WO2013031470A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2013031470A1
WO2013031470A1 PCT/JP2012/069667 JP2012069667W WO2013031470A1 WO 2013031470 A1 WO2013031470 A1 WO 2013031470A1 JP 2012069667 W JP2012069667 W JP 2012069667W WO 2013031470 A1 WO2013031470 A1 WO 2013031470A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
flow rate
fuel cell
refrigerant
discharge flow
Prior art date
Application number
PCT/JP2012/069667
Other languages
English (en)
French (fr)
Inventor
隼人 筑後
英高 西村
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP12828634.1A priority Critical patent/EP2752930B1/en
Priority to CN201280037980.1A priority patent/CN103733407B/zh
Priority to CA2846003A priority patent/CA2846003C/en
Priority to JP2013531188A priority patent/JP5742946B2/ja
Priority to US14/342,167 priority patent/US10873094B2/en
Publication of WO2013031470A1 publication Critical patent/WO2013031470A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04417Pressure; Ambient pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04723Temperature of the coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • JP 2006-302739A describes a conventional fuel cell system that uses an electromagnetic three-way valve to switch a circulation path of cooling water for cooling a fuel cell stack.
  • the present invention has been made paying attention to such problems, and aims to suppress the occurrence of hunting.
  • a refrigerant circulation passage through which a refrigerant that cools the fuel cell circulates, a pump that circulates the refrigerant, a refrigerant circulation passage, and a refrigerant circulation passage that releases the heat of the refrigerant.
  • An open / close valve that is provided at a junction where the high-temperature refrigerant and the high-temperature refrigerant merge, opens when the temperature of the high-temperature refrigerant reaches a predetermined valve opening temperature or more, joins the low-temperature refrigerant to the high-temperature refrigerant, and supplies the fuel cell;
  • a fuel cell system is provided that calculates the basic discharge flow rate of the pump according to the state of the fuel cell and increases the discharge flow rate of the pump from the basic discharge flow rate when the temperature of the low-temperature refrigerant is lower than a predetermined temperature.
  • FIG. 1 is a schematic view of a fuel cell system according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating pump flow rate control of the circulation pump according to the first embodiment of the present invention.
  • FIG. 3 is a table for calculating the target stack outlet water temperature based on the stack load.
  • FIG. 4 is a table for calculating the basic pump flow rate based on the temperature difference between the stack outlet water temperature and the target stack outlet water temperature.
  • FIG. 5 is a table for calculating the hunting-generated radiator outlet water temperature based on the basic pump flow rate.
  • FIG. 6 is a diagram illustrating a method for setting the first predetermined temperature ⁇ and the second predetermined temperature ⁇ .
  • FIG. 7 is a table for calculating the hunting avoidance pump flow rate based on the radiator outlet water temperature.
  • FIG. 8 is a flowchart illustrating pump flow rate control of the circulation pump according to the second embodiment of the present invention.
  • FIG. 9 is a flowchart for explaining the cathode pressure correction process.
  • FIG. 10 is a table for calculating the basic cathode pressure based on the stack load.
  • FIG. 11 is a table for calculating the correction value of the cathode pressure based on the target stack outlet water temperature and the average water temperature.
  • FIG. 12 is a flowchart illustrating pump flow rate control of the circulation pump according to the third embodiment of the present invention.
  • FIG. 13 is a flowchart illustrating the cathode gas flow rate correction process.
  • FIG. 14 is a table for calculating the basic cathode gas flow rate based on the stack load.
  • FIG. 15 is a table for calculating the correction value of the cathode gas flow rate based on the target
  • an electrolyte membrane is sandwiched between an anode electrode (fuel electrode) and a cathode electrode (oxidant electrode), an anode gas containing hydrogen in the anode electrode (fuel gas), and a cathode gas containing oxygen in the cathode electrode (oxidant) Electricity is generated by supplying gas.
  • the electrode reaction that proceeds in both the anode electrode and the cathode electrode is as follows.
  • Anode electrode 2H 2 ⁇ 4H + + 4e ⁇ (1)
  • Cathode electrode 4H + + 4e ⁇ + O 2 ⁇ 2H 2 O (2)
  • the fuel cell generates an electromotive force of about 1 volt by the electrode reactions (1) and (2).
  • a fuel cell When a fuel cell is used as a power source for automobiles, it requires a large amount of power, so it is used as a fuel cell stack in which several hundred fuel cells are stacked. Then, a fuel cell system that supplies anode gas and cathode gas to the fuel cell stack is configured, and electric power for driving the vehicle is taken out.
  • FIG. 1 is a schematic diagram of a fuel cell system 100 according to a first embodiment of the present invention.
  • the fuel cell system 100 includes a fuel cell stack 1, a cathode gas supply / discharge device 2, an anode gas supply / discharge device 3, a stack cooling device 4, and a controller 5.
  • the fuel cell stack 1 is formed by stacking several hundred fuel cells, and receives the supply of anode gas and cathode gas to generate electric power necessary for driving the vehicle.
  • the cathode gas supply / discharge device 2 is a device that supplies cathode gas to the fuel cell stack 1 and discharges cathode off-gas discharged from the fuel cell stack 1 to the outside air.
  • the cathode gas supply / discharge device 2 includes a cathode gas supply passage 21, a filter 22, a cathode compressor 23, a cathode gas discharge passage 24, a cathode pressure regulating valve 25, an air flow sensor 26, and a pressure sensor 27.
  • the cathode gas supply passage 21 is a passage through which the cathode gas supplied to the fuel cell stack 1 flows.
  • the cathode gas supply passage 21 has one end connected to the filter 22 and the other end connected to the cathode gas inlet hole 11 of the fuel cell stack 1.
  • the filter 22 removes foreign matters in the cathode gas taken into the cathode gas supply passage 21.
  • the cathode compressor 23 is provided in the cathode gas supply passage 21.
  • the cathode compressor 23 takes in air (outside air) as cathode gas through the filter 22 into the cathode gas supply passage 21 and supplies it to the fuel cell stack 1.
  • the cathode gas discharge passage 24 is a passage through which the cathode off gas discharged from the fuel cell stack 1 flows. One end of the cathode gas discharge passage 24 is connected to the cathode gas outlet hole 12 of the fuel cell stack 1, and the other end is an open end.
  • the cathode pressure regulating valve 25 is provided in the cathode gas discharge passage 24.
  • the cathode pressure regulating valve 25 is controlled to be opened and closed by the controller 5 and adjusts the pressure of the passage (hereinafter referred to as “cathode pressure”) through which the cathode gas upstream of the cathode pressure regulating valve 25 flows to a desired pressure.
  • the air flow sensor 26 is provided in the cathode gas supply passage 21 upstream of the cathode compressor 23. The air flow sensor 26 detects the flow rate of the cathode gas flowing through the cathode gas supply passage 21.
  • the pressure sensor 27 is provided in the cathode gas supply passage 21 in the vicinity of the cathode gas inlet hole 11.
  • the pressure sensor 27 detects the cathode pressure.
  • the controller 5 adjusts the opening of the cathode pressure regulating valve 25 based on the detection value of the pressure sensor 27, and adjusts the cathode pressure to a desired pressure.
  • the anode gas supply / discharge device 3 is a device that supplies anode gas to the fuel cell stack 1 and discharges anode off-gas discharged from the fuel cell stack 1 to the cathode gas discharge passage 24.
  • the anode gas supply / discharge device 3 includes a high-pressure tank 31, an anode gas supply passage 32, an anode pressure regulating valve 33, an anode gas discharge passage 34, and a purge valve 35.
  • the high pressure tank 31 stores the anode gas supplied to the fuel cell stack 1 in a high pressure state.
  • the anode gas supply passage 32 is a passage for supplying the anode gas discharged from the high-pressure tank 31 to the fuel cell stack 1.
  • the anode gas supply passage 32 has one end connected to the high-pressure tank 31 and the other end connected to the anode gas inlet hole 13 of the fuel cell stack 1.
  • the anode pressure regulating valve 33 is provided in the anode gas supply passage 32.
  • the anode pressure regulating valve 33 is controlled to be opened and closed by the controller 5 and adjusts the pressure of the anode gas flowing out from the high-pressure tank 31 to the anode gas supply passage 32 to a desired pressure.
  • the anode gas discharge passage 34 is a passage through which the anode off gas discharged from the fuel cell stack 1 flows.
  • the anode gas discharge passage 34 has one end connected to the anode gas outlet hole 14 of the fuel cell stack 1 and the other end connected to the cathode gas discharge passage 24.
  • the purge valve 35 is provided in the anode gas discharge passage 34.
  • the purge valve 35 is controlled to be opened and closed by the controller 5 and controls the flow rate of the anode off gas discharged from the anode gas discharge passage 34 to the cathode gas discharge passage 24.
  • the stack cooling device 4 is a device that cools the fuel cell stack 1 and maintains the fuel cell stack 1 at a temperature suitable for power generation.
  • the stack cooling device 4 includes a cooling water circulation passage 41, a radiator 42, a bypass passage 43, a thermostat 44, a circulation pump 45, a heater 46, a first water temperature sensor 47, and a second water temperature sensor 48. .
  • the cooling water circulation passage 41 is a passage through which cooling water for cooling the fuel cell stack 1 circulates.
  • the radiator 42 is provided in the cooling water circulation passage 41.
  • the radiator 42 cools the cooling water discharged from the fuel cell stack 1.
  • the bypass passage 43 has one end connected to the cooling water circulation passage 41 and the other end connected to the thermostat 44 so that the cooling water can be circulated by bypassing the radiator 42.
  • the thermostat 44 is provided in the cooling water circulation passage 41 on the downstream side of the radiator 42.
  • the thermostat 44 is an on-off valve that automatically opens and closes according to the temperature of the cooling water flowing inside.
  • the thermostat 44 is closed when the temperature of the cooling water flowing through the thermostat 44 is lower than a predetermined thermostat valve opening temperature, and only the relatively high temperature cooling water that has passed through the bypass passage 43 is supplied to the fuel cell stack. 1 is supplied.
  • the temperature of the cooling water flowing in the interior becomes equal to or higher than the thermostat valve opening temperature, it gradually opens, and the cooling water passing through the bypass passage 42 and the relatively low-temperature cooling water passing through the radiator 43 are mixed inside. And supply it to the fuel cell stack.
  • the cooling water that has passed through the bypass passage 43 flows into the thermostat 44 regardless of the open / closed state thereof.
  • the opening degree of the thermostat 44 is greater than or equal to a predetermined value, the inflow of the cooling water from the bypass passage 42 is blocked and only the cooling water that has passed through the radiator 43 is supplied to the fuel cell stack 1. good.
  • the thermostat valve opening temperature can be adjusted by the wax material and the spring constituting the thermostat 44 and may be set as appropriate according to the characteristics of the fuel cell stack 1.
  • the circulation pump 45 is provided in the cooling water circulation passage 41 on the downstream side of the thermostat 44 and circulates the cooling water.
  • the discharge flow rate of the circulation pump 45 (hereinafter referred to as “pump flow rate”) is controlled by the controller 5.
  • the heater 46 is provided in the cooling water circulation passage 41 between the thermostat 44 and the circulation pump 45.
  • the heater 46 is energized when the fuel cell stack 1 is warmed up to raise the temperature of the cooling water.
  • a PTC heater is used as the heat 46, but is not limited to this.
  • the first water temperature sensor 47 is provided in the cooling water circulation passage 41 upstream of the branch point between the cooling water circulation passage 41 and the bypass passage 43.
  • the first water temperature sensor 47 detects the temperature of the cooling water discharged from the fuel cell stack 1 (hereinafter referred to as “stack outlet water temperature”).
  • the stack outlet water temperature corresponds to the temperature of the fuel cell stack (hereinafter referred to as “stack temperature”).
  • the second water temperature sensor 48 is provided in the cooling water circulation passage 41 on the downstream side of the circulation pump 45.
  • the second water temperature sensor 48 detects the temperature of the cooling water flowing into the fuel cell stack 1 (hereinafter referred to as “stack inlet water temperature”).
  • stack inlet water temperature detected by the second water temperature sensor 48 is used as the temperature of the cooling water flowing inside the thermostat 44.
  • the controller 5 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the controller 5 includes an outside air temperature sensor 51 that detects the outside air temperature and a load applied to the fuel cell stack 1 (hereinafter referred to as “stack load”). Signals from various sensors necessary for controlling the fuel cell system 100 such as the current sensor 52 that detects the output current of the fuel cell stack 1 are input.
  • the outside air temperature detected by the outside air temperature sensor 51 is used as the temperature of the cooling water discharged from the radiator 42 (hereinafter referred to as “radiator outlet water temperature”).
  • the stack outlet water temperature is usually equal to the outside air temperature. Therefore, for a while after the start of the fuel cell system 100, the temperature of the cooling water flowing inside the thermostat 44 is lower than the thermostat valve opening temperature, so that only the cooling water that has passed through the bypass passage 43 is supplied to the fuel cell stack 1.
  • the thermostat 44 opens, and the cooling water passing through the bypass passage 43 and the radiator Cooling water that has passed through 42 is mixed in a thermostat 44 and supplied to the fuel cell stack 1.
  • the cooling water that has passed through the radiator 42 is cooled to a temperature equivalent to the outside air temperature by the radiator 42. Therefore, particularly in a low temperature environment where the outside air temperature is below 0 ° C., the temperature of the cooling water that has passed through the bypass passage 43 (stack outlet water temperature) and the temperature of the cooling water that has passed through the radiator 42 (radiator outlet water temperature). And the temperature difference between the cooling water and the temperature of the cooling water mixed in the thermostat 44 may drop rapidly. Then, it has been found that there is a problem that hunting occurs in which the temperature of the cooling water supplied to the fuel cell stack 1 (stack inlet water temperature) moves up and down as the thermostat 44 repeatedly opens and closes.
  • the pump flow rate is increased when the stack outlet water temperature rises to near the thermostat valve opening temperature. increase.
  • the flow rate of the cooling water flowing through the bypass passage 43 and flowing into the thermostat 44 can be increased, and the flow rate of the cooling water flowing through the thermostat 44 can be increased.
  • the thermostat 44 is opened and the cooling water that has passed through the radiator 42 flows in, the rapid decrease in the cooling water temperature in the thermostat 44 can be suppressed, and hunting can be suppressed.
  • FIG. 2 is a flowchart illustrating pump flow rate control of the circulation pump according to the present embodiment.
  • the controller 5 executes this routine at a predetermined calculation cycle (for example, 10 [ms]) during operation of the fuel cell system 100.
  • step S1 the controller 5 reads detection signals from various sensors.
  • step S ⁇ b> 2 the controller 5 refers to a table of FIG. 3 described later, and based on the stack load, that is, the output current detected by the current sensor 52, the target value of the stack outlet water temperature (hereinafter referred to as “target stack outlet water temperature”). .) Is calculated.
  • step S3 the controller 5 calculates a temperature difference between the stack outlet water temperature detected by the first water temperature sensor 47 and the target stack outlet water temperature.
  • step S4 the controller 5 refers to a table shown in FIG. 4 to be described later, and determines a basic value of the pump flow rate (hereinafter referred to as “basic pump flow rate”) based on the difference between the stack outlet water temperature and the target stack outlet water temperature. calculate.
  • basic pump flow rate a basic value of the pump flow rate
  • step S5 the controller 5 refers to a table of FIG. 5 described later, and calculates a radiator outlet water temperature at which hunting starts to occur (hereinafter referred to as “hunting occurrence radiator outlet water temperature”) based on the basic pump flow rate.
  • the hunting generation radiator outlet water temperature is a temperature at which hunting may occur when the thermostat is opened.
  • step S6 the controller 5 determines whether or not the radiator outlet water temperature is equal to or lower than the hunting occurrence radiator outlet water temperature. If the radiator outlet water temperature is equal to or lower than the hunting generation outlet water temperature, the controller 5 performs the process of step S7. On the other hand, if the radiator outlet water temperature is higher than the hunting occurrence radiator outlet water temperature, the process of step S8 is performed.
  • step S7 the controller 5 determines whether the temperature of the cooling water mixed in the thermostat 44, that is, the stack inlet water temperature is within a predetermined range. Specifically, the stack inlet water temperature is higher than the temperature obtained by subtracting the first predetermined temperature ⁇ from the thermostat valve opening temperature (hereinafter referred to as “increase start temperature”), and the second predetermined temperature is set to the predetermined thermostat valve closing temperature. It is determined whether the temperature is lower than the temperature obtained by adding ⁇ (hereinafter referred to as “the increase end temperature”). A method of setting the first predetermined temperature ⁇ and the second predetermined temperature ⁇ will be described later with reference to FIG. If the stack inlet water temperature does not fall within the predetermined range, the controller 5 performs the process of step S8. On the other hand, if the stack inlet water temperature is within the predetermined range, the process of step S10 is performed.
  • step S8 the controller 5 sets the basic pump flow rate as the target pump flow rate. This is because if the radiator outlet water temperature is higher than the hunting generation radiator outlet water temperature, hunting may not occur without increasing the pump flow rate. In addition, if the pump flow rate is increased before the increase start temperature, the system efficiency and warm-up performance of the fuel cell system 100 are deteriorated.
  • step S9 the controller 5 controls the circulation pump so that the pump flow rate becomes the target pump flow rate.
  • step S10 the controller 5 refers to a table of FIG. 7 described later, and calculates a pump flow rate at which hunting does not occur (hereinafter referred to as “hunting avoidance pump flow rate”) based on the radiator outlet water temperature.
  • a pump flow rate at which hunting does not occur hereinafter referred to as “hunting avoidance pump flow rate”
  • step S11 the controller 5 sets the hunting avoidance pump flow rate as the target pump flow rate, and performs correction to increase the pump flow rate beyond the basic pump flow rate.
  • FIG. 3 is a table for calculating the target stack outlet water temperature based on the stack load.
  • the target stack outlet water temperature is basically set to be equal to or higher than the thermostat valve opening temperature, and is set to increase as the stack load increases.
  • the target stack outlet water temperature is increased as the stack load increases so that the moisture content of the electrolyte membrane is kept constant.
  • Increasing the target stack outlet water temperature increases the proportion of the generated water that is generated as water vapor and discharged as cathode offgas in the generated water generated inside the fuel cell stack 1, so that the water content of the electrolyte membrane is constant. Can be kept in.
  • FIG. 4 is a table for calculating the basic pump flow rate based on the difference temperature between the stack outlet water temperature and the target stack outlet water temperature.
  • the pump flow rate is set to the minimum flow rate.
  • the differential temperature between the stack outlet water temperature and the target stack outlet water temperature is a positive value, that is, when the stack outlet water temperature is higher than the target stack outlet water temperature, the stack outlet water temperature needs to be lowered.
  • the pump flow rate is set so as to increase with increasing.
  • FIG. 5 is a table for calculating the hunting-generated radiator outlet water temperature based on the basic pump flow rate.
  • the boundary line at which hunting occurs can be obtained in advance by experiment etc. from the radiator outlet water temperature and the pump flow rate.
  • FIG. 6 is a diagram for explaining a method of setting the first predetermined temperature ⁇ and the second predetermined temperature ⁇ , and shows the relationship between the stack inlet temperature and the opening amount of the thermostat.
  • the opening amount of the thermostat is different when going from the fully closed state to the fully open state and when going from the fully open state to the fully closed state.
  • the thermostat has a characteristic when traveling from the fully closed state to the fully opened state (hereinafter referred to as “valve opening characteristic”) and a characteristic when traveling from the fully open state to the fully closed state (hereinafter referred to as “valve closing characteristic”). Is different.
  • the first predetermined temperature ⁇ and the second predetermined temperature ⁇ are set in consideration of the valve opening characteristics and the valve closing characteristics of the thermostat, and the predetermined range is determined.
  • the first predetermined temperature ⁇ is set in consideration of the valve opening characteristics of the thermostat so that the temperature at which the increase in the pump flow rate starts is slightly lower than the thermostat valve opening temperature, that is, the temperature at which the thermostat starts to open. Is done.
  • the second predetermined temperature ⁇ takes into consideration the valve closing characteristic of the thermostat, and the thermostat valve closing temperature is such that the stack inlet water temperature does not return to the thermostat valve closing temperature even after completion of the increase correction of the pump flow rate. And a temperature higher than the thermostat valve opening temperature.
  • FIG. 7 is a table for calculating the hunting avoidance pump flow rate based on the radiator outlet water temperature.
  • This table is the same as that in FIG. 5, and uses a boundary line where hunting is obtained in advance through experiments etc. from the radiator outlet water temperature and the pump flow rate, and the hunting avoidance pump flow rate is determined based on the radiator outlet water temperature. Is to be calculated.
  • the temperature of the cooling water in the thermostat 44 is determined.
  • the pump flow rate was increased with respect to the basic pump flow rate when (stack inlet temperature) became higher than the increase start temperature.
  • the increase start temperature is slightly lower than the thermostat valve opening temperature.
  • the pump flow rate is increased immediately before the thermostat 44 is opened, and the flow rate of the cooling water flowing into the thermostat 44 via the bypass passage 43 can be increased.
  • the flow rate of the cooling water flowing in the thermostat 44 is increased, so that the rapid decrease in the cooling water temperature in the thermostat 44 when the thermostat 44 is opened and the cooling water that has passed through the radiator 42 flows in is suppressed. Hunting can be suppressed.
  • the radiator outlet water temperature is equal to or lower than the hunting occurrence radiator outlet water temperature.
  • the hunting generation radiator outlet water temperature was changed based on the basic pump flow rate. Therefore, it is possible to accurately determine whether hunting may occur, and the pump flow rate is not increased unnecessarily. Therefore, the efficiency of the fuel cell system can be improved.
  • the increase end temperature is set according to the valve closing characteristic of the thermostat 44 so that the stack inlet water temperature does not return to the thermostat valve close temperature even when the pump flow rate increase correction is completed. Set.
  • the second embodiment of the present invention is different from the first embodiment in that the cathode pressure is lowered when the pump flow rate of the circulation pump 45 is increased.
  • the difference will be mainly described.
  • the same reference numerals are used for portions that perform the same functions as those of the first embodiment described above, and repeated descriptions are omitted as appropriate.
  • the stack temperature increase rate decreases or the stack temperature decreases. Therefore, of the generated water generated inside the fuel cell stack 1, the ratio of the generated water that becomes steam and is discharged as the cathode offgas decreases, and the moisture content of the electrolyte membrane tends to increase.
  • the cathode pressure is decreased to increase the proportion of the generated water that becomes steam and is discharged as cathode offgas.
  • the cathode pressure is lowered from the normal time to set the operation state in which the electrolyte membrane is dried more than the normal time. Thereby, the moisture content of the electrolyte membrane can be kept constant.
  • FIG. 8 is a flowchart illustrating pump flow rate control of the circulation pump 45 according to the present embodiment.
  • the controller 5 executes this routine at a predetermined calculation cycle (for example, 10 [ms]) during operation of the fuel cell system.
  • step S1 to step S11 is the same as in the first embodiment.
  • step S21 the controller 5 performs a cathode pressure correction process for correcting the cathode pressure.
  • the cathode pressure correction process will be described later with reference to FIGS. 9 to 11.
  • FIG. 9 is a flowchart for explaining the cathode pressure correction process.
  • step S211 the controller 5 refers to the table of FIG. 10 and calculates a basic value of the cathode pressure (hereinafter referred to as “basic cathode pressure”) based on the stack load.
  • basic cathode pressure a basic value of the cathode pressure
  • step S212 the controller 5 calculates a differential temperature between the target stack outlet water temperature (step S2) and the stack outlet water temperature detected by the first water temperature sensor 47.
  • step S213 the controller 5 refers to the table in FIG. 11 and calculates a correction value for the cathode pressure based on the temperature difference between the target stack outlet water temperature and the stack outlet water temperature.
  • the correction value of the cathode pressure is set so as to decrease as the temperature difference between the target stack outlet water temperature and the stack outlet water temperature increases.
  • the setting is made when the stack outlet water temperature is lower than the target stack outlet water temperature when the temperature of the fuel cell stack 1 is relatively low. The higher the temperature difference, the more water content of the electrolyte membrane. This is because the rate increases.
  • step S214 the controller 5 calculates the target cathode pressure by adding the correction values of the basic cathode pressure and the cathode pressure.
  • step S215 the controller 5 controls the opening of the cathode pressure regulating valve 25 so that the cathode pressure becomes the target cathode pressure.
  • the cathode pressure is decreased. That is, when the pump flow rate of the circulation pump 45 is increased from the basic pump flow rate, the moisture content of the electrolyte membrane tends to increase, and therefore, the cathode pressure is lowered than usual and the electrolyte membrane is dried. did. As a result, the same effect as in the first embodiment can be obtained, and even when the stack flow temperature tends to decrease by increasing the pump flow rate, the ratio of the generated water that is discharged as cathode offgas as water vapor decreases. Therefore, the moisture content of the electrolyte membrane can be kept constant.
  • the third embodiment of the present invention is different from the first embodiment in that the cathode gas flow rate is increased when the pump flow rate of the circulation pump 45 is increased.
  • the difference will be mainly described.
  • the same reference numerals are used for portions that perform the same functions as those of the first embodiment described above, and repeated descriptions are omitted as appropriate.
  • the amount of water vapor discharged from the fuel cell stack 1 is increased by increasing the flow rate of the cathode gas. That is, when the pump flow rate of the circulation pump 45 is increased from the basic pump flow rate, the cathode gas flow rate is increased from the normal time to set the operation state in which the electrolyte membrane is dried more than normal. Thereby, the moisture content of the electrolyte membrane can be kept constant.
  • FIG. 12 is a flowchart illustrating pump flow rate control of the circulation pump 45 according to this embodiment.
  • the controller 5 executes this routine at a predetermined calculation cycle (for example, 10 [ms]) during operation of the fuel cell system.
  • step S1 to step S11 is the same as in the first embodiment.
  • step S31 the controller 5 performs a cathode flow rate correction process for correcting the flow rate of the cathode gas.
  • the cathode flow rate correction processing will be described later with reference to FIGS.
  • FIG. 13 is a flowchart for explaining the cathode flow rate correction process.
  • step S311 the controller 5 refers to the table of FIG. 14 and calculates a basic value of the flow rate of the cathode gas supplied to the fuel cell stack 1 (hereinafter referred to as “basic cathode gas flow rate”) based on the stack load. .
  • step S312 the controller 5 calculates a temperature difference between the target stack outlet water temperature (step S2) and the stack outlet water temperature detected by the first water temperature sensor 47.
  • step S313 the controller 5 refers to the table in FIG. 15 and calculates a correction value for the cathode gas flow rate based on the temperature difference between the target stack outlet water temperature and the stack outlet water temperature. As shown in FIG. 15, the correction value of the cathode gas flow rate is set so as to increase as the temperature difference between the target stack outlet water temperature and the stack outlet water temperature increases.
  • step S314 the controller 5 calculates the target cathode gas flow rate by adding the correction value of the cathode gas flow rate to the basic cathode gas flow rate.
  • step S315 the controller 5 controls the rotation speed of the cathode compressor 23 so that the cathode gas flow rate becomes the target cathode gas flow rate.
  • the cathode gas flow rate is increased. That is, when the pump flow rate of the circulation pump 45 is increased from the basic pump flow rate, the moisture content of the electrolyte membrane tends to increase. Therefore, the cathode membrane flow rate is increased more than usual to dry the electrolyte membrane. It was. As a result, the same effects as those of the first embodiment can be obtained, and the amount of generated water discharged from the fuel cell stack 1 can be increased even when the pump flow rate is increased and the stack temperature tends to decrease. Therefore, the moisture content of the electrolyte membrane can be kept constant.
  • the cathode pressure and the cathode gas flow rate may be coordinated to keep the water content of the electrolyte membrane constant.
  • the correction amount of pressure in the second embodiment and the correction amount of flow rate in the third embodiment are increased as the moisture content increases based on the moisture content of the electrolyte membrane. It may be made larger.
  • the hunting generation radiator outlet water temperature is changed based on the basic pump flow rate.
  • the hunting generation radiator temperature when the basic pump flow rate is the minimum flow rate may be set as a fixed value.
  • the pump flow rate is controlled with reference to the target outlet water temperature shown in FIG. 3 based on the detected generated current.
  • the pump flow rate may be controlled as follows. .
  • the target internal resistance (internal impedance) of the fuel cell stack 1. This may be a single value set by experiment or the like in consideration of sub-zero start-up and power generation efficiency, or may be variable depending on the current and other conditions.
  • the internal resistance of the fuel cell stack 1 is detected.
  • the pump flow rate may be controlled based on the target internal resistance and the detected internal resistance. For example, if the detected value is larger than the target internal resistance, the wet state (moisture content) of the electrolyte membrane is on the dry side of the target. Therefore, the pump flow rate is increased to wet (humidify) the Reduce.
  • the correction values for the cathode pressure and the cathode gas flow rate are calculated according to the difference between the target stack outlet water temperature and the stack outlet water temperature. You may calculate according to the average water temperature of inlet water temperature.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池システムは、燃料電池を冷却する冷媒が循環する冷媒循環通路と、冷媒を循環させるポンプと、冷媒の熱を放出して冷媒を冷却する放熱部と、放熱部を迂回するように冷媒循環通路に接続されるバイパス通路と、放熱部を経由してきた低温冷媒と、放熱部を経由せずにバイパス通路を経由してきた高温冷媒と、が合流する合流部に設けられ、高温冷媒の温度が所定の開弁温度以上になると開いて高温冷媒に低温冷媒を合流させて、燃料電池に供給する開閉弁と、を備え、燃料電池の状態に応じてポンプの基本吐出流量を算出し、低温冷媒の温度が所定温度よりも低いときは、ポンプの吐出流量を基本吐出流量よりも増量させる。

Description

燃料電池システム
 本発明は燃料電池システムに関する。
 JP2006-302739Aには、従来の燃料電池システムとして、電磁三方弁を用いて燃料電池スタックを冷却する冷却水の循環経路を切り替えるものが記載されている。
 燃料電池システムの簡素化のために、電磁三方弁の代わりにサーモスタットを用いることが検討されている。しかしながら、電磁三方弁の代わりにサーモスタットを用いると、ラジエータを経由してきた冷却水の温度が低いときにサーモスタットが開かれると、サーモスタットの内部で冷却水の温度が急激に低下してサーモスタットが開閉を繰り返し、燃料電池スタックに供給される冷却水の温度が上下動するハンチングを起こすことがわかった。
 本発明はこのような問題点に着目してなされたものであり、ハンチングの発生を抑制することを目的とする。
 本発明のある態様によれば、燃料電池を冷却する冷媒が循環する冷媒循環通路と、冷媒循環通路に設けられ、冷媒を循環させるポンプと、冷媒循環通路に設けられ、冷媒の熱を放出して冷媒を冷却する放熱部と、放熱部を迂回するように冷媒循環通路に接続されるバイパス通路と、放熱部を経由してきた低温冷媒と、放熱部を経由せずにバイパス通路を経由してきた高温冷媒と、が合流する合流部に設けられ、高温冷媒の温度が所定の開弁温度以上になると開いて高温冷媒に低温冷媒を合流させて、燃料電池に供給する開閉弁と、を備え、燃料電池の状態に応じて、ポンプの基本吐出流量を算出し、低温冷媒の温度が所定温度よりも低いときは、ポンプの吐出流量を基本吐出流量よりも増量させる燃料電池システムが提供される。
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、本発明の第1実施形態による燃料電池システムの概略図である。 図2は、本発明の第1実施形態による循環ポンプのポンプ流量制御について説明するフローチャートである。 図3は、スタック負荷に基づいて、目標スタック出口水温を算出するテーブルである。 図4は、スタック出口水温と目標スタック出口水温との差温に基づいて、基本ポンプ流量を算出するテーブルである。 図5は、基本ポンプ流量に基づいて、ハンチング発生ラジエータ出口水温を算出するテーブルである。 図6は、第1所定温度α及び第2所定温度βの設定方法について説明する図である。 図7は、ラジエータ出口水温に基づいて、ハンチング回避ポンプ流量を算出するテーブルである。 図8は、本発明の第2実施形態による循環ポンプのポンプ流量制御について説明するフローチャートである。 図9は、カソード圧補正処理について説明するフローチャートである。 図10は、スタック負荷に基づいて、基本カソード圧を算出するテーブルである。 図11は、目標スタック出口水温と平均水温とに基づいて、カソード圧の補正値を算出するテーブルである。 図12は、本発明の第3実施形態による循環ポンプのポンプ流量制御について説明するフローチャートである。 図13は、カソードガス流量補正処理について説明するフローチャートである。 図14は、スタック負荷に基づいて、基本カソードガス流量を算出するテーブルである。 図15は、目標スタック出口水温と平均水温とに基づいて、カソードガス流量の補正値を算出するテーブルである。
 (第1実施形態)
 燃料電池は電解質膜をアノード電極(燃料極)とカソード電極(酸化剤極)とによって挟み、アノード電極に水素を含有するアノードガス(燃料ガス)、カソード電極に酸素を含有するカソードガス(酸化剤ガス)を供給することによって発電する。アノード電極及びカソード電極の両電極において進行する電極反応は以下の通りである。
   アノード電極 :  2H→4H+4e          …(1)
   カソード電極 :  4H+4e+O→2H2O     …(2)
 この(1)(2)の電極反応によって燃料電池は1ボルト程度の起電力を生じる。
 燃料電池を自動車用動力源として使用する場合には、要求される電力が大きいため、数百枚の燃料電池を積層した燃料電池スタックとして使用する。そして、燃料電池スタックにアノードガス及びカソードガスを供給する燃料電池システムを構成して、車両駆動用の電力を取り出す。
 図1は、本発明の第1実施形態による燃料電池システム100の概略図である。
 燃料電池システム100は、燃料電池スタック1と、カソードガス給排装置2と、アノードガス給排装置3と、スタック冷却装置4と、コントローラ5と、を備える。
 燃料電池スタック1は、数百枚の燃料電池を積層したものであり、アノードガス及びカソードガスの供給を受けて、車両の駆動に必要な電力を発電する。
 カソードガス給排装置2は、燃料電池スタック1にカソードガスを供給するとともに、燃料電池スタック1から排出されるカソードオフガスを外気に排出する装置である。カソードガス給排装置2は、カソードガス供給通路21と、フィルタ22と、カソードコンプレッサ23と、カソードガス排出通路24と、カソード調圧弁25と、エアフローセンサ26と、圧力センサ27と、を備える。
 カソードガス供給通路21は、燃料電池スタック1に供給するカソードガスが流れる通路である。カソードガス供給通路21は、一端がフィルタ22に接続され、他端が燃料電池スタック1のカソードガス入口孔11に接続される。
 フィルタ22は、カソードガス供給通路21に取り込むカソードガス中の異物を取り除く。
 カソードコンプレッサ23は、カソードガス供給通路21に設けられる。カソードコンプレッサ23は、フィルタ22を介してカソードガスとしての空気(外気)をカソードガス供給通路21に取り込み、燃料電池スタック1に供給する。
 カソードガス排出通路24は、燃料電池スタック1から排出されるカソードオフガスが流れる通路である。カソードガス排出通路24は、一端が燃料電池スタック1のカソードガス出口孔12に接続され、他端が開口端となっている。
 カソード調圧弁25は、カソードガス排出通路24に設けられる。カソード調圧弁25は、コントローラ5によって開閉制御され、カソード調圧弁25よりも上流側のカソードガスが流れる通路の圧力(以下「カソード圧」という。)を所望の圧力に調節する。
 エアフローセンサ26は、カソードコンプレッサ23よりも上流のカソードガス供給通路21に設けられる。エアフローセンサ26は、カソードガス供給通路21を流れるカソードガスの流量を検出する。
 圧力センサ27は、カソードガス入口孔11の近傍のカソードガス供給通路21に設けられる。圧力センサ27は、カソード圧を検出する。コントローラ5は、圧力センサ27の検出値に基づいてカソード調圧弁25の開度を調整し、カソード圧を所望の圧力に調節する。
 アノードガス給排装置3は、燃料電池スタック1にアノードガスを供給するとともに、燃料電池スタック1から排出されるアノードオフガスを、カソードガス排出通路24に排出する装置である。アノードガス給排装置3は、高圧タンク31と、アノードガス供給通路32と、アノード調圧弁33と、アノードガス排出通路34と、パージ弁35と、を備える。
 高圧タンク31は、燃料電池スタック1に供給するアノードガスを高圧状態に保って貯蔵する。
 アノードガス供給通路32は、高圧タンク31から排出されるアノードガスを燃料電池スタック1に供給するための通路である。アノードガス供給通路32は、一端が高圧タンク31に接続され、他端が燃料電池スタック1のアノードガス入口孔13に接続される。
 アノード調圧弁33は、アノードガス供給通路32に設けられる。アノード調圧弁33は、コントローラ5によって開閉制御されて、高圧タンク31からアノードガス供給通路32に流れ出したアノードガスの圧力を所望の圧力に調節する。
 アノードガス排出通路34は、燃料電池スタック1から排出されるアノードオフガスが流れる通路である。アノードガス排出通路34は、一端が燃料電池スタック1のアノードガス出口孔14に接続され、他端がカソードガス排出通路24に接続される。
 パージ弁35は、アノードガス排出通路34に設けられる。パージ弁35は、コントローラ5によって開閉制御され、アノードガス排出通路34からカソードガス排出通路24に排出するアノードオフガスの流量を制御する。
 スタック冷却装置4は、燃料電池スタック1を冷却し、燃料電池スタック1を発電に適した温度に保つ装置である。スタック冷却装置4は、冷却水循環通路41と、ラジエータ42と、バイパス通路43と、サーモスタット44と、循環ポンプ45と、ヒータ46と、第1水温センサ47と、第2水温センサ48と、を備える。
 冷却水循環通路41は、燃料電池スタック1を冷却するための冷却水が循環する通路である。
 ラジエータ42は、冷却水循環通路41に設けられる。ラジエータ42は、燃料電池スタック1から排出された冷却水を冷却する。
 バイパス通路43は、ラジエータ42をバイパスさせて冷却水を循環させることができるように、一端が冷却水循環通路41に接続され、他端がサーモスタット44に接続される。
 サーモスタット44は、ラジエータ42よりも下流側の冷却水循環通路41に設けられる。サーモスタット44は、内部を流れる冷却水の温度に応じて自動的に開閉する開閉弁である。サーモスタット44は、内部を流れる冷却水の温度が所定のサーモスタット開弁温度よりも低いときは閉じた状態となっており、バイパス通路43を経由してきた相対的に高温な冷却水のみを燃料電池スタック1に供給する。一方、内部を流れる冷却水の温度がサーモスタット開弁温度以上になると徐々に開き始め、バイバス通路42を経由してきた冷却水とラジエータ43を経由してきた相対的に低温な冷却水とを内部で混合させて燃料電池スタックに供給する。このように、サーモスタット44には、その開閉状態に関わらず、バイパス通路43を経由してきた冷却水が流入する。
 なお、サーモスタット44の開度が所定以上のときには、バイパス通路42からの冷却水の流入を遮断し、ラジエータ43を経由してきた冷却水のみが燃料電池スタック1に供給されるように構成しても良い。また、サーモスタット開弁温度は、サーモスタット44を構成するワックス材及びスプリングによって調整可能であり、燃料電池スタック1の特性に応じて適宜設定すれば良いものである。
 循環ポンプ45は、サーモスタット44よりも下流側の冷却水循環通路41に設けられて、冷却水を循環させる。循環ポンプ45の吐出流量(以下「ポンプ流量」という。)は、コントローラ5によって制御される。
 ヒータ46は、サーモスタット44と循環ポンプ45との間の冷却水循環通路41に設けられる。ヒータ46は、燃料電池スタック1の暖機時に通電されて、冷却水の温度を上昇させる。本実施形態ではヒート46としてPTCヒータを使用するが、これに限られるものではない。
 第1水温センサ47は、冷却水循環通路41とバイパス通路43との分岐点よりも上流側の冷却水循環通路41に設けられる。第1水温センサ47は、燃料電池スタック1から排出された冷却水の温度(以下「スタック出口水温」という。)を検出する。スタック出口水温は、燃料電池スタックの温度(以下「スタック温度」という。)に相当するものである。
 第2水温センサ48は、循環ポンプ45よりも下流側の冷却水循環通路41に設けられる。第2水温センサ48は、燃料電池スタック1に流入する冷却水の温度(以下「スタック入口水温」という。)を検出する。本実施形態では、この第2水温センサ48で検出したスタック入口水温を、サーモスタット44の内部を流れる冷却水の温度として代用する。
 コントローラ5は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ5には、前述した第1水温センサ47及び第2水温センサ48の他にも、外気温を検出する外気温センサ51や、燃料電池スタック1にかかる負荷(以下「スタック負荷」という。)としての燃料電池スタック1の出力電流を検出する電流センサ52などの燃料電池システム100を制御するために必要な各種センサからの信号が入力される。本実施形態では、外気温センサ51によって検出した外気温を、ラジエータ42から排出された冷却水の温度(以下「ラジエータ出口水温」という。)として代用する。
 ここで、本実施形態のようにサーモスタット44を用いて冷却水の循環経路を切り替える場合、以下のような問題点が発生することが分かった。
 燃料電池システム100の始動時は、スタック出口水温は外気温と同等となっているのが通常である。そのため、燃料電池システム100の始動後しばらくは、サーモスタット44の内部を流れる冷却水の温度はサーモスタット開弁温度よりも低いので、バイパス通路43を経由してきた冷却水のみが燃料電池スタック1に供給される。
 その後、燃料電池スタック1との熱交換によって冷却水の温度が上昇し、スタック出口水温がサーモスタット開弁温度まで上昇すると、サーモスタット44が開弁し、バイバス通路43を経由してきた冷却水と、ラジエータ42を経由してきた冷却水とが、サーモスタット44内で混合されて燃料電池スタック1に供給される。
 このとき、ラジエータ42を経由してきた冷却水は、ラジエータ42によって外気温と同等の温度まで冷却されている。そのため、特に外気温が0℃を下回るような低温環境下では、バイパス通路43を経由してきた冷却水の温度(スタック出口水温)と、ラジエータ42を経由してきた冷却水の温度(ラジエータ出口水温)と、の温度差が大きくなって、サーモスタット44内で混合された冷却水の温度が急激に低下することがある。そうすると、サーモスタット44が開閉を繰り返して燃料電池スタック1に供給される冷却水の温度(スタック入口水温)が上下動するハンチングが起こるという問題が発生することが分かった。
 そこで本実施形態では、ラジエータ出口水温に応じてハンチングが起こる可能性があるかを判断し、ハンチングが起こる可能性があるときには、スタック出口水温がサーモスタット開弁温度付近まで上昇した時点でポンプ流量を増加させる。これにより、バイパス通路43を経由してきてサーモスタット44に流入する冷却水の流量を増加させることができ、サーモスタット44内を流れる冷却水の流速を上げることができる。その結果、サーモスタット44が開かれてラジエータ42を経由してきた冷却水が流入してきたときのサーモスタット44内の冷却水温の急激な低下を抑制し、ハンチングを抑制することができる。
 以下、図2から図7を参照して、この本実施形態による循環ポンプ流量制御について説明する。
 図2は、本実施形態による循環ポンプのポンプ流量制御について説明するフローチャートである。コントローラ5は、本ルーチンを燃料電池システム100の運転中に所定の演算周期(例えば10[ms])で実行する。
 ステップS1において、コントローラ5は、各種センサの検出信号読み込む。
 ステップS2において、コントローラ5は、後述する図3のテーブルを参照し、スタック負荷、すなわち電流センサ52で検出された出力電流に基づいて、スタック出口水温の目標値(以下「目標スタック出口水温」という。)を算出する。
 ステップS3において、コントローラ5は、第1水温センサ47で検出されたスタック出口水温と、目標スタック出口水温と、の差温を算出する。
 ステップS4において、コントローラ5は、後述する図4のテーブルを参照し、スタック出口水温と目標スタック出口水温との差温に基づいて、ポンプ流量の基本値(以下「基本ポンプ流量」という。)を算出する。
 ステップS5において、コントローラ5は、後述する図5のテーブルを参照し、基本ポンプ流量に基づいて、ハンチングが発生し始めるラジエータ出口水温(以下「ハンチング発生ラジエータ出口水温」という。)を算出する。ハンチング発生ラジエータ出口水温は、ポンプ流量を基本ポンプ流量に制御した場合に、ラジエータ出口水温がハンチング発生ラジエータ出口水温よりも低いと、サーモスタットが開いたときにハンチングが発生するおそれのある温度である。
 ステップS6において、コントローラ5は、ラジエータ出口水温がハンチング発生ラジエータ出口水温以下か否かを判定する。コントローラ5は、ラジエータ出口水温はハンチング発生出口水温以下であれば、ステップS7の処理を行う。一方で、ラジエータ出口水温がハンチング発生ラジエータ出口水温よりも高ければ、ステップS8の処理を行う。
 ステップS7において、コントローラ5は、サーモスタット44内で混合された冷却水の温度、すなわちスタック入口水温が、所定範囲内に収まっているかを判定する。具体的には、スタック入口水温がサーモスタット開弁温度から第1所定温度αを引いた温度(以下「増量開始温度」という。)よりも高く、かつ、所定のサーモスタット閉弁温度に第2所定温度βを足した温度(以下「増量終了温度」という。)よりも低いかを判定する。第1所定温度α及び第2所定温度βの設定方法については、図6を参照して後述する。コントローラ5は、スタック入口水温が所定範囲内に収まっていなければステップS8の処理を行う。一方で、スタック入口水温が所定範囲内に収まっていればステップS10の処理を行う。
 ステップS8において、コントローラ5は、基本ポンプ流量を目標ポンプ流量として設定する。これは、ラジエータ出口水温がハンチング発生ラジエータ出口水温よりも高ければ、ポンプ流量を増量させなくてもハンチングが発生するおそれがないからである。また、増量開始温度よりも前にポンプ流量を増量させていたのでは、燃料電池システム100のシステム効率及び暖機性能が悪化するからである。
 ステップS9において、コントローラ5は、ポンプ流量が目標ポンプ流量となるように、循環ポンプを制御する。
 ステップS10において、コントローラ5は、後述する図7のテーブルを参照し、ラジエータ出口水温に基づいて、ハンチングが発生しないポンプ流量(以下「ハンチング回避ポンプ流量という。」)を算出する。
 ステップS11において、コントローラ5は、ハンチング回避ポンプ流量を目標ポンプ流量として設定し、ポンプ流量を基本ポンプ流量よりも増量させる補正を行う。
 図3は、スタック負荷に基づいて、目標スタック出口水温を算出するテーブルである。
 図3に示すように、目標スタック出口水温は、基本的にサーモスタット開弁温度以上となるように設定され、スタック負荷が大きくなるにつれて大きくなるように設定される。
 これは、スタック負荷が大きくなるほど燃料電池スタック1の内部で発生する生成水の量が多くなり、燃料電池スタック1を構成する各燃料電池の電解質膜の含水率が増加する傾向となる。そこで、電解質膜の含水率が一定に保たれるように、スタック負荷が大きくなるほど目標スタック出口水温を高くしたのである。目標スタック出口水温を高くすることで、燃料電池スタック1の内部で発生する生成水のうち、水蒸気となってカソードオフガスとして排出される生成水の割合が増加するので、電解質膜の含水率を一定に保つことができる。
 図4は、スタック出口水温と目標スタック出口水温との差温に基づいて、基本ポンプ流量を算出するテーブルである。
 図4に示すように、スタック出口水温と目標スタック出口水温との差温が負の値のとき、すなわち、スタック出口水温が目標スタック出口水温よりも低いときは、スタック出口水温を上昇させる必要があるので、ポンプ流量は最低流量に設定される。一方で、スタック出口水温と目標スタック出口水温との差温が正の値のとき、すなわち、スタック出口水温が目標スタック出口水温より高いときは、スタック出口水温を低下させる必要があるので、差温が大きくなるほどポンプ流量が多くなるように設定される。
 図5は、基本ポンプ流量に基づいて、ハンチング発生ラジエータ出口水温を算出するテーブルである。
 図5に示すように、ハンチングが発生する境界線は、ラジエータ出口水温とポンプ流量とから実験等によって予め求めることができ、ラジエータ出口水温が低くなるほど、ハンチングを回避するために必要なポンプ流量は大きくなる。
 図6は、第1所定温度α及び第2所定温度βの設定方法について説明する図であり、スタック入口温度と、サーモスタットの開弁量と、の関係を示したものである。
 図6に示すように、サーモスタットの開弁量は、スタック入口温度が同じでも、全閉状態から全開状態に向かうときと、全開状態から全閉状態に向かうときと、で異なる開弁量となる。つまり、サーモスタットは、全閉状態から全開状態に向かうときの特性(以下「開弁特性」という。)と、全開状態から全閉状態に向かうときの特性(以下「閉弁特性」という。)と、が異なる。
 そこで、本実施形態では、このサーモスタットの開弁特性及び閉弁特性を考慮して第1所定温度α及び第2所定温度βを設定し、所定範囲を決定している。
 すなわち、第1所定温度αは、サーモスタットの開弁特性を考慮して、ポンプ流量の増量を開始する温度がサーモスタット開弁温度、すなわちサーモスタットが開き始める温度よりもやや低くなる温度となるように設定される。
 一方、第2所定温度βは、サーモスタットの閉弁特性を考慮して、ポンプ流量の増量補正を終了してもスタック入口水温がサーモスタット閉弁温度まで戻らない温度となるように、サーモスタット閉弁温度及びサーモスタット開弁温度よりも高い温度に設定される。
 図7は、ラジエータ出口水温に基づいて、ハンチング回避ポンプ流量を算出するテーブルである。
 このテーブルは、図5のものと同様のテーブルであり、ラジエータ出口水温とポンプ流量とから実験等によって予め求められたハンチングが発生する境界線を用い、ラジエータ出口水温に基づいてハンチング回避ポンプ流量を算出するものである。
 以上説明した本実施形態によれば、ラジエータ出口水温(外気温)が低く、サーモスタット44が開弁されるとハンチングが起こる可能性があると判断されたときは、サーモスタット44内の冷却水の温度(スタック入口温度)が増量開始温度よりも高くなった時点でポンプ流量を基本ポンプ流量に対して増量させることとした。増量開始温度は、サーモスタット開弁温度よりもやや低い温度である。
 これにより、サーモスタット44が開く直前になるとポンプ流量が増量されて、バイパス通路43を経由してサーモスタット44に流入する冷却水の流量を増加させることができる。その結果、サーモスタット44内を流れる冷却水の流速が上がるので、サーモスタット44が開かれてラジエータ42を経由してきた冷却水が流入してきたときのサーモスタット44内の冷却水温の急激な低下を抑制し、ハンチングを抑制することができる。
 また、サーモスタット44が開く直前になるまでポンプ流量を増量しないので、燃料電池システムのシステム効率及び暖機性能の悪化を抑制することができる。
 また本実施形態によれば、ラジエータ出口水温がハンチング発生ラジエータ出口水温以下のときにハンチングが起こる可能性があると判断する。このとき、ハンチング発生ラジエータ出口水温を基本ポンプ流量に基づいて変動させることとした。これにより、ハンチングが起こる可能性があるかを精度良く判断することができ、無駄にポンプ流量を増量させることがない。そのため、燃料電池システムの効率を向上させることができる。
 また本実施形態によれば、増量終了温度をサーモスタット44の閉弁特性に応じて設定し、ポンプ流量の増量補正を終了してもスタック入口水温がサーモスタット閉弁温度まで戻らない温度となるように設定した。
 これにより、ハンチングを確実に抑えることができるとともに、必要以上にポンプ流量が増量されることがないので、燃料電池システムの電費の悪化を抑制することができる。
 (第2実施形態)
 次に、本発明の第2実施形態について説明する。本発明の第2実施形態は、循環ポンプ45のポンプ流量を増量させるときに、カソード圧を低下させる点で第1実施形態と相違する。以下、その相違点を中心に説明する。なお、以下に示す各実施形態では前述した第1実施形態と同様の機能を果たす部分には、同一の符号を用いて重複する説明を適宜省略する。
 循環ポンプ45のポンプ流量を基本ポンプ流量よりも増量させると、スタック温度の上昇速度が低下するか、又はスタック温度が低下する。そのため、燃料電池スタック1の内部で発生する生成水のうち、水蒸気となってカソードオフガスとして排出される生成水の割合が低下し、電解質膜の含水率が増加する傾向となる。
 そこで本実施形態では、循環ポンプ45のポンプ流量を基本ポンプ流量よりも増量させるときは、カソード圧を低下させることで、水蒸気となってカソードオフガスとして排出される生成水の割合を増加させる。つまり、循環ポンプ45のポンプ流量を基本ポンプ流量よりも増量させるときは、カソード圧を通常時よりも低下させることで通常時よりも電解質膜を乾燥させる運転状態とする。これにより、電解質膜の含水率を一定に保つことができる。
 図8は、本実施形態による循環ポンプ45のポンプ流量制御について説明するフローチャートである。コントローラ5は、本ルーチンを燃料電池システムの運転中に所定の演算周期(例えば10[ms])で実行する。
 ステップS1からステップS11までの処理は、第1実施形態と同様である。
 ステップS21において、コントローラ5は、カソード圧を補正するカソード圧補正処理を実施する。カソード圧補正処理については、図9から図11を参照して後述する。
 図9は、カソード圧補正処理について説明するフローチャートである。
 ステップS211において、コントローラ5は、図10のテーブルを参照し、スタック負荷に基づいて、カソード圧の基本値(以下「基本カソード圧」という。)を算出する。
 ステップS212において、コントローラ5は、目標スタック出口水温(ステップS2)と、第1水温センサ47で検出されたスタック出口水温と、の差温を算出する。
 ステップS213において、コントローラ5は、図11のテーブルを参照し、目標スタック出口水温とスタック出口水温との差温に基づいて、カソード圧の補正値を算出する。図11に示すように、カソード圧の補正値は、目標スタック出口水温とスタック出口水温との差温が大きくなるほど小さくなるように設定される。このように設定するのは、目標スタック出口水温に対してスタック出口水温が低いときというのは、燃料電池スタック1の温度が相対的に低いときであり、差温が大きいときほど電解質膜の含水率が増加するためである。
 ステップS214において、コントローラ5は、基本カソード圧とカソード圧の補正値を足して、目標カソード圧を算出する。
 ステップS215において、コントローラ5は、カソード圧が目標カソード圧となるように、カソード調圧弁25の開度を制御する。
 以上説明した本実施形態によれば、循環ポンプ45のポンプ流量を基本ポンプ流量よりも増量させるときは、カソード圧を低下させることとした。つまり、循環ポンプ45のポンプ流量を基本ポンプ流量よりも増量させたときは、電解質膜の含水率が増加する傾向となるので、カソード圧を通常時よも低下させて電解質膜を乾燥させることとした。これにより、第1実施形態と同様の効果が得られるほか、ポンプ流量を増量させてスタック温度が低下傾向にある場合においても、水蒸気となってカソードオフガスとして排出される生成水の割合が減少するのを抑制できるので、電解質膜の含水率を一定に保つことができる。
 (第3実施形態)
 次に、本発明の第3実施形態について説明する。本発明の第3実施形態は、循環ポンプ45のポンプ流量を増量させるときに、カソードガス流量を増加させる点で第1実施形態と相違する。以下、その相違点を中心に説明する。なお、以下に示す各実施形態では前述した第1実施形態と同様の機能を果たす部分には、同一の符号を用いて重複する説明を適宜省略する。
 前述したように、循環ポンプ45のポンプ流量を基本ポンプ流量よりも増量させると、燃料電池スタックの内部で発生する生成水のうち、水蒸気となってカソードオフガスとして排出される生成水の割合が低下するので、電解質膜の含水率が増加する傾向となる。
 そこで本実施形態では、循環ポンプ45のポンプ流量を基本ポンプ流量よりも増量させるときは、カソードガスの流量を増やすことで、燃料電池スタック1から排出される水蒸気の量を増加させる。つまり、循環ポンプ45のポンプ流量を基本ポンプ流量よりも増量させるときは、カソードガス流量を通常時よりも増加させることで通常時よりも電解質膜を乾燥させる運転状態とする。これにより、電解質膜の含水率を一定に保つことができる。
 図12は、本実施形態による循環ポンプ45のポンプ流量制御について説明するフローチャートである。コントローラ5は、本ルーチンを燃料電池システムの運転中に所定の演算周期(例えば10[ms])で実行する。
 ステップS1からステップS11までの処理は、第1実施形態と同様である。
 ステップS31において、コントローラ5は、カソードガスの流量を補正するカソード流量補正処理を実施する。カソード流量補正処理については、図13から図15を参照して後述する。
 図13は、カソード流量補正処理について説明するフローチャートである。
 ステップS311において、コントローラ5は、図14のテーブルを参照し、スタック負荷に基づいて、燃料電池スタック1に供給するカソードガスの流量の基本値(以下「基本カソードガス流量」という。)を算出する。
 ステップS312において、コントローラ5は、目標スタック出口水温(ステップS2)と、第1水温センサ47で検出されたスタック出口水温と、の差温を算出する。
 ステップS313において、コントローラ5は、図15のテーブルを参照し、目標スタック出口水温とスタック出口水温との差温に基づいて、カソードガス流量の補正値を算出する。図15に示すように、カソードガス流量の補正値は、目標スタック出口水温とスタック出口水温との差温が大きくなるほど大きくなるように設定される。
 ステップS314において、コントローラ5は、基本カソードガス流量からカソードガス流量の補正値を足して、目標カソードガス流量を算出する。
 ステップS315において、コントローラ5は、カソードガス流量が目標カソードガス流量となるように、カソードコンプレッサ23の回転数を制御する。
 以上説明した本実施形態によれば、循環ポンプ45のポンプ流量を基本ポンプ流量よりも増量させるときは、カソードガス流量を増加させることとした。つまり、循環ポンプ45のポンプ流量を基本ポンプ流量よりも増量させたときは、電解質膜の含水率が増加する傾向となるので、カソードガス流量を通常時よも増加させて電解質膜を乾燥させることとした。これにより、第1実施形態と同様の効果が得られるほか、ポンプ流量を増量させてスタック温度が低下傾向にある場合においても、燃料電池スタック1から排出される生成水の量を増加させることができるので、電解質膜の含水率を一定に保つことができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、循環ポンプ45のポンプ流量を基本ポンプ流量よりも増量させるときに、カソード圧とカソードガス流量とを協調制御し、電解質膜の含水率を一定に保つようにしても良い。また、電解質膜の含水率を測定又は推定できるときは、第2実施形態における圧力の補正量及び第3実施形態における流量の補正量を、電解質膜の含水率に基づいて、含水率が高くなるほど大きくなるようにしても良い。
 また、上記各実施形態では、基本ポンプ流量に基づいてハンチング発生ラジエータ出口水温を変動させていたが、基本ポンプ流量が最低流量のときのハンチング発生ラジエータ温度を固定値として設定しても良い。
 また、上記第1実施形態では、検出した発電電流に基づいて、図3の目標出口水温を参照し、ポンプ流量を制御したが、これに代えて次のようにポンプ流量を制御しても良い。
 ます、燃料電池スタック1の目標内部抵抗(内部インピーダンス)を呼び出す。これは、零下起動や発電効率を考慮して実験等によって設定した1つの値でも良いし、電流やその他の条件応じて可変としても良い。次に、燃料電池スタック1の内部抵抗を検出する。そして、この目標内部抵抗と検出した内部抵抗とに基づいてポンプ流量を制御するようにしても良い。例えば、目標内部抵抗よりも検出値が大きければ、電解質膜の湿潤状態(含水率)が目標よりも乾燥側なので、湿潤(加湿)させるためにポンプ流量を増量して、燃料電池スタック1の温度を低下させる。
 また、上記第2実施形態及び第3実施形態では、目標スタック出口水温とスタック出口水温との差温に応じてカソード圧及びカソードガス流量の補正値を算出していたが、スタック出口水温とスタック入口水温の平均水温に応じて算出しても良い。
 本願は、2011年9月2日に日本国特許庁に出願された特願2011-191814号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (8)

  1.  アノードガス及びカソードガスを燃料電池に供給して発電させる燃料電池システムであって、
     前記燃料電池を冷却する冷媒が循環する冷媒循環通路と、
     前記冷媒循環通路に設けられ、冷媒を循環させるポンプと、
     前記冷媒循環通路に設けられ、冷媒の熱を放出して冷媒を冷却する放熱部と、
     前記放熱部を迂回するように前記冷媒循環通路に接続されるバイパス通路と、
     前記放熱部を経由してきた低温冷媒と、前記放熱部を経由せずに前記バイパス通路を経由してきた高温冷媒と、が合流する合流部に設けられ、前記高温冷媒の温度が所定の開弁温度以上になると開いて前記高温冷媒に前記低温冷媒を合流させて、前記燃料電池に供給する開閉弁と、
     前記燃料電池の状態に応じて、前記ポンプの基本吐出流量を算出する基本吐出流量算出手段と、
     前記低温冷媒の温度が所定温度よりも低いときは、前記ポンプの吐出流量を前記基本吐出流量よりも増量させる吐出流量増量手段と、
    を備える燃料電池システム。
  2.  前記吐出流量増量手段は、
      前記低温冷媒の温度が低いときほど、前記ポンプの吐出流量を前記基本吐出流量よりも増量させる、
    請求項1に記載の燃料電池システム。
  3.  前記基本吐出流量が少ないときほど前記所定温度が高くなるように、前記基本吐出流量に基づいて前記所定温度を変化させる所定温度変化手段を備える、
    請求項1又は請求項2に記載の燃料電池システム。
  4.  前記所定温度は、
      前記ポンプの吐出流量を基本吐出流量に制御したときに、前記高温冷媒に前記低温冷媒を合流させると、前記開閉弁がハンチングする温度である、
    請求項1から請求項3までのいずれか1つに記載の燃料電池システム。
  5.  前記吐出流量増量手段は、
      前記開閉弁を経由して前記燃料電池に供給される冷媒の温度が、前記開閉弁の開弁温度よりも低い所定の増量開始温度になったときに、前記ポンプの吐出流量の増量を開始する、
    請求項1から請求項4までのいずれか1つに記載の燃料電池システム。
  6.  前記吐出流量増量手段は、
      前記開閉弁を経由して前記燃料電池に供給される冷媒の温度が、前記開閉弁の閉弁温度よりも高い所定の増量終了温度になったときに、前記ポンプの吐出流量の増量を終了する、
    請求項1から請求項5までのいずれか1つに記載の燃料電池システム。
  7.  前記ポンプの吐出流量を前記基本吐出流量よりも増量させるときは、前記燃料電池内のカソードガス通路の圧力を低下させるカソード圧低下手段を備える、
    請求項1から請求項6までのいずれか1つに記載の燃料電池システム。
  8.  前記ポンプの吐出流量を前記基本吐出流量よりも増量させるときは、カソードガスの供給流量を増量させるカソード流量増量手段を備える、
    請求項1から請求項7までのいずれか1つに記載の燃料電池システム。
PCT/JP2012/069667 2011-09-02 2012-08-02 燃料電池システム WO2013031470A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12828634.1A EP2752930B1 (en) 2011-09-02 2012-08-02 Fuel cell system
CN201280037980.1A CN103733407B (zh) 2011-09-02 2012-08-02 燃料电池系统
CA2846003A CA2846003C (en) 2011-09-02 2012-08-02 Fuel cell system with pump flow control
JP2013531188A JP5742946B2 (ja) 2011-09-02 2012-08-02 燃料電池システム
US14/342,167 US10873094B2 (en) 2011-09-02 2012-08-02 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011191814 2011-09-02
JP2011-191814 2011-09-02

Publications (1)

Publication Number Publication Date
WO2013031470A1 true WO2013031470A1 (ja) 2013-03-07

Family

ID=47755972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069667 WO2013031470A1 (ja) 2011-09-02 2012-08-02 燃料電池システム

Country Status (6)

Country Link
US (1) US10873094B2 (ja)
EP (1) EP2752930B1 (ja)
JP (1) JP5742946B2 (ja)
CN (1) CN103733407B (ja)
CA (1) CA2846003C (ja)
WO (1) WO2013031470A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019149366A (ja) * 2017-11-28 2019-09-05 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド 数式に基づく冷却システム、制御ストラテジ/方法
JP2021044073A (ja) * 2019-09-06 2021-03-18 株式会社Subaru 燃料電池システム、制御装置および制御方法
US11358434B2 (en) * 2017-01-27 2022-06-14 Ford Global Technologies, Llc Method to control battery cooling using the battery coolant pump in electrified vehicles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101673360B1 (ko) * 2015-07-09 2016-11-07 현대자동차 주식회사 냉각 시스템 및 이의 운전 방법
US20180323452A1 (en) * 2017-05-05 2018-11-08 GM Global Technology Operations LLC Modeling and use of virtual temperature sensor at fuel cell stack active area outlet with stack coolant bypass
CN110504463A (zh) * 2018-05-16 2019-11-26 嘉兴市兆业新能源技术有限公司 一种带有水循环系统的燃料电池组
DE102022200134A1 (de) * 2022-01-10 2023-07-13 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Kühlen eines Brennstoffzellensystems und ein Brennstoffzellensystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091314A (ja) * 2006-09-06 2008-04-17 Honda Motor Co Ltd 燃料電池制御システム及びその冷却媒体制御方法
JP2010067460A (ja) * 2008-09-10 2010-03-25 Honda Motor Co Ltd 燃料電池システム
JP2010140678A (ja) * 2008-12-09 2010-06-24 Honda Motor Co Ltd 燃料電池の冷却システム
JP2010177046A (ja) * 2009-01-29 2010-08-12 Honda Motor Co Ltd 燃料電池システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179555B2 (en) * 2001-08-10 2007-02-20 Denso Corporation Fuel cell system
US6651761B1 (en) * 2001-09-27 2003-11-25 Ford Global Technologies, Llc Temperature control system for fuel cell electric vehicle cooling circuit
US7070873B2 (en) * 2001-10-16 2006-07-04 Honda Giken Kogyo Kabushiki Kaisha Cooling method for fuel cell
JP2006073427A (ja) * 2004-09-03 2006-03-16 Nissan Motor Co Ltd 燃料電池システム
DE112005003074B8 (de) * 2004-12-15 2023-07-27 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem
JP2006179198A (ja) * 2004-12-20 2006-07-06 Nissan Motor Co Ltd 燃料電池システム
JP5239113B2 (ja) * 2005-04-22 2013-07-17 日産自動車株式会社 燃料電池の温度推定装置および燃料電池システム制御装置
US20070065690A1 (en) * 2005-09-22 2007-03-22 Sascha Schaefer Coolant flow estimation by an electrical driven pump
JP2007280927A (ja) * 2005-12-12 2007-10-25 Toyota Motor Corp 燃料電池の冷却システム
US20070287041A1 (en) * 2006-06-09 2007-12-13 Alp Abdullah B System level adjustments for increasing stack inlet RH
JP4735642B2 (ja) * 2007-12-27 2011-07-27 日産自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
JP2009199940A (ja) * 2008-02-22 2009-09-03 Nissan Motor Co Ltd 燃料電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091314A (ja) * 2006-09-06 2008-04-17 Honda Motor Co Ltd 燃料電池制御システム及びその冷却媒体制御方法
JP2010067460A (ja) * 2008-09-10 2010-03-25 Honda Motor Co Ltd 燃料電池システム
JP2010140678A (ja) * 2008-12-09 2010-06-24 Honda Motor Co Ltd 燃料電池の冷却システム
JP2010177046A (ja) * 2009-01-29 2010-08-12 Honda Motor Co Ltd 燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752930A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11358434B2 (en) * 2017-01-27 2022-06-14 Ford Global Technologies, Llc Method to control battery cooling using the battery coolant pump in electrified vehicles
JP2019149366A (ja) * 2017-11-28 2019-09-05 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド 数式に基づく冷却システム、制御ストラテジ/方法
JP2021044073A (ja) * 2019-09-06 2021-03-18 株式会社Subaru 燃料電池システム、制御装置および制御方法
JP7382184B2 (ja) 2019-09-06 2023-11-16 株式会社Subaru 燃料電池システム、制御装置および制御方法

Also Published As

Publication number Publication date
CA2846003A1 (en) 2013-03-07
JP5742946B2 (ja) 2015-07-01
EP2752930B1 (en) 2016-06-22
US10873094B2 (en) 2020-12-22
US20140220467A1 (en) 2014-08-07
EP2752930A4 (en) 2015-03-18
CN103733407A (zh) 2014-04-16
CN103733407B (zh) 2016-05-04
JPWO2013031470A1 (ja) 2015-03-23
CA2846003C (en) 2016-10-25
EP2752930A1 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5742946B2 (ja) 燃料電池システム
JP6206440B2 (ja) 燃料電池システム
JP6090246B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP6107931B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP2010067394A (ja) 車両用燃料電池冷却システム
CN109390612B (zh) 燃料电池系统及其控制方法
WO2013105590A1 (ja) 燃料電池システム
KR101592651B1 (ko) 연료전지 차량의 열 관리 시스템 및 방법
WO2016067830A1 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP6079227B2 (ja) 燃料電池システム
JP5983395B2 (ja) 燃料電池システム
JP6155596B2 (ja) 燃料電池システム
JP2004296351A (ja) 燃料電池システム
JP2012104313A (ja) 燃料電池システム
JP4114459B2 (ja) 燃料電池システム
JP2021018841A (ja) 燃料電池システム
JP6136185B2 (ja) 燃料電池システム
JP6094214B2 (ja) 燃料電池システム
JP2007305519A (ja) 燃料電池システム
JP5790177B2 (ja) 燃料電池システム
JP2020030929A (ja) 燃料電池システム
JP5835151B2 (ja) 燃料電池システム
JP6295521B2 (ja) 燃料電池システム
JP2008257932A (ja) 燃料電池システム
JP2006040604A (ja) 燃料電池システムおよびその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280037980.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828634

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012828634

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013531188

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2846003

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14342167

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE