルのLEDランプのみが点灯し、子機の操作パネルのLEDランプは消灯しているので、ユーザは子機に対して誤って操作をするということがない。 
 なお、子プロセッサに接続されている周辺機器があった場合には、親プロセッサは、子プロセッサに接続されている周辺機器に対する制御を行わない。
(作用)
 図3は、内視鏡システム1の設定処理の例を示すフローチャートである。
 まず、図1及び図2に示すように、プロセッサ12A,12Bと他の装置が接続された後に、いずれのプロセッサを親機とし、いずれのプロセッサを子機とするかを設定する親子設定処理が行われる(S1)。各プロセッサは、親子の設定機能を有している。ここでは、プロセッサ12Aを親機とし、プロセッサ12Bを子機とするので、各プロセッサの設定画面において、各プロセッサについて親子の設定が行われる。
 図4は、各プロセッサにおける親子設定画面の例を示す図である。図4は、プロセッサ12Aに対して、例えば所定の操作を行うことによって、モニタ14の画面上に表示される設定ウインドウを示す。モニタ14の画面上に表示されるウインドウ42は、各種動作を設定するためのウインドウであり、図4では、各種動作の中のプロセッサ動作の設定の枠43内に、動作モードを設定する設定フィールド44が表示されている。
 内視鏡システム1のユーザは、プロセッサ12Aを親機として設定するために、図4の画面において、設定フィールド44に、「Link_Master」を入力し、あるいは選択している状態が示されている。図4の設定を、プロセッサ12Aのフラッシュメモリなどの内部メモリに登録することによって、プロセッサ12Aは、「親」として設定され、その設定内容は、記憶される。
 図示しないが、プロセッサ12Bについても、図4のウインドウ42をモニタ14の画面上に表示させて、ユーザは、プロセッサ12Bを「子」として設定する。例えば、設定フィールド44には、「Link_Slave」が入力、あるいは選択されて、プロセッサ12Bに登録される。 
 「親」として設定されたプロセッサ12Aは、「子」として設定されたプロセッサ12Bよりも上位の優先順位を有し、「子」として設定されたプロセッサ12Bは、「親」として設定されたプロセッサ12Aよりも上位の優先順位となる。すなわち、S1の処理により、プロセッサ12Aは、上位の優先順位に決定され、プロセッサ12Bは、下位の優先順位に決定される。
 また、動作モードの設定では、プロセッサが単独で使用される場合は、設定フィールド44には、「Stand_Alone」が入力、あるいは選択されて、プロセッサに登録される。 
 なお、親子の設定は、各プロセッサの操作パネル、あるいは専用の切替スイッチなどによって、設定できるようにしてもよい。
 2台のプロセッサ12A,12Bについて、親子の設定がされた後、親機として機能するプロセッサは、2台のプロセッサ12A,12Bがそれぞれ正しく「親」と「子」に設定されているか否かを判定する(S2)。ここでは、「親」として設定されたプロセッサ
12Aが判定処理を行う。
 この判定は、プロセッサ12Aが、制御線CLである信号ケーブル28を介してプロセッサ12Bと通信して、プロセッサ12Bの動作モードの情報を得て、自己の動作モードと比較することによって、行われる。
 もしも、2台のプロセッサがそれぞれ正しく「親」と「子」に設定されているとき、すなわちプロセッサ12Bの動作モードが「子」で、自己の動作モードが「親」として設定されているときは(S2:YES)、親プロセッサは、自己の設定情報を子プロセッサへ送信する(S3)。ここでは、プロセッサ12Aが、自己の設定情報を、プロセッサ12Bへ送信する。
 S3において送信される設定情報は、色調などの画質設定と、アスペクト比などの映像出力設定に関する設定情報である。立体内視鏡システム1が2台のプロセッサ12A、12Bで構築される場合に、プロセッサ12Aと12Bは、少なくとも、一部の設定が共通している必要がある。 
 すなわち、S3の処理は、S1における所定の操作に基づき、上位の優先順位に決定された医療機器であるプロセッサ12Aの設定内容を、下位の優先順位に決定された医療機器であるプロセッサ12Bへ送信する送信部を構成する。
 もしも、2台のプロセッサがそれぞれ正しく「親」と「子」に設定されていないとき、例えばプロセッサ12Bの動作モードも自己の動作モードも共に「親」として設定されているときは(S2:NO)、親プロセッサは、自己の設定情報を子プロセッサへ送信しないで(S4)、処理は終了する。
 親プロセッサの設定情報が子プロセッサへ送信されると(S3)、子プロセッサは、自己の設定情報を、受信した親プロセッサの設定情報に更新する(S5)。ここでは、プロセッサ12Bは、プロセッサ12Aからの設定情報で、対応する自己の設定情報を更新する。
 なお、ここでは、子プロセッサは、親プロセッサから受信した全ての設定情報について、自己の設定情報を更新しているが、親プロセッサが子プロセッサにおいて更新の必要な情報を含む設定情報を送信して、子プロセッサは、受信した設定情報の中から更新の必要な情報のみを抽出して、設定情報の更新を行うようにしてもよい。すなわち、子プロセッサは、受信した設定情報の中から、親プロセッサと共通する設定情報を選択あるいは抽出して、自己の設定内容と共通する設定のみを更新するようにしてもよい。 
 すなわち、S5の処理は、子プロセッサにおいて、受信した親プロセッサの設定内容のうち、子プロセッサの設定内容と共通する設定(例えば画質設定、映像出力設定等の設定)を、受信した親プロセッサの設定内容に変更する設定内容変更部を構成する。なお、S3とS5の処理が、親プロセッサの設定内容を、子プロセッサに送信して、子プロセッサの設定内容を、受信した親プロセッサの設定内容に基づき変更する設定内容変更部を構成するということもできる。
 そして、子プロセッサは、S5の処理後、自己の操作パネルのLEDランプを消灯する。
 以上の優先順位の確認と設定の更新とが行われると、親プロセッサは、立体内視鏡システムとして正しく動作するためには、接続されている立体内視鏡11と3D合成装置13の確認が行われる。 
 具体的には、親プロセッサであるプロセッサ12Aは、接続されている内視鏡の左右が正しいか、接続されている内視鏡のIDが同じか、さらに3D合成装置は、接続されているか、を確認する。これらの確認がされると、接続されている立体内視鏡の左右が逆に接続されていたり、2台の立体内視鏡が接続されていたりしておらず、かつ3D合成装置も正しく接続されているので、ユーザは、立体視を正しくが行うことができる。
 すなわち、このような接続されている立体内視鏡と3D合成装置の確認が行われた後、プロセッサ12Aとプロセッサ12Bは、連携して立体内視鏡システムとしての機能を実現可能となる。
 そして、親プロセッサは、立体内視鏡システムとして子プロセッサと連携して動作するときは、モニタ、キーボード、各種周辺機器の制御を行う。
 以上のようにして、上述した実施の形態によれば、2台のプロセッサを用いて立体内視鏡システムを構築するときに、共通する設定が不要となる。
(第2の実施の形態)
 第1の実施の形態は、立体内視鏡システムにおいて2台のプロセッサが連携して使用される場合の例であるが、第2の実施の形態では、2台のプロセッサを用いて、同時式の内視鏡システムと面順次式の内視鏡システムの両方が利用でき、かつ周辺機器が共用される場合の例である。
(構成)
 図5は、本実施の形態に係わる内視鏡システムの構成を示す図である。図5に示すように、本実施の形態の内視鏡システム1Aは、2つの内視鏡51A、51Bと、2台のプロセッサ52A、52Bと、モニタ53と、光源装置54と、キーボード55とから、主として構成されている医療機器システムである。モニタ53等の周辺機器は、後述するように親機として設定されたプロセッサ52Aに接続されている。
 内視鏡51A、51Bは、それぞれ細長な挿入部51Aa、51Baと、操作部51Ab、51Bbとを有し、挿入部の先端側に光学系を有し、体腔内を撮像するCCDなどの撮影装置まで光学像を伝送し、撮像装置の撮像信号を出力する。内視鏡51Aは、プロセッサ52Aに接続可能な内視鏡であり、内視鏡51Bは、プロセッサ52Bに接続可能な内視鏡である。プロセッサ52Aは、接続された内視鏡51Aの撮像装置から出力される撮像信号を信号処理して画像信号である映像信号を出力する。プロセッサ52Bは、接続された内視鏡51Bの撮像装置から出力される撮像信号を信号処理して画像信号である映像信号を出力する。モニタ53は、プロセッサ52Aに接続され、映像信号を入力して画像を表示する画像表示装置である。
 後述するように、プロセッサ52Aは、プロセッサ52Bと通信してプロセッサ52Bにおける内視鏡接続状態を検出することができる。プロセッサ52Aに内視鏡51Aが接続され、プロセッサ52Bに内視鏡51Bが接続されていないときは、プロセッサ52Aは、周辺機器との回路の接続をプロセッサ52Aと接続とする。また、プロセッサ52Aに内視鏡51Aが接続されておらず、プロセッサ52Bに内視鏡51Bが接続されているときは、プロセッサ52Aは、内部において、周辺機器との回路の接続をプロセッサ52Bとの接続に切り替える。
 以下、プロセッサ52Aが親プロセッサとして設定され、プロセッサ52Bが子プロセッサとして設定されるものとして、以下、構成を説明する。キーボード55は、親プロセッサとしてのプロセッサ52Aに接続されている。 
 光源装置54は、内視鏡51A、51Bへ照明光を供給する装置であり、同時式及び面順次式の両方に対応する所謂ユニバーサル光源装置であり、信号ケーブル54Aを介してプロセッサ52Aに接続されている。 
 また、親プロセッサとしてのプロセッサ52Aには、他の複数の周辺機器56a、56b、等が接続ケーブル56Aを介して接続されている。周辺機器は、例えば、送ガス装置、デジタル画像記録装置(DVR)、プリンタ、ファイリング装置などである。
 さらに、プロセッサ52Aは、サーバ装置81と接続されている(図6)。サーバ装置81は、例えば、病院内のサーバ装置であり、各種データを保存可能な記憶容量を有する記憶装置を有する。
 内視鏡51A、51Bの操作部51Ab、51Bbから延出するカメラケーブル61A、61Bのカメラコネクタ61Aa,61Bbが、それぞれプロセッサ52A、52Bのレセクタプル62a,62bに接続されている。内視鏡51Aは、同時式の内視鏡システムに用いられる内視鏡であり、内視鏡51Bは、面順次式の内視鏡システムに用いられる内視鏡である。
 プロセッサ52Aは、同時式のプロセッサであり、プロセッサ52Bは、面順次式のプロセッサである。 
 また、医療機器であるプロセッサ52Aと52Bとは、信号ケーブル57と58で互いに接続されている。モニタ53とプロセッサ52Aとは、信号ケーブル53Aで接続されている。
 図6は、内視鏡51A、51Bを除いた、プロセッサ52A,52Bと他の装置との接続関係を示す、内視鏡システム1Aのブロック構成図である。 
 プロセッサ52Aと52Bを接続する通信用の信号ケーブル57と、プロセッサ52Aと光源装置54を接続する信号ケーブル54Aは、制御系の信号線CL1を含む。プロセッサ52Aとモニタ53を接続する信号ケーブル53Aと、プロセッサ52Aとプロセッサ52Bを接続する信号ケーブル58が、映像信号系の信号線IL1を含む。プロセッサ52Bの映像出力端子と、プロセッサ52Aの外部入力端子とが、信号ケーブル58により接続されている。
 本実施の形態では、プロセッサ52Aが親機として設定され、プロセッサ52Bは子機として設定され、子機の設定が自動で行われる。 
 図5及び図6に示す構成のシステムを、同時式の内視鏡システムとして使用する場合、ユーザは、プロセッサ52Aの電源をオンにして、さらに光源装置54及びその他の周辺機器の電源もオンにして、内視鏡51Aをプロセッサ52Aに接続して、同時式の内視鏡システムとして使用することができる。プロセッサ52Aは、電源がオンされると、内視鏡51Aが接続されていることを検知できるので、プロセッサ52Aを含むシステムは、同時式の内視鏡システムとして動作する。
 また、図5及び図6に示す構成のシステムを、面順次式の内視鏡システムとして使用する場合、ユーザは、プロセッサ52Aと52Bの電源をオンにして、さらに光源装置54及びその他の周辺機器の電源もオンにして、内視鏡51Bをプロセッサ52Bに接続して、面順次式の内視鏡システムとして使用することができる。プロセッサ52Aは、電源がオンされると、内視鏡51Aが接続されていないことを検知でき、かつプロセッサ52Aは、プロセッサ52Bと信号ケーブル57を介して通信して、プロセッサ52Bに内視鏡51Bが接続されているか否かの情報を得ることができるので、プロセッサ52Aは、各種周辺機器をプロセッサ52Bと接続するように切り替え、プロセッサ52Bを含むシステムは、面順次式の内視鏡システムとして動作する。
 なお、プロセッサ52Aに内視鏡51Aが接続され、プロセッサ52Bにも内視鏡51Bが接続されているときは、プロセッサ52Aは、周辺機器との回路の接続をプロセッサ52Aと接続とするように切り替える。
 光源装置54は、同時式システムの場合は、プロセッサ52Aからの光源制御信号により制御され、面順次式のシステムの場合は、プロセッサ52Bからの光源制御信号により制御される。しかし、光源装置54は、親プロセッサであるプロセッサ52Aにのみ接続されているので、プロセッサ52Bからの制御信号を受けられるように、親プロセッサ52A内には、光源制御信号用の切替スイッチが設けられている。
 図7は、光源制御信号用の切替スイッチを説明するための図である。親プロセッサであるプロセッサ52Aは、切替スイッチ71を有し、切替スイッチ71は、2入力1出力のスイッチである。切替スイッチ71は、プロセッサ52Aからの光源装置54への光源制御信号LD1が切替スイッチ71の2つの入力端子の一方に入力され、プロセッサ52Bからの光源装置54への制御信号LD2が切替スイッチ71の2つの入力端子の他方に入力されるように、接続されている。切替スイッチ71の出力は、光源装置54に供給される。
 親プロセッサであるプロセッサ52Aは、内視鏡51Aが接続されて同時式のシステムとして動作する場合は、プロセッサ52Aからの光源装置54への光源制御信号を入力して、光源装置54へ出力するように、切替スイッチ71を切り替える。また、プロセッサ52Aは、内視鏡51Bがプロセッサ52Bに接続されて面順次式のシステムとして動作する場合は、図7において点線で示すように、プロセッサ52Bからの光源装置4への光源制御信号を入力して、光源装置54へ出力するように、切替スイッチ71を切り替える。切替スイッチ71の切替は、プロセッサ52A内の制御部からの切替制御信号LDSにより行われる。
 なお、ここでは、同時式のプロセッサ52Aを親機としているため、面順次式のプロセッサ52B内には、切替スイッチ71が設けられていないが、面順次式のプロセッサ52Bも親機とすることができるように、プロセッサ52Bにも切替スイッチ71を設けるようにしてもよい。
 また、内視鏡システム1Aが同時式システムとして使用される場合は、ユーザの操作は、親機に対して行われるので、子機は、自己の操作パネルのランプを消灯するようにしてもよい。よって、親機の操作パネルの操作スイッチなどのみが点灯し、子機の操作パネルは消灯しているので、ユーザは子機に対して誤って操作をするということがない。
 さらにまた、以上のように「親」と「子」が設定されて構築された内視鏡システム1Aでは、キーボード55、フットスイッチ(図示せず)等の操作関連装置は、親プロセッサに接続されているものが使用される。よって、子プロセッサが使用されるときにも、親プロセッサに接続されたキーボードによって、入力などを行うことができる。すなわち、上位の優先順位のプロセッサに接続された入力機器が有効とされ、その入力機器から入力された情報が、下位の優先順位のプロセッサに送信される。
(作用)
 次に、本実施の形態のシステムの作用を説明するが、内視鏡システム1Aにおける設定処理は、図3の処理と同じであるので、図3を用いて説明する。 
 図5から図7に示すように、プロセッサ52A,52Bと他の装置が接続されて内視鏡システム1Aが構築された後、まず、親子設定処理が行われる(S1)。S1の処理は、第1の実施の形態で説明した処理と同様である。
 ここでは、プロセッサ52Aを親機とし、プロセッサ52Bを子機とする設定がされるとする。親子の設定は、第1の実施の形態で説明したように、各プロセッサの設定画面、各プロセッサの操作パネル、あるいは専用の切替スイッチなどによって、設定される。
 2台のプロセッサ52A,52Bのそれぞれについて、親又は子の設定がされた後、親機として機能するプロセッサ、ここでは「親」として設定されたプロセッサ52Aは、2台のプロセッサ52A,52Bがそれぞれ正しく「親」と「子」に設定されているか否か、を判定する(S2)。
 この判定は、プロセッサ52Aが、制御線CL1である信号ケーブル57を介してプロセッサ52Bと通信して、プロセッサ52Bの動作モードの情報を得て、自己の動作モードと比較することによって行われる。
 2台のプロセッサがそれぞれ正しく「親」と「子」に設定されているとき、すなわちプロセッサ52Bの動作モードが「子」で、自己の動作モードが「親」として設定されているときは(S2:YES)、親プロセッサは、自己の設定情報を子プロセッサへ送信する(S3)。ここでは、プロセッサ52Aが、自己の設定情報を、プロセッサ52Bへ送信する。
 S3において送信される設定情報は、アスペクト比などの映像出力設定、及び親プロセッサに接続されている各種周辺機器との接続設定に関する設定情報である。モニタ53等の周辺機器は、親プロセッサに接続されているため、子プロセッサも、親プロセッサの周辺機器への設定と同じ設定内容に合わせられる。同時式と面順次式の両方が利用できる本システム1Aが2台のプロセッサ52A、52Bで構築される場合に、プロセッサ52Aと52Bは、少なくとも、一部の設定が共通している必要がある。
 もしも、2台のプロセッサがそれぞれ正しく「親」と「子」に設定されていないとき、例えばプロセッサ52Bの動作モードも自己の動作モードも共に「親」として設定されているときは(S2:NO)、親プロセッサの設定情報を子プロセッサへ送信しないで(S4)、処理は終了する。
 親プロセッサの設定情報が子プロセッサへ送信されると(S3)、子プロセッサは、自己の設定情報を、受信した親プロセッサの設定情報に更新する(S5)。ここでは、プロセッサ52Bは、プロセッサ52Aからの設定情報で、対応する自己の設定情報を更新する。
 なお、ここでは、子プロセッサは、親プロセッサから受信した全ての設定情報について、自己の設定情報を更新しているが、親プロセッサが子プロセッサにおいて更新の必要な設定情報を含む設定情報を送信して、子プロセッサは、受信した設定情報の中から更新の必要な設定情報のみを抽出して、設定情報の更新を行うようにしてもよい。すなわち、子プロセッサは、受信した設定情報の中から、親プロセッサと共通する設定情報を選択あるいは抽出して、自己の設定内容と共通する設定のみを更新するようにしてもよい。
 すなわち、S5の処理は、子プロセッサにおいて、受信した親プロセッサの設定内容のうち、子プロセッサの設定内容と共通する設定(例えば映像出力設定、周辺機器との接続設定等の設定)を、受信した親プロセッサの設定内容に変更する設定内容変更部を構成する。
 以上のようにして「親」と「子」が設定されて構築された内視鏡システム1Aを、同時式の内視鏡システムとして使用するとき、内視鏡51Aをプロセッサ52Aに接続することによって、内視鏡システム1Aは同時式の内視鏡システムとして使用可能となる。
 内視鏡51Aがプロセッサ52Aに接続されて内視鏡システム1Aが同時式の内視鏡システムとして使用される場合、プロセッサ52Aは、自己に接続されている周辺機器を直接制御する。
 なお、内視鏡システム1Aを同時式の内視鏡システムとして使用するときに、プロセッサ52Bの電源がオンされている場合、プロセッサ52Bは自己の操作パネルを消灯するようにしてもよい。 
 また、内視鏡システム1Aを、面順次式の内視鏡システムとして使用するとき、内視鏡1Bをプロセッサ52Bに接続することによって、内視鏡システム1Aは面順次式の内視鏡システムとして使用可能となる。
 内視鏡51Bがプロセッサ52Bに接続されて内視鏡システム1Aが面順次式の内視鏡システムとして使用される場合、プロセッサ52Bからの操作信号及び制御信号は、プロセッサ52Aを介して、モニタ53、光源装置54も含めて各周辺機器へ供給されるが、プロセッサ52Bにおいてプロセッサ52Aと共通する設定は、S4において更新されているので、親プロセッサに接続されている周辺機器を適切に制御して使用することができる。 
 なお、モニタ53の画質設定は、同時式と面順次式に応じて、切り替えられるようにしてもよい。
 以上のようにして構築された内視鏡システム1Aによれば、同時式の内視鏡システムとして使用するときには、親プロセッサとして設定されたプロセッサ52Aが周辺機器を制御し、面順次式の内視鏡システムとして使用するときには、親プロセッサは、キーボード、モニタ、他の周辺機器との接続を子プロセッサへ切り換え、親プロセッサを介して子プロセッサとして設定されたプロセッサ52Bが親プロセッサと同様の設定に基づいて、周辺機器を制御する。
 以上のようにして、上述した実施の形態によれば、2台のプロセッサを用いて同時式と面順次式の両方を利用できる内視鏡システムを構築したときに、共通する設定が不要となる。
 よって、従来のような、同時式と面順次式で共用できる周辺機器の設定し直しなどをしないで、ユーザは、1つの内視鏡システム1Aにおいて、同時式と面順次式の内視鏡システムを利用することができる。
 以下、上述した2つの実施の形態において各プロセッサが有する各種機能について説明する。なお、以下、各種機能について、第1の実施の形態の場合を例として説明するが、第2の実施の形態にも適用可能である。
(1)表示系機能
 図8は、モニタ14の画面の表示を説明するための図である。図8に示すように、モニタ14の画面14a上には、内視鏡画像と共に各種情報が表示可能となっている。画面14aは、内視鏡画像を表示する、8角形の内視鏡画像表示領域101と、画像に関する各種情報を表示する画像情報表示領域102と、周辺機器などの動作状態を表示する動作状態表示領域103と、ズーム状態を表示するズーム状態表示領域104とを含む。
 内視鏡画像表示領域101には、内視鏡の撮像装置によって撮像して得られた被写体の映像が表示される。 
 画像情報表示領域102には、被写体である患者の識別情報(すなわちID)、氏名、性別、年齢、生年月日、撮影年月日及び時刻等の情報が、表示される。 
 ここでは、図8に示すように、患者名は、漢字と、半角英数カナ文字の、両方で表示されている。
 また、ユーザはコメントを自由に入力でき、入力されたコメントは画像情報表示領域102に表示されるが、頻繁に入力するコメントは、登録でき、かつ登録されたコメントが入力されるタイミングも設定することができるようになっている。コメントが入力されるタイミングは、特定のイベントに対応して設定することができる。例えば、画像の取られた病院名などの既定コメントを、検査終了イベントのタイミングで、コメントとして入力することができるようになっている。
 また、画像情報表示領域102には、各種情報が表示可能であるが、表示される情報を、ユーザがユーザ毎に選択して設定できるようになっている。さらに、設定した所定のイベントに応じて、その表示状態の変更がされるように設定することもできるようになっている。 
 例えば、検査の開始前の準備時には、全ての表示項目の情報を表示して、ユーザが全ての項目を入力可能となっているが、検査が開始されて検査開始のイベントが検出されると、ユーザにより選択された情報のみが、画像情報表示領域102に表示されるようにすることができる。 
 よって、画像情報表示領域102には、各種情報が表示可能であるが、ユーザは、表示されるあるいは消去される情報を、所望のイベントに応じて変更することができる。
 動作状態表示領域103には、プロセッサ、周辺機器等の動作状態が、アイコンで表示される。図8では、録画機器に記録された内視鏡画像を表示しているときにおける、録画機器のアイコン表示と、周辺機器のポンプのアイコン表示の例が示されている。図8では、録画機器の操作用の再生、停止、一時停止、コマ送りの機能アイコンが表示されているが、操作中のアイコンの1つが表示され、ユーザは、操作中の操作状態を確認することができる。ポンプについても、光源装置17に設けられた送気用などのポンプが動作中であれば、それに対応するアイコン(Air)が表示され、送ガス装置のポンプが動作中であれば、それに対応するアイコン(Gas)が表示される。図8では、これらの全てのアイコンが表示されているが、動作中の機能又は機器のアイコンだけが表示される。
 なお、動作状態表示領域103に表示されるこれらのアイコンの表示について、常時表示と、設定時間表示のいずれかを選択して設定できるようになっている。常時表示が選択されて設定されていると、動作状態表示領域103には、動作中の機能あるいはポンプに対応するアイコンが常に表示される。設定時間表示が選択されて設定されていると、動作状態表示領域103には、動作に変化のあった機能あるいはポンプに対応するアイコンが、予め設定された時間だけ表示され、その後は消えるようになる。
 ズーム状態表示領域104は、ズーム機能を有する内視鏡が接続されている場合に表示され、ズーム状態表示領域104には、現在のズーム位置が、広角(W)と望遠(T)の間のどの位置にあるかが、四角いアイコンの位置によって、示される。
 また、図示しないが、内視鏡に設けられた複数のスイッチや、プロセッサ等に接続された1又は2以上のフットスイッチは、各種機能を割り当てることができ、かつ変更することもできるが、割り当てられた各スイッチの機能をユーザが確認できるように、どのスイッチに何の機能が割り当てられているかを示す情報を、画面14a上に、表示できるようになっている。例えば、内視鏡の操作部のスイッチ1には、レリーズボタン機能が割り当てられ、操作部のスイッチ2は、録画ボタン機能が割り当てられ、フットスイッチ1には、プリント機能が割り当てられ、というように、各種ボタンに各種機能が割り当てられる。ユーザが所定のキー操作等を行うと、画面14a上に、各スイッチとその割り当てられた機能とを対応付けた対応リストが表示される。よって、ユーザは、スイッチに割り当てられた機能を確認したい場合は、その所定のキー操作等を行うと、予め決められた時間だけ、その対応リストが表示されるので、ユーザは、各スイッチの機能を確認することができる。
 さらにまた、ユーザは、接続されている内視鏡の仕様を、画面14a上に表示させて確認することができる。ユーザは、例えばキーボード19に対して所定の操作をすると、内視鏡の情報を表示するウインドウが、画面14a上に表示される。そのウインドウには、内視鏡の機種名、シリアルナンバー、チャンネル径、先端径、挿入部径等が表示されるが、各径と共に、各部の外周長も並べて表示される。手技に応じて、径表示(例えばmm(ミリメートル))よりも、外周長表示(例えばfr(フレンチ))の方が、ユーザにとっては理解し易い場合があるからである。
(2)メッセージ系機能
 画面14上には、各種メッセージが表示可能となっている。メッセージは、例えば、エラーメッセージである。図8において、一点鎖線で示すように、所定のメッセージウインドウ111が画面14a上に現れて、エラーメッセージ等のメッセージが表示される。
 メッセージには、予め定められた優先順位が付けられている。メッセージウインドウ111の数は、予め決められており、表示すべきメッセージが、その予め決められた数を超えると、優先順位の高いものからその予め決められた数のメッセージだけが表示可能となる。よって、複数のメッセージが発生したときは、最も優先順位の高いメッセージが表示され、それよりも低い優先順位のメッセージは、優先順位の高いメッセージに隠れて表示されない。言い換えれば、優先順位の高いメッセージウインドウ111が優先順位の低いメッセージウインドウ111の上に重ねて表示される。そして、例えば最上位の優先順位のメッセージに対応するエラーの発生原因が除去されると、そのエラーメッセージに対応するメッセージウインドウ111は消えるが、その次に優先順位の高いメッセージのメッセージウインドウ111が現れるように表示制御が行われる。
 メッセージウインドウ111には、周辺機器の誤接続時のエラーメッセージも表示される。親プロセッサには、複数の周辺機器が接続され、かつ同じ形式のコネクタが複数存在する。例えば、USB(Universal Serial Bus)等の共通規格のコネクタが複数あるため、ユーザは、間違ったコネクタに周辺機器を接続してしまう場合がある。
 そこで、親プロセッサは、各コネクタに周辺機器が接続されると、その周辺機器と通信してその周辺機器の種別情報を得て、コネクタ毎に、正しい周辺機器が接続されているか否かをチェックし、間違った周辺機器が接続されていると、エラーメッセージウインドウ111を画面14a上に表示して、ユーザに対する警告を行う。
(3)周辺機器制御機能
 内視鏡システム1の親プロセッサには、種々の周辺機器が接続可能であるため、光源装置17が送気用のポンプを有し、体内に二酸化炭素を送るための送ガス装置が接続されている場合もある。送ガス装置が動作しているときに、光源装置17の送気用のポンプが動作すると、体腔内の二酸化炭素濃度が低下してしまうので、二酸化炭素濃度が低下しないように制御するために、光源装置17のポンプと送ガス装置のポンプの排他制御が行われる。ユーザにより光源装置17のポンプがオンする指示がされた後に、送ガス装置のポンプに対するオンの指示がされたときには、親プロセッサは、後の指示を有効とし、光源装置17のポンプを停止し、送ガス装置のポンプをオンとする、というように、後からの指示を有効とする制御が行われる。作動中のポンプは、上述したように、画面14a上にアイコンで表示される。
 また、各プロセッサは、接続された内視鏡の情報を記憶する機能を有する。すなわち、各プロセッサは、内視鏡の接続履歴の情報を不揮発性メモリに、ログデータとして記録する。
 また、各周辺機器は自己の動作ログデータを記録しているので、親プロセッサは、接続されている複数の周辺機器のログデータを収集して、サーバ装置41に送信する機能を有している。
 また、接続されている周辺機器も時計機能と有している場合は、親プロセッサは、各周辺機器に時刻情報を送信して、各周辺機器の時計を、自己の時計と合わせるようになっている。
 なお、キーボード19に、特定の周辺機器の特定の機能を操作するためのキーを設けるようにしてもよい。例えば、モニタ14に対して、PIP(Picture In Picture)機能、POP(Picture Out Picture)機能を有効とするための専用のキーや、モニタ14の表示チャンネルの切替スイッチを、キーボード19に設ける。このようにすれば、ユーザは、周辺機器を直接操作しなくても、キーボード19から周辺機器を操作可能となる。
 また、親プロセッサには、周辺機器がコネクタと一対一で接続されるだけでなく、1つのコネクタに数珠繋ぎで複数の周辺機器が接続される場合がある。そのような場合に、同一機能の装置が複数接続されている場合は、親プロセッサは、エラーメッセージ表示を行う。例えば、録画機器が複数接続されている場合は、親プロセッサは、1つの録画機器しか制御できないため、そのような場合は、上述したいようなエラーメッセージが表示される。
 また、内視鏡故障時、プロセッサ故障時、等、内視鏡システム1が正常に動作できない場合は、親プロセッサは、図8の一点鎖線で示すように、画面14a上に、画面を大きく覆う、故障表示のウインドウ112を表示して、故障が検知されたことをユーザに告知するようになっている。
 また、親プロセッサは、所定の操作に応じて、内視鏡システム1を構成する装置の一覧を表示することができる。例えば、ユーザが、キーボード19に対して、所定の操作を行うと、画面14a上に、システム構成情報として、プロセッサ、光源装置、内視鏡、プリンタ、録画機器などの、種別情報や製造番号などを、リスト形式で示すウインドウが表示されるようになっている。
 また、親プロセッサは、自己の設定画面において、周辺機器の設定を行うことが可能となっている。その結果、ユーザは、周辺機器の設定を、周辺機器毎に設定画面をモニタ14に表示させて行う必要がない。親プロセッサの設定画面中に、接続される周辺機器の設定項目が含まれているので、ユーザは、その設定画面を用いて各周辺機器の設定を行うことができる。
 また、親プロセッサは、静止画を記録することができるが、記録した静止画を外部メモリにも記録することができる。たとえば、外部メモリとしてUSBメモリがあるが、外部メモリに正しくデータを書き込むことができない場合がある。そこで、親プロセッサは、接続された外部メモリの簡易チェック機能を有する。 
 ここでは、親プロセッサは、テストデータを外部メモリに書き込み、その後読み出して、正しく読み出されるかを確認し、さらに、書き込んだデータを消去して、その後データが正しく消去されているかを確認する、という処理工程を実行することにより、外部メモリの簡易チェック機能が実現される。
(4)設定系機能
 親プロセッサは、自己及び周辺機器の設定内容をUSBメモリなどの外部メモリに保存する機能を有している。さらに、親プロセッサは、外部メモリに記録されている設定内容を、自己及び周辺機器の設定に反映させる機能も有している。 
 よって、ユーザは、一度設定した内容を再度入力し直したりせずに、あるシステムで設定した内容を、他の内視鏡システムにおいても利用することができる。
 また、セキュリティ上、設定画面を表示させるために、ユーザは、自己のIDとパスワードを入力しないと、設定画面が表示されないようになっている。設定画面には、種々の設定画面があるが、セキュリティの必要な設定画面を表示しようとすると、ユーザは、自己のIDとパスワードの入力が求められ、正しく認証されると、設定画面が表示される。
 なお、各種設定画面を起動するための設定画面リストを表示させるときに、ユーザに、IDとパスワードの入力を求めるようにしてもよい。 
 また、図8に示すように、患者の生年月日を表示するときに、元号の記号が表示されるが、各プロセッサでは、新たな元号の設定と登録も可能となっている。
 また、ユーザは、キーボードを操作しなくても、所定の操作を行うことができるようになっている。例えば、ユーザが親プロセッサに対して所定の操作を行うと、画面14a上に、複数の操作機能ボタンが表示される。画面上に表示された各ボタンは、プロセッサのフロントパネル上の上下左右の矢印キーで、選択用のカーソルを移動可能となっており、ユーザが所望の機能のボタンを選択した状態で、フロントパネル上の決定キーを操作すると、選択された機能が実行される。よって、ユーザは、キーボード19を用いなくても、親プロセッサや各種機器に対して、所望の操作を指示することができる。
(5)静止画記録機能
 また、プロセッサのフロントパネルには、「検査」ボタンが設けられており、ユーザは、検査開始のトリガー、及び検査終了のトリガーをプロセッサに指示できるようになっている。「検査」ボタンを押すことにより、検査開始となって、フロントパネルとキーボードのLEDランプが点灯して検査中が表示され、再度「検査」ボタンが押されると、検査終了のトリガーとなって、フロントパネルとキーボードのLEDランプが消灯する。 
 さらに、プロセッサは、設定により、「検査」ボタンを無効とすることもできる。
 なお、ユーザが「検査」ボタンを押すのを忘れて検査開始のトリガーを指示するのを失念した場合のために、静止画あるいは動画の記録指示が最初にされたことが検知されると、その指示が、検査開始のトリガーとなるように、なっている。
 さらになお、ユーザが検査終了のトリガーを指示するのを失念したときのために、プロセッサの電源のオフ、あるいは内視鏡の取り外しが検出されたときを、検査終了のトリガーとするように、ユーザはプロセッサに設定することができるようになっている。
 よって、「検査」ボタンの機能が有効と設定されている場合に、検査終了のトリガーが指示されずにプロセッサの電源オフ等がされたときは、次にプロセッサがオンされたときには、前回の検査は、検査終了とされる。
 また、同様に、検査中に、患者情報の変更がされようとしたときには、画面上に検査終了であるかを、ユーザに確認させるようになっている。よって、この確認がされたときに、それまでの検査を検査終了とするように、ユーザは、プロセッサに設定することができる。
 さらに、プロセッサは、内部メモリに静止画を記録するが、内部メモリに空き容量が無くなったときでも記録操作を中止せず、プリンタなど周辺機器への記録をできるようになっている。 
 さらにまた、内視鏡には、記録する画像あるいは記録した画像が重要な画像であることを示すフラグなどの情報を記録するための、専用のボタンが設けられている。例えば、通常の記録のためのレリーズボタンと、重要な画像であることも記録するための第2のレリーズボタンを、内視鏡の操作部に設け、ユーザは、検査後に重要な画像であるがわかるようになる。なお、専用のボタンは、プロセッサに設けても良い。
(6)PC用出力機能
 各プロセッサは、パーソナルコンピュータ(以下、PCという)用のモニタへの出力端子を有する。そのため、各プロセッサは、インターレース方式の映像信号を、プログレッシブ方式の映像信号に変換するインターレース・プログレッシブ変換(以下、IP変換という)を行うと共に、フレームレート変換も行うが、2つの変換のための処理回路の規模を小さくし、処理遅延を小さくするために、2つの変換を1つのメモリを用いて行っている。
 図9は、各プロセッサに含まれる画像処理プロセッサの構成を示すブロック図である。画像処理プロセッサ91は、デジタルの映像信号が入力される画像処理部92と、フィールドメモリ93と、フレームレート変換部94と、IP変換部95と、モニタ出力処理部96とを含む。
 画像処理部92は、入力された映像信号をフィールドメモリ93へ書き込み、フレームレート変換部94が、フィールドメモリ93に書き込まれる映像信号の読み出しのタイミングを制御する。IP変換部95は、フィールドメモリ93からの映像信号に基づいて、プログレッシブ方式の映像信号を生成してIP変換を行う。
 具体的には、フィールドメモリ93には、奇数フィールドの映像信号と偶数フィールドの映像信号が記憶され、フレームレート変換部94は、フィールドメモリ93に記憶された奇数フィールドの映像信号と偶数フィールドの映像信号の読み出しのタイミングを制御することで、入力フレームレートと出力フレームレートの周波数のズレを吸収する。
 IP変換部95は、同一のフレーム出力期間内に読み出した、最新の奇数フィールドと1つ前の偶数フィールドの映像信号、あるいは最新の偶数フィールドと1つ前の奇数フィールドの映像信号から、プログレッシブ映像信号を生成して、モニタ出力処理部96へ出力する。
 出力フレームレートが入力フレームレートよりも高いときは、同じフィールドの映像信号を2回出力するようにして、周波数のズレが吸収される。また、出力フレームレートが入力フレームレートよりも低いときは、出力されないフィールドの映像信号を設けることにより、周波数のズレが吸収される。
 さらに、IP変換部95は、2つのフィールドの映像信号から1つの出力フレームを生成するときに、例えば3点メディアンによる方法を用いた、メディアンフィルタ処理をして出力フレームの映像信号を生成する。 
 なお、IP変換部95は、メディアンフィルタの代わりに、動き量に応じて切り替えられるフィルタ処理、補間演算による合成処理、等を行うようにしてもよい。 
 以上のように、フレームレート変換とIP変換を共通のフィールドメモリを用いて行うので、処理回路の規模を小さくし、処理遅延も小さくすることができる。
 以上説明した各実施の形態によれば、2台の医療機器を組み合わせて使用するときに、共通する設定が不要な医療機器システムを提供することができる。 
 本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。

 本出願は、2011年8月26日に日本国に出願された特願2011-185130号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。

Claims (10)

  1.  少なくとも一部の設定が共通な第1の医療機器と第2の医療機器を含む医療機器システムにおいて、
     所定の操作に基づき、上位の優先順位に決定された前記第1の医療機器の設定内容を、下位の優先順位に決定された前記第2の医療機器へ送信する送信部と、
     前記第2の医療機器において、受信した前記第1の医療機器の設定内容のうち、前記第2の医療機器の設定内容と共通する設定を、受信した前記第1の医療機器の設定内容に変更する設定内容変更部と、
    を備えることを特徴とする医療機器システム。
  2.  体腔内を撮像する第1の撮像装置を有し、第1の撮像信号を出力する第1の内視鏡と、
     前記第1の内視鏡と接続され、前記第1の撮像信号を処理して第1の画像信号を出力する、前記第1の医療機器としての第1のプロセッサと、
     前記体腔内を撮像する第2の撮像装置と有し、第2の撮像信号を出力する第2の内視鏡と、
     前記第1のプロセッサよりも優先順位が低く決定され、前記第2の内視鏡と接続され、前記第2の撮像信号を処理して第2の画像信号を出力する、前記第2の医療機器としての第2のプロセッサと、
     前記第1の画像信号と前記第2の画像信号により三次元画像を生成する三次元画像生成装置と、を有して構成され、
     前記送信部は、前記第1のプロセッサの設定内容を、第2のプロセッサへ送信し、
     前記設定内容変更部は、受信した前記第1のプロセッサの設定内容に基づき、共通する前記第2のプロセッサの設定内容を変更する、
    ことを特徴とする請求項1に記載の医療機器システム。
  3.  前記上位の優先順位の医療機器に接続された入力機器が有効とされ、前記入力機器に入力された情報は、前記下位の優先順位の医療機器に送信されることを特徴とする請求項1又は2に記載の医療機器システム。
  4.  前記設定内容は、画質設定と映像出力設定に関する情報を含むことを特徴とする請求項2に記載の医療機器システム。
  5.  前記設定内容変更部は、前記第2の医療機器が、受信した前記第1の医療機器の設定内容の中から更新に必要な情報のみを抽出して更新を行うことにより、前記第2の医療機器の設定内容と共通する設定を、受信した前記第1の医療機器の設定内容に変更することを特徴とする請求項2又は4に記載の医療機器システム。
  6.  前記第2の医療機器は、前記設定内容変更部による前記設定内容の変更の後、自己の操作パネルのランプを消灯することを特徴とする請求項2又は4に記載の医療機器システム。
  7.  体腔内を撮像する第1の撮像装置を有し、第1の撮像信号を出力する第1の内視鏡と、
     前記第1の内視鏡と接続され、前記第1の撮像信号を処理して第1の画像信号を出力する、前記第1の医療機器としての第1のプロセッサと、
     前記体腔内を撮像する第2の撮像装置と有し、第2の撮像信号を出力する第2の内視鏡と、
     前記第1のプロセッサよりも優先順位が低く決定され、前記第2の内視鏡と接続され、前記第2の撮像信号を処理して第2の画像信号を出力する、前記第2の医療機器としての第2のプロセッサと、
     前記第1のプロセッサに接続された光源装置と、
     前記第1のプロセッサと前記第2のプロセッサからの前記光源装置への光源制御信号を入力して、前記第1のプロセッサと前記第2のプロセッサのいずれか一方の前記光源制御信号を前記光源装置へ出力するように、切り替える切替スイッチと、
    を有して構成され、
     前記送信部は、前記第1のプロセッサの設定内容を、第2のプロセッサへ送信し、
     前記設定内容変更部は、受信した前記第1のプロセッサの設定内容に基づき、共通する前記第2のプロセッサの設定内容を変更する、
    ことを特徴とする請求項1に記載の医療機器システム。
  8.  前記設定内容は、画質設定と映像出力設定に関する情報を含むことを特徴とする請求項7に記載の医療機器システム。
  9.  前記設定内容変更部は、前記第2の医療機器が、受信した前記第1の医療機器の設定内容の中から更新に必要な情報のみを抽出して更新を行うことにより、前記第2の医療機器の設定内容と共通する設定を、受信した前記第1の医療機器の設定内容に変更することを特徴とする請求項7又は8に記載の医療機器システム。
  10.  前記第1の医療機器が使用される場合は、前記第2の医療機器は、自己の操作パネルのランプを消灯することを特徴とする請求項7又は8に記載の医療機器システム。
PCT/JP2012/070317 2011-08-26 2012-08-09 医療機器システム WO2013031512A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280015132.0A CN103458767B (zh) 2011-08-26 2012-08-09 医疗设备系统
EP12828116.9A EP2674099B1 (en) 2011-08-26 2012-08-09 Medical equipment system
JP2013519894A JP5331948B2 (ja) 2011-08-26 2012-08-09 内視鏡システム
US13/886,700 US8817077B2 (en) 2011-08-26 2013-05-03 Endoscope system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-185130 2011-08-26
JP2011185130 2011-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/886,700 Continuation US8817077B2 (en) 2011-08-26 2013-05-03 Endoscope system

Publications (1)

Publication Number Publication Date
WO2013031512A1 true WO2013031512A1 (ja) 2013-03-07

Family

ID=47756011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070317 WO2013031512A1 (ja) 2011-08-26 2012-08-09 医療機器システム

Country Status (5)

Country Link
US (1) US8817077B2 (ja)
EP (1) EP2674099B1 (ja)
JP (1) JP5331948B2 (ja)
CN (1) CN103458767B (ja)
WO (1) WO2013031512A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036060A (ja) * 2013-08-13 2015-02-23 オリンパスメディカルシステムズ株式会社 3次元画像システム
WO2015053043A1 (ja) * 2013-10-08 2015-04-16 オリンパスメディカルシステムズ株式会社 立体視内視鏡システム
WO2017033858A1 (ja) * 2015-08-27 2017-03-02 オリンパス株式会社 内視鏡システム
US9585542B2 (en) 2013-12-19 2017-03-07 Olympus Corporation Imaging system and imaging device
WO2017047321A1 (ja) * 2015-09-18 2017-03-23 オリンパス株式会社 信号処理装置
US10542866B2 (en) 2017-12-01 2020-01-28 Sony Olympus Medical Solutions Inc. Medical imaging device
US11071444B2 (en) 2017-03-09 2021-07-27 Sony Olympus Medical Solutions Inc. Medical endoscope system providing enhanced illumination
US11109744B2 (en) 2018-03-20 2021-09-07 Sony Olympus Medical Solutions Inc. Three-dimensional endoscope system including a two-dimensional display image portion in a three-dimensional display image
US11418772B2 (en) 2017-11-29 2022-08-16 Sony Olympus Medical Solutions Inc. Imaging device balancing depth of field and resolution
WO2023112499A1 (ja) * 2021-12-13 2023-06-22 富士フイルム株式会社 内視鏡画像観察支援装置及び内視鏡システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5782064B2 (ja) * 2013-04-15 2015-09-24 富士フイルム株式会社 内視鏡システム
US8880151B1 (en) * 2013-11-27 2014-11-04 Clear Guide Medical, Llc Surgical needle for a surgical system with optical recognition
EP3114595A2 (en) * 2014-03-04 2017-01-11 Black Diamond Video Converter device and system including converter device
CN106028905B (zh) * 2014-08-01 2018-06-12 奥林巴斯株式会社 控制装置以及内窥镜系统
EP3278704A4 (en) * 2015-03-30 2019-01-09 Olympus Corporation ENDOSCOPE DEVICE
US10492689B2 (en) * 2015-06-24 2019-12-03 Shimadzu Corporation Optical measurement system and optical measurement apparatus
CN105592252B (zh) * 2016-02-24 2018-05-29 河南工程学院 具有病变种类分析及三维图像显示功能的肠道镜系统
JP2019205535A (ja) * 2018-05-28 2019-12-05 オリンパス株式会社 内視鏡システム、及び、内視鏡用画像処理方法
US10905309B2 (en) * 2019-03-19 2021-02-02 Reed Cam, Inc. Method and apparatus for enforced provisioning and compliant usage authorization of endoscope applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019426A (ja) * 1998-06-30 2000-01-21 Olympus Optical Co Ltd 電子内視鏡装置
JP2003038432A (ja) * 2001-08-01 2003-02-12 Pentax Corp 電子内視鏡システム
JP2003038422A (ja) * 2001-08-01 2003-02-12 Pentax Corp 電子内視鏡システム
JP2004222937A (ja) 2003-01-22 2004-08-12 Olympus Corp 立体視内視鏡装置
JP2006288831A (ja) * 2005-04-12 2006-10-26 Olympus Medical Systems Corp 被検体内導入装置
JP2009279060A (ja) * 2008-05-20 2009-12-03 Hoya Corp 内視鏡システム
JP2010035874A (ja) * 2008-08-06 2010-02-18 Olympus Medical Systems Corp 能動医療機器システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935810A (en) * 1988-10-26 1990-06-19 Olympus Optical Co., Ltd. Three-dimensional measuring apparatus
US5258834A (en) * 1991-02-13 1993-11-02 Olympus Optical Co., Ltd. Electronic endoscope for producing a color image by extracting a plurality of field picture images in one field period without changing a horizontal clock rate
JPH095643A (ja) * 1995-06-26 1997-01-10 Matsushita Electric Ind Co Ltd 立体内視鏡装置
JP4610799B2 (ja) * 2001-06-25 2011-01-12 オリンパス株式会社 立体観察システム、及び内視鏡装置
JP4246510B2 (ja) * 2003-01-29 2009-04-02 Hoya株式会社 立体内視鏡システム
JP4989288B2 (ja) * 2007-04-23 2012-08-01 オリンパスメディカルシステムズ株式会社 撮像システム
US20090290016A1 (en) * 2008-05-20 2009-11-26 Hoya Corporation Endoscope system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019426A (ja) * 1998-06-30 2000-01-21 Olympus Optical Co Ltd 電子内視鏡装置
JP2003038432A (ja) * 2001-08-01 2003-02-12 Pentax Corp 電子内視鏡システム
JP2003038422A (ja) * 2001-08-01 2003-02-12 Pentax Corp 電子内視鏡システム
JP2004222937A (ja) 2003-01-22 2004-08-12 Olympus Corp 立体視内視鏡装置
JP2006288831A (ja) * 2005-04-12 2006-10-26 Olympus Medical Systems Corp 被検体内導入装置
JP2009279060A (ja) * 2008-05-20 2009-12-03 Hoya Corp 内視鏡システム
JP2010035874A (ja) * 2008-08-06 2010-02-18 Olympus Medical Systems Corp 能動医療機器システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2674099A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036060A (ja) * 2013-08-13 2015-02-23 オリンパスメディカルシステムズ株式会社 3次元画像システム
WO2015053043A1 (ja) * 2013-10-08 2015-04-16 オリンパスメディカルシステムズ株式会社 立体視内視鏡システム
CN105377110A (zh) * 2013-10-08 2016-03-02 奥林巴斯株式会社 立体视觉内窥镜系统
US9848758B2 (en) 2013-10-08 2017-12-26 Olympus Corporation Stereoscopic endoscope system
US9585542B2 (en) 2013-12-19 2017-03-07 Olympus Corporation Imaging system and imaging device
WO2017033858A1 (ja) * 2015-08-27 2017-03-02 オリンパス株式会社 内視鏡システム
JPWO2017047321A1 (ja) * 2015-09-18 2017-09-14 オリンパス株式会社 内視鏡用信号処理システム
WO2017047321A1 (ja) * 2015-09-18 2017-03-23 オリンパス株式会社 信号処理装置
US11071444B2 (en) 2017-03-09 2021-07-27 Sony Olympus Medical Solutions Inc. Medical endoscope system providing enhanced illumination
US11418772B2 (en) 2017-11-29 2022-08-16 Sony Olympus Medical Solutions Inc. Imaging device balancing depth of field and resolution
US10542866B2 (en) 2017-12-01 2020-01-28 Sony Olympus Medical Solutions Inc. Medical imaging device
US11109744B2 (en) 2018-03-20 2021-09-07 Sony Olympus Medical Solutions Inc. Three-dimensional endoscope system including a two-dimensional display image portion in a three-dimensional display image
WO2023112499A1 (ja) * 2021-12-13 2023-06-22 富士フイルム株式会社 内視鏡画像観察支援装置及び内視鏡システム

Also Published As

Publication number Publication date
CN103458767B (zh) 2015-09-16
US20130300829A1 (en) 2013-11-14
JPWO2013031512A1 (ja) 2015-03-23
JP5331948B2 (ja) 2013-10-30
EP2674099A1 (en) 2013-12-18
CN103458767A (zh) 2013-12-18
EP2674099A4 (en) 2015-02-25
US8817077B2 (en) 2014-08-26
EP2674099B1 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP5331948B2 (ja) 内視鏡システム
JP5784847B2 (ja) 3d映像を表示する内視鏡システム
JPH04307024A (ja) 電子内視鏡装置
US9584795B2 (en) Wireless transfer system
CN109565563B (zh) 多相机系统、信息处理装置以及非暂态计算机可读介质
JP2001104331A (ja) 医療用顔面装着型映像表示装置
CN108353144B (zh) 多摄像机系统、摄像机、摄像机处理方法、确认设备和确认设备处理方法
JP6132984B2 (ja) カプセル内視鏡システム及びその撮像方法
JP6223056B2 (ja) 3次元画像システム
US10729309B2 (en) Endoscope system
JP6045794B2 (ja) 電子内視鏡システム
JP5030394B2 (ja) 内視鏡画像表示装置及びその制御方法
JP5967952B2 (ja) 電子内視鏡システム
JP4436494B2 (ja) 顔面装着型映像表示装置
KR20070071791A (ko) 스테레오스코프를 이용한 내시경 및 이의 제어 방법
JP4493426B2 (ja) 電子内視鏡システム
JP2017006260A (ja) 内視鏡装置
JP2003209745A (ja) 画像処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519894

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012828116

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012828116

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE