WO2013031147A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2013031147A1
WO2013031147A1 PCT/JP2012/005266 JP2012005266W WO2013031147A1 WO 2013031147 A1 WO2013031147 A1 WO 2013031147A1 JP 2012005266 W JP2012005266 W JP 2012005266W WO 2013031147 A1 WO2013031147 A1 WO 2013031147A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer support
plate portion
heat
cooling
Prior art date
Application number
PCT/JP2012/005266
Other languages
English (en)
French (fr)
Inventor
泰仁 田中
美里 柴田
小高 章弘
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201280041893.3A priority Critical patent/CN103765751B/zh
Priority to JP2013531059A priority patent/JP5794306B2/ja
Publication of WO2013031147A1 publication Critical patent/WO2013031147A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • a power conversion is performed by supporting a mounting substrate on which a circuit component including a heat generating circuit component for driving the semiconductor switching device is maintained at a predetermined interval on a module incorporating a semiconductor switching device for power conversion. It relates to the device.
  • a power change device described in Patent Document 1 As a power conversion device of this type, a power change device described in Patent Document 1 is known.
  • a water cooling jacket is disposed in a housing, and a power module incorporating an IGBT as a semiconductor switching element for power conversion is disposed on the water cooling jacket for cooling.
  • the control circuit board is disposed in the housing while maintaining a predetermined distance on the opposite side of the water cooling jacket of the power module, and the heat generated by the control circuit board is supported via the heat dissipation member. Heat transferred to the metal base plate and further transferred to the metal base plate is transferred to the water cooling jacket through the side wall of the housing supporting the metal base plate.
  • Patent No. 4657329 gazette
  • An object of the present invention is to provide a power converter capable of efficiently radiating heat to a cooling body.
  • a semiconductor power module having a cooling member formed on one surface, a cooling body joined to the cooling member, and the semiconductor power module
  • the heat transfer support which transfers the heat of the mounting substrate mounted with the circuit component including the heat generating circuit component for driving the heat to the cooling body and supports the mounting substrate at a predetermined distance from the semiconductor power module And a member.
  • a module in which a semiconductor switching element for power conversion is incorporated in a case body, and a cooling member is formed on one surface of the case body to be in contact with the cooling body. And a mounting substrate on which a circuit component including a heat generating circuit component for driving the semiconductor switching element is mounted.
  • the cooling body is supported such that the mounting board is supported at a predetermined distance from the module and heat generated from the mounting board is dissipated to the cooling body without passing through a housing.
  • a heat transfer support member in contact with the According to this configuration, the heat of the heat generating circuit component mounted on the mounting substrate can be dissipated to the cooling body by the heat transfer support member without passing through the housing.
  • a module in which a semiconductor switching element for power conversion is incorporated in a case body, and a cooling member is formed on one surface of the case body to contact the cooling body.
  • a mounting substrate on which a circuit component including a heat generating circuit component for driving the semiconductor switching element is mounted.
  • the mounting substrate is supported at a predetermined distance from the module and the heat of the mounting substrate is released to the cooling body without passing through a housing.
  • a heat transfer support member which contacts the cooling body through at least one side.
  • the heat of the heat generating circuit component mounted on the mounting substrate can be dissipated to the cooling body by the heat transfer support member without passing through the housing. Moreover, since the heat transfer support member contacts the cooling body through one side of the module, the heat transfer path can be shortened.
  • the case body of the module has a flat rectangular parallelepiped shape having a rectangular flat surface
  • the heat transfer supporting member is on the long side of the case body. It is arranged to pass through the side. According to this configuration, the heat transfer cross-sectional area of the heat transfer support member can be widened, and the heat dissipation effect can be improved.
  • the heat transfer support side plate portion of the heat transfer support member is provided with a plurality of sets of the mounting substrate and the heat transfer support member.
  • the heat transfer support side plates are in contact with the cooling member through different sides of the module while having different heights. According to this configuration, when there are a plurality of sets of the mounting substrate and the heat transfer support plate portion, different heat radiation paths can be formed for each mounting substrate.
  • the 6th aspect of the power converter device which concerns on this invention is set as the structure which the penetration hole was formed in the position where the said heat-transfer support member respond
  • the heat transfer path can be formed between the adjacent insertion holes, and the cross-sectional area of the heat transfer path can be increased to efficiently transfer heat.
  • rigidity against vibration can be secured.
  • a semiconductor switching element for power conversion is incorporated in a case body, and a module having a cooling member formed on one surface of the case body and in contact with the cooling body And a mounting substrate on which a circuit component including a heat generating circuit component for driving the semiconductor switching element is mounted.
  • the mounting substrate is supported at a predetermined distance from the module and the heat of the mounting substrate is dissipated to the cooling body without passing through a housing.
  • a heat transfer support member contacting at least a portion of the heat transfer body. According to this configuration, the heat transfer support member contacts the cooling body through at least a part of the module, so that the heat transfer path can be shortened when the outer shape of the module is large.
  • a plurality of sets of the mounting substrate and the heat transfer support member is provided, and the heat transfer support member is provided for each set.
  • the heat transfer support side plate portions have different heights, and the heat transfer support side plate portion is in contact with the cooling member through a part of the module. According to this configuration, when there are a plurality of sets of the mounting substrate and the heat transfer support plate portion, different heat radiation paths can be formed for each mounting substrate.
  • the mounting substrate is configured of a metal base circuit substrate. According to this configuration, by connecting the heat sink of the metal base circuit board to the heat transfer support member, it is possible to efficiently dissipate the heat of the heat generating circuit component. Further, in a tenth aspect of the power conversion device according to the present invention, the heat transfer member is interposed between the mounting substrate and the heat transfer support member. According to this configuration, the heat of the heat generating circuit component of the mounting substrate can be efficiently transferred to the heat transfer support member via the heat transfer member.
  • the 11th aspect of the power converter device which concerns on this invention is comprised with the insulator which has the said heat-transfer member of insulation.
  • the heat transfer member is formed of an insulator, the mounting substrate and the heat transfer support plate portion can be reliably insulated.
  • the heat transfer member is formed of an elastic body having stretchability. According to this configuration, since the heat transfer member is made of an elastic body, the contact area with the mounting substrate and the mounted circuit component can be increased to improve the heat dissipation effect.
  • the heat transfer member is formed of an elastic body having stretchability, and the heat generating circuit component is mounted on the heat transfer plate side mounting surface of the mounting substrate.
  • the heat transfer member can be brought into direct contact with the heat generating circuit component of the mounting substrate, and a large heat dissipation effect can be exhibited.
  • the heat transfer member is formed to have the same size as the mounting substrate. According to this configuration, since the size of the heat transfer member is the same as that of the mounting substrate, the heat transfer area can be widened to enhance the heat dissipation effect.
  • the heat transfer member is a portion around a heat generating circuit component having a relatively large amount of heat generation or heat transfer density among electronic circuit components mounted on the mounting substrate. Are only placed. According to this configuration, since the heat transfer member is disposed only at the portion where the heat dissipation effect is desired to be exhibited, the use area of the heat transfer member can be reduced, and cost reduction can be achieved.
  • the mounting substrate and the heat transfer support plate portion of the heat transfer support member are fixed by the tightening and fixing member via the heat transfer member. According to this configuration, since the heat transfer member is sandwiched between the mounting substrate and the heat transfer support plate portion of the heat transfer support member and fixed by the tightening and fixing member, assembly can be easily performed.
  • the space between the mounting substrate and the heat transfer support plate portion of the heat transfer support member is maintained around the tightening and fixing member at a predetermined value.
  • a member is inserted. According to this configuration, when the heat transfer member is an elastic body, the compression rate of the heat transfer member can be accurately defined.
  • an eighteenth aspect of the power conversion device is characterized in that the heat transfer support member supports the mounting substrate via the heat transfer member, and the heat transfer support plate portion. It is comprised by the heat-transfer support side plate part which carries out fixed support of the side, and contacts the said cooling body. According to this configuration, since the mounting substrate is supported by the heat transfer support plate portion, the rigidity of the mounting substrate can be enhanced.
  • the heat transfer support side plate portion has side plate portions corresponding to the respective side surfaces of the mounting substrate, and the heat transfer support plate portion is provided on each plate portion. Form a support for supporting the According to this configuration, a plurality of mounting substrates can be supported by one heat transfer support side plate portion.
  • the heat transfer support plate portion and the heat transfer support side plate portion are integrally formed. According to this configuration, since the heat transfer support plate portion and the heat transfer support side plate portion are integrally formed, there is no joint at the connecting portion between them, and the thermal resistance at the connecting portion can be reduced.
  • the heat transfer support plate portion is fixed and supported by a plurality of heat transfer support side plate portions. According to this configuration, since the heat transfer support plate portion is fixedly supported by the plurality of heat transfer support side plate portions, the heat transfer area to the cooling body can be increased, and efficient heat dissipation can be performed. Further, according to a twenty-second aspect of the power conversion device in accordance with the present invention, the heat transfer support side plate portion of the heat transfer support member has a cooling body contact plate portion inserted between the cooling member of the module and the cooling body. According to this configuration, since the heat transfer support side plate portion includes the cooling body contact plate portion that contacts the cooling body, it is possible to reliably dissipate heat to the cooling body.
  • a plate-like elastic member is interposed between the cooling body contact plate portion and the cooling member of the module. According to this configuration, since the cooling body contact plate portion is pressed against the cooling body by the plate-like elastic member, the contact between the cooling body and the cooling body contact plate portion can be reliably performed.
  • the fixing member insertion hole is formed in the.
  • an opening is formed in which the module causes the cooling member to face the opposite side of the module to the cooling member
  • the heat transfer support member is A heat transfer support plate portion for supporting the mounting substrate via the heat transfer member, and a heat transfer support fixedly supporting the side surface of the heat transfer support plate portion and being in contact with the cooling member through the opening of the module It is comprised by the side plate part.
  • the heat transfer support plate portion is fixed and supported by a plurality of heat transfer support side plate portions. According to this configuration, since the heat transfer support plate portion is fixedly supported by the plurality of heat transfer support side plate portions, the heat transfer area to the cooling body can be increased, and efficient heat dissipation can be performed.
  • the heat transfer support member has a black surface. According to this configuration, by making the surface of the heat transfer support member black, the emissivity of heat can be increased, and by the increase of the amount of radiant heat transfer, the heat radiation to the periphery of the heat transfer support member is activated. The thermal cooling of the substrate can be made efficient.
  • the mounting substrate is disposed at a position where the heat transfer circuit component having a relatively large amount of heat generation or heat transfer density is short in heat transfer distance to the cooling body. ing. According to this configuration, since the heat generating circuit component to the mounting substrate is disposed so as to shorten the heat transfer distance, the amount of heat transfer can be increased to perform efficient heat dissipation.
  • the mounting substrate on which the circuit component including the heating circuit component is mounted is supported by the heat transfer supporting member in contact with the cooling body without interposing the housing, the heat generated in the heating circuit component is transferred
  • the heat can be dissipated directly to the cooling body through the members, and the thermal resistance can be suppressed to perform thermal cooling with good cooling efficiency. For this reason, combined use with the heat dissipation effect from a case or a case lid can be reduced, and the size of a case or a case lid can be restrained and it can be miniaturized and an inexpensive power converter can be provided.
  • the casing does not require good heat conductivity, a lightweight material such as resin can be used for the casing, and the casing can be reduced in weight to provide an inexpensive power conversion device.
  • FIG. 1 is a cross-sectional view showing an entire configuration of a power conversion device according to the present invention.
  • reference numeral 1 denotes a power converter
  • the power converter 1 is housed in a housing 2.
  • the housing 2 is formed by molding a synthetic resin material, and is configured of a lower housing 2A and an upper housing 2B which are divided up and down with a cooling body 3 having a configuration of a water cooling jacket.
  • the lower housing 2A is formed of a bottomed rectangular cylinder. An open upper portion of the lower housing 2A is covered with a cooling body 3, and a film capacitor 4 for smoothing is accommodated inside.
  • the upper housing 2B includes a rectangular cylinder 2a whose upper end and lower end are open, and a lid 2b which closes the upper end of the rectangular cylinder 2a. The lower end of the rectangular cylinder 2 a is closed by the cooling body 3.
  • a sealing material such as application of a liquid sealing agent or sandwiching of a rubber packing is interposed between the lower end of the rectangular cylinder 2 a and the cooling body 3.
  • a water supply port 3 a and a drainage port 3 b of the cooling water are opened to the outside of the housing 2.
  • the water supply port 3a and the drainage port 3b are connected to a cooling water supply source (not shown) via, for example, a flexible hose.
  • the cooling body 3 is formed, for example, by injection molding of aluminum and aluminum alloy having high thermal conductivity.
  • the lower surface of the cooling body 3 is a flat surface, and a rectangular frame-shaped circumferential groove 3 d is formed with the upper surface leaving the central portion 3 c.
  • the cooling body 3 is formed with insertion holes 3e through which the positive and negative electrodes 4a of the film capacitor 4 held by the lower housing 2A and insulated and coated are inserted vertically.
  • the power conversion device 1 includes a power module 11 incorporating, for example, an insulated gate bipolar transistor (IGBT) as a semiconductor switching element constituting, for example, an inverter circuit for power conversion, as apparent with reference to FIG.
  • the power module 11 incorporates an IGBT in a flat, rectangular parallelepiped insulating case body 12, and a metal heat dissipation member 13 is formed on the lower surface of the case body 12.
  • insertion holes 15 for inserting fixing screws 14 as fixing members are formed at four corners when viewed from the top.
  • substrate fixing portions 16 having a predetermined height are formed to protrude at four places inside the insertion hole 15.
  • a drive circuit board 21 mounted with a drive circuit for driving an IGBT built in the power module 11 is fixed.
  • a control circuit or the like including a heating circuit component having a relatively large calorific value or a large calorific density for controlling the IGBT incorporated in the power module 11 with a predetermined interval above the drive circuit board 21 is mounted
  • a control circuit board 22 as a board is fixed.
  • a power supply circuit board 23 as a mounting board on which a power supply circuit including a heating circuit component for supplying power to the IGBT incorporated in the power module 11 is maintained at a predetermined interval above the control circuit board 22 is fixed.
  • the drive circuit board 21 inserts the male screw 24 a of the joint screw 24 into the insertion hole 21 a formed at a position facing the board fixing part 16, and forms a female screw 24 a on the upper surface of the board fixing part 16. It is fixed by screwing to the portion 16a. Further, the control circuit board 22 inserts the male screw 25a of the joint screw 25 into an insertion hole 22a formed at a position opposite to the female screw 24b formed at the upper end of the joint screw 24. It is fixed by screwing to the female screw portion 24b.
  • the power supply circuit board 23 inserts the fixing screw 26 into an insertion hole 23a formed at a position opposite to the female screw 25b formed at the upper end of the joint screw 25, and fixes the fixing screw 26 to the female screw 25b of the joint screw 25. It is fixed by screwing. Further, the control circuit board 22 and the power supply circuit board 23 are supported by the heat transfer support members 32 and 33 so as to uniquely form a heat dissipation path to the cooling body 3 without the housing 2 being interposed.
  • the heat transfer support members 32 and 33 are formed of a metal having high thermal conductivity, such as aluminum or an aluminum alloy.
  • the heat transfer support members 32 and 33 have a rectangular frame-like common bottom plate portion 34 disposed in the circumferential groove 3 d of the cooling body 3 supporting the control circuit board 22 and serving as a cooling body contact plate portion. Therefore, the heat transfer support members 32 and 33 are integrally connected by the bottom plate portion 34.
  • the heat transfer support members 32 and 33 and the bottom plate portion 34 have a black surface.
  • the surface may be coated with a black resin or coated with a black paint.
  • the heat emissivity is increased compared to the material color of the metal, and the amount of radiant heat transfer can be increased. Therefore, the heat radiation to the surroundings of the heat transfer support members 32 and 33 and the bottom plate portion 34 is activated, and the heat cooling of the control circuit board 22 and the power supply circuit board 23 can be efficiently performed.
  • the surface of only the heat transfer support members 32 and 33 may be blackened except for the bottom plate portion 34.
  • the heat transfer support member 32 includes a heat transfer support plate 32a on a flat plate, and a heat transfer support plate 32a fixed to the right end side along the long side of the power module 11 as viewed in FIG. It is comprised with the heat
  • the heat transfer support side plate portion 32 c is connected to the common bottom plate portion 34.
  • the control circuit board 22 is fixed to the heat transfer support plate portion 32 a by the fixing screw 36 via the heat transfer member 35.
  • the heat transfer member 35 is an elastic body having stretchability, and has the same external dimensions as the power supply circuit board 23. As the heat transfer member 35, a member having a heat conductivity enhanced while exhibiting insulation performance by interposing a metal filler inside silicon rubber is applied.
  • the heat transfer support side plate portion 32 c is integrally connected to the outer peripheral edge on the long side of the common bottom plate portion 34 disposed in the circumferential groove 3 d of the cooling body 3 and extends upward.
  • the connecting plate portion 32d and the upper plate portion 32e extending leftward from the upper end of the connecting plate portion 32d are formed in an inverted L-shaped cross section.
  • the connecting plate portion 32 d extends upward through the right side surface on the long side of the power module 11.
  • the heat transfer support member 33 has a heat transfer support plate portion 33a on a flat plate, and a heat transfer support plate portion 33a fixed to the left end side along the long side of the power module 11 as viewed in FIG. It is comprised with the heat
  • the heat transfer support side plate portion 33 c is connected to the common bottom plate portion 34.
  • the power supply circuit board 23 is fixed to the heat transfer support plate portion 33 a by the fixing screw 38 via the heat transfer member 37 similar to the heat transfer member 35 described above.
  • the heat transfer support side plate portion 33c is integrally connected to the outer peripheral edge on the long side of the common bottom plate portion 34 disposed in the circumferential groove 3d of the cooling body 3
  • the connection plate portion 33d extending upward and the upper plate portion 33e extending leftward from the upper end of the connection plate portion 33d are formed in an inverted L-shaped cross section.
  • the connecting plate portion 33 d extends upward through the left side surface on the long side of the power module 11.
  • connection part with the bottom plate part 34 of the connection plate part 33d and the upper plate part 33e is formed in the curved surfaces 33f and 33g which consist of a part of cylindrical surface, for example.
  • the connecting portions of the connecting plate portion 33d, the bottom plate portion 34 and the upper plate portion 33e into cylindrical curved surfaces 33f and 33g, it is possible to improve the vibration resistance against vertical vibration, rolling and the like. . That is, it is possible to alleviate the stress concentration generated at the connection portion between the connection plate portion 33 d and the bottom plate portion 34 and the upper plate portion 33 e when vertical vibration or rolling is transmitted to the power conversion device 1.
  • connecting portions between the connecting plate portion 33d and the bottom plate portion 34 and the upper plate portion 33e are formed into cylindrical curved surfaces 33f and 33g, thereby connecting the connecting plate portion 33d with the bottom plate portion 34 and the upper plate portion 33e.
  • the heat conduction path can be shortened as compared with the case where L is formed in a right-angled L shape. For this reason, the heat conduction path from the heat-transfer support plate part 33a to the cooling body 3 is shortened, and efficient heat cooling becomes possible.
  • a heat generating circuit component 39 is mounted on the lower surface side as shown in FIG. 4 and FIG. Then, the connection between the control circuit board 22 and the power supply circuit board 23, the heat transfer members 35, 37 and the heat transfer support plate portions 32a, 33a is performed as shown in FIG. Since the connection between the control circuit board 22 and the power supply circuit board 23 and the heat transfer support plate portions 32a and 33a is substantially the same except that the right and left sides are reversed, the power supply circuit board 23 and the heat transfer support are The plate portion 33a will be described as a representative.
  • Spacer 40 is used as The spacer 40 is temporarily fixed by adhesion or the like to the outer peripheral side of the female screw 41 engaged with the fixing screw 38 formed on the heat transfer support plate 33a.
  • the heat transfer plate portion management height H of the spacer 40 is set so that the compression ratio of the heat transfer member 37 is approximately 5 to 30%. As described above, by compressing the heat transfer member 37 to about 5 to 30%, the thermal resistance can be reduced and the efficient heat transfer effect can be exhibited.
  • the heat transfer member 37 an insertion hole 37a through which the joint screw 25 can be inserted and an insertion hole 37b through which the spacer 40 can be inserted are formed. Then, the heat transfer member 37 is placed on the heat transfer support plate portion 33a so that the spacer 40 temporarily fixed to the heat transfer support plate portion 33a is inserted into the insertion hole 37b, and the heat transfer support plate portion 33a The power supply circuit board 23 is placed on the heat transfer circuit component 37 so as to be in contact with the heat transfer member 37.
  • the fixing screw 38 is screwed into the female screw portion 41 of the heat transfer support plate portion 33 a through the insertion hole 23 b of the power supply circuit board 23 and the central opening of the spacer 40. Then, the fixing screw 38 is tightened until the upper surface of the heat transfer member 37 substantially matches the upper surface of the spacer 40. For this reason, the heat transfer member 37 is compressed at a compression rate of about 5 to 30%, the thermal resistance is reduced, and an efficient heat transfer effect can be exhibited. At this time, since the compression rate of the heat transfer member 37 is controlled by the height H of the spacer 40, appropriate tightening can be performed without causing insufficient tightening or excessive tightening.
  • the heat generating circuit component 39 mounted on the lower surface side of the power supply circuit board 23 is embedded in the heat transfer member 37 by the elasticity of the heat transfer member 37. Therefore, the contact between the heat generating circuit component 39 and the heat transfer member 37 is performed without excess and deficiency, and the contact between the heat transfer member 37 and the power supply circuit board 23 and the heat transfer support plate portion 33a is favorably performed. The thermal resistance between the member 37 and the power supply circuit board 23 and the heat transfer support plate portion 33a can be reduced.
  • the connection of the control circuit board 22 and the heat transfer support plate portion 32a via the heat transfer member 35 is also performed in the same manner as described above.
  • Insulating sheets 42 and 43 are attached to the lower surfaces of the heat transfer support plate portions 32a and 33a of the heat transfer support members 32 and 33 in order to shorten the insulation distance. Further, as shown in FIG. 7, the connection plate portion 33d of the heat transfer support side plate portion 33c of the heat transfer support member 33 will be described later at a position corresponding to the three-phase AC output terminal 11b shown in FIG. For example, three rectangular insertion holes 33i for inserting the bus bar 55 are formed.
  • the three insertion holes 33i a relatively wide heat transfer path Lh can be formed between the adjacent insertion holes 33i, and the cross-sectional area of the entire heat transfer path can be increased to improve the efficiency. It can transfer heat well. In addition, rigidity against vibration can be secured.
  • similar insertion holes 32i are formed in the heat transfer support side plate portion 32c of the heat transfer support member 32 at positions facing the positive and negative terminals 11a of the power module 11, respectively. It is done. By forming the insertion hole 32i, it is possible to obtain the same function and effect as the insertion hole 33i described above.
  • the common bottom plate portion 34 of the heat transfer support members 32 and 33 has a fixing member insertion hole at a position facing the insertion hole 15 through which the fixing screw 14 of the power module 11 is inserted. 34a is formed. Furthermore, a plate-like elastic member 45 is interposed between the upper surface of the bottom plate portion 34 and the lower surface of the heat dissipation member 13 formed in the power module 11. Then, the fixing screw 14 is inserted into the power module 11 and the fixing member inserting hole 34 a of the insertion hole 15 of the heat dissipation member 13 and the bottom plate portion 34, and the fixing screw 14 is screwed to the female screw 3 f formed on the cooling body 3. Thus, the power module 11 and the bottom plate portion 34 are fixed to the cooling body 3.
  • the power supply circuit board 23 is superimposed on the heat transfer support plate portion 33 a of the heat transfer support member 33 via the heat transfer member 37, and the heat transfer member 37 is 5 to 30 by the fixing screw 38.
  • the power supply circuit board 23, the heat transfer member 37, and the heat transfer support plate portion 33a are fixed in a compressed state at a compression rate of about% to form the power supply circuit unit U3.
  • the control circuit board 22 is superimposed on the heat transfer support plate portion 32 a of the heat transfer support member 32 via the heat transfer member 35, and the heat transfer member 35 is compressed by the fixing screw 36 at a compression rate of about 5 to 30%. In this state, the control circuit board 22, the heat transfer member 35 and the heat transfer support plate portion 32a are fixed to form the control circuit unit U2.
  • the bottom plate portion 34 is made of this plate-like elastic member 45.
  • the bottom plate portion 34 is reliably brought into contact with the cooling body 3 by being pressed against the bottom of the circumferential groove 3 d of the cooling body 3, and a wide contact area can be secured.
  • the drive circuit board 21 is mounted on the substrate fixing portion 16 formed on the upper surface of the power module 11 before or after fixing to the cooling body 3. Then, the drive circuit board 21 is fixed to the board fixing portion 16 from the upper side by four joint screws 24. Then, the heat transfer support plate portion 32a is connected to the heat transfer support side plate portion 32c by the fixing screw 32b.
  • the control circuit board 22 of the control circuit unit U2 is placed on the upper surface of the joint screw 24 and fixed by four joint screws 25.
  • the power supply circuit board 23 of the power supply circuit unit U3 is placed on the upper surface of the joint screw 25 and fixed by four fixing screws 26.
  • the heat transfer support plate portion 33a is connected to the heat transfer support side plate portion 33c by the fixing screw 33b.
  • the bus bar 50 is connected to the positive and negative DC input terminals of the power module 11 at 11a, and the other end of the bus bar 50 is the positive and negative electrodes 4a of the film capacitor 4 penetrating the cooling body 3.
  • the fixing screw 51 Connect with the fixing screw 51.
  • the crimp terminal 53 fixed to the tip of the connection cord 52 connected to the external converter (not shown) is fixed to the DC input terminal 11 a of the power module 11.
  • a bus bar 55 is connected to the three-phase AC output terminal 11 b of the power module 11 with a fixing screw 56, and a current sensor 57 is disposed in the middle of the bus bar 55. Then, the crimp terminal 59 fixed to the end of the motor connection cable 58 connected to the external three-phase electric motor (not shown) is fixed to the other end of the bus bar 55 by the fixing screw 60 and connected. Thereafter, the lower housing 2A and the upper housing 2B are fixed to the lower surface and the upper surface of the cooling body 3 through the sealing material, and the assembly of the power conversion device 1 is completed.
  • DC power is supplied from an external converter (not shown), and the power supply circuit mounted on the power supply circuit board 23 and the control circuit mounted on the control circuit board 22 are brought into operation state.
  • a gate signal composed of a pulse width modulation signal is supplied to the power module 11 through a drive circuit mounted on the drive circuit board 21.
  • the IGBT contained in the power module 11 is controlled to convert DC power into AC power.
  • the converted AC power is supplied from the three-phase AC output terminal 11b to the motor connection cable 58 via the bus bar 55 to drive and control a three-phase electric motor (not shown).
  • the IGBT built in the power module 11 generates heat.
  • the heat generation is cooled by the cooling water supplied to the cooling body 3 since the heat radiating member 13 formed in the power module 11 is in direct contact with the central portion 3c of the cooling body 3.
  • the control circuit and the power supply circuit mounted on the control circuit board 22 and the power supply circuit board 23 include the heat generating circuit component 39, and the heat generating circuit component 39 generates heat.
  • the heat generating circuit component 39 is mounted on the lower surface side of the control circuit board 22 and the power supply circuit board 23.
  • the heat transfer supporting plate portions 32a of the heat transfer supporting members 32 and 33 and the heat transfer support members 32 and 33 via the heat transfer members 35 and 37 having high thermal conductivity 33a is provided on the lower surface side of the control circuit board 22 and the power supply circuit board 23. Therefore, the heat generating circuit component 39 is covered with the heat transfer members 35 and 37, and the contact area between the heat generating circuit component 39 and the heat transfer members 35 and 37 becomes larger and in close contact with each other. The thermal resistance with 37 decreases. Therefore, the heat generation of the heat generating circuit component 39 is efficiently transferred to the heat transfer members 35 and 37. Then, since the heat transfer members 35 and 37 themselves are compressed at a compression rate of about 5 to 30% and the thermal conductivity is enhanced, as shown in FIG. 8, the heat is transferred to the heat transfer members 35 and 37. Heat is efficiently transmitted to the heat transfer support plate portions 32 a and 33 a of the heat transfer support members 32 and 33.
  • the heat transfer support side plates 32c and 33c are connected to the heat transfer support plates 32a and 33a, the heat transferred to the heat transfer support plates 32a and 33a is, as shown in FIG.
  • the heat transfer supporting side plates 32c and 33c are transmitted to the common bottom plate 34. Since the bottom plate portion 34 is in direct contact with the circumferential groove 3 d of the cooling body 3, the transferred heat is dissipated to the cooling body 3.
  • the heat transmitted to the bottom plate portion 34 is transmitted to the heat dissipation member 13 of the power module 11 from the upper surface side via the plate-like elastic member 45, and is transmitted to the central portion 3 c of the cooling body 3 via the heat dissipation member 13. It is transmitted and dissipated.
  • the heat generation of the heating circuit component 39 mounted on the control circuit board 22 and the power supply circuit board 23 does not occur through the control circuit board 22 and the power supply circuit board 23 having large thermal resistance. Since the heat is directly transferred to the heat transfer members 35 and 37, efficient heat dissipation can be performed.
  • the heat transferred to the heat transfer members 35 and 37 is transferred to the heat transfer support plate portions 32a and 33a, and further transferred to the heat transfer support side plate portions 32c and 33c.
  • the heat transfer support side plate portions 32 c and 33 c are provided along the long side of the power module 11. Therefore, the heat transfer area can be increased, and a wide heat radiation path can be secured.
  • the heat transfer support side plate portions 32c and 33c have the bent portions formed as cylindrical curved portions, the heat transfer distance to the cooling body 3 should be shortened as compared with the case where the bent portions are L-shaped. Can.
  • the heat transport amount Q can be expressed by the following equation (1).
  • Q ⁇ ⁇ (A / L) ⁇ T ...... (1)
  • T is the temperature difference [° C] substrate temperature T1-cooling body temperature T2
  • A is the heat transfer minimum cross section [m 2 ]
  • L is the heat transfer length [m ].
  • the heat transfer support side plates 32c and 33c of the heat transfer support members 32 and 33 are integrated by the common bottom plate 34, parts are transferred between the heat transfer support side plates 32c and 33c and the bottom plate 34. There is no joint between the two, and thermal resistance can be suppressed.
  • the casing 2 since the casing 2 is not included in the heat radiation path from the control circuit board 22 on which the heat generating circuit component 39 is mounted and the power supply circuit board 23 to the cooling body 3, the casing 2 is required to have heat conductivity. Absent. Therefore, it is not necessary to use a metal with high thermal conductivity such as aluminum as a constituent material of the housing 2, and the housing 2 can be made of a synthetic resin material, and weight reduction can be achieved.
  • the heat dissipation path can be formed by the power conversion device 1 alone without depending on the heat dissipation path, the power module 11, the drive circuit board 21, the control circuit board 22, and the power supply circuit board 23 can be used.
  • the power converter device 1 of the integrated structure is applicable to the housing
  • the heat transfer support plate portions 32a and 33a made of metal are fixed to the control circuit board 22 and the power supply circuit board 23, the rigidity of the control circuit board 22 and the power supply circuit board 23 can be enhanced. That is, the heat transfer support plate portions 32a and 33a can exhibit the heat transfer function and the rigidity enhancement function. For this reason, as in the case where the power conversion device 1 is applied as a motor drive circuit for driving a traveling motor of a vehicle, the heat transfer support is performed even when vertical vibration or rolling shown in FIG.
  • the members 32 and 33 can increase the stiffness. Therefore, it is possible to provide the power conversion device 1 which is less affected by vertical vibration, rolling and the like.
  • the present invention is not limited to the above configuration, and the heat transfer members 35 and 37 may be provided only at the locations where the heat generating circuit components 39 exist as shown in FIG.
  • the present invention is not limited to the above configuration. That is, as shown in FIG. 11, the control circuit board 22 and the power supply circuit board 23 may be mounted on the outer peripheral area Ao opposite to the heat transfer members 35 and 37.
  • the heat generating circuit component 39 having a large heat generation amount is disposed on the outer peripheral side, the space of the heat generating circuit component is compared with the case where the heat generating circuit component 39 is disposed at the center and surrounded by other circuit components. It becomes possible to perform heat dissipation to. For this reason, efficient thermal cooling can be performed.
  • the heating circuit component 39 is disposed in a portion close to the heat transfer support side plate portions 32c and 33c.
  • the distance of the heat radiation path may be shortened. Even in this case, since the distance of the heat radiation path to the cooling body 3 of the heat generating circuit component 39 becomes short, efficient heat radiation can be performed.
  • the present invention is not limited to the above configuration, and when the substrate on which the heat generating circuit component 39 is mounted is only one control circuit substrate 22, for example, the configuration is as shown in FIG. May be That is, the heat transfer support side plate portions 32c and 32f are provided on the left and right sides of the control circuit board 22, respectively, and heat dissipation paths are formed on both sides of the heat transfer support plate portion 32a. With this configuration, the heat dissipation effect can be further improved by forming the heat dissipation path on both sides of the heat transfer support plate portion 32a. Further, as shown in FIG. 13B, a plurality of upper plate portions 32e for supporting the circuit units U2 and U3 may be formed on the heat transfer support side plate portion 32c to support a plurality of circuit boards. .
  • the heat dissipating member 13 formed in the power module 11 is provided with a cooling fin 61 in direct contact with the cooling water flowing to the cooling body 3.
  • the immersion portion 62 for immersing the cooling fin 61 in the cooling water passage is formed at the central portion of the cooling body 3.
  • a sealing member 66 such as an O-ring is disposed between the peripheral wall 63 surrounding the immersion portion 62 and the heat dissipation member 13.
  • the other parts of the configuration are the same as those of the first embodiment described above, and the parts corresponding to those in FIGS. 1 and 2 are given the same reference numerals and the detailed description thereof will be omitted.
  • the cooling fins 61 are formed on the heat dissipation member 13 of the power module 11 and the cooling fins 61 are immersed in the cooling water at the immersion portion 62, the power module 11 is It can cool efficiently.
  • the heat transfer support side plate portions 32 c and 33 c pass through the inside of the power module 11 and contact the cooling body 3. That is, in the third embodiment, through holes 81a and 81b as openings through which the heat transfer support side plates 32c and 33c are inserted are formed on the left and right end sides of the power module 11 so as to extend in the front-rear direction.
  • the positions and widths of the through holes 81a and 81b are set so that the upper plate portions 32e and 33e of the heat transfer support side plate portions 32c and 323c of the heat transfer support members 32 and 33 can be inserted. There is.
  • the power module 11 has its through holes 81a and 81b opposed to the upper plate portions 32e and 33e of the heat transfer support side plate portions 32c and 33c. It should be in the state of alignment. In this state, by lowering the power module 11, the upper plate portion 32 e of the heat transfer support side plate portion 32 c and the upper plate portion 33 e of the heat transfer support side plate portion 33 c are inserted into the through holes 81 a and 81 b. Then, the lower surface of the cooling member 13 of the power module 11 is brought into contact with the upper surface of the plate-like elastic member 45 formed on the upper surface of the bottom plate portion 34.
  • the heat transfer support members 32 and 33 are fixed to the cooling body 3 together with the power module 11 by screwing the power module 11 and the bottom plate portion 34 together to the cooling body 3 with the fixing screw 14. Thereafter, the drive circuit board 21, the control circuit unit U2 and the power supply circuit unit are sequentially attached to the upper surface of the power module 11 similarly to the first embodiment described above, and the heat transfer support plate portion 32a on the control circuit unit U2 side is mounted.
  • the heat transfer support side plate portion 32c is screwed to the upper plate portion 32e with a fixing screw 32b.
  • the heat transfer support plate portion 33a on the side of the power supply circuit unit U3 is screwed to the upper plate portion 33e of the heat transfer support side plate portion 33c with the fixing screw 33b.
  • the power module 11 and the heat transfer support members 32 and 33 can be assembled by moving the power module 11 and the heat transfer support members 32 and 33 relative to each other in the state where the Can be done.
  • the heat transfer support members 32 and 33 connected by the common bottom plate portion 34 are inserted into the through holes 81 a and 18 b formed in the power module 11 to cool the bottom plate portion 34.
  • the present invention is not limited to the above configuration, and as shown in FIG. 17, the heat transfer support members 32 and 33 may be directly fixed to the cooling member 13 in the through holes 81a and 81b. That is, the power module 11 is extended such that the cooling member 13 faces the upper side of the power module 11 through the through holes 81 a and 81 b.
  • the bottom plate portion 34 connecting the heat transfer support members 32 and 33 is configured to be cut away leaving both left and right end portions. Then, the bottom plate portions 32h and 33h of the heat transfer support side plate portions 32c and 33c of the heat transfer support members 32 and 33 of the heat transfer support members 32 and 33 are inserted into the through holes 81a and 81 to contact the upper surface of the cooling member 13. In the state of being in contact, it is fixed to the cooling member 13 by fixing means such as brazing and screwing. In this case, by integrating the heat transfer support members 32 and 33 into the power module 11 in advance, the number of assembling steps can be reduced and the assembling operation can be performed more easily. In this case, the width of the through holes 81a and 81b formed in the power module 11 may be set to allow insertion of the bottom plate portions 32h and 33h of the heat transfer support side plate portions 32c and 33c.
  • the through holes 81a and 81b were formed in the left-right end side of the power module 11 was demonstrated, not only this but a through-hole is formed in the front and rear end side.
  • the through hole 81a may be formed in one of the adjacent sides of the power module 11, and the through hole 81b may be formed in the other.
  • the heat transfer support plate portions 32a and 33a of the heat transfer support members 32 and 33 and the heat transfer support side plate portions 32c and 33c are separately configured.
  • the present invention is not limited to the above configuration, and as shown in FIG. 18, the heat transfer support plate portions 32a and 33a and the heat transfer support side plate portions 32c and 33c may be integrally configured. Good. In this case, since no joint is formed between the heat transfer support plate portions 32a and 33a and the heat transfer support side plate portions 32c and 32c, the heat resistance is reduced to perform more efficient heat dissipation. Can.
  • the present invention is not limited to the above configuration, and as shown in FIG. 19, the control circuit board 22 and the power supply circuit board include the insulating layer 72 on the heat sink 71 mainly made of aluminum or aluminum alloy.
  • the metal base circuit board 74 in which the circuit pattern 73 is formed can be applied. In this case, as shown in FIG.
  • control circuit board 22 and the power supply circuit board 23 are supported by separate heat transfer supporting members.
  • the present invention is not limited to the above configuration, and the heat transfer support member can be configured as shown in FIG. 20 to FIG.
  • the heat transfer side plate portion 90 is configured by raising the side plate portion 91a, the rear side plate portion 91b, the left side plate portion 91c and the right side plate portion 91d from the common bottom plate portion 34.
  • the front plate portion 91a and the rear plate portion 91b have a pair of wide reverse U-shaped slits at a position facing the heat transfer support plate portion 32a supporting the control circuit board 22.
  • 92a and 92b are formed, and a plate portion surrounded by the reverse U-shaped slits 92a and 92b is bent inward by 90 degrees to form support portions 93a and 93b.
  • support portions 94a and 94b In the front side plate portion 91a and the rear side plate portion 91b, upper end portions facing the power supply circuit board 23 are bent inward by 90 degrees to form support portions 94a and 94b. Furthermore, in the left side plate portion 91c and the right side plate portion 91d, one reverse U-shaped slit 95a and 95b is formed similarly to the front side plate portion 91a and the rear side plate portion 91b, and these reverse U-shaped slits 95a and 95b Support portions 96a and 96b are formed by bending the enclosed plate portion inside by 90 degrees. In the left side plate portion 91c and the right side plate portion 91d, support portions 97a and 97b are formed by bending the upper end facing the power supply circuit board 23 inward by 90 degrees.
  • the control circuit board 22 is supported on the support plate portions 93a, 93b, 96a and 96b formed in the middle portion of the side plate portions 91a to 81d via the heat transfer member 35.
  • the heat transfer support plate portion 32a is placed and fixed by a fixing screw (not shown).
  • the heat transfer support plate portion 33a supporting the power supply circuit board 23 via the heat transfer member 35 is mounted on the support plate portions 94a, 94b, 97a and 97b formed on the upper ends of the side plate portions 91a to 91d. And fix with a fixing screw (not shown).
  • the heat transfer support side plate portion 90 supporting the control circuit board 22 and the power supply circuit board 23 is fixed to the cooling body 3 together with the semiconductor power module 12 in the same manner as the first and second embodiments described above. .
  • the heat transfer support plate portions 32a and 33a and the heat transfer support side plate generate heat generated by the heating circuit components mounted on the control circuit board 22 and the power supply circuit board 23.
  • the heat can be reliably dissipated to the cooling body 3 through the portion 90. Therefore, the same effects as those of the first and second embodiments can be obtained.
  • the heat transfer support side plate portion 90 as shown in FIGS. 20 to 24, the heat transfer support side plate portion supporting the control circuit board 22 and the power supply circuit board 23 can be configured by one member. A plurality of heat transfer paths can be secured, and the heat radiation efficiency can be improved.
  • the plate portions surrounded by the inverted U-shaped slits 82a, 82b and 85a, 85b are formed by bending the support portions 83a, 83b and 86a, 86b.
  • this space part can be used as a heat dissipation way, and a heat dissipation effect can be raised more.
  • support part 83a, 83b, 84a, 84b, 86a, 86b, 87a, 87b was formed as a bending support part was demonstrated in the structure of FIGS. 20-24, the plate-shaped support which protrudes inside is demonstrated.
  • the part may be fixed by a fixing means such as welding.
  • the heat transfer members 35 and 37 interposed between the control circuit board 22 and the power supply circuit board 23 and the heat transfer support plate portions 32a and 33a have elasticity.
  • the present invention is not limited to the above configuration, and it is also possible to apply a heat transfer member having no elasticity, such as an insulating coated metal plate.
  • a heat transfer member having no elasticity such as an insulating coated metal plate.
  • the present invention is not limited to this, and a cylindrical electrolytic capacitor may be applied. It is also good.
  • the present invention is not limited to this.
  • the invention is applicable and can be applied to any electrically driven vehicle.
  • a power converter when driving actuators, such as an electric motor in not only an electric drive vehicle but other industrial equipment, the power converter of the present invention is applicable.
  • the present invention it is possible to provide a power conversion device capable of efficiently radiating the heat of the heat generating circuit component to the cooling body without interposing the housing in the heat dissipation path of the heat of the heat generating circuit component mounted on the substrate. be able to.
  • Control circuit board 23 Power supply circuit board 24, 25 Joint screw 32 Heat transfer support member 32a Heat transfer support plate portion 32b Fixing screw 32c Heat transfer support side plate portion 33 Heat transfer support Members 33a: Heat transfer support plate portion 33b: Fixing screw 33c: Heat transfer support side plate portion 34: Bottom plate portion 35: 37 Heat transfer member 39: Heating circuit component 40: Spacer (space adjustment member , 45: plate-like elastic member, 61: cooling fin, 71: heat dissipation plate, 72: insulating layer, 73: circuit pattern, 74: metal base circuit board, 81a, 81b: through hole, 90: heat transfer support side plate portion 91a: front side plate portion 91b: rear side plate portion 91c ... left side plate portion, 91d ... right side plate, 93a, 93b, 94a, 94b, 96a, 96b, 97a, 97b ... support part

Abstract

 基板に実装された発熱回路部品の熱の放熱経路に筐体を介在させることなく、発熱回路部品の熱を効率よく冷却体に放熱することができる電力変換装置を提供する。電力変換装置(1)は、電力変換用の半導体スイッチング素子をケース体(12)に内蔵し、当該ケース体(12)の一面に冷却体(3)に接触する冷却部材が形成されたモジュール(11)を備えている。また、電力変換装置(1)は、前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板(22),(23)と、該実装基板(22),(23)を前記モジュールとの間に所定間隔を保って支持し、当該実装基板の発熱を前記冷却体に放熱するように前記冷却体3に接触する伝熱支持部材(32),(33)とを備えている。

Description

電力変換装置
 本発明は、電力変換用の半導体スイッチング素子を内蔵したモジュール上に、所定間隔を保って上記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板を支持するようにした電力変換装置に関する。
 この種の電力変換装置としては、特許文献1に記載された電力変化装置が知られている。この電力変換装置は、筐体内に、水冷ジャケットを配置し、この水冷ジャケット上に電力変換用の半導体スイッチング素子としてのIGBTを内蔵したパワーモジュールを配置して冷却するようにしている。また、筐体内には、パワーモジュールの水冷ジャケットとは反対側に所定距離を保って制御回路基板を配置し、この制御回路基板で発生する熱を、放熱部材を介して制御回路基板を支持する金属ベース板に伝達し、さらに金属ベース板に伝達された熱を、この金属ベース板を支持する筐体の側壁を介して水冷ジャケットに伝達するようにしている。
特許第4657329号公報
 ところで、上記特許文献1に記載された従来例にあっては、制御回路基板で発生する熱を、制御回路基板→放熱部材→金属ベース板→筐体→水冷ジャケットという経路で放熱するようにしている。このため、筐体が伝熱経路の一部として利用されることにより、筐体にも良好な伝熱性が要求されることになり、材料が熱伝導率の高い金属に限定され、小型軽量化の要求される電力変換装置おいて、樹脂等の軽量な材料の選択が不可能となり軽量化が困難となるという未解決の課題がある。
 また、筐体には、防水・防塵が要求されることが多いため、金属ベース板と筐体との間、筐体と水冷ジャケットとの間には液状シール剤の塗布やゴム製パッキンの挟み込みなどが一般的に行われている。液状シール剤やゴム製パッキンは熱伝導率が一般的に低く、これらが熱冷却経路に介在することで熱抵抗が増え冷却効率が低下するという未解決の課題もある。この未解決の課題を解決するためには、基板や実装部品の除去しきれない発熱を筐体や筐体蓋からの自然対流による放熱も必要となり、筐体や筐体蓋の表面積を大きくするために、筐体や筐体蓋の外形が大きくなり電力変換装置が大型化することになる。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、基板に実装された発熱回路部品の熱の放熱経路に筐体を介在させることなく、発熱回路部品の熱を効率よく冷却体に放熱することができる電力変換装置を提供することを目的としている。
 上記目的を達成するために、本発明に係る電力変換装置の第1の態様は、一面に冷却部材が形成された半導体パワーモジュールと、前記冷却部材に接合される冷却体と、前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した実装基板の熱を前記冷却体に伝熱させ、且つ、該実装基板を前記半導体パワーモジュールとの間に所定間隔を保って支持する伝熱支持部材とを備えている。
 この構成によると、実装基板に実装されている発熱回路部品の熱を伝熱支持部材によって冷却体に直接放熱することができる。
 また、本発明に係る電力変換装置の第2の態様は、電力変換用の半導体スイッチング素子をケース体に内蔵し、当該ケース体の一面に冷却体に接触する冷却部材が形成されたモジュールと、前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板とを備えている。また、上記第1の態様は、前記実装基板を前記モジュールとの間に所定間隔を保って支持し、当該実装基板の発熱を前記冷却体に筐体を介することなく放熱するように前記冷却体に接触する伝熱支持部材を備えている。
 この構成によると、実装基板に実装されている発熱回路部品の熱を伝熱支持部材によって筐体を介することなく冷却体に放熱することができる。
 また、本発明に係る電力変換装置の第3の態様は、電力変換用の半導体スイッチング素子をケース体に内蔵し、当該ケース体の一面に冷却体に接触する冷却部材が形成されたモジュールと、前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板とを備えている。また、上記第3の態様は、前記実装基板を前記モジュールとの間に所定間隔を保って支持し、当該実装基板の発熱を前記冷却体に筐体を介することなく放熱するように前記モジュールの少なくとも一側面側を通って前記冷却体に接触する伝熱支持部材とを備えている。
 この構成によると、上記第2の態様と同様に、実装基板に実装されている発熱回路部品の熱を伝熱支持部材によって筐体を介することなく冷却体に放熱することができる。しかも、伝熱支持部材がモジュールの一側面を通って冷却体に接触するので、伝熱経路を短くすることができる。
 また、本発明に係る電力変換装置の第4の態様は、前記モジュールのケース体が、長方形の平面を有する扁平直方体形状を有し、前記伝熱支持部材が、前記ケース体の長辺側の側面を通るように配置されている。
 この構成によると、伝熱支持部材の伝熱断面積を広くすることができ、放熱効果を向上させることができる。
 また、本発明に係る電力変換装置の第5の態様は、前記実装基板と前記伝熱支持部材との組を複数組備え、前記組毎に前記伝熱支持部材の前記伝熱支持側板部の高さを異ならせるとともに、当該伝熱支持側板部が前記モジュールの異なる側面を通って前記冷却部材に接触されている。
 この構成によると、実装基板と伝熱支持板部との組が複数存在する場合に、実装基板毎に異なる放熱経路を形成することができる。
 また、本発明に係る電力変換装置の第6の態様は、前記伝熱支持部材が、前記モジュールのケース体に形成された接続端子に対応する位置に挿通孔を形成した構成とされている。
 この構成によると、隣接する挿通孔間に伝熱路を形成することができ、伝熱路の断面積を増加させて効率よく伝熱することができる。また、振動に対する剛性も確保することができる。
 また、本発明に係る電力変換装置の第7の態様は、電力変換用の半導体スイッチング素子をケース体に内蔵し、当該ケース体の一面に冷却体に接触する冷却部材が形成されたモジュールと、前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板とを備えている。また、前記第7の態様は、前記実装基板を前記モジュールとの間に所定間隔を保って支持し、当該実装基板の発熱を前記冷却体に筐体を介することなく放熱するように前記モジュールの少なくとも一部を通って前記冷却体に接触する伝熱支持部材とを備えている。
 この構成によると、伝熱支持部材がモジュールの少なくとも一部を通って冷却体に接触するので、モジュールの外形が大きい場合に、伝熱経路を短縮することができる。
 また、本発明に係る電力変換装置の第8の態様は、上記第7の態様において、前記実装基板と前記伝熱支持部材との組を複数組備え、前記組毎に前記伝熱支持部材の前記伝熱支持側板部の高さを異ならせるとともに、当該伝熱支持側板部が前記モジュールの一部を通って前記冷却部材に接触されている。
 この構成によると、実装基板と伝熱支持板部との組が複数存在する場合に、実装基板毎に異なる放熱経路を形成することができる。
 また、本発明に係る電力変換装置の第9の態様は、前記実装基板が金属ベース回路基板で構成されている。
 この構成によると、金属ベース回路基板の放熱板を伝熱支持部材に連結することにより、発熱回路部品の放熱を効率良く行うことができる。
 また、本発明に係る電力変換装置の第10の態様は、前記実装基板と前記伝熱支持部材との間に伝熱部材を介挿している。
 この構成によると、実装基板の発熱回路部品の熱を、伝熱部材を介して伝熱支持部材に効率よく伝熱することができる。
 また、本発明に係る電力変換装置の第11の態様は、前記伝熱部材が、絶縁性を有する絶縁体で構成されている。
 この構成によると、伝熱部材が絶縁体で構成されているので、実装基板と伝熱支持板部とを確実に絶縁することができる。
 また、本発明に係る電力変換装置の第12の態様は、前記伝熱部材が、伸縮性を有する弾性体で構成されている。
 この構成によると、伝熱部材が弾性体で構成されているので、実装基板及び実装された回路部品との接触面積を広くして放熱効果を向上させることができる。
 また、本発明に係る電力変換装置の第13の態様は、前記伝熱部材が、伸縮性を有する弾性体で構成され、前記実装基板の前記伝熱板部側実装面に前記発熱回路部品が実装されている。
 この構成によると、伝熱部材を実装基板の発熱回路部品に直接接触させることができ、大きな放熱効果を発揮することができる。
 また、本発明に係る電力変換装置の第14の態様は、前記伝熱部材が、前記実装基板と同じ大きさに形成されている。
 この構成によると、伝熱部材の大きさが実装基板と同じとされているので、伝熱面積を広くして放熱効果を高めることができる。
 また、本発明に係る電力変換装置の第15の態様は、前記伝熱部材が、前記実装基板に実装される電子回路部品のうち相対的に発熱量又は伝熱密度の大きい発熱回路部品の周囲のみに配置されている。
 この構成によると、放熱効果を発揮したい部分にのみ伝熱部材を配置するので、伝熱部材の使用面積を減少させて、低コスト化を図ることができる。
 また、本発明に係る電力変換装置の第16の態様は、前記実装基板と前記伝熱支持部材の伝熱支持板部とを前記伝熱部材を介して締付固定部材で固定している。
 この構成によると、実装基板と伝熱支持部材の伝熱支持板部の間に伝熱部材を挟んだ状態で締付固定部材によって固定するので、組付けを容易に行うことができる。
 また、本発明に係る電力変換装置の第17の態様は、前記締付固定部材の周囲に前記実装基板と前記伝熱支持部材の伝熱支持板部との間隔を所定値に維持する間隔調整部材が介挿されている。
 この構成によると、伝熱部材が弾性体である場合に、伝熱部材の圧縮率を正確に規定することができる。
 また、本発明に係る電力変換装置の第18の態様は、前記伝熱支持部材が、前記伝熱部材を介して前記実装基板を支持する伝熱支持板部と、該伝熱支持板部の側面を固定支持して前記冷却体に接触される伝熱支持側板部とで構成されている。
 この構成によると、実装基板を伝熱支持板部で支持するので、実装基板の剛性を高めることができる。
 また、本発明に係る電力変換装置の第19の態様は、前記伝熱支持側板部は、前記実装基板の各側面に対応する側板部を有し、当該各板部に前記伝熱支持板部を支持する支持部を形成している。
 この構成によると、1つの伝熱支持側板部によって複数の実装基板を支持することができる。
 また、本発明に係る電力変換装置の第20の態様は、前記伝熱支持板部と前記伝熱支持側板部とが一体に形成されている。
 この構成によると、伝熱支持板部と伝熱支持側板部とが一体に形成されているので、両者間の連結部に継ぎ目がなく、連結部での熱抵抗を小さくすることができる。
 また、本発明に係る電力変換装置の第21の態様は、前記伝熱支持板部は、複数の伝熱支持側板部に固定支持されている。
 この構成によると、伝熱支持板部が複数の伝熱支持側板部に固定支持されているので、冷却体への伝熱面積を増加させて、効率の良い放熱を行うことができる。
 また、本発明に係る電力変換装置の第22の態様は、前記伝熱支持部材の伝熱支持側板部が前記モジュールの冷却部材及び前記冷却体間に挿通される冷却体接触板部を有する。
 この構成によると、伝熱支持側板部に冷却体に接触する冷却体接触板部を有するので、冷却体への放熱を確実に行うことができる。
 また、本発明に係る電力変換装置の第23の態様は、前記冷却体接触板部と前記モジュールの冷却部材との間に板状弾性部材が介挿されている。
 この構成によると、板状弾性部材によって冷却体接触板部が冷却体に押し付けされるので、冷却体と冷却体接触板部との接触を確実に行うこと化できる。
 また、本発明に係る電力変換装置の第24の態様は、前記冷却体接触板部が、前記モジュールに形成された当該モジュールを前記冷却体に固定する固定部材を挿通する挿通孔に対向する位置に固定部材挿通孔が形成されている。
 この構成によると、モジュールと伝熱支持部材とを同時に冷却体に固定することができ、組立工数を減少させることができる。
 また、本発明に係る電力変換装置の第25の態様は、前記モジュールが、前記冷却部材を当該モジュールの前記冷却部材とは反対側に臨ませる開口部が形成され、前記伝熱支持部材が、前記伝熱部材を介して前記実装基板を支持する伝熱支持板部と、該伝熱支持板部の側面を固定支持して前記モジュールの前記開口部を通じて前記冷却部材に接触される伝熱支持側板部とで構成されている。
 この構成によると、伝熱支持側板部がモジュールの開口部を通じて冷却部材に接触されるので、モジュールと伝熱支持側板部とを一体化させることができる。
 また、本発明に係る電力変換装置の第26の態様は、前記伝熱支持板部は、複数の伝熱支持側板部に固定支持されている。
 この構成によると、伝熱支持板部が複数の伝熱支持側板部に固定支持されているので、冷却体への伝熱面積を増加させて、効率の良い放熱を行うことができる。
 また、本発明に係る電力変換装置の第27の態様は、前記伝熱支持部材が、黒色の表面を有する。
 この構成によると、伝熱支持部材の表面を黒色とすることにより、熱の放射率を大きくすることができ、放射伝熱量が増えることで、伝熱支持部材の周囲への放熱が活発化され、基板の熱冷却を効率化することができる。
 また、本発明に係る電力変換装置の第28態様は、前記実装基板が、相対的に発熱量又は伝熱密度の大きい発熱回路部品を前記冷却体への伝熱距離が短くなる位置に配置されている。
 この構成によると、実装基板への発熱回路部品を伝熱距離が短くなるように配置するので、伝熱量を増やして効率的な放熱を行うことができる。
 本発明によれば、発熱回路部品を含む回路部品を実装した実装基板を冷却体に接触する伝熱支持部材で筐体を介することなく支持するので、発熱回路部品で生じる熱を、伝熱支持部材を介して直接冷却体に放熱することができ、熱抵抗を抑えて冷却効率の良い熱冷却を行うことができる。このため、筐体や筐体蓋からの放熱作用との併用を減少させることができ、筐体や筐体蓋の大きさを抑えて小型化されて安価な電力変換装置を提供することができる。
 しかも、筐体に良好な伝熱性を要求することがないので、筐体に樹脂等の軽量な材料を用いることができ、筐体を軽量化して安価な電力変換装置の提供が可能となる。
本発明に係る電力変換装置の第1の実施形態の全体構成を示す断面図である。 第1の実施形態の要部を示す拡大断面図である。 実装基板を取り付け状態の具体的構成を示す拡大断面図である。 実装基板の伝熱支持部材への取り付け方法を示す図である。 実装基板を伝熱支持部材へ取り付けた状態を示す断面図である。 伝熱部材の変形例を示す断面図である。 伝熱支持部材を示す側面図である。 発熱回路部品の基板ユニット内における放熱経路を説明する図である。 発熱回路部品の全体の放熱経路を説明する図である。 電力変換装置に対して上下振動や横揺れが作用した状態を示す図である。 実装基板への発熱回路部品の配置例を示す模式的斜視図である。 実装基板への発熱回路部品の配置例を示す断面図である。 第1の実施形態の変形例の放熱経路を説明する図である。 本発明に係る電力変換装置の第2の実施形態の全体構成を示す断面図である。 第2の実施形態の要部を示す断面図である。 本発明に係る電力変換装置の第3の実施形態の要部を示す断面図である。 第3の実施形態の変形例を示す断面図である。 伝熱支持部材の他の例を示す断面図である。 金属ベース回路基板を適用した場合の変形例を示す断面図である。 伝熱支持部材のさらに他の例を示す斜視図である。 図20の平面図である。 図20の正面図である。 図20の側面図である。 図20における伝熱支持部材のみの斜視図である。
 以下、本発明の実施の形態を図面について説明する。
 図1は本発明に係る電力変換装置の全体構成を示す断面図である。
 図中、1は電力変換装置であって、この電力変換装置1は筐体2内に収納されている。筐体2は、合成樹脂材を成形したものであり、水冷ジャケットの構成を有する冷却体3を挟んで上下に分割された下部筐体2A及び上部筐体2Bで構成されている。
 下部筐体2Aは有底角筒体で構成されている。この下部筐体2Aは開放上部が冷却体3で覆われ、内部に平滑用のフィルムコンデンサ4が収納されている。
 上部筐体2Bは、上端及び下端を開放した角筒体2aと、この角筒体2aの上端を閉塞する蓋体2bとを備えている。そして、角筒体2aの下端が冷却体3で閉塞されている。この角筒体2aの下端と冷却体3との間には、図示しないが、液状シール剤の塗布やゴム製パッキンの挟み込みなどのシール材が介在されている。
 冷却体3は、冷却水の給水口3a及び排水口3bが筐体2の外方に開口されている。これら給水口3a及び排水口3bは例えばフレキシブルホースを介して図示しない冷却水供給源に接続されている。この冷却体3は例えば熱伝導率の高いアルミニウム、アルミニウム合金を射出成形して形成されている。そして、冷却体3は、下面が平坦面とされ、上面が中央部3cを残して角枠状の周溝3dが形成されている。また、冷却体3には、下部筐体2Aに保持されたフィルムコンデンサ4の絶縁被覆された正負の電極4aを上下に挿通する挿通孔3eが形成されている。
 電力変換装置1は、図2とともに参照して明らかなように、電力変換用の例えばインバータ回路を構成する半導体スイッチング素子として例えば絶縁ゲートバイポーラトランジスタ(IGBT)を内蔵したパワーモジュール11を備えている。このパワーモジュール11は、扁平な直方体状の絶縁性のケース体12内にIGBTを内蔵しており、ケース体12の下面に金属製の放熱部材13が形成されている。ケース体12及び放熱部材13には平面からみて四隅に固定部材としての固定ねじ14を挿通する挿通孔15が形成されている。また、ケース体12の上面には、挿通孔15の内側における4箇所に所定高さの基板固定部16が突出形成されている。
 この基板固定部16の上端には、パワーモジュール11に内蔵されたIGBTを駆動する駆動回路等が実装された駆動回路基板21が固定されている。また、駆動回路基板21の上方に所定間隔を保ってパワーモジュール11に内蔵されたIGBTを制御する相対的に発熱量の大きい、又は発熱密度の大きい発熱回路部品を含む制御回路等を実装した実装基板としての制御回路基板22が固定されている。さらに、制御回路基板22の上方に所定間隔を保ってパワーモジュール11に内蔵されたIGBTに電源を供給する発熱回路部品を含む電源回路等を実装した実装基板としての電源回路基板23が固定されている。
 そして、駆動回路基板21は、基板固定部16に対向する位置に形成した挿通孔21a内に継ぎねじ24の雄ねじ部24aを挿通し、この雄ねじ部24aを基板固定部16の上面に形成した雌ねじ部16aに螺合することにより固定されている。
 また、制御回路基板22は継ぎねじ24の上端に形成した雌ねじ部24bに対向する位置に形成した挿通孔22a内に継ぎねじ25の雄ねじ部25aを挿通し、この雄ねじ部25aを継ぎねじ24の雌ねじ部24bに螺合することにより固定されている。
 さらに、電源回路基板23は継ぎねじ25の上端に形成した雌ねじ部25bに対向する位置に形成した挿通孔23a内に固定ねじ26を挿通し、この固定ねじ26を継ぎねじ25の雌ねじ部25bに螺合することにより固定されている。
 また、制御回路基板22及び電源回路基板23は、伝熱支持部材32及び33によって筐体2を介することなく冷却体3への放熱経路を独自に形成するように支持されている。これら伝熱支持部材32及び33は、熱伝導率が高い金属例えばアルミニウム又はアルミニウム合金で形成されている。
 また、伝熱支持部材32及び33は、制御回路基板22を支持する冷却体3の周溝3d内に配置されて冷却体接触板部となる角枠状の共通の底板部34を有する。したがって、伝熱支持部材32及び33は底板部34によって一体に連結されている。
 そして、伝熱支持部材32及び33と底板部34とは黒色の表面を有する。これら伝熱支持部材32及び33と底板部34との表面を黒色化にするには、表面に黒色樹脂をコーティングしたり、黒色塗料で塗装したりすればよい。このように、伝熱支持部材32及び33と底板部34との表面を黒色とすることにより、金属の素材色と比較し熱放射率が大きくなり、放射伝熱量を増やすことができる。このため、伝熱支持部材32及び33と底板部34との周囲への放熱が活発化され、制御回路基板22及び電源回路基板23の熱冷却を効率良く行うことができる。なお、底板部34を除いて伝熱支持部材32及び33のみの表面を黒色にするようにしてもよい。
 伝熱支持部材32は、平板上の伝熱支持板部32aと、この伝熱支持板部32aの図2で見てパワーモジュール11の長辺に沿う右端側に固定ねじ32bで固定された伝熱支持側板部32cとで構成されている。そして、伝熱支持側板部32cが共通の底板部34に連結されている。
 伝熱支持板部32aには、伝熱部材35を介して制御回路基板22が固定ねじ36によって固定される。伝熱部材35は、伸縮性を有する弾性体で電源回路基板23と同じ外形寸法に構成されている。この伝熱部材35としては、シリコンゴムの内部に金属フィラーを介在させることにより絶縁性能を発揮しながら伝熱性を高めたものが適用されている。
 また、伝熱支持側板部32cは、図2に示すように、冷却体3の周溝3d内に配置される共通の底板部34の長辺側の外周縁に一体に連結されて上方に延長する連結板部32dと、この連結板部32dの上端から左方に延長する上板部32eとで断面逆L字状に形成されている。連結板部32dは、パワーモジュール11の長辺側の右側面を通って上方に延長している。
 伝熱支持部材33は、平板上の伝熱支持板部33aと、この伝熱支持板部33aの図2で見てパワーモジュール11の長辺に沿う左端側に固定ねじ33bで固定された伝熱支持側板部33cとで構成されている。そして、伝熱支持側板部33cが共通の底板部34に連結されている。
 伝熱支持板部33aには、前述した伝熱部材35と同様の伝熱部材37を介して電源回路基板23が固定ねじ38によって固定される。
 また、伝熱支持側板部33cは、図2及び図3に示すように、冷却体3の周溝3d内に配置される共通の底板部34の長辺側の外周縁に一体に連結されて上方に延長する連結板部33dと、この連結板部33dの上端から左方に延長する上板部33eとで断面逆L字状に形成されている。連結板部33dは、パワーモジュール11の長辺側の左側面を通って上方に延長している。
 そして、連結板部33dの底板部34及び上板部33eとの連結部を例えば円筒面の一部でなる湾曲面33f及び33gに形成している。このように連結板部33dと底板部34及び上板部33eとの連結部を円筒状の湾曲面33f及び33gとすることにより、上下振動や横揺れ等に対する耐振動性を向上することができる。すなわち、電力変換装置1に上下振動や横揺れが伝達されたときに連結板部33dと底板部34及び上板部33eとの連結部に生じる応力集中を緩和することが可能となる。
 さらに、連結板部33dと底板部34及び上板部33eとの連結部を円筒状の湾曲面33f及び33gとすることにより、連結板部33dと底板部34及び上板部33eとの連結部を直角のL字形状とする場合に比較して熱伝導経路を短くすることができる。このため、伝熱支持板部33aから冷却体3までの熱伝導経路を短くして、効率的な熱冷却が可能となる。
 さらに、制御回路基板22及び電源回路基板23には、発熱回路部品39が、図4及び図5に示すように、下面側に実装されている。
 そして、制御回路基板22及び電源回路基板23と、伝熱部材35,37及び伝熱支持板部32a,33aとの連結が図4に示すように行われる。これら制御回路基板22及び電源回路基板23と、伝熱支持板部32a及び33aとの連結は左右が逆となることを除いては実質的に同じであるので、電源回路基板23及び伝熱支持板部33aを代表として説明する。
 この電源回路基板23と伝熱支持板部33aとの連結には、図4及び図5に示すように、伝熱部材37の厚みTより低い伝熱板部管理高さHを有する間隔調整部材としての間座40が用いられる。この間座40は、伝熱支持板部33aに形成された固定ねじ38が螺合する雌ねじ部41の外周側に接着等によって仮止めされている。ここで、間座40の伝熱板部管理高さHは、伝熱部材37の圧縮率が約5~30%となるように設定されている。このように、伝熱部材37を約5~30%程度に圧縮することにより、熱抵抗が減り効率良い伝熱効果を発揮することができる。
 一方、伝熱部材37には、継ぎねじ25を挿通可能な挿通孔37aと、間座40を挿通可能な挿通孔37bとが形成されている。
 そして、伝熱支持板部33aに仮止めされた間座40を挿通孔37bに挿通されるように伝熱部材37を伝熱支持板部33aに載置し、この伝熱支持板部33aの上に電源回路基板23を発熱回路部品39が伝熱部材37に接するように載置する。
 この状態で、固定ねじ38を電源回路基板23の挿通孔23bを通じ、間座40の中心開口を通じて伝熱支持板部33aの雌ねじ部41に螺合させる。そして、固定ねじ38を伝熱部材37の上面が間座40の上面と略一致するまで締め付ける。
 このため、伝熱部材37が5~30%程度の圧縮率で圧縮されることになり、熱抵抗が減って効率の良い伝熱効果を発揮することができる。このとき、伝熱部材37の圧縮率は間座40の高さHによって管理されるので、締め付け不足や締め付け過剰が生じることなく、適切な締め付けが行われる。
 また、電源回路基板23の下面側に実装された発熱回路部品39が伝熱部材37の弾性によって伝熱部材37内に埋め込まれる。このため、発熱回路部品39と伝熱部材37との接触が過不足なく行われるとともに、伝熱部材37と電源回路基板23及び伝熱支持板部33aとの接触が良好に行われ、伝熱部材37と電源回路基板23及び伝熱支持板部33aとの間の熱抵抗を減少させることができる。
 制御回路基板22と伝熱支持板部32aとの伝熱部材35を介在させた連結も上記と同様にして行われる。
 なお、伝熱支持部材32及び33の伝熱支持板部32a及び33aの下面には、絶縁距離を短くするために絶縁シート42及び43が貼着されている。
 また、伝熱支持部材33の伝熱支持側板部33cにおける連結板部33dには、図7に示すように、パワーモジュール11の図1に示す3相交流出力端子11bに対応する位置に後述するブスバー55を挿通する例えば方形の3つの挿通孔33iが形成されている。このように、3つの挿通孔33iを形成することにより、隣接する挿通孔33i間に比較的幅広の伝熱路Lhを形成することができ、全体の伝熱路の断面積を増加させて効率よく伝熱することができる。また、振動に対する剛性も確保することができる。
 同様に、伝熱支持部材32の伝熱支持側板部32cの連結部にも、図1に示すように、パワーモジュール11の正極及び負極端子11aに対向する位置にそれぞれ同様の挿通孔32iが形成されている。この挿通孔32iを形成することにより、上述した挿通孔33iと同様の作用効果を得ることができる。
 また、伝熱支持部材32及び33の共通の底板部34には、図2及び図3に示すように、パワーモジュール11の固定ねじ14を挿通する挿通孔15に対向する位置に固定部材挿通孔34aが形成されている。さらに、底板部34の上面とパワーモジュール11に形成された放熱部材13の下面との間に板状弾性部材45が介在されている。
 そして、パワーモジュール11及び放熱部材13の挿通孔15及び底板部34の固定部材挿通孔34aに固定ねじ14を挿通し、この固定ねじ14を冷却体3に形成された雌ねじ部3fに螺合させることにより、パワーモジュール11と底板部34とが冷却体3に固定されている。
 次に、上記第1の実施形態の電力変換装置1の組立方法を説明する。
 先ず、図4で前述したように、電源回路基板23を伝熱支持部材33の伝熱支持板部33aに伝熱部材37を介して重ね合わせ、固定ねじ38によって伝熱部材37を5~30%程度の圧縮率で圧縮した状態で電源回路基板23、伝熱部材37及び伝熱支持板部33aを固定して、電源回路ユニットU3を形成しておく。
 同様に、制御回路基板22を伝熱支持部材32の伝熱支持板部32aに伝熱部材35を介して重ね合わせ、固定ねじ36によって伝熱部材35を5~30%程度の圧縮率で圧縮した状態で制御回路基板22、伝熱部材35及び伝熱支持板部32aを固定して制御回路ユニットU2を形成しておく。
 一方、冷却体3の周溝3d内に、伝熱支持部材32及び33に共通の底板部34を、その上面とパワーモジュール11に形成した放熱部材13の下面との間に板状弾性部材45を介在させた状態で、パワーモジュール11とともに固定ねじ14で固定する。このように、パワーモジュール11と伝熱支持部材32及び33の共通の底板部34とを同時に冷却体3に固定することができるので、組立工数を減少させることができる。
 また、底板部34を冷却体3に固定する際に板状弾性部材45を底板部34とパワーモジュール11の放熱部材13との間に介在させるので、この板状弾性部材45によって底板部34が冷却体3の周溝3dの底部に押し付けられて、底板部34が冷却体3に確実に接触されて、広い接触面積を確保することができる。
 また、パワーモジュール11には、冷却体3に固定する前又は固定した後に、その上面に形成された基板固定部16に駆動回路基板21を載置する。そして、この駆動回路基板21をその上方から4本の継ぎねじ24によって基板固定部16に固定する。そして、伝熱支持板部32aを伝熱支持側板部32cに固定ねじ32bで連結する。
 そして、継ぎねじ24の上面に制御回路ユニットU2の制御回路基板22を載置し、4本の継ぎねじ25によって固定する。さらに、継ぎねじ25の上面に電源回路ユニットU3の電源回路基板23を載置し、4本の固定ねじ26によって固定する。そして、伝熱支持板部33aを伝熱支持側板部33cに固定ねじ33bによって連結する。
 その後、図1に示すように、パワーモジュール11の正負の直流入力端子に11aに、ブスバー50を接続し、このブスバー50の他端に冷却体3を貫通するフィルムコンデンサ4の正負の電極4aを固定ねじ51で連結する。さらに、パワーモジュール11の直流入力端子11aに外部のコンバータ(図示せず)に接続する接続コード52の先端に固定された圧着端子53を固定する。
 さらに、パワーモジュール11の3相交流出力端子11bにブスバー55を固定ねじ56で接続し、このブスバー55の途中に電流センサ57を配置する。そして、ブスバー55の他端に外部の3相電動モータ(図示せず)に接続したモータ接続ケーブル58の先端に固定した圧着端子59を固定ねじ60で固定して接続する。
 その後、冷却体3の下面及び上面に、下部筐体2A及び上部筐体2Bを、シール材を介して固定して電力変換装置1の組立を完了する。
 この状態で、外部のコンバータ(図示せず)から直流電力を供給するとともに、電源回路基板23に実装された電源回路、制御回路基板22に実装された制御回路を動作状態とし、制御回路から例えばパルス幅変調信号でなるゲート信号を駆動回路基板21に実装された駆動回路を介してパワーモジュール11に供給する。これによって、パワーモジュール11に内蔵されたIGBTが制御されて、直流電力を交流電力に変換する。変換した交流電力は3相交流出力端子11bからブスバー55を介してモータ接続ケーブル58に供給し、3相電動モータ(図示せず)を駆動制御する。
 このとき、パワーモジュール11に内蔵されたIGBTで発熱する。この発熱はパワーモジュール11に形成された放熱部材13が冷却体3の中央部3cに直接接触されているので、冷却体3に供給されている冷却水によって冷却される。
 一方、制御回路基板22及び電源回路基板23に実装されている制御回路及び電源回路には発熱回路部品39が含まれており、これら発熱回路部品39で発熱を生じる。このとき、発熱回路部品39は制御回路基板22及び電源回路基板23の下面側に実装されている。
 そして、これら制御回路基板22及び電源回路基板23の下面側には、熱伝導率が高く弾性を有する伝熱部材35及び37を介して伝熱支持部材32及び33の伝熱支持板部32a及び33aが設けられている。
 このため、発熱回路部品39が伝熱部材35及び37で覆われ、発熱回路部品39と伝熱部材35及び37との接触面積が大きくなるとともに密着して発熱回路部品39と伝熱部材35及び37との熱抵抗が小さくなる。したがって、発熱回路部品39の発熱が伝熱部材35及び37に効率よく伝熱される。そして、伝熱部材35及び37自体は5~30%程度の圧縮率で圧縮されて熱伝導率が高められているので、図8に示すように、伝熱部材35及び37に伝熱された熱が効率良く伝熱支持部材32及び33の伝熱支持板部32a及び33aに伝達される。
 そして、伝熱支持板部32a及び33aには、伝熱支持側板部32c及び33cが連結されているので、伝熱支持板部32a及び33aに伝達された熱は、図9に示すように、伝熱支持側板部32c及び33cを通って共通の底板部34に伝達される。この底板部34は、冷却体3の周溝3d内に直接接触されているので、伝達された熱は冷却体3に放熱される。
 さらに、底板部34に伝達された熱は、その上面側から板状弾性部材45を介してパワーモジュール11の放熱部材13に伝達され、この放熱部材13を介して冷却体3の中央部3cに伝達されて放熱される。
 このように、上記第1の実施形態によると、制御回路基板22及び電源回路基板23に実装された発熱回路部品39の発熱が熱抵抗の大きな制御回路基板22及び電源回路基板23を介することなく直接伝熱部材35及び37に伝熱されるので、効率の良い放熱を行うことができる。
 そして、伝熱部材35及び37に伝達された熱は伝熱支持板部32a及び33aに伝熱され、さらに伝熱支持側板部32c及び33cに伝達される。このとき、伝熱支持側板部32c及び33cがパワーモジュール11の長辺に沿って設けられている。
 このため、伝熱面積を広くとることができ、広い放熱経路を確保することができる。しかも、伝熱支持側板部32c及び33cは折れ曲がり部が円筒状の湾曲部とされているので、折れ曲がり部をL字状にする場合に比較して冷却体3までの伝熱距離を短くすることができる。ここで、熱輸送量Qは、下記(1)式で表すことができる。
 Q=λ×(A/L)×T   …………(1)
 ただし、λは熱伝導率[W/m℃]、Tは温度差[℃]基板温度T1-冷却体温度T2、Aは伝熱最小断面積[m2]、Lは伝熱長さ[m]である。
 この(1)式から明らかなように、伝熱長さLが短くなると、熱輸送量Qは増加することになり、良好な冷却効果を発揮することができる。
 また、伝熱支持部材32及び33の伝熱支持側板部32c及び33cが共通の底板部34で一体化されているので、伝熱支持側板部32c及び33cと底板部34との間に部品同士の継ぎ目がなく、熱抵抗を抑制することができる。
 さらに、発熱回路部品39が実装された制御回路基板22及び電源回路基板23から冷却体3までの放熱経路に筐体2が含まれていないので、筐体2に伝熱性が要求されることがない。したがって、筐体2の構成材料としてアルミニウム等の高熱伝導率の金属を使用する必要がなく、合成樹脂材で筐体2を構成することが可能となり、軽量化を図ることができる。
 また、放熱経路が筐体2に依存することなく、電力変換装置1単独で放熱経路を形成することができるので、パワーモジュール11と、駆動回路基板21、制御回路基板22及び電源回路基板23を一体化した構成の電力変換装置1を種々の異なる形態の筐体2や冷却体3に適用することができる。このため、単体としての電力変換装置1の剛性及び放熱性とハンドリングとを向上させることができる。
 また、制御回路基板22及び電源回路基板23に金属製の伝熱支持板部32a及び33aが固定されているので、制御回路基板22及び電源回路基板23の剛性を高めることができる。すなわち、伝熱支持板部32a及び33aで伝熱機能と剛性強化機能を発揮することができる。このため、電力変換装置1を車両の走行用モータを駆動するモータ駆動回路として適用する場合のように、電力変換装置1に図10に示す上下振動や横揺れが作用する場合でも、伝熱支持部材32及び33で剛性を高めることができる。したがって、上下振動や横揺れ等の影響が少ない電力変換装置1を提供することができる。
 なお、上記第1の実施形態においては、制御回路ユニットU2及び電源回路ユニットU3で、伝熱部材35及び37を制御回路基板22及び電源回路基板23と同じ外形とした場合について説明した。しかしながら、本発明は上記構成に限定されるものではなく、伝熱部材35及び37を図6に示すように発熱回路部品39が存在する箇所にのみ設けるようにしてもよい。
 また、上記第1の実施形態においては、制御回路基板22及び電源回路基板23で発熱回路部品39を裏面側の伝熱部材35及び37側に実装する場合について説明した。しかしながら、本発明は上記構成に限定されるものではない。すなわち、図11に示すように、制御回路基板22及び電源回路基板23の伝熱部材35及び37とは反対側の外周領域Aoに実装するようにしてよい。この場合には、発熱量の大きい発熱回路部品39が外周部側に配置されるので、発熱回路部品39を中央に配置して他の回路部品で囲まれる場合に比較して発熱回路部品の空間への放熱を行うことが可能となる。このため、効率的な熱冷却を行うことができる。
 さらには、図12に示すように、制御回路基板22及び電源回路基板23のそれぞれにおいて、発熱回路部品39を伝熱支持側板部32c及び33cに近い部分に配置することにより、冷却体3迄の放熱経路の距離を短くするようにしてもよい。この場合でも、発熱回路部品39の冷却体3までの放熱経路の距離が短くなるので、効率良い放熱を行うことができる。
 また、上記第1の実施形態においては、発熱回路部品39を実装した基板が2種類存在する場合について説明した。しかしながら、本発明は上記構成に限定されるものではなく、発熱回路部品39を実装した基板が例えば制御回路基板22の一枚だけである場合には、図13(a)に示すように構成してもよい。すなわち、制御回路基板22の左右両側にそれぞれ伝熱支持側板部32c及び32fを設けて、伝熱支持板部32aの両側に放熱経路を形成する。このように構成することにより、伝熱支持板部32aの両側に放熱経路が形成されることにより、放熱効果をより向上させることができる。
 さらには、図13(b)に示すように伝熱支持側板部32cに各回路ユニットU2及びU3を支持する上板部32eを複数形成して、複数の回路基板を支持するようにしてもよい。
 次に、本発明の第2の実施形態を図14及び図15について説明する。
 この第2の実施形態は、パワーモジュール11に形成されている放熱部材13が冷却体3に流れる冷却水に直接接触する冷却フィン61を備えた構成とされている。これに応じて、冷却体3の中央部に冷却フィン61を冷却水の通路に浸漬させる浸漬部62を形成している。
 そして、浸漬部62を囲む周壁63と放熱部材13との間にOリング等のシール部材66が配設されている。
 その他の構成については前述した第1の実施形態と同様の構成を有し、図1及び図2との対応部分には同一符号を付しその詳細説明はこれを省略する。
 この第2の実施形態によると、パワーモジュール11の放熱部材13に冷却フィン61が形成され、この冷却フィン61が冷却水に浸漬部62で冷却水に浸漬されているので、パワーモジュール11をより効率良く冷却することができる。
 次に、本発明の第3の実施形態を図16について説明する。
 この第3の実施形態は、伝熱支持側板部32c及び33cをパワーモジュール11内を通って冷却体3に接触するようにしたものである。
 すなわち、第3の実施形態では、パワーモジュール11の左右端部側に伝熱支持側板部32c及び33cを挿通させる開口部としての貫通孔81a及び81bが前後方向に延長して形成されている。
 ここで、貫通孔81a及び81bのそれぞれは、伝熱支持部材32及び33の伝熱支持側板部32c及び323cにおける上板部32e及び33eを挿通することができるように位置及び幅が設定されている。
 そして、底板部34で連結された伝熱支持部材32及び33の上方に、パワーモジュール11を、その貫通孔81a及び81bが伝熱支持側板部32c及び33cの上板部32e及び33eに対向するように位置合わせした状態とする。この状態で、パワーモジュール11を下方に降下させることにより、貫通孔81a及び81b内に伝熱支持側板部32cの上板部32e及び伝熱支持側板部33cの上板部33eが挿通される。そして、パワーモジュール11の冷却部材13の下面を底板部34の上面に形成した板状弾性部材45の上面に接触させる。
 この状態で、パワーモジュール11及び底板部34を固定ねじ14で共に冷却体3にねじ止めすることより、伝熱支持部材32及び33を冷却体3にパワーモジュール11と共に固定する。
 その後、パワーモジュール11の上面に駆動回路基板21、制御回路ユニットU2及び電源回路ユニットをU3を前述した第1の実施形態と同様に順次取り付け、制御回路ユニットU2側の伝熱支持板部32aを伝熱支持側板部32cの上板部32eに固定ねじ32bでねじ止めする。また、電源回路ユニットU3側の伝熱支持板部33aを伝熱支持側板部33cの上板部33eに固定ねじ33bでねじ止めする。
 この第3の実施形態によると、上記第1の実施形態の作用効果に加えて、共通の底板部34で連結された伝熱支持部材32及び33の上方にパワーモジュール11の貫通孔81a及び81bを対向させた状態で、パワーモジュール11と伝熱支持部材32及び33とを相対移動させることにより、パワーモジュール11と伝熱支持部材32及び33との組付けることができ、組付作業を容易に行うことができる。
 なお、上記第3の実施形態においては、パワーモジュール11に形成した貫通孔81a及び18b内に共通の底板部34で連結された伝熱支持部材32及び33を挿通して、底板部34を冷却体3にパワーモジュール11と共に固定する場合について説明した。しかしながら、本発明は上記構成に限定されるものではなく、図17に示すように、伝熱支持部材32及び33を貫通孔81a及び81b内で冷却部材13に直接固定するようにしてもよい。
 すなわち、パワーモジュール11を、その冷却部材13を貫通孔81a及び81bを通じてパワーモジュール11の上方側に臨ませるように延長した構成とする。
 一方、伝熱支持部材32及び33を連結する底板部34を左右両端部を残して切断した形状に構成する。
 そして、伝熱支持部材32及び33の伝熱支持部材32及び33の伝熱支持側板部32c及び33cの底板部32h及び33hを貫通孔81a及び81内に挿通して冷却部材13の上面に当接させた状態で、ろう付け、ねじ止め等の固定手段によって冷却部材13に固定する。この場合には、予め伝熱支持部材32及び33をパワーモジュール11に一体化させておくことにより、組付工数を減少させて、組付作業をより容易に行うことができる。この場合には、パワーモジュール11に形成する貫通孔81a及び81bの幅は、伝熱支持側板部32c及び33cの底板部32h及び33hを挿通可能な幅に設定すればよい。
 また、上記第3の実施形態においては、パワーモジュール11に形成した貫通孔81a及び18bを形成する場合について説明したが、これに限定されるものではなく、貫通孔81a及び81bに代えて、パワーモジュール11の左右端部から内方に切欠を形成するようにしてもよい。要は、伝熱支持部材32及び33の伝熱支持側板部32c及び33cが挿通可能な開口部が形成されていればよい。
 また、上記第3の実施形態においては、パワーモジュール11の左右端部側に貫通孔81a及び81bを形成した場合について説明したが、これに限らず、前後端部側に貫通孔を形成するようにしてもよく、さらにはパワーモジュール11の隣接する辺の一方に貫通孔81aを形成し、他方に貫通孔81bを形成するようにしてもよい。
 また、上記第3の実施形態においては、パワーモジュール11に2つの貫通孔81a及び81bを形成した場合について説明したが、パワーモジュール11の寸法によっては、貫通孔81a及び81bの一方のみを形成し、他方の貫通孔に挿通する伝熱支持側板部については第1の実施形態のようにパワーモジュール11の側面を通って冷却体3に固定するようにしてもよい。
 なお、上記第1~第3の実施形態においては、伝熱支持部材32及び33の伝熱支持板部32a及び33aと伝熱支持側板部32c及び33cとを別体で構成する場合について説明した。しかしながら、本発明は、上記構成に限定されるものでなく、図18に示すように、伝熱支持板部32a及び33aと伝熱支持側板部32c及び33cとを一体に構成するようにしてもよい。この場合には、伝熱支持板部32a及び33aと伝熱支持側板部32c及び32cとの間に継ぎ目が形成されることがなくなるので、熱抵抗を小さくしてより効率の良い放熱を行うことができる。
 また、上記第1~第3の実施形態においては、制御回路基板22及び電源回路基板23に伝熱部材35及び37を介して伝熱支持板部32a及び33aを結合した場合について説明した。しかしながら、本発明は、上記構成に限定されるものではなく、制御回路基板22及び電源回路基板として、図19に示すように、アルミニウム又はアルミニウム合金を主体とした放熱板71上に絶縁層72を介して回路パターン73を形成した金属ベース回路基板74を適用することができる。この場合には、図19に示すように、伝熱部材35及び37と伝熱支持板部32a及び33aを省略して、金属ベース回路基板74の放熱板71を直接伝熱支持側板部32c及び33cに接続するようにすればよい。
 また、上記第1~第3の実施形態においては、制御回路基板22と電源回路基板23とを個別の伝熱支持部材で支持する場合について説明した。しかしながら、本発明は、上記構成に限定されるものではなく、伝熱支持部材を図20~図24に示す構造とすることができる。
 すなわち、前述した第1~第3の実施形態における伝熱支持側板部32及び33を省略し、これらに代えて例えば矩形の制御回路規範22及び電源回路基板23の各側面に対応する4つの前側板部91a、後側板部91b、左側板部91c及び右側板部91dを共通の底板部34から立ち上げて伝熱支持側板部90を構成する。これら各板部91a~91dの内、前側板部91a及び後側板部91bには、制御回路基板22を支持する伝熱支持板部32aに対向する位置に左右一対の幅広の逆U字状スリット92a,92bを形成し、これら逆U字状スリット92a,92bで囲まれる板部を内側に90度折り曲げて支持部93a,93bが形成されている。
 また、前側板部91a及び後側板部91bには、電源回路基板23に対向する上端が内方に90度折り曲げられて支持部94a及び94bが形成されている。
 さらに、左側板部91c及び右側板部91dにも、前側板部91a及び後側板部91bと同様に1つの逆U字状スリット95a及び95bが形成され、これら逆U字状スリット95a及び95bに囲まれる板部を内側に90度折り曲げられて支持部96a及び96bが形成されている。また、左側板部91c及び右側板部91dにも、電源回路基板23に対向する上端が内方に90度折り曲げられて支持部97a及び97bが形成されている。
 そして、図20~図23に示すように、側板部91a~81dの中間部に形成された支持板部93a,93b、96a及び96b上に伝熱部材35を介して制御回路基板22を支持する伝熱支持板部32aを載置して、図示しない固定ねじで固定する。同様に、各側板部91a~91dの上端に形成された支持板部94a,94b,97a及び97bに伝熱部材35を介して電源回路基板23を支持する伝熱支持板部33aを載置して、図示しない固定ねじで固定する。
 このようにして、制御回路基板22及び電源回路基板23を支持した伝熱支持側板部90を、前述した第1及び第2の実施形態と同様に半導体パワーモジュール12とともに、冷却体3に固定する。
 伝熱支持側板部90を上記のように構成することにより、制御回路基板22及び電源回路基板23に実装された発熱回路部品で発生する発熱を伝熱支持板部32a及び33aと伝熱支持側板部90を介して冷却体3に確実に放熱することができる。したがって、上記第1及び第2の実施形態と同様の作用効果を得ることができる。しかも、伝熱支持側板部90を図20~図24のように構成することにより、制御回路基板22及び電源回路基板23を支持する伝熱支持側板部を1つの部材で構成することができるとともに、複数の伝熱経路を確保することができ、放熱効率を向上させることができる。さらに、支持部83a,83b及び86a,86bを逆U字状スリット82a,82b及び85a,85bで囲まれる板部を折り曲げて形成している。このため、折り曲げ後に伝熱支持側板部90の内外を通じる空間部が形成されることになり、この空間部を放熱路として利用することができ、放熱効果をより向上させることができる。なお、図20~図24の構成では、支持部83a,83b,84a,84b、86a,86b,87a,87bを折曲支持部として形成した場合について説明したが、内側に突出する板状の支持部を溶接等の固着手段で固定するようにしてもよい。
 また、上記第1~第3の実施形態では、制御回路基板22及び電源回路基板23と伝熱支持板部32a及び33aとの間に介挿した伝熱部材35及び37が弾性を有する場合について説明した。しかしながら、本発明では上記構成に限定されるものではなく、絶縁被覆した金属板等の弾性を有さない伝熱部材を適用することもできる。
 さらに、上記第1~第3の実施形態では、平滑用のコンデンサとしてフィルムコンデンサ4を適用した場合について説明したが、これに限定されるものではなく、円柱状の電解コンデンサを適用するようにしてもよい。
 また、上記第1~第3の実施形態においては、本発明による電力変換装置を電気自動車に適用する場合について説明したが、これに限定されるものではなく、軌条を走行する鉄道車両にも本発明を適用することができ、任意の電気駆動車両に適用することができる。さらに電力変換装置としては電気駆動車両に限らず、他の産業機器における電動モータ等のアクチュエータを駆動する場合に本発明の電力変換装置を適用することができる。
 本発明によれば、基板に実装された発熱回路部品の熱の放熱経路に筐体を介在させることなく、発熱回路部品の熱を効率よく冷却体に放熱することができる電力変換装置を提供することができる。
 1…電力変換装置、2…筐体、3…冷却体、4…フィルムコンデンサ、5…蓄電池収納部、11…パワーモジュール、12…ケース体、13…放熱部材、21…駆動回路基板、22…制御回路基板、23…電源回路基板、24,25…継ぎねじ、32…伝熱支持部材、32a…伝熱支持板部、32b…固定ねじ、32c…伝熱支持側板部、33…伝熱支持部材、33a…伝熱支持板部、33b…固定ねじ、33c…伝熱支持側板部、34…底板部、35,37…伝熱部材、39…発熱回路部品、40…間座(間隔調整部材)、45…板状弾性部材、61…冷却フィン、71…放熱板、72…絶縁層、73…回路パターン、74…金属ベース回路基板、81a,81b…貫通孔、90…伝熱支持側板部、91a…前側板部、91b…後側板部、91c…左側板部、91d…右側板部、93a,93b,94a,94b、96a,96b,97a,97b…支持部

Claims (28)

  1.  一面に冷却部材が形成された半導体パワーモジュールと、
     前記冷却部材に接合される冷却体と、
     前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した実装基板の熱を前記冷却体に伝熱させ、且つ、該実装基板を前記半導体パワーモジュールとの間に所定間隔を保って支持する伝熱支持部材と
     を備えたことを特徴とする電力変換装置。
  2.  電力変換用の半導体スイッチング素子をケース体に内蔵し、当該ケース体の一面に冷却体に接触する冷却部材が形成されたモジュールと、
     前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板と、
     該実装基板を前記モジュールとの間に所定間隔を保って支持し、当該実装基板の発熱を前記冷却体に筐体を介することなく放熱するように前記冷却体に接触する伝熱支持部材と
     を備えたことを特徴とする電力変換装置。
  3.  電力変換用の半導体スイッチング素子をケース体に内蔵し、当該ケース体の一面に冷却体に接触する冷却部材が形成されたモジュールと、
     前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板と、
     該実装基板を前記モジュールとの間に所定間隔を保って支持し、当該実装基板の発熱を前記冷却体に筐体を介することなく放熱するように前記モジュールの少なくとも一側面側を通って前記冷却体に接触する伝熱支持部材と
     を備えたことを特徴とする電力変換装置。
  4.  前記モジュールのケース体は、長方形の平面を有する扁平直方体形状を有し、前記伝熱支持部材は、前記ケース体の長辺側の側面を通るように配置されていることを特徴とする請求項3に記載の電力変換装置。
  5.  前記実装基板と前記伝熱支持部材との組を複数組備え、前記組毎に前記伝熱支持部材の前記伝熱支持側板部の高さを異ならせるとともに、当該伝熱支持側板部が前記モジュールの異なる側面を通って前記冷却部材に接触されていることを特徴とする請求項3に記載の電力変換装置。
  6.  前記伝熱支持部材は、前記モジュールのケース体に形成された接続端子に対応する位置に挿通孔を形成したことを特徴とする請求項4に記載の電力変換装置。
  7.  電力変換用の半導体スイッチング素子をケース体に内蔵し、当該ケース体の一面に冷却体に接触する冷却部材が形成されたモジュールと、
     前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板と、
     該実装基板を前記モジュールとの間に所定間隔を保って支持し、当該実装基板の発熱を前記冷却体に筐体を介することなく放熱するように前記モジュールの少なくとも一部を通って前記冷却体に接触する伝熱支持部材と
     を備えたことを特徴とする電力変換装置。
  8.  前記実装基板と前記伝熱支持部材との組を複数組備え、前記組毎に前記伝熱支持部材の前記伝熱支持側板部の高さを異ならせるとともに、当該伝熱支持側板部が前記モジュールの一部を通って前記冷却部材に接触されていることを特徴とする請求項7に記載の電力変換装置。
  9.  前記実装基板は金属ベース回路基板で構成されていることを特徴とする請求項1乃至8の何れか1項に記載の電力変換装置。
  10.  前記実装基板と前記伝熱支持部材との間に伝熱部材を介挿したことを特徴とする請求項1乃至8の何れか1項に記載の電力変換装置。
  11.  前記伝熱部材は、絶縁性を有する絶縁体で構成されていることを特徴とする請求項10に記載の電力変換装置。
  12.  前記伝熱部材は、伸縮性を有する弾性体で構成されていることを特徴とする請求項10に記載の電力変換装置。
  13.  前記伝熱部材は、伸縮性を有する弾性体で構成され、前記実装基板の前記伝熱板部側実装面に前記発熱回路部品が実装されていることを特徴とする請求項10に記載の電力変換装置。
  14.  前記伝熱部材は、前記実装基板と同じ大きさに形成されていることを特徴とする請求項10に記載の電力変換装置。
  15.  前記伝熱部材は、前記実装基板に実装される電子回路部品のうち相対的に発熱量又は伝熱密度の大きい発熱回路部品の周囲のみに配置したことを特徴とする請求項10に記載の電力変換装置。
  16.  前記実装基板と前記伝熱支持部材の伝熱支持板部とを前記伝熱部材を介して締付固定部材で固定したことを特徴とする請求項10に記載の電力変換装置。
  17.  前記締付固定部材の周囲に前記実装基板と前記伝熱支持部材の伝熱支持板部との間隔を所定値に維持する間隔調整部材が介挿されていることを特徴とする請求項16に記載の電力変換装置。
  18.  前記伝熱支持部材は、前記伝熱部材を介して前記実装基板を支持する伝熱支持板部と、該伝熱支持板部の側面を固定支持して前記冷却体に接触される伝熱支持側板部とで構成されていることを特徴とする請求項1乃至7の何れか1項に記載の電力変換装置。
  19.  前記伝熱支持側板部は、前記実装基板の各側面に対応する板部を有し、当該各板部に前記伝熱支持板部を支持する支持部を形成したことを特徴とする請求項18に記載の電力変換装置。
  20.  前記伝熱支持板部と前記伝熱支持側板部とが一体に形成されていることを特徴とする請求項18又は19に記載の電力変換装置。
  21.  前記伝熱支持板部は、複数の伝熱支持側板部に固定支持されていることを特徴とする請求項20に記載の電力変換装置。
  22.  前記伝熱支持部材の伝熱支持側板部は前記モジュールの冷却部材及び前記冷却体間に挿通される冷却体接触板部を有することを特徴とする請求項18又は19に記載の電力変換装置。
  23.  前記冷却体接触板部と前記モジュールの冷却部材との間に板状弾性部材が介挿されていることを特徴とする請求項22に記載の電力変換装置。
  24.  前記冷却体接触板部は、前記モジュールに形成された当該モジュールを前記冷却体に固定する固定部材を挿通する挿通孔に対向する位置に固定部材挿通孔が形成されていることを特徴とする請求項23に記載の電力変換装置。
  25.  前記モジュールは、前記冷却部材を当該モジュールの前記冷却部材とは反対側に臨ませる開口部が形成され、
     前記伝熱支持部材は、前記伝熱部材を介して前記実装基板を支持する伝熱支持板部と、該伝熱支持板部の側面を固定支持して前記モジュールの前記開口部を通じて前記冷却部材に接触される伝熱支持側板部とで構成されている
     ことを特徴とする請求項4に記載の電力変換装置。
  26.  前記伝熱支持板部は、複数の伝熱支持側板部に固定支持されていることを特徴とする請求項25に記載の電力変換装置。
  27.  前記伝熱支持部材は、黒色の表面を有することを特徴とする請求項1乃至19の何れか1項に記載の電力変換装置。
  28.  前記実装基板は、相対的に発熱量又は伝熱密度の大きい発熱回路部品を前記冷却体への伝熱距離が短くなる位置に配置したことを特徴とする請求項1乃至19の何れか1項に記載の電力変換装置。
PCT/JP2012/005266 2011-09-02 2012-08-22 電力変換装置 WO2013031147A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280041893.3A CN103765751B (zh) 2011-09-02 2012-08-22 电力变换装置
JP2013531059A JP5794306B2 (ja) 2011-09-02 2012-08-22 電力変換装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-191541 2011-09-02
JP2011191541 2011-09-02
JP2011237862 2011-10-28
JP2011-237862 2011-10-28

Publications (1)

Publication Number Publication Date
WO2013031147A1 true WO2013031147A1 (ja) 2013-03-07

Family

ID=47755677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005266 WO2013031147A1 (ja) 2011-09-02 2012-08-22 電力変換装置

Country Status (3)

Country Link
JP (1) JP5794306B2 (ja)
CN (1) CN103765751B (ja)
WO (1) WO2013031147A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162652A1 (ja) * 2013-04-01 2014-10-09 富士電機株式会社 電力変換装置
JP2016158307A (ja) * 2015-02-23 2016-09-01 株式会社明電舎 インバータシステム
WO2018061351A1 (ja) * 2016-09-30 2018-04-05 ダイキン工業株式会社 基板ユニット及び放熱アセンブリ
CN108463051A (zh) * 2018-03-28 2018-08-28 珠海松下马达有限公司 一种伺服驱动器
JP2019134669A (ja) * 2018-02-02 2019-08-08 株式会社豊田自動織機 インバータ
US10867980B2 (en) 2018-10-15 2020-12-15 Fuji Electric Co., Ltd. Semiconductor equipment
JP2020205347A (ja) * 2019-06-17 2020-12-24 パナソニックIpマネジメント株式会社 筐体、それを備える電気機器、及び電力変換装置
JP2020205345A (ja) * 2019-06-17 2020-12-24 パナソニックIpマネジメント株式会社 筐体、それを備える電気機器、及び電力変換装置
JP2021065089A (ja) * 2017-08-09 2021-04-22 株式会社デンソー 電力変換装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6565456B2 (ja) * 2015-08-05 2019-08-28 Tdk株式会社 電子回路装置および電子回路装置の放熱構造
KR102457660B1 (ko) * 2016-01-08 2022-10-24 엘지이노텍 주식회사 전력 변환 장치
JP2018098927A (ja) * 2016-12-14 2018-06-21 株式会社オートネットワーク技術研究所 電気接続箱
JP6438502B2 (ja) 2017-02-01 2018-12-12 ファナック株式会社 レーザ装置
FR3074011B1 (fr) * 2017-11-21 2019-12-20 Safran Electronics & Defense Module electrique de puissance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211663A (ja) * 2000-01-28 2001-08-03 Sanden Corp モータ駆動用インバータ装置
JP2005036773A (ja) * 2003-07-18 2005-02-10 Denso Corp 車両用インバータ一体型電動コンプレッサ
JP2006121861A (ja) * 2004-10-25 2006-05-11 Fuji Electric Fa Components & Systems Co Ltd 電力変換装置
JP2007159204A (ja) * 2005-12-01 2007-06-21 Ishikawajima Harima Heavy Ind Co Ltd インバータ装置
JP2010167871A (ja) * 2009-01-22 2010-08-05 Diamond Electric Mfg Co Ltd 車載用負荷駆動装置及びモータドライブ装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100499347C (zh) * 2007-10-31 2009-06-10 艾纯 电源逆变装置
JP4657329B2 (ja) * 2008-07-29 2011-03-23 日立オートモティブシステムズ株式会社 電力変換装置および電動車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211663A (ja) * 2000-01-28 2001-08-03 Sanden Corp モータ駆動用インバータ装置
JP2005036773A (ja) * 2003-07-18 2005-02-10 Denso Corp 車両用インバータ一体型電動コンプレッサ
JP2006121861A (ja) * 2004-10-25 2006-05-11 Fuji Electric Fa Components & Systems Co Ltd 電力変換装置
JP2007159204A (ja) * 2005-12-01 2007-06-21 Ishikawajima Harima Heavy Ind Co Ltd インバータ装置
JP2010167871A (ja) * 2009-01-22 2010-08-05 Diamond Electric Mfg Co Ltd 車載用負荷駆動装置及びモータドライブ装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162652A1 (ja) * 2013-04-01 2014-10-09 富士電機株式会社 電力変換装置
CN105009439A (zh) * 2013-04-01 2015-10-28 富士电机株式会社 电力转换装置
JPWO2014162652A1 (ja) * 2013-04-01 2017-02-16 富士電機株式会社 電力変換装置
CN105009439B (zh) * 2013-04-01 2017-08-08 富士电机株式会社 电力转换装置
JP2016158307A (ja) * 2015-02-23 2016-09-01 株式会社明電舎 インバータシステム
WO2018061351A1 (ja) * 2016-09-30 2018-04-05 ダイキン工業株式会社 基板ユニット及び放熱アセンブリ
JP2018056494A (ja) * 2016-09-30 2018-04-05 ダイキン工業株式会社 基板ユニット及び放熱アセンブリ
JP2021065089A (ja) * 2017-08-09 2021-04-22 株式会社デンソー 電力変換装置
JP2019134669A (ja) * 2018-02-02 2019-08-08 株式会社豊田自動織機 インバータ
JP7111010B2 (ja) 2018-02-02 2022-08-02 株式会社豊田自動織機 インバータ
CN108463051A (zh) * 2018-03-28 2018-08-28 珠海松下马达有限公司 一种伺服驱动器
CN108463051B (zh) * 2018-03-28 2024-04-02 珠海松下马达有限公司 一种伺服驱动器
US10867980B2 (en) 2018-10-15 2020-12-15 Fuji Electric Co., Ltd. Semiconductor equipment
JP2020205347A (ja) * 2019-06-17 2020-12-24 パナソニックIpマネジメント株式会社 筐体、それを備える電気機器、及び電力変換装置
JP2020205345A (ja) * 2019-06-17 2020-12-24 パナソニックIpマネジメント株式会社 筐体、それを備える電気機器、及び電力変換装置
JP7320724B2 (ja) 2019-06-17 2023-08-04 パナソニックIpマネジメント株式会社 筐体、それを備える電気機器、及び電力変換装置
JP7407388B2 (ja) 2019-06-17 2024-01-04 パナソニックIpマネジメント株式会社 筐体、それを備える電気機器、及び電力変換装置

Also Published As

Publication number Publication date
CN103765751B (zh) 2016-08-17
CN103765751A (zh) 2014-04-30
JPWO2013031147A1 (ja) 2015-03-23
JP5794306B2 (ja) 2015-10-14

Similar Documents

Publication Publication Date Title
WO2013031147A1 (ja) 電力変換装置
WO2014061178A1 (ja) 冷却構造体及び発熱体
WO2014057622A1 (ja) 電力変換装置
WO2014020806A1 (ja) 冷却構造体及び電力変換装置
JP2010135697A (ja) 積層モジュール構造
WO2013105166A1 (ja) 電力変換装置
US20220256730A1 (en) Power supply device with a heat generating component
WO2013145508A1 (ja) 電力変換装置
WO2013111234A1 (ja) 電力変換装置
WO2013084416A1 (ja) 電力変換装置
JP2005045960A (ja) 電力変換装置
WO2013080440A1 (ja) 電力変換装置
WO2013084417A1 (ja) 電力変換装置
WO2021053975A1 (ja) 電力変換装置およびモータ一体型電力変換装置
WO2014024361A1 (ja) 冷却構造体及び電力変換装置
WO2013080441A1 (ja) 電力変換装置
JP5768902B2 (ja) 電力変換装置
WO2013080442A1 (ja) 電力変換装置
JP5682713B2 (ja) 電力変換装置
WO2014162652A1 (ja) 電力変換装置
WO2014020807A1 (ja) 冷却構造体及び電力変換装置
WO2013118223A1 (ja) 電力変換装置
JP2017060292A (ja) 電力変換装置
JP6225806B2 (ja) 電気回路装置
JP2019033197A (ja) 回路基板装置における放熱構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828827

Country of ref document: EP

Kind code of ref document: A1