WO2013027778A1 - 化学蓄熱材、その製造方法および化学蓄熱構造体 - Google Patents
化学蓄熱材、その製造方法および化学蓄熱構造体 Download PDFInfo
- Publication number
- WO2013027778A1 WO2013027778A1 PCT/JP2012/071219 JP2012071219W WO2013027778A1 WO 2013027778 A1 WO2013027778 A1 WO 2013027778A1 JP 2012071219 W JP2012071219 W JP 2012071219W WO 2013027778 A1 WO2013027778 A1 WO 2013027778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat storage
- chemical heat
- storage material
- metal salt
- chemical
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/16—Materials undergoing chemical reactions when used
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/003—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- the present invention relates to a chemical heat storage material comprising a double metal salt, a production method thereof, and a chemical heat storage structure using the same.
- the chemical heat storage system performs heat storage (heat absorption) and heat dissipation (heat generation) by moving a heat medium (ammonia or water) between the chemical heat storage material and the heat medium storage material.
- heat medium ammonia or water
- Patent Document 1 describes that a calcium salt mixture obtained by dissolving, concentrating and drying CaCl 2 and CaBr 2 has a higher ammonia (NH 3 ) release temperature than a simple mixture thereof.
- NH 3 ammonia
- the crystal structure and action of the calcium salt mixture are not clear.
- the calcium salt mixture has a smaller coordination number change when releasing ammonia than CaCl 2 alone, and has a low heat storage density that can be used reversibly.
- Patent Document 2 sodium vapor (NaCl) and potassium chloride (KCl) are mixed in an appropriate amount of molten zinc chloride (ZnCl 2 ) to lower the vapor pressure and melting temperature of ZnCl 2 that reacts with NH 3.
- NaCl or KCl in this case merely serves to stabilize molten ZnCl 2 that absorbs and releases NH 3 . That is, Patent Document 2 does not provide a new chemical heat storage material having different characteristics.
- Patent Documents 3 to 5 disclose a chemical heat storage system and the like, and metal halides are cited as an example of a chemical heat storage material used therefor. However, there is no specific description regarding the chemical heat storage material itself.
- the present invention has been made in view of such circumstances, and differs from a conventional chemical heat storage material made of a single metal salt in a pressure / temperature region in which a heat-medium absorption / release reaction occurs and a change in coordination number.
- An object of the present invention is to provide a new chemical heat storage material that is more consistent with the storage material and can efficiently operate the chemical heat storage system, and a method for manufacturing the same. Moreover, it aims at providing the chemical thermal storage structure using the chemical thermal storage material.
- the present inventor has conducted intensive research to solve this problem, and as a result of repeated trial and error, it has been found that single metal salts such as calcium chloride (CaCl 2 ) and strontium chloride (SrCl 2 ) are different from those mixed metal salts.
- single metal salts such as calcium chloride (CaCl 2 ) and strontium chloride (SrCl 2 ) are different from those mixed metal salts.
- This double metal salt caused a heat medium absorption / release reaction under conditions different from those of conventional single metal salts, and showed a large change in coordination number.
- the present invention described below has been completed.
- the chemical heat storage material of the present invention is a chemical heat storage material that generates heat or absorbs heat by occlusion or release of a heat medium, and is composed of a metal element (M) and a halogen element (X), at least one of which is two types It includes a double metal salt (MX n , n: M average valence) which is a metal halide composed of the above elements.
- the chemical heat storage material of the present invention is not a mere mixture of a single metal salt (a compound in which one kind of metal ion (cation) and one kind of anion is ion-bonded), but a plurality of metal elements and / or a plurality of halogen elements. It consists of a double metal salt compounded (ion bonded) at the atomic level.
- This double metal salt can exhibit various characteristics different from the single metal salt and its mixture (mixed metal salt) that have been used as chemical heat storage materials.
- the crystal structure, the equilibrium pressure that causes the heat medium absorption / release reaction, the change in coordination number, and the like are different from those of the conventional single metal salt.
- the equilibrium pressure, the coordination number change, and the like can be changed by adjusting the ratio (composite ratio) of the elements constituting the double metal salt. Therefore, according to the present invention, it is possible to provide a chemical heat storage material having a high heat storage density, which is suitable for improving the operating characteristics of the heat medium storage material and thus the efficiency of the chemical heat storage system.
- the double metal salt according to the present invention exhibits characteristics different from those of the conventional single metal salt is not necessarily clear, but at present, it is considered as follows. That is, it is considered that the average ionic radius ratio and the electronegativity ratio of the cation and the anion are appropriate values and the crystal structure and lattice volume have a large change in coordination number.
- the chemical heat storage material of the present invention only needs to contain the above-described double metal salt, and may be composed of two or more double metal salts, or a mixture of double metal salts and single metal salts.
- the above-described chemical heat storage material of the present invention is obtained, for example, by the following production method of the present invention. That is, the above-described chemical heat storage material can be obtained by a firing step of firing a mixed metal salt obtained by mixing two or more kinds of metal salts. Due to the firing process, metal ions (for example, Ca 2+ , Sr 2+ ) and halogen ions (for example, Cl ⁇ , Br ⁇ , etc.) contained in the metal salt diffuse and are thermodynamically more stable than a simple mixed metal salt. Double metal salts (eg, Ca x Sr 1-x Cl 2 ) are considered to be produced.
- the production method of the present invention may further include a molding step for obtaining a molded body obtained by pressure-molding the mixed metal salt before the firing step, and the firing step may be a step for obtaining a fired body obtained by firing the molded body.
- the firing step may be a step for obtaining a fired body obtained by firing the molded body.
- the present invention can be grasped not only as the above-described chemical heat storage material and its manufacturing method, but also as a chemical heat storage structure comprising the chemical heat storage material. That is, this invention can be grasped
- the chemical heat storage structure further includes a high heat conductive material that is more excellent in thermal conductivity than the chemical heat storage material and the binder.
- a high heat conductive material that is more excellent in thermal conductivity than the chemical heat storage material and the binder.
- the binder and the high thermal conductive material do not need to be separate materials, and may be the same material.
- carbon fiber which is a high thermal conductive material can be used as a binder.
- x to y in this specification includes the lower limit value x and the upper limit value y. Any numerical value included in various numerical values and numerical ranges described in this specification is appropriately selected or extracted, and a numerical range such as “ab” is arbitrarily set as a new lower limit or upper limit. Can do.
- Sample No. I a crystal structure diagram according to a double metal chloride (Ca 0.5 Sr 0.5 Cl 2) which constitutes one of the chemical heat storage material.
- Single metal chloride which is one of its raw material is a crystal structure diagram according to (CaCl 2). It is a crystal structure diagram of a single metal chloride (SrCl 2) which is at its other ingredients.
- a configuration related to a manufacturing method can be a configuration related to an object if understood as a product-by-process. Which embodiment is the best depends on the target, required performance, and the like.
- MX n The double metal salt according to the present invention is represented by MX n (M: metal element, X: halogen element, MX n , n: average valence of M), and at least one of M or X is composed of two or more elements.
- MX n metal element
- X halogen element
- MX n halogen element
- MX n average valence of M
- the double metal salt may be composed of a plurality of halogen elements. Since the ionic valence of a halogen element is usually -1, for example, in the case of a double metal salt composed of two types of halogen elements (X1, X2), the ratio of the number of atoms of X1 to the total number of atoms of the halogen element (composite ratio) ) Is represented as M (X1 y X2 1-y ) n , where y (0 ⁇ y ⁇ 1). Further, a double metal salt composed of two kinds of metal elements and two kinds of halogen elements is represented as M1 x M2 1-x (X1 y X2 1-y ) n .
- the double metal salt according to the present invention can have various crystal structures depending on the constituent elements. For example, it has a crystal structure such as CaF 2 type, SrI 2 type, CaCl 2 type, SrBr 2 type, PbCl 2 type, CdCl 2 type, CdI 2 type.
- the crystal structure of the double metal salt is not limited, and the crystal structure may be different from or the same as the crystal structure of the basic single metal salt. However, even when the crystal structures are the same, the lattice volume of the double metal salt is different from that of the single metal salt. Thereby, a double metal salt can express the characteristics (equilibrium pressure, a coordination number change, etc.) different from a single metal salt.
- the double metal salt is preferable because the heat storage density consistent with the heat medium storage material increases as the change in the coordination number of the heat medium changes suddenly in a specific operating range. Therefore, in the double metal salt, the coordination number of the heat medium changes at least 4 or more, 5 or more, or 6 or more in the vicinity (before and after) of the equilibrium region in which the heat medium absorption / release reaction for occluding or releasing the heat medium is in an equilibrium state. It is preferable to have a crystal structure.
- the double metal salt according to the present invention is composed of two or more kinds of metal elements (M1, M2,7), These metal elements are preferably elements having high affinity with each other. Thereby, a stable double metal salt is easily synthesized.
- double metal salts made from two or more types of single metal salts composed of affinity metal elements depend on the composition and the composite ratio, but the operating range of the heat carrier adsorption / release reaction is intermediate between the operating ranges of these single metal salts. It is easy to become. Therefore, if a double metal salt in which the types of single metal salts and their blending ratios (composite ratios) are appropriately selected is used, it is possible to compensate for the blank area in the working range that has occurred when the single metal salt is used.
- the affinity referred to in this specification is not only that two or more kinds of metal elements have similar characteristics as a simple substance, but also approximates the amount of heat generated during a heat medium absorption / release reaction as a halide (single metal salt). Including that. For example, the amount of heat generated when the halide forms a hydrate with water, which is a heat medium, and the amount of heat generated when an ammine complex is formed with ammonia, which is a heat medium, are approximated between two or more metal elements. In this specification, it is said that there is an affinity between metal elements.
- cases where a plurality of metal elements are compatible include a case where a metal element is a homologous element, a case where it can be an ion having the same valence, a case where electrons are close to each other, and a case where a solid solution is generated.
- a single metal salt (halide) there are cases where the operating range in which the heat medium adsorption / release reaction occurs, the coordination number, or the coordination number change is close.
- affinity metal elements include alkaline earth metal elements (Mg, Ca, Sr, Ba, etc.).
- a preferable example of the double metal salt composed of such a metal element is a double alkaline earth metal halide composed of two or more alkaline earth metal elements and a halogen element. More specifically, there is Ca x Sr 1-x Cl 2 (0 ⁇ x ⁇ 1) which is a double alkaline earth metal chloride. In this case, the crystal index value (V / Z) is 50 to 130 3 3 , 75 to 90 3 3, and further 77 to 85 3 3 .
- this double metal salt has a CaF 2 type, SrI 2 type, CaCl 2 type or SrBr 2 type crystal structure depending on the value of the composite ratio x.
- the halogen element is any of chlorine (Cl), bromine (Br), or iodine (I) having affinity among the group elements (group 17 elements). It is preferable that they are two or more.
- the chemical heat storage material of the present invention may be a double metal salt alone or a mixture of a double metal salt and a single metal salt. Further, these double metal salts and single metal salts may be hydrates or ammine complexes.
- the metal salt used as a raw material may be a single metal salt or a double metal salt regardless of the type.
- the single metal salt used as the raw material include alkali metal chlorides such as LiCl, NaCl, and KCl, alkaline earth metal chlorides such as MgCl 2 , CaCl 2 , and SrCl 2 , MnCl 2 , FeCl 2 , CoCl 2 , and NiCl. Transition metal chlorides such as 2 .
- the combination of these metal salts is free, the combination of affinity metal salts is preferable as described above.
- the molding step is a step of obtaining a molded body obtained by press-molding a mixed metal salt obtained by mixing two or more kinds of metal salts, and is arbitrarily performed.
- the molding pressure at this time is preferably, for example, 40 MPa or more, further 60 MPa or more. If the molding pressure is too low, the contact between two or more metal salts becomes insufficient, and the diffusion in the firing process cannot be sufficiently promoted.
- the upper limit of the molding pressure is not limited, but productivity is good when it is 300 MPa or less, further 150 MPa or less.
- the molding step is preferably performed in a low humidity environment where the water concentration is 0.3% or less, 100 ppm or less, 10 ppm or less, or 1 ppm or less.
- the firing step is a step for firing the mixed metal salt, and is an essential step for diffusing the constituent elements of the double metal salt to form a composite at the atomic level.
- a baking process becomes a process of obtaining the baked body which baked said molded object.
- the firing temperature is preferably 300 to 800 ° C, 500 to 700 ° C, and more preferably 550 to 650 ° C. If the firing temperature is too low, the diffusion of each element becomes insufficient, and if the firing temperature is too high, the productivity may be lowered.
- the firing step is preferably performed at a vacuum degree of 1000 Pa or less, 100 Pa or less, and further 10 Pa or less in order to prevent deterioration of the chemical heat storage material due to reaction with atmospheric components.
- a fired body When a fired body is obtained in the firing step, it may be used as it is as a chemical heat storage material, but may be used as a chemical heat storage material by crushing, pulverizing, or the like as appropriate. Furthermore, what granulated the powder particle of double metal salt is good also as a chemical heat storage material.
- the chemical heat storage structure of the present invention basically comprises a chemical heat storage material composed of the above-described double metal salt and a binder that holds the chemical heat storage material, and appropriately includes a high heat conductive material.
- the chemical heat storage material (heat storage particle) used as a raw material may be the double metal salt hydrate or ammine complex described above.
- the chemical heat storage material is in the form of powder or granules, but the particle shape, particle size, etc. are not limited. However, the particle size is preferably 1 ⁇ m to 1 mm when observed with an electron microscope in consideration of the miscibility with the binder and the moldability.
- binder The type of binder is not limited, but an inorganic material is preferable. Further, it is preferable to use silicate or low melting point glass.
- the silicate is preferably an alkali silicate, for example, sodium metasilicate (Na 2 SiO 3 ), lithium metasilicate (Li 2 SiO 3 ), potassium metasilicate (K 2 SiO 3 ), sodium orthosilicate (Na 4 SiO 4 ), sodium metasilicate (Na 2 Si 2 O 5 ) or the like.
- the low melting point glass include borosilicate (lead) glass, lead oxide glass, bismuth oxide glass, and vanadium oxide glass.
- carbon fiber it is also possible to use carbon fiber as a binder. The carbon fiber at this time also functions as a high heat conductive material, and forms a skeleton structure of a chemical heat storage structure to improve its mechanical strength.
- the type of the high thermal conductive material is not limited, and examples thereof include carbon fiber and ceramics having high thermal conductivity.
- the carbon fiber may be a PAN-based carbon fiber made from acrylic fiber or a PITCH-based carbon fiber made from pitch.
- Examples of the ceramic include silicon carbide (SiC) and aluminum nitride (AlN). In any case, a stable one in a heat medium such as ammonia is preferable.
- the reason why the higher the thermal conductivity of the chemical heat storage structure is, the more preferable is as follows.
- the performance of the chemical heat storage system depends on the reaction rate between the chemical heat storage structure and the heat medium (such as water or ammonia). This reaction rate is as follows: (i) Penetration rate (absorption rate, release rate) of heat medium to chemical heat storage structure, (ii) Formation rate of hydrate or ammine complex, etc. (iii) Chemical heat storage structure and external It is affected by the heat exchange rate.
- the heat exchange rate is rate-limiting and greatly affects the performance of the chemical heat storage system. Accordingly, when an appropriate amount of a high heat conductive material (carbon fiber or the like) excellent in heat conductivity and heat transfer exists in the chemical heat storage structure, the heat exchange rate can be improved, and consequently the performance of the chemical heat storage system can be improved.
- the method for producing a chemical heat storage structure of the present invention basically includes a structure mixing step of mixing the above-described chemical heat storage material (heat storage particles), a binder, and an arbitrary high heat conductive material, and pressurizing the obtained mixture. It is preferable to include a structure body forming step for forming, and further comprising a structure body firing step in which the formed body is heated to form a fired body.
- the structure mixing step is a step of obtaining a mixture obtained by mixing (or dispersing) a chemical heat storage material, a binder, and a high thermal conductivity material, for example.
- the mixing method is not limited, but when carbon fiber or the like that is easily damaged is included, the dispersion medium may be removed from the dispersion liquid in which the raw material is dispersed in the dispersion medium to obtain a mixture.
- the metal chloride which comprises a chemical heat storage material reacts with water, and is easy to deliquesce.
- the dispersion medium is preferably one that does not contain water like the organic dispersion medium, for example, acetone, heptane, hexane, toluene, and the like.
- this step is preferably performed in a low humidity environment.
- the moisture concentration in the atmosphere is preferably 0.7% or less, 0.3% or less, and more preferably 0.1% or less.
- a mixture of a chemical heat storage material and a binder or the like may be put into a cavity of a forming mold and may be pressure-molded, or may be compressed with a roller or the like without using a forming mold. You may shape
- a method corresponding to the desired shape of the chemical heat storage structure may be employed.
- the molding pressure at this time is preferably 40 to 300 MPa, more preferably 60 to 250 MPa, for example. If the molding pressure is too low, the heat output per volume of the chemical heat storage structure and the mechanical strength will be reduced, and if it is too high, it will be difficult to ensure the porosity necessary for adsorption / desorption of the heat medium. This step is also preferably performed in a low humidity environment.
- the structure firing step is not essential, but by performing this step, a chemical heat storage structure in which a chemical heat storage material and a binder or the like are firmly bonded is obtained.
- the firing temperature is preferably 100 to 300 ° C, more preferably 150 to 250 ° C. If the firing temperature is too low, a strong fired body (chemical heat storage structure) cannot be obtained. If the firing temperature is too high, sintering of the chemical heat storage materials proceeds excessively, impeding the penetration of the heat medium into the chemical heat storage structure. It is not preferable.
- the firing step is preferably performed at a degree of vacuum of 1000 Pa or less, further 100 Pa or less. This is to prevent deterioration of the chemical heat storage material due to reaction with atmospheric components.
- Firing step A fired body obtained by firing the compact at 600 ° C was obtained. This firing step was performed in a vacuum processing furnace of 1 Pa or less. The fired body thus obtained was referred to as Sample No. 1 was used for various measurements described below. In addition, what grind
- Sample No. C1-C3> (1) Sample No. C1 CaCl 2 powder (Aldrich C4901) and SrCl 2 powder (Aldrich 439665) were weighed to a molar ratio of 1: 1 and mixed using a spoon. The mixed powder thus obtained was referred to as Sample No. C1. In addition, mixing of the raw material powder was performed in a low humidity environment with a moisture concentration of 1 ppm or less using the above-described glove box.
- X-ray diffraction Sample No. 1 and sample no. X-ray diffraction measurement was performed on the C1 chemical heat storage material (powder). Each X-ray diffraction pattern thus obtained is shown in FIG. The measurement was performed by RINT-TTR manufactured by Rigaku Corporation in a room temperature / atmosphere using a CuK ⁇ radiation source. A simple sealing process was performed to prevent reaction between the sample being measured and atmospheric components.
- the sample filling part of the reactor was heated to 69 ° C., and NH 3 was pressurized to 570 kPa. Thereafter, the pressure was reduced to 100 kPa at 69 ° C., and measurement was started from this state.
- the reactor used here is made of stainless steel and is equipped with a valve and pressure gauge for supplying and degassing ammonia gas.
- Sample No. obtained by mixing, forming and firing raw material powders. 1 was found to have a SrI 2 type crystal structure different from the crystal structure of CaCl 2 or SrCl 2 .
- sample no. Unlike CaCl 2 and SrCl 2 1 can be said to be a new double metal chloride (Ca 0.5 Sr 0.5 Cl 2 ) in which constituent elements are bonded at the atomic level.
- sample no. The crystal structure diagrams of Ca 0.5 Sr 0.5 Cl 2 according to No. 1 and its raw materials CaCl 2 and SrCl 2 are shown in FIGS. 3A to 3C, respectively.
- sample No. Ca 0.5 Sr 0.5 Cl 2 according to No. 1 has a SrI 2 type crystal structure different from CaCl 2 (CaCl 2 type crystal structure) and SrCl 2 (CaF 2 type crystal structure) which are the raw materials. It was confirmed.
- V / Z The crystal index value (V / Z) was obtained by dividing the unit cell volume (V) obtained from the lattice constant for each sample by the number of chemical units (Z) of each sample.
- Sample No. The V / Z of 1 was 81.3 ⁇ 3 (V: 650.4 ⁇ 3 / Z: 8).
- sample No. The V / Z of C2 (CaCl 2 ) is 83.9 3 3 (V: 167.8 3 3 / Z: 2).
- V / Z of C3 (SrCl 2 ) was 84.7 ⁇ 3 (V: 338.7 3 3 / Z: 4). From these facts, sample no. 1 is sample No. 1. C2 and Sample No. It can be seen that V / Z is smaller than C3.
- Sample No. 1 is V / Z, the sample No. V / Z of C2 and sample No. As a factor that is not an intermediate value of V / Z of C3, there is another crystal structure (SrI type 2 crystal structure).
- the ammonia absorption / release reaction is the following two-step reaction in accordance with the equilibrium ammonia pressure.
- reaction C2-1 / Ammonia pressure: 350 kPa CaCl 2 ⁇ 2NH 3 + 2NH 3 Ca CaCl 2 ⁇ 4NH 3
- reaction C2-2 / Ammonia pressure: 560 kPa CaCl 2 ⁇ 4NH 3 + 4NH 3 Ca CaCl 2 ⁇ 8NH 3
- the coordination number change associated with the ammonia absorption / release reaction occurring under one equilibrium pressure is 2 or 4, and the heat absorption or heat release per one ammonia absorption / release reaction is small.
- the ammonia pressure is changed over a wide range of at least 350 to 560 kPa (pressure difference 210 kPa), and the reactions C2-1 and C2-2 are continuously advanced. It is necessary and still not efficient.
- the ammonia absorption / release reaction is a two-step reaction according to the equilibrium ammonia pressure as follows.
- reaction C3-1 / Ammonia pressure: 340 kPa SrCl 2 ⁇ NH 3 + NH 3 ⁇ SrCl 2 ⁇ 2NH 3
- reaction C3-2 / Ammonia pressure: 460 kPa SrCl 2 ⁇ 2NH 3 + 6NH 3
- the change in coordination number accompanying the ammonia adsorption / release reaction occurring under one equilibrium pressure is 1 or 6, but in order to obtain a larger change in coordination number (7), the ammonia pressure is at least 340 to 460 kPa. It is necessary to continuously advance the reaction C3-1 and the reaction C3-2 by changing over a wide range (pressure difference 120 kPa).
- a chemical heat storage material composed of double metal salts such as 1 causes a large change in coordination number near the equilibrium ammonia pressure. Therefore, by using the chemical heat storage material of the present invention, the efficiency of the chemical heat storage system can be improved. In addition, since the equilibrium ammonia pressure is different from that of the single metal salt, the consistency with the heat medium storage material, which has a low consistency with the conventional single metal salt, is improved.
- sample No. obtained in this way. 2 with sample no. 1 was subjected to pressure-composition isotherm measurement as in 1. However, the pressure range during this measurement was 200 to 600 kPa.
- sample no. No. 2 caused the following ammonia absorption / release reaction (heat medium absorption / release reaction) with a change in coordination number of 6 with the ammonia gas pressure: 485 kPa (equilibrium pressure) as a boundary.
- ammonia absorption / release reaction heat medium absorption / release reaction
- 485 kPa equilibrium pressure
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Sorption Type Refrigeration Machines (AREA)
Abstract
熱媒貯蔵材との整合性や化学蓄熱システムの効率をより向上させ得る新たな化学蓄熱材を提供する。本発明の化学蓄熱材は、熱媒の吸蔵または放出により発熱または吸熱する化学蓄熱材であって、金属元素(M)とハロゲン元素(X)とからなりそれらの少なくとも一方が二種以上の元素からなる金属ハロゲン化物である複金属塩(MXn、n:Mの平均価数)を含むことを特徴とする。また、熱媒を吸蔵または放出する熱媒吸放出反応により、熱媒の配位数が少なくとも4以上変化し得る。本発明の化学蓄熱材の好例として、複アルカリ土類金属ハロゲン化物であるCa0.5Sr0.5Cl2がある。なお、本発明は化学蓄熱材としてのみならずその製造方法としても、また、それを用いた化学蓄熱構造体としても把握できる。
Description
本発明は、複金属塩からなる化学蓄熱材、その製造方法およびそれを用いた化学蓄熱構造体に関する。
環境意識の高揚に伴い、省エネルギー化やエネルギー効率の向上を図る研究開発が盛んになされている。その一つに、蓄熱密度が大きく、保温しなくても長期間の蓄熱が可能な化学蓄熱材を用いた化学蓄熱システムが着目されている。これによると、各種の機器やプラントから生じる比較的低温な廃熱(または排熱)等も有効に活用し得る。
化学蓄熱システムは、化学蓄熱材と熱媒貯蔵材の間で熱媒(アンモニアまたは水等)を移動させることにより、蓄熱(吸熱)と放熱(発熱)を行う。このシステムの高効率化やコンパクト化を図るには、化学蓄熱材と熱媒貯蔵材の間で、作動温度や作動圧力の整合(マッチング)を図ることが重要となる。このため化学蓄熱材には、単に蓄熱密度が高いのみならず、熱媒貯蔵材に整合した作動温度や作動圧力の下で、熱媒を効率的に吸蔵または放出し得るものであることが求められる。
この化学蓄熱材には、従来、水との反応により水酸化物を形成する酸化カルシウム(生石灰)等が一般的に用いられていたが、最近では、より低温域で作動可能なアンモニア錯体(アンミン錯体)を形成する金属塩化物などが利用されつつある。もっとも、塩化カルシウム(CaCl2)等の単金属塩のみからなる化学蓄熱材では、その作動温度や作動圧力が固定的であり、必ずしも熱媒貯蔵材に整合的であるとは限らず、化学蓄熱システムの効率的な運転には限界があった。そこで複数種の単金属塩を用いた化学蓄熱材が提案されており、これに関連する記載が例えば下記の特許文献にある。
特許文献1には、CaCl2とCaBr2を溶解、濃縮および乾燥させたカルシウム塩混合物が、それらの単なる混合物よりも、アンモニア(NH3)放出温度が高くなる旨の記載がある。もっとも、この特許文献では、そのカルシウム塩混合物の結晶構造や作用等が明らかではない。また、そのカルシウム塩混合物は、アンモニアを放出する際の配位数変化がCaCl2単体よりも小さく、可逆的に使用できる蓄熱密度も小さい。
特許文献2には、塩化ナトリウム(NaCl)や塩化カリウム(KCl)を、溶融状態の塩化亜鉛(ZnCl2)へ適量混在させることにより、NH3と反応するZnCl2の蒸気圧や溶融温度を低下させ得る旨の記載がある。しかし、この場合のNaClやKClは、NH3を吸蔵・放出する溶融ZnCl2の安定化を単に図っているに過ぎない。つまり、特許文献2は特性の異なる新たな化学蓄熱材を提供するものではない。
特許文献3~5には、化学蓄熱システム等に関する開示があり、それに用いる化学蓄熱材の一例として金属ハロゲン化物を挙げている。しかし、化学蓄熱材自体に関する具体的な記載はない。
本発明はこのような事情に鑑みて為されたものであり、従来の単金属塩からなる化学蓄熱材とは熱媒吸放出反応が生じる圧力・温度領域や配位数変化が異なり、熱媒貯蔵材により整合的で、化学蓄熱システムを効率的に作動させ得る新たな化学蓄熱材およびその製造方法を提供することを目的とする。また、その化学蓄熱材を用いた化学蓄熱構造体を提供することを目的とする。
本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、単金属塩である塩化カルシウム(CaCl2)と塩化ストロンチウム(SrCl2)から、それらの混合金属塩とは異なる複金属塩であるCa0.5Sr0.5Cl2(CaSrCl4)を合成することに成功した。この複金属塩は、従来の単金属塩とは異なる条件下で熱媒吸放出反応を生じ、大きな配位数変化を示した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。
《化学蓄熱材》
(1)本発明の化学蓄熱材は、熱媒の吸蔵または放出により発熱または吸熱する化学蓄熱材であって、金属元素(M)とハロゲン元素(X)とからなりそれらの少なくとも一方が二種以上の元素からなる金属ハロゲン化物である複金属塩(MXn、n:Mの平均価数)を含むことを特徴とする。
(1)本発明の化学蓄熱材は、熱媒の吸蔵または放出により発熱または吸熱する化学蓄熱材であって、金属元素(M)とハロゲン元素(X)とからなりそれらの少なくとも一方が二種以上の元素からなる金属ハロゲン化物である複金属塩(MXn、n:Mの平均価数)を含むことを特徴とする。
(2)本発明の化学蓄熱材は、単金属塩(一種の金属イオン(カチオン)と一種のアニオンがイオン結合した化合物)の単なる混合物ではなく、複数の金属元素および/または複数のハロゲン元素が、原子レベルで複合化(イオン結合)した複金属塩からなる。
この複金属塩は、化学蓄熱材として用いられてきた単金属塩やその混合物(混合金属塩)とは異なる種々の特性を示し得る。例えば、結晶構造、熱媒吸放出反応を生じる平衡圧力、その際の配位数変化等が従来の単金属塩と異なる。また、その平衡圧力や配位数変化などは、複金属塩を構成する元素の比率(複合比)を調整することにより変更可能である。従って本発明によれば、熱媒貯蔵材の作動特性ひいては化学蓄熱システムの効率化に適した、高蓄熱密度の化学蓄熱材を提供可能となる。
(3)このように本発明に係る複金属塩が、従来の単金属塩とは異なる特性を発現する理由は必ずしも定かではないが、現状では次のように考えられる。すなわち、カチオンとアニオンの平均イオン半径比と電気陰性度比が適切な値となり配位数変化が大きな結晶構造と格子体積を有するようになったためと考えられる。
(4)本発明の化学蓄熱材は、上述した複金属塩を含むものであればよく、二種以上の複金属塩からなるもの、複金属塩と単金属塩が混在したものなどでもよい。複金属塩に他の金属塩等を混在させて化学蓄熱材の成分を調整することにより、熱媒貯蔵材との整合性、熱媒吸放出反応の平衡域、熱媒の配位数変化等のさらなる最適化を図り得る。
《化学蓄熱材の製造方法》
上述した本発明の化学蓄熱材は、例えば、次のような本発明の製造方法により得られる。すなわち、上述した化学蓄熱材は、二種以上の金属塩を混合した混合金属塩を焼成する焼成工程により得ることが可能である。焼成工程により、金属塩に含まれてた金属イオン(例えばCa2+、Sr2+)やハロゲンイオン(例えばCl-、Br-等)がそれぞれ拡散して、単なる混合金属塩よりも熱力学的に安定な複金属塩(例えば、CaxSr1-xCl2)が生成されると考えられる。
上述した本発明の化学蓄熱材は、例えば、次のような本発明の製造方法により得られる。すなわち、上述した化学蓄熱材は、二種以上の金属塩を混合した混合金属塩を焼成する焼成工程により得ることが可能である。焼成工程により、金属塩に含まれてた金属イオン(例えばCa2+、Sr2+)やハロゲンイオン(例えばCl-、Br-等)がそれぞれ拡散して、単なる混合金属塩よりも熱力学的に安定な複金属塩(例えば、CaxSr1-xCl2)が生成されると考えられる。
また本発明の製造方法は、前記焼成工程前に混合金属塩を加圧成形した成形体を得る成形工程をさらに備え、前記焼成工程はその成形体を焼成した焼成体を得る工程としてもよい。これにより、より均一的な化学蓄熱材を得ることが可能となる。なお、得られた焼成体をそのまま化学蓄熱材として用いても良いし、それを解砕、粉砕したものを化学蓄熱材として用いてもよい。
《化学蓄熱構造体》
(1)本発明は、上述した化学蓄熱材およびその製造方法としてのみならず、その化学蓄熱材からなる化学蓄熱構造体としても把握できる。すなわち本発明は、上述した化学蓄熱材と該化学蓄熱材を保持するバインダーとからなることを特徴とする化学蓄熱構造体としても把握できる。これにより反応器等の仕様に応じた形態をもち、機械的強度に優れた化学蓄熱構造体が得られる。
(1)本発明は、上述した化学蓄熱材およびその製造方法としてのみならず、その化学蓄熱材からなる化学蓄熱構造体としても把握できる。すなわち本発明は、上述した化学蓄熱材と該化学蓄熱材を保持するバインダーとからなることを特徴とする化学蓄熱構造体としても把握できる。これにより反応器等の仕様に応じた形態をもち、機械的強度に優れた化学蓄熱構造体が得られる。
(2)この化学蓄熱構造体は、さらに、化学蓄熱材およびバインダーよりも熱伝導性に優れる高熱伝導材を含むものであると好適である。高熱伝導材を含むことにより、化学蓄熱構造体と外部との熱交換速度が大きくなり、熱媒吸放出反応が促進されて化学蓄熱システムの高効率化が図られる。なお、バインダーと高熱伝導材は、別材料である必要はなく、同一材料でもよい。例えば、高熱伝導材である炭素繊維をバインダーとして使用することもできる。
《その他》
特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値や数値範囲に含まれる任意の数値を適当に選択または抽出し、それらを新たな下限値または上限値として「a~b」のような数値範囲を任意に新設し得る。
発明の実施形態を挙げて本発明をより詳しく説明する。本明細書中から任意に選択した一つまたは二つ以上の内容を上述した本発明の構成として付加し得る。本明細書で説明する内容は、化学蓄熱材のみならず、その製造方法や化学蓄熱構造体にも適宜適用される。製造方法に関する構成は、プロダクトバイプロセスとして理解すれば物に関する構成になり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。
《化学蓄熱材》
(1)MXn
本発明に係る複金属塩は、MXn(M:金属元素、X:ハロゲン元素、MXn、n:Mの平均価数)と表され、MまたはXの少なくとも一方が二種以上の元素からなる複金属塩である。ここでMの平均価数(n)とは、複数の金属元素がそれぞれ金属イオンとなったときのイオン価数の平均値である。例えば、二種の金属元素(M1、M2)と一種のハロゲン元素(X)とからなり、M1のイオン価数がm1、M2のイオン価数がm2、金属元素の全原子数に対するM1の原子数の割合(複合比)がx(0<x<1)である複金属塩(M1xM21-xXn)の場合、n=m1×x+m2×(1-x)となる。
(1)MXn
本発明に係る複金属塩は、MXn(M:金属元素、X:ハロゲン元素、MXn、n:Mの平均価数)と表され、MまたはXの少なくとも一方が二種以上の元素からなる複金属塩である。ここでMの平均価数(n)とは、複数の金属元素がそれぞれ金属イオンとなったときのイオン価数の平均値である。例えば、二種の金属元素(M1、M2)と一種のハロゲン元素(X)とからなり、M1のイオン価数がm1、M2のイオン価数がm2、金属元素の全原子数に対するM1の原子数の割合(複合比)がx(0<x<1)である複金属塩(M1xM21-xXn)の場合、n=m1×x+m2×(1-x)となる。
また複金属塩が複数のハロゲン元素からなる場合もある。ハロゲン元素のイオン価数は通常いずれも-1であるから、例えば二種のハロゲン元素(X1、X2)からなる複金属塩なら、ハロゲン元素の全原子数に対するX1の原子数の割合(複合比)をy(0<y<1)として、M(X1yX21-y)nと表される。さらに、二種の金属元素と二種のハロゲン元素からなる複金属塩であればM1xM21-x(X1yX21-y)nと表される。
(2)結晶構造
本発明に係る複金属塩は、構成元素に応じて種々の結晶構造をとり得る。例えば、CaF2型、SrI2型、CaCl2型、SrBr2型、PbCl2型、CdCl2型、CdI2型等の結晶構造を有する。複金属塩の結晶構造は限定されず、その結晶構造は、基本となる単金属塩の結晶構造と異なる場合もあるし、同じ場合もある。ただし、結晶構造が同じ場合でも、複金属塩の格子体積は単金属塩とは異なる値を示す。これにより、複金属塩は単金属塩とは異なる特性(平衡圧力、配位数変化等)を発現し得る。
本発明に係る複金属塩は、構成元素に応じて種々の結晶構造をとり得る。例えば、CaF2型、SrI2型、CaCl2型、SrBr2型、PbCl2型、CdCl2型、CdI2型等の結晶構造を有する。複金属塩の結晶構造は限定されず、その結晶構造は、基本となる単金属塩の結晶構造と異なる場合もあるし、同じ場合もある。ただし、結晶構造が同じ場合でも、複金属塩の格子体積は単金属塩とは異なる値を示す。これにより、複金属塩は単金属塩とは異なる特性(平衡圧力、配位数変化等)を発現し得る。
複金属塩は、特定の作動域で熱媒の配位数変化が急変するほど、熱媒貯蔵材に整合的な蓄熱密度が高くなり好ましい。そこで複金属塩は、熱媒を吸蔵または放出する熱媒吸放出反応が平衡状態となる平衡域の近傍(前後)で、熱媒の配位数が少なくとも4以上、5以上さらには6以上変化する結晶構造を有すると好適である。
(3)親和性
本発明に係る複金属塩が二種以上の金属元素(M1、M2・・・)からなる場合、それら金属元素は相互に親和性の高い元素であると好適である。これにより安定した複金属塩が合成され易い。また親和的な金属元素からなる二種以上の単金属塩を原料とする複金属塩は、組成や複合比に依るが、熱媒吸放出反応の作動域がそれら単金属塩の作動域の中間となり易い。従って、単金属塩の種類とそれらの配合比(複合比)を適切に選択した複金属塩を用いれば、単金属塩を用いた場合に生じていた作動域の空白域を補填し得る。その結果、熱媒貯蔵材との整合性の向上ひいては化学蓄熱システムの効率性の向上を図れ得る。なお、本明細書でいう親和性は、二種以上の金属元素が、単体として類似した特性を有するだけではなく、ハロゲン化物(単金属塩)として熱媒吸放出反応時に生じる熱量が近似していることも含む。例えば、そのハロゲン化物が熱媒である水と水和物を形成するときの生成熱量や熱媒であるアンモニアとアンミン錯体を形成するときの生成熱量が、二種以上の金属元素間で近似している場合に、本明細書では金属元素間に親和性があるという。
本発明に係る複金属塩が二種以上の金属元素(M1、M2・・・)からなる場合、それら金属元素は相互に親和性の高い元素であると好適である。これにより安定した複金属塩が合成され易い。また親和的な金属元素からなる二種以上の単金属塩を原料とする複金属塩は、組成や複合比に依るが、熱媒吸放出反応の作動域がそれら単金属塩の作動域の中間となり易い。従って、単金属塩の種類とそれらの配合比(複合比)を適切に選択した複金属塩を用いれば、単金属塩を用いた場合に生じていた作動域の空白域を補填し得る。その結果、熱媒貯蔵材との整合性の向上ひいては化学蓄熱システムの効率性の向上を図れ得る。なお、本明細書でいう親和性は、二種以上の金属元素が、単体として類似した特性を有するだけではなく、ハロゲン化物(単金属塩)として熱媒吸放出反応時に生じる熱量が近似していることも含む。例えば、そのハロゲン化物が熱媒である水と水和物を形成するときの生成熱量や熱媒であるアンモニアとアンミン錯体を形成するときの生成熱量が、二種以上の金属元素間で近似している場合に、本明細書では金属元素間に親和性があるという。
複数の金属元素が親和的である具体的な場合として、金属元素が同族元素である場合、同価数のイオンとなり得る場合、電子配置が近い場合、相互に固溶体を生成する場合等である。また単金属塩(ハロゲン化物)として、熱媒吸放出反応を生じる作動域、配位数または配位数変化等が近い場合等である。
親和的な金属元素を具体的に挙げると、アルカリ土類金属元素間(Mg、Ca、Sr、Ba等)等がある。このような金属元素からなる複金属塩の好例として、二種以上のアルカリ土類金属元素とハロゲン元素からなる複アルカリ土類金属ハロゲン化物がある。より具体的には、複アルカリ土類金属塩化物であるCaxSr1-xCl2(0<x<1)がある。この場合、結晶指標値(V/Z)が50~130Å3、75~90Å3さらには77~85Å3となる。ちなみに、この複金属塩は複合比xの値に応じて、CaF2型、SrI2型、CaCl2型またはSrBr2型のいずれかの結晶構造をとる。
なお、複金属塩が二種以上のハロゲン元素からなる場合、そのハロゲン元素は、同族元素(第17族元素)の中でも親和的な塩素(Cl)、臭素(Br)またはヨウ素(I)のいずれか二種以上であると好適である。
本発明に係る複金属塩の好例として、上述したもの以外に、SryBa1-yCl2(0<y<1)、Sr(ClzBr1-z)2(0<z<1)、K2SrCl4 、KSr2Cl5等がある。なお、y、zは複合比である。
(4)その他
本発明の化学蓄熱材は、複金属塩単体のみでも、複金属塩と単金属塩等との混合物でもよい。また、それら複金属塩や単金属塩は水和物またはアンミン錯体であってもよい。
本発明の化学蓄熱材は、複金属塩単体のみでも、複金属塩と単金属塩等との混合物でもよい。また、それら複金属塩や単金属塩は水和物またはアンミン錯体であってもよい。
《化学蓄熱材の製造方法》
(1)原料
原料となる金属塩は、その種類を問わず、単金属塩のみでもよいし、複金属塩を含むものでもよい。この原料となる単金属塩として、例えば、LiCl、NaClまたはKClなどのアルカリ金属塩化物、MgCl2 、CaCl2 、SrCl2などのアルカリ土類金属塩化物、MnCl2、FeCl2、CoCl2、NiCl2等の遷移金属塩化物などがある。これらの金属塩の組み合わせは自由であるが、上述したように親和的な金属塩の組み合わせが好ましい。
(1)原料
原料となる金属塩は、その種類を問わず、単金属塩のみでもよいし、複金属塩を含むものでもよい。この原料となる単金属塩として、例えば、LiCl、NaClまたはKClなどのアルカリ金属塩化物、MgCl2 、CaCl2 、SrCl2などのアルカリ土類金属塩化物、MnCl2、FeCl2、CoCl2、NiCl2等の遷移金属塩化物などがある。これらの金属塩の組み合わせは自由であるが、上述したように親和的な金属塩の組み合わせが好ましい。
(2)成形工程
成形工程は、二種以上の金属塩を混合した混合金属塩を加圧成形した成形体を得る工程であり、任意になされる。この際の成形圧力は、例えば、40MPa以上さらには60MPa以上であると好ましい。成形圧力が過小では、二種以上の金属塩の接触が不十分となり、焼成工程における拡散の促進を十分には図れない。成形圧力の上限は問わないが、300MPa以下さらには150MPa以下とすると生産性がよい。また成形工程は、潮解を避けるために、水分濃度が0.3%以下、100ppm以下、10ppm以下さらには1ppm以下の低湿度環境下で行うと好ましい。
成形工程は、二種以上の金属塩を混合した混合金属塩を加圧成形した成形体を得る工程であり、任意になされる。この際の成形圧力は、例えば、40MPa以上さらには60MPa以上であると好ましい。成形圧力が過小では、二種以上の金属塩の接触が不十分となり、焼成工程における拡散の促進を十分には図れない。成形圧力の上限は問わないが、300MPa以下さらには150MPa以下とすると生産性がよい。また成形工程は、潮解を避けるために、水分濃度が0.3%以下、100ppm以下、10ppm以下さらには1ppm以下の低湿度環境下で行うと好ましい。
(3)焼成工程
焼成工程は、上記の混合金属塩を焼成する工程であり、複金属塩の構成元素を拡散させて原子レベルで複合化させるために必須な工程である。本工程前に成形工程を行う場合、焼成工程は上記の成形体を焼成した焼成体を得る工程となる。焼成温度は300~800℃、500~700℃さらには550~650℃であると好ましい。焼成温度が過小では各元素の拡散が不十分となり、焼成温度が過大では生産性が低下し得る。また焼成工程は、大気成分との反応による化学蓄熱材の劣化を防ぐため、真空度1000Pa以下、100Pa以下さらには10Pa以下でなされると好ましい。
焼成工程は、上記の混合金属塩を焼成する工程であり、複金属塩の構成元素を拡散させて原子レベルで複合化させるために必須な工程である。本工程前に成形工程を行う場合、焼成工程は上記の成形体を焼成した焼成体を得る工程となる。焼成温度は300~800℃、500~700℃さらには550~650℃であると好ましい。焼成温度が過小では各元素の拡散が不十分となり、焼成温度が過大では生産性が低下し得る。また焼成工程は、大気成分との反応による化学蓄熱材の劣化を防ぐため、真空度1000Pa以下、100Pa以下さらには10Pa以下でなされると好ましい。
(4)その他
焼成工程で焼成体が得られる場合、それをそのまま化学蓄熱材として用いても良いが、適宜、解砕、粉砕等して化学蓄熱材として用いてもよい。さらには、複金属塩の粉末粒子を造粒したものを化学蓄熱材としてもよい。
焼成工程で焼成体が得られる場合、それをそのまま化学蓄熱材として用いても良いが、適宜、解砕、粉砕等して化学蓄熱材として用いてもよい。さらには、複金属塩の粉末粒子を造粒したものを化学蓄熱材としてもよい。
《化学蓄熱構造体》
本発明の化学蓄熱構造体は、基本的に上述した複金属塩からなる化学蓄熱材とこの化学蓄熱材を保持するバインダーとからなり、適宜、高熱伝導材を含む。
本発明の化学蓄熱構造体は、基本的に上述した複金属塩からなる化学蓄熱材とこの化学蓄熱材を保持するバインダーとからなり、適宜、高熱伝導材を含む。
(1)化学蓄熱材
原料となる化学蓄熱材(蓄熱粒子)は、上述した複金属塩の水和物やアンミン錯体でも良い。この化学蓄熱材は、粉末状または顆粒状であるが、その粒形や粒径等は問わない。もっとも、バインダーとの混合性や成形性等を考慮して、その粒径は電子顕微鏡で観察して1μm~1mmであると好ましい。
原料となる化学蓄熱材(蓄熱粒子)は、上述した複金属塩の水和物やアンミン錯体でも良い。この化学蓄熱材は、粉末状または顆粒状であるが、その粒形や粒径等は問わない。もっとも、バインダーとの混合性や成形性等を考慮して、その粒径は電子顕微鏡で観察して1μm~1mmであると好ましい。
(2)バインダー
バインダーは、その種類を問わないが、無機材料が好ましい。また、ケイ酸塩や低融点ガラスなどを用いると好ましい。このケイ酸塩は、アルカリケイ酸塩が好ましく、例えば、メタケイ酸ナトリウム(Na2SiO3)、メタケイ酸リチウム(Li2SiO3)、メタケイ酸カリウム(K2SiO3)、オルトケイ酸ナトリウム(Na4SiO4)、メタニケイ酸ナトリウム(Na2Si2O5)などのいずれかであると好ましい。また低融点ガラスには、ホウ珪酸(鉛)ガラス、鉛酸化物系ガラス、ビスマス酸化物系ガラス、バナジウム酸化物系ガラスなどがある。さらには、炭素繊維をバインダーとして用いることも可能である。このときの炭素繊維は、高熱伝導材としても機能すると共に、化学蓄熱構造体の骨格構造を形成して、その機械的強度を向上させる。
バインダーは、その種類を問わないが、無機材料が好ましい。また、ケイ酸塩や低融点ガラスなどを用いると好ましい。このケイ酸塩は、アルカリケイ酸塩が好ましく、例えば、メタケイ酸ナトリウム(Na2SiO3)、メタケイ酸リチウム(Li2SiO3)、メタケイ酸カリウム(K2SiO3)、オルトケイ酸ナトリウム(Na4SiO4)、メタニケイ酸ナトリウム(Na2Si2O5)などのいずれかであると好ましい。また低融点ガラスには、ホウ珪酸(鉛)ガラス、鉛酸化物系ガラス、ビスマス酸化物系ガラス、バナジウム酸化物系ガラスなどがある。さらには、炭素繊維をバインダーとして用いることも可能である。このときの炭素繊維は、高熱伝導材としても機能すると共に、化学蓄熱構造体の骨格構造を形成して、その機械的強度を向上させる。
(3)高熱伝導材
高熱伝導材を混在させることにより、化学蓄熱構造体中に熱伝導パスが形成され、その熱伝導性が向上する。高熱伝導材は、その種類を問わないが、例えば、炭素繊維や高熱伝導率のセラミックスなどである。炭素繊維は、アクリル繊維から作ったPAN系炭素繊維でも、ピッチから作ったPITCH系炭素繊維でも良い。セラミックスには、例えば、炭化ケイ素(SiC)、窒化アルミニウム(AlN)などがある。いずれの場合も、アンモニア等の熱媒中で安定なものが好ましい。
高熱伝導材を混在させることにより、化学蓄熱構造体中に熱伝導パスが形成され、その熱伝導性が向上する。高熱伝導材は、その種類を問わないが、例えば、炭素繊維や高熱伝導率のセラミックスなどである。炭素繊維は、アクリル繊維から作ったPAN系炭素繊維でも、ピッチから作ったPITCH系炭素繊維でも良い。セラミックスには、例えば、炭化ケイ素(SiC)、窒化アルミニウム(AlN)などがある。いずれの場合も、アンモニア等の熱媒中で安定なものが好ましい。
ちなみに、化学蓄熱構造体の熱伝導性が高いほど好ましい理由は次の通りである。化学蓄熱システムの性能は、化学蓄熱構造体と熱媒(水またはアンモニア等)との反応速度に左右される。この反応速度は、(i)熱媒の化学蓄熱構造体への浸透速度(吸収速度、放出速度)、(ii)水和物やアンミン錯体等の生成速度、(iii)化学蓄熱構造体と外部との熱交換速度による影響を受ける。この中でも熱交換速度が律速的であり、化学蓄熱システムの性能に大きく影響する。従って化学蓄熱構造体中に、熱伝導性や熱伝達性に優れる高熱伝導材(炭素繊維等)が適量存在すると、その熱交換速度が向上し、ひいては化学蓄熱システムの性能が向上し得る。
《化学蓄熱構造体の製造方法》
本発明の化学蓄熱構造体の製造方法は、基本的に、上述した化学蓄熱材(蓄熱粒子)とバインダーさらには任意の高熱伝導材を混合する構造体混合工程と、得られた混合物を加圧成形する構造体成形工程とからなり、さらにその成形体を加熱して焼成体とする構造体焼成工程を備えると好適である。
本発明の化学蓄熱構造体の製造方法は、基本的に、上述した化学蓄熱材(蓄熱粒子)とバインダーさらには任意の高熱伝導材を混合する構造体混合工程と、得られた混合物を加圧成形する構造体成形工程とからなり、さらにその成形体を加熱して焼成体とする構造体焼成工程を備えると好適である。
(1)構造体混合工程
構造体混合工程は、例えば、化学蓄熱材とバインダーさらには高熱伝導材とを混合(または分散)させた混合物を得る工程である。混合方法は問わないが、損傷し易い炭素繊維等を含む場合は、原料を分散媒中に分散させた分散液から、その分散媒を除去して、混合物を得るとよい。なお、化学蓄熱材を構成する金属塩化物は水と反応して潮解等し易い。このため、その分散媒は、有機分散媒のように水分を含まないもの、例えば、アセトン、ヘプタン、ヘキサン、トルエン等が好ましい。いずれにしろ本工程は、低湿度環境下でなされるのが好ましい。この「低湿度環境下」は、雰囲気中の水分濃度が0.7%以下、0.3%以下さらには0.1%以下であると好ましい。
構造体混合工程は、例えば、化学蓄熱材とバインダーさらには高熱伝導材とを混合(または分散)させた混合物を得る工程である。混合方法は問わないが、損傷し易い炭素繊維等を含む場合は、原料を分散媒中に分散させた分散液から、その分散媒を除去して、混合物を得るとよい。なお、化学蓄熱材を構成する金属塩化物は水と反応して潮解等し易い。このため、その分散媒は、有機分散媒のように水分を含まないもの、例えば、アセトン、ヘプタン、ヘキサン、トルエン等が好ましい。いずれにしろ本工程は、低湿度環境下でなされるのが好ましい。この「低湿度環境下」は、雰囲気中の水分濃度が0.7%以下、0.3%以下さらには0.1%以下であると好ましい。
(2)構造体成形工程
構造体成形工程は、化学蓄熱材とバインダー等の混合物を成形型のキャビティへ投入して加圧成形してもよいし、成形型を用いるまでもなくローラ等で圧縮成形してもよい。所望する化学蓄熱構造体の形状に応じた方法を採用するとよい。この際の成形圧力は、例えば、40~300MPaさらには60~250MPaであると好ましい。成形圧力が過小では、化学蓄熱構造体の体積あたりの熱出力や機械的強度の低下を招き、それが過大では、熱媒の吸脱に必要となる空孔率の確保が困難となる。本工程も低湿度環境下で行うのがよい。
構造体成形工程は、化学蓄熱材とバインダー等の混合物を成形型のキャビティへ投入して加圧成形してもよいし、成形型を用いるまでもなくローラ等で圧縮成形してもよい。所望する化学蓄熱構造体の形状に応じた方法を採用するとよい。この際の成形圧力は、例えば、40~300MPaさらには60~250MPaであると好ましい。成形圧力が過小では、化学蓄熱構造体の体積あたりの熱出力や機械的強度の低下を招き、それが過大では、熱媒の吸脱に必要となる空孔率の確保が困難となる。本工程も低湿度環境下で行うのがよい。
(3)構造体焼成工程
構造体焼成工程は、必須ではないが、本工程を行うことにより、化学蓄熱材とバインダー等が強固に結合した化学蓄熱構造体が得られる。焼成温度は、100~300℃さらには150~250℃であると好ましい。焼成温度が過小では強固な焼成体(化学蓄熱構造体)が得られず、焼成温度が過大では化学蓄熱材同士の焼結が過度に進行し、化学蓄熱構造体への熱媒の浸透が阻害されて好ましくない。焼成工程は、真空度1000Pa以下さらには100Pa以下でなされると好ましい。大気成分との反応による化学蓄熱材の劣化を防ぐためである。
構造体焼成工程は、必須ではないが、本工程を行うことにより、化学蓄熱材とバインダー等が強固に結合した化学蓄熱構造体が得られる。焼成温度は、100~300℃さらには150~250℃であると好ましい。焼成温度が過小では強固な焼成体(化学蓄熱構造体)が得られず、焼成温度が過大では化学蓄熱材同士の焼結が過度に進行し、化学蓄熱構造体への熱媒の浸透が阻害されて好ましくない。焼成工程は、真空度1000Pa以下さらには100Pa以下でなされると好ましい。大気成分との反応による化学蓄熱材の劣化を防ぐためである。
実施例を挙げて本発明をより具体的に説明する。
《試料の製造》
〈第一実施例:試料No.1〉
(1)混合工程
原料として、金属ハロゲン化物(アルカリ土類金属塩化物)である塩化カルシウムの水和物(CaCl2・2H2O)の粉末(アルドリッチ社製C5080)と塩化ストロンチウムの水和物(SrCl2・6H2O)の粉末(和光純薬工業社製197-04185)を用意した。これら粉末をモル比が1:1となるように秤量し、メノウ鉢で混合して混合粉末を得た。なお、この混合工程は、(株)美和製作所のグローブボックスを用いて水分濃度:1ppm以下の低湿度環境下で行った。
《試料の製造》
〈第一実施例:試料No.1〉
(1)混合工程
原料として、金属ハロゲン化物(アルカリ土類金属塩化物)である塩化カルシウムの水和物(CaCl2・2H2O)の粉末(アルドリッチ社製C5080)と塩化ストロンチウムの水和物(SrCl2・6H2O)の粉末(和光純薬工業社製197-04185)を用意した。これら粉末をモル比が1:1となるように秤量し、メノウ鉢で混合して混合粉末を得た。なお、この混合工程は、(株)美和製作所のグローブボックスを用いて水分濃度:1ppm以下の低湿度環境下で行った。
(2)成形工程
混合粉末を0.7tonf/cm2(68.6MPa)で加圧して、15×15×2mmのシート状の成形体を得た。この成形工程は、前述したグローブボックスを用いて、水分濃度:1ppm以下の低湿度環境下で行った。
混合粉末を0.7tonf/cm2(68.6MPa)で加圧して、15×15×2mmのシート状の成形体を得た。この成形工程は、前述したグローブボックスを用いて、水分濃度:1ppm以下の低湿度環境下で行った。
(3)焼成工程
この成形体を600℃で焼成した焼成体を得た。この焼成工程は1Pa以下の真空処理炉内で行った。こうして得られた焼成体を試料No.1として、後述する各種の測定に供した。なお、X線回折測定用サンプルには、この焼成体を粉砕したものを用いた。
この成形体を600℃で焼成した焼成体を得た。この焼成工程は1Pa以下の真空処理炉内で行った。こうして得られた焼成体を試料No.1として、後述する各種の測定に供した。なお、X線回折測定用サンプルには、この焼成体を粉砕したものを用いた。
〈比較例:試料No.C1~C3〉
(1)試料No.C1
CaCl2の粉末(アルドリッチ社製のC4901)とSrCl2の粉末(アルドリッチ社製439665)を、モル比が1:1となるように秤量して、薬さじを用いて混合した。こうして得られた混合粉末を試料No.C1とした。なお、原料粉末の混合は、前述したグローブボックスを用いて、水分濃度:1ppm以下の低湿度環境下で行った。
(1)試料No.C1
CaCl2の粉末(アルドリッチ社製のC4901)とSrCl2の粉末(アルドリッチ社製439665)を、モル比が1:1となるように秤量して、薬さじを用いて混合した。こうして得られた混合粉末を試料No.C1とした。なお、原料粉末の混合は、前述したグローブボックスを用いて、水分濃度:1ppm以下の低湿度環境下で行った。
(2)試料No.C2および試料No.C3
上記のCaCl2の粉末自体を試料No.C2、 上記のSrCl2の粉末自体を試料No.C3とした。試料No.C1~C3についても、試料No.1と同様の測定に供した。
上記のCaCl2の粉末自体を試料No.C2、 上記のSrCl2の粉末自体を試料No.C3とした。試料No.C1~C3についても、試料No.1と同様の測定に供した。
《測定》
(1)X線回折
試料No.1および試料No.C1の化学蓄熱材(粉末)についてX線回折測定を行った。こうして得られた各X線回折パターンを図1に示す。なお、測定はリガク社製RINT-TTRにより、CuKα線源を用いて、室温・大気中で行った。測定中の試料と大気成分との反応を防ぐため、簡易的な密封処理を行った。
(1)X線回折
試料No.1および試料No.C1の化学蓄熱材(粉末)についてX線回折測定を行った。こうして得られた各X線回折パターンを図1に示す。なお、測定はリガク社製RINT-TTRにより、CuKα線源を用いて、室温・大気中で行った。測定中の試料と大気成分との反応を防ぐため、簡易的な密封処理を行った。
(2)格子定数
各試料のV/Zに係る単位格子体積(V)を特定するため、X線回折測定から得られたプロファイルから試料の結晶糸と各回折線の回折指数を同定し、最小2乗法を用いて、各試料の結晶の格子定数を算出した。
各試料のV/Zに係る単位格子体積(V)を特定するため、X線回折測定から得られたプロファイルから試料の結晶糸と各回折線の回折指数を同定し、最小2乗法を用いて、各試料の結晶の格子定数を算出した。
(3)圧力-組成等温線測定
試料No.1~C3の化学蓄熱材を反応器に充填して、容量法に基づき、等温(69℃)下における圧力(150~600kPa)と組成(アンモニア配位数)の関係を調べた。各試料の結果を図2に重ねて示した。この測定は、具体的には次のようにして行った。試料を水分濃度1ppm以下の低湿度環境下で反応器(内容積約5cc)に充填して密封した。反応器をハンドメイドのジーベルツ型装置に接続し、反応器内を真空排気した。ウォータバスを用いて、反応器の試料充填部を69℃に加熱し、NH3を570kPaまで加圧した。その後、69℃で100kPaまで減圧し、その状態から測定を開始した。
試料No.1~C3の化学蓄熱材を反応器に充填して、容量法に基づき、等温(69℃)下における圧力(150~600kPa)と組成(アンモニア配位数)の関係を調べた。各試料の結果を図2に重ねて示した。この測定は、具体的には次のようにして行った。試料を水分濃度1ppm以下の低湿度環境下で反応器(内容積約5cc)に充填して密封した。反応器をハンドメイドのジーベルツ型装置に接続し、反応器内を真空排気した。ウォータバスを用いて、反応器の試料充填部を69℃に加熱し、NH3を570kPaまで加圧した。その後、69℃で100kPaまで減圧し、その状態から測定を開始した。
ちなみに、ここで用いた反応器はステンレス製で、アンモニアガスの供給脱気のためのバルブや圧力計を具備している。
なお、試料No.1については、この測定を5回繰り返して行ったが、毎回、同様な圧力変化と配位数変化を示した。つまり、アンモニアの吸蔵・放出を繰り返しても、試料No.1の化学蓄熱材の劣化は観られなかった。
《評価》
(1)結晶構造
図1に示すX線回折パターンから明らかなように、試料No.C1は原料であるCaCl2粉末とSrCl2粉末にそれぞれ対応したCaCl2型結晶構造とSrCl2型結晶構造が観測された。
(1)結晶構造
図1に示すX線回折パターンから明らかなように、試料No.C1は原料であるCaCl2粉末とSrCl2粉末にそれぞれ対応したCaCl2型結晶構造とSrCl2型結晶構造が観測された。
一方、原料粉末を混合、成形および焼成した試料No.1は、CaCl2 やSrCl2 の結晶構造とは異なるSrI2型結晶構造からなることがわかった。以上のことから、試料No.1は、CaCl2 やSrCl2 とは異なり、構成元素が原子レベルで結合した新たな複金属塩化物(Ca0.5Sr0.5Cl2)であるといえる。参考までに、試料No.1に係るCa0.5Sr0.5Cl2とその原料であるCaCl2および SrCl2とに係る結晶構造図をそれぞれ図3A~図3Cに示した。これらの結晶構造図は、図1に示したX線回折パターンに基づきリートベルト解析法により導出したものである。これらの結果からも、試料No.1に係るCa0.5Sr0.5Cl2は、その原料であるCaCl2(CaCl2型結晶構造)やSrCl2(CaF2型結晶構造)とは異なるSrI2型結晶構造をしていることが確認された。
(2)V/Z
各試料について格子定数から求めた単位格子体積(V)を、各試料の化学単位数(Z)で除して結晶指標値(V/Z)を求めた。試料No.1のV/Zは81.3Å3(V:650.4Å3/Z:8)であった。一方、試料No.C2(CaCl2)のV/Zは83.9Å3(V:167.8Å3/Z:2)であり、試料No.C3(SrCl2)のV/Zは84.7Å3(V:338.7Å3/Z:4)であった。これらのことから、試料No.1は試料No.C2や試料No.C3よりV/Zが小さいことがわかる。また試料No.1のV/Zが、試料No.C2のV/Zと試料No.C3のV/Zの中間値でない要因として、別の結晶構造(SrI2型結晶構造)であることが挙げられる。
各試料について格子定数から求めた単位格子体積(V)を、各試料の化学単位数(Z)で除して結晶指標値(V/Z)を求めた。試料No.1のV/Zは81.3Å3(V:650.4Å3/Z:8)であった。一方、試料No.C2(CaCl2)のV/Zは83.9Å3(V:167.8Å3/Z:2)であり、試料No.C3(SrCl2)のV/Zは84.7Å3(V:338.7Å3/Z:4)であった。これらのことから、試料No.1は試料No.C2や試料No.C3よりV/Zが小さいことがわかる。また試料No.1のV/Zが、試料No.C2のV/Zと試料No.C3のV/Zの中間値でない要因として、別の結晶構造(SrI2型結晶構造)であることが挙げられる。
以上のことから、CaCl2とSrCl2の混合物を成形、焼成することにより、カルシウムイオン(Ca2+)、ストロンチウムイオン(Sr2+)および塩素イオン(Cl-)の拡散が促進されて、単なるCaCl2とSrCl2の混合物よりも、熱力学的に安定な結晶構造の複金属塩化物(Ca0.5Sr0.5Cl2)が生成されたといえる。
(3)圧力変化と配位数変化
図2からわかるように、試料No.1のCa0.5Sr0.5Cl2は、アンモニア圧力(平衡圧力):490kPaのときに平衡状態となり、次のようなアンモニア吸放出反応(熱媒吸放出反応)が生じる。
(反応1-1/アンモニア圧力:490kPa)
Ca0.5Sr0.5Cl2・2NH3+6NH3 ⇔ Ca0.5Sr0.5Cl2・8NH3
図2からわかるように、試料No.1のCa0.5Sr0.5Cl2は、アンモニア圧力(平衡圧力):490kPaのときに平衡状態となり、次のようなアンモニア吸放出反応(熱媒吸放出反応)が生じる。
(反応1-1/アンモニア圧力:490kPa)
Ca0.5Sr0.5Cl2・2NH3+6NH3 ⇔ Ca0.5Sr0.5Cl2・8NH3
従って、試料No.1の化学蓄熱材を用いると、特定の圧力下(平衡圧力下)における一回のアンモニア吸放出反応で、アンモニアの配位数が6も変化し、大きな吸熱または放熱が可能となり、大きな蓄熱密度が得られることがわかる。しかも、前述したように、この化学蓄熱材は繰り返し使用可能で、耐久性に優れる。
一方、試料No.C1の場合、図2からわかるように、アンモニア吸放出反応が平衡状態となる平衡アンモニア圧力に応じて、次のような4ステップの反応となった。
(反応C1-1/アンモニア圧力:340kPa)
0.5SrCl2・NH3+0.5NH3 ⇔ 0.5SrCl2・2NH3
(反応C1-2/アンモニア圧力:350kPa)
0.5CaCl2・2NH3+NH3 ⇔ 0.5CaCl2・4NH3
(反応C1-3/アンモニア圧力:460kPa)
0.5SrCl2・2NH3+3NH3 ⇔ 0.5SrCl2・8NH3
(反応C1-4/アンモニア圧力:560kPa)
0.5CaCl2・4NH3+2NH3 ⇔ 0.5CaCl2・8NH3
(反応C1-1/アンモニア圧力:340kPa)
0.5SrCl2・NH3+0.5NH3 ⇔ 0.5SrCl2・2NH3
(反応C1-2/アンモニア圧力:350kPa)
0.5CaCl2・2NH3+NH3 ⇔ 0.5CaCl2・4NH3
(反応C1-3/アンモニア圧力:460kPa)
0.5SrCl2・2NH3+3NH3 ⇔ 0.5SrCl2・8NH3
(反応C1-4/アンモニア圧力:560kPa)
0.5CaCl2・4NH3+2NH3 ⇔ 0.5CaCl2・8NH3
試料No.C1の化学蓄熱材を用いると、一つの平衡圧力下で生じるアンモニア吸放出反応に伴う配位数変化が0.5~3に過ぎない。つまり、アンモニア吸放出反応一回あたりの吸熱または放熱が小さく、蓄熱密度も小さくなる。また、大きな配位数変化(6.5)を得るためには、アンモニア圧力を少なくとも340~560kPaの広範囲(圧力差220kPa)で変化させて、反応C1-1~反応C1-4を連続的に進行させる必要があり、効率的ではない。
また試料No.C2の場合、図2からわかるように、アンモニア吸放出反応が平衡アンモニア圧力に応じて次のような2ステップの反応となる。
(反応C2-1/アンモニア圧力:350kPa)
CaCl2・2NH3+2NH3 ⇔ CaCl2・4NH3
(反応C2-2/アンモニア圧力:560kPa)
CaCl2・4NH3+4NH3 ⇔ CaCl2・8NH3
(反応C2-1/アンモニア圧力:350kPa)
CaCl2・2NH3+2NH3 ⇔ CaCl2・4NH3
(反応C2-2/アンモニア圧力:560kPa)
CaCl2・4NH3+4NH3 ⇔ CaCl2・8NH3
この場合も同様に、一つの平衡圧力下で生じるアンモニア吸放出反応に伴う配位数変化が2または4であり、アンモニア吸放出反応一回あたりの吸熱または放熱が小さい。また、大きな配位数変化(6)を得るためには、アンモニア圧力を少なくとも350~560kPaの広範囲(圧力差210kPa)で変化させて、反応C2-1および反応C2-2を連続的に進行させる必要があり、やはり効率的ではない。
さらに試料No.C3の場合、図2からわかるように、アンモニア吸放出反応が平衡アンモニア圧力に応じて次のような2ステップの反応となる。
(反応C3-1/アンモニア圧力:340kPa)
SrCl2・NH3 +NH3 ⇔ SrCl2・2NH3
(反応C3-2/アンモニア圧力:460kPa)
SrCl2・2NH3+6NH3 ⇔ SrCl2・8NH3
(反応C3-1/アンモニア圧力:340kPa)
SrCl2・NH3 +NH3 ⇔ SrCl2・2NH3
(反応C3-2/アンモニア圧力:460kPa)
SrCl2・2NH3+6NH3 ⇔ SrCl2・8NH3
この場合、一つの平衡圧力下で生じるアンモニア吸放出反応に伴う配位数変化が1または6であるが、さらに大きな配位数変化(7)を得るために、アンモニア圧力を少なくとも340~460kPaの広範囲(圧力差120kPa)で変化させて、反応C3-1および反応C3-2を連続的に進行させる必要がある。
このように、試料No.1のような複金属塩からなる化学蓄熱材は、従来の単金属塩やそれらの混合金属塩とは異なり、平衡アンモニア圧力の近傍で大きな配位数変化を生じる。従って本発明の化学蓄熱材を用いることにより、化学蓄熱システムの効率の向上を図ることが可能となる。また、単金属塩とは異なる平衡アンモニア圧力を示すため、従来の単金属塩では整合性が低かった熱媒貯蔵材との整合性が向上する。
《第二実施例:試料No.2》
(1)試料の製造
第一実施例の場合と同じ原料粉末を用いつつ、それらの混合モル比を試料No.1から変更した化学蓄熱材(試料No.2)を製造した。すなわち、試料No.2の混合モル比はCaCl2・2H2O:SrCl2・6H2O=3:7とした。その他、混合、成形および焼成の各工程は試料No.1の場合と同様にして試料No.2を製造した。
(1)試料の製造
第一実施例の場合と同じ原料粉末を用いつつ、それらの混合モル比を試料No.1から変更した化学蓄熱材(試料No.2)を製造した。すなわち、試料No.2の混合モル比はCaCl2・2H2O:SrCl2・6H2O=3:7とした。その他、混合、成形および焼成の各工程は試料No.1の場合と同様にして試料No.2を製造した。
(2)測定
こうして得られた試料No.2を、試料No.1と同様に圧力-組成等温線測定に供した。但し、この測定時の圧力範囲は200~600kPaとした。この場合、試料No.2はアンモニアガス圧力:485kPa(平衡圧力)を境として、配位数変化が6となる次のようなアンモニア吸放出反応(熱媒吸放出反応)を生じた。
Ca0.3Sr0.7Cl2・2NH3+6NH3 ⇔ Ca0.3Sr0.7Cl2・8NH3
こうして得られた試料No.2を、試料No.1と同様に圧力-組成等温線測定に供した。但し、この測定時の圧力範囲は200~600kPaとした。この場合、試料No.2はアンモニアガス圧力:485kPa(平衡圧力)を境として、配位数変化が6となる次のようなアンモニア吸放出反応(熱媒吸放出反応)を生じた。
Ca0.3Sr0.7Cl2・2NH3+6NH3 ⇔ Ca0.3Sr0.7Cl2・8NH3
(3)評価
試料No.1および試料No.2から明らかなように、複金属塩化物CaxSr1-xCl2(0<x<1)の複合比xが変動しても、その比率に応じた特定の圧力下(平衡圧力下)であれば、一回のアンモニア吸放出反応でアンモニアの配位数を大きく変化させることができた。逆に言えば、複金属塩化物の組成を調整することにより、熱媒貯蔵材と整合(マッチング)した化学蓄熱材を得ることができ、化学蓄熱システムの効率化を幅広く図れることが確認できた。
試料No.1および試料No.2から明らかなように、複金属塩化物CaxSr1-xCl2(0<x<1)の複合比xが変動しても、その比率に応じた特定の圧力下(平衡圧力下)であれば、一回のアンモニア吸放出反応でアンモニアの配位数を大きく変化させることができた。逆に言えば、複金属塩化物の組成を調整することにより、熱媒貯蔵材と整合(マッチング)した化学蓄熱材を得ることができ、化学蓄熱システムの効率化を幅広く図れることが確認できた。
Claims (14)
- 熱媒の吸蔵または放出により発熱または吸熱する化学蓄熱材であって、
金属元素(M)とハロゲン元素(X)とからなりそれらの少なくとも一方が二種以上の元素からなる金属ハロゲン化物である複金属塩(MXn、n:Mの平均価数)を含むことを特徴とする化学蓄熱材。 - 前記熱媒は、アンモニアまたは水であり、
該アンモニアを吸蔵することによりアンミン錯体(MXn-aNH3 、a:アンモニアの配位数)または該水を吸蔵することにより水和物(MXn-bH2O 、b:水の配位数)となる請求項1に記載の化学蓄熱材。 - 前記複金属塩は、前記熱媒の吸蔵または放出により該熱媒の配位数が少なくとも4以上変化する結晶構造を有する請求項1または2に記載の化学蓄熱材。
- 前記複金属塩は、結晶単位格子中に含まれるMXnの化学単位数(Z)で単位格子体積(V)を除した結晶指標値(V/Z)が50~130Å3となる結晶構造を有する請求項1~3のいずれかに記載の化学蓄熱材。
- 前記複金属塩は、CaF2型、SrI2型、CaCl2型、SrBr2型、PbCl2型、CdCl2型またはCdI2型のいずれかの結晶構造を有する請求項1~4のいずれかに記載の化学蓄熱材。
- 前記金属元素は、アルカリ土類金属元素である請求項1~5のいずれかに記載の化学蓄熱材。
- 前記複金属塩は、二種以上のアルカリ土類金属元素とハロゲン元素とからなる複アルカリ土類金属ハロゲン化物である請求項1~6のいずれかに記載の化学蓄熱材。
- 前記複金属塩は、アルカリ土類金属元素と二種以上のハロゲン元素からなるアルカリ土類金属複ハロゲン化物である請求項1~7のいずれかに記載の化学蓄熱材。
- 前記複アルカリ土類金属ハロゲン化物は、CaxSr1-xCl2(0<x<1)である請求項7に記載の化学蓄熱材。
- 二種以上の金属塩を混合した混合金属塩を焼成する焼成工程を備え、
請求項1~9のいずれかに記載の化学蓄熱材が得られることを特徴とする化学蓄熱材の製造方法。 - さらに、前記焼成工程前に前記混合金属塩を加圧成形した成形体を得る成形工程を備え、
前記焼成工程は、該成形体を焼成した焼成体を得る工程である請求項10に記載の化学蓄熱材の製造方法。 - 請求項1~9のいずれかに記載の化学蓄熱材と該化学蓄熱材を保持するバインダーとからなることを特徴とする化学蓄熱構造体。
- 前記バインダーは、化学蓄熱材よりも熱伝導性に優れる高熱伝導材である炭素繊維からなる請求項12に記載の化学蓄熱構造体。
- さらに、前記化学蓄熱材および前記バインダーよりも熱伝導性に優れる高熱伝導材を含む請求項12に記載の化学蓄熱構造体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12825515.5A EP2749624B1 (en) | 2011-08-23 | 2012-08-22 | Chemical heat storage structure comprising a chemical heat storage material |
JP2013530045A JP5768887B2 (ja) | 2011-08-23 | 2012-08-22 | 化学蓄熱材、その製造方法および化学蓄熱構造体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011181822 | 2011-08-23 | ||
JP2011-181822 | 2011-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013027778A1 true WO2013027778A1 (ja) | 2013-02-28 |
Family
ID=47746516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/071219 WO2013027778A1 (ja) | 2011-08-23 | 2012-08-22 | 化学蓄熱材、その製造方法および化学蓄熱構造体 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2749624B1 (ja) |
JP (1) | JP5768887B2 (ja) |
WO (1) | WO2013027778A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015025666A1 (ja) * | 2013-08-20 | 2015-02-26 | 株式会社豊田自動織機 | 化学蓄熱装置 |
EP2918653A1 (en) | 2014-03-14 | 2015-09-16 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of manufacturing composite metal halide and chemical heat storage material |
JP2019189829A (ja) * | 2018-04-27 | 2019-10-31 | トヨタ自動車株式会社 | 蓄熱材料、蓄熱材料の製造方法、及び化学ヒートポンプ |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014159497A (ja) * | 2013-02-19 | 2014-09-04 | Toyota Central R&D Labs Inc | 化学蓄熱材、その製造方法および化学蓄熱構造体 |
AT518826B1 (de) * | 2016-07-11 | 2018-09-15 | Univ Wien Tech | Verfahren zur thermochemischen Energiespeicherung |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5716797A (en) * | 1980-07-03 | 1982-01-28 | Hitachi Zosen Corp | Heat accumulating and discharging method |
JPH01212893A (ja) * | 1988-02-19 | 1989-08-25 | Agency Of Ind Science & Technol | 蓄熱体 |
JPH01302077A (ja) | 1988-02-29 | 1989-12-06 | Uwe Rockenfeller | 熱交換系 |
US5289690A (en) | 1991-02-11 | 1994-03-01 | Rocky Research | Refrigerant recycling system |
JPH06136357A (ja) * | 1992-07-15 | 1994-05-17 | Nok Corp | 化学蓄熱材の製造法 |
JP2005213459A (ja) * | 2004-01-30 | 2005-08-11 | Nippon Steel Corp | 高熱伝導材料 |
JP2007531209A (ja) | 2004-03-23 | 2007-11-01 | アムミネクス・アー/エス | アンモニア貯蔵デバイスのエネルギー生成における利用 |
JP2007291267A (ja) * | 2006-04-26 | 2007-11-08 | Teijin Ltd | 熱伝導性成形材料及びこれを用いた成形シート |
WO2012108343A1 (ja) * | 2011-02-10 | 2012-08-16 | 株式会社豊田中央研究所 | 化学蓄熱体およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0087859B1 (en) * | 1982-02-23 | 1986-04-30 | Ciba Specialty Chemicals Water Treatments Limited | Thermal energy storage compositions |
JPS60155285A (ja) * | 1984-01-23 | 1985-08-15 | Mitsui Eng & Shipbuild Co Ltd | 蓄熱材組成物 |
US5271239A (en) * | 1990-11-13 | 1993-12-21 | Rocky Research | Cooling apparatus for electronic and computer components |
JPH05500523A (ja) * | 1989-06-23 | 1993-02-04 | ジ オーストラリアン ナショナル ユニバーシティー | 低温蓄熱用のための塩化カルシウム6水和物配合物 |
US6276166B1 (en) * | 1999-07-20 | 2001-08-21 | Rocky Research | Auxiliary thermal storage heating and air conditioning system for a motor vehicle |
-
2012
- 2012-08-22 JP JP2013530045A patent/JP5768887B2/ja not_active Expired - Fee Related
- 2012-08-22 EP EP12825515.5A patent/EP2749624B1/en not_active Not-in-force
- 2012-08-22 WO PCT/JP2012/071219 patent/WO2013027778A1/ja unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5716797A (en) * | 1980-07-03 | 1982-01-28 | Hitachi Zosen Corp | Heat accumulating and discharging method |
JPS5925159B2 (ja) | 1980-07-03 | 1984-06-14 | 日立造船株式会社 | 放蓄熱方法 |
JPH01212893A (ja) * | 1988-02-19 | 1989-08-25 | Agency Of Ind Science & Technol | 蓄熱体 |
JPH01302077A (ja) | 1988-02-29 | 1989-12-06 | Uwe Rockenfeller | 熱交換系 |
US5289690A (en) | 1991-02-11 | 1994-03-01 | Rocky Research | Refrigerant recycling system |
JPH06508425A (ja) * | 1991-02-11 | 1994-09-22 | ロッキー・リサーチ | 冷媒リサイクルシステム |
JPH06136357A (ja) * | 1992-07-15 | 1994-05-17 | Nok Corp | 化学蓄熱材の製造法 |
JP3111667B2 (ja) | 1992-07-15 | 2000-11-27 | エヌオーケー株式会社 | 化学蓄熱材の製造法 |
JP2005213459A (ja) * | 2004-01-30 | 2005-08-11 | Nippon Steel Corp | 高熱伝導材料 |
JP2007531209A (ja) | 2004-03-23 | 2007-11-01 | アムミネクス・アー/エス | アンモニア貯蔵デバイスのエネルギー生成における利用 |
JP2007291267A (ja) * | 2006-04-26 | 2007-11-08 | Teijin Ltd | 熱伝導性成形材料及びこれを用いた成形シート |
WO2012108343A1 (ja) * | 2011-02-10 | 2012-08-16 | 株式会社豊田中央研究所 | 化学蓄熱体およびその製造方法 |
Non-Patent Citations (3)
Title |
---|
"Ammonia Absorption on Alkaline Earth Halides as Ammonia Separation and Storage Procedure", BULL. CHEM. SOC. JPN., vol. 77, no. 1, 2004, pages 123 - 131, XP002369290 * |
MIKIO KUMITA ET AL.: "Enka Calcium Tenchaku Kyuchakuzai no Chosei to sono Suijoki Kyuchaku Tokusei", ABSTRACTS OF AUTUMN MEETING OF THE SOCIETY OF CHEMICAL ENGINEERS, 2007, XP008170975 * |
See also references of EP2749624A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015025666A1 (ja) * | 2013-08-20 | 2015-02-26 | 株式会社豊田自動織機 | 化学蓄熱装置 |
JP2015040646A (ja) * | 2013-08-20 | 2015-03-02 | 株式会社豊田自動織機 | 化学蓄熱装置 |
EP2918653A1 (en) | 2014-03-14 | 2015-09-16 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of manufacturing composite metal halide and chemical heat storage material |
JP2015174783A (ja) * | 2014-03-14 | 2015-10-05 | 株式会社豊田中央研究所 | 複合金属ハロゲン化物の製造方法および化学蓄熱材 |
JP2019189829A (ja) * | 2018-04-27 | 2019-10-31 | トヨタ自動車株式会社 | 蓄熱材料、蓄熱材料の製造方法、及び化学ヒートポンプ |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013027778A1 (ja) | 2015-03-19 |
JP5768887B2 (ja) | 2015-08-26 |
EP2749624A1 (en) | 2014-07-02 |
EP2749624B1 (en) | 2019-02-20 |
EP2749624A4 (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5768887B2 (ja) | 化学蓄熱材、その製造方法および化学蓄熱構造体 | |
JP5765346B2 (ja) | 化学蓄熱体およびその製造方法 | |
JP5565311B2 (ja) | 酸化物の製造方法 | |
JP5521967B2 (ja) | 化学蓄熱体およびその製造方法 | |
JP2010132467A (ja) | 酸化物の製造方法 | |
JP2012224487A (ja) | リチウム二次電池の正極活物質製造用の窯道具及びその製造方法 | |
JP2009227773A (ja) | 化学蓄熱材複合体及びその製造方法 | |
Zaki et al. | Investigation of Ca12Al14O33 Mayenite for hydration/dehydration thermochemical energy storage | |
JP5712549B2 (ja) | 化学蓄熱体およびその製造方法 | |
JP2009256520A (ja) | 化学蓄熱材複合物及びその製造方法 | |
JP2014159497A (ja) | 化学蓄熱材、その製造方法および化学蓄熱構造体 | |
CN105503198B (zh) | 氮化硅材料及其制备方法 | |
Doh et al. | Analysis on the formation of Li 4 SiO 4 and Li 2 SiO 3 through first principle calculations and comparing with experimental data related to lithium battery | |
JP6036730B2 (ja) | 複合金属ハロゲン化物の製造方法および化学蓄熱材 | |
JP2016098234A (ja) | 化学蓄熱材およびその製造方法 | |
US20230140129A1 (en) | Thermal battery | |
JP4628705B2 (ja) | 蓄熱材料 | |
RU2729004C1 (ru) | Материал для аккумулирования тепла, способ изготовления материала для аккумулирования тепла и химический тепловой насос | |
JP2023043948A (ja) | 負極活物質の製造方法 | |
JP2018104512A (ja) | 化学蓄熱材およびその製造方法 | |
JP6815915B2 (ja) | 化学蓄熱材及びその製造方法 | |
Borisov et al. | Exploring new belousovite-related zinc and cadmium alkali sulfate halides: synthesis and structural variability | |
JP2018168223A (ja) | 化学蓄熱材及びその製造方法 | |
JP5009585B2 (ja) | 蓄熱材料 | |
Karabanova et al. | 1.4. 2 Chemical reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12825515 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013530045 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |