WO2013027643A1 - 発電装置 - Google Patents

発電装置 Download PDF

Info

Publication number
WO2013027643A1
WO2013027643A1 PCT/JP2012/070791 JP2012070791W WO2013027643A1 WO 2013027643 A1 WO2013027643 A1 WO 2013027643A1 JP 2012070791 W JP2012070791 W JP 2012070791W WO 2013027643 A1 WO2013027643 A1 WO 2013027643A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
valve
gas
container
air
Prior art date
Application number
PCT/JP2012/070791
Other languages
English (en)
French (fr)
Inventor
明翫 市郎
浩晃 柴田
義隆 川原
勇 大澤
康幹 久保田
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2013529982A priority Critical patent/JP6127971B2/ja
Priority to US14/237,393 priority patent/US9512741B2/en
Priority to NZ620693A priority patent/NZ620693B2/en
Publication of WO2013027643A1 publication Critical patent/WO2013027643A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K19/00Regenerating or otherwise treating steam exhausted from steam engine plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/02Arrangements or modifications of condensate or air pumps
    • F01K9/023Control thereof

Definitions

  • the present invention relates to a power generation apparatus that uses a medium having a boiling point lower than that of water as a working medium, and that includes an air removal device that removes air mixed in the working medium.
  • Patent Document 1 A power generation apparatus using a low boiling point medium that recovers heat energy from a low-temperature heat source that has not been used in geothermal power generation using a conventional steam turbine has recently attracted special attention as an energy recovery apparatus (Patent Document 1). reference).
  • Fig. 7 shows a basic system diagram of a conventional power generator using a low boiling point medium.
  • the evaporator 100 exchanges heat between a medium having a boiling point lower than that of water and a heat source, evaporates the medium, rotates the turbine 101 with the medium vapor, and rotates the generator 102 with the rotational force. Activate to get power.
  • the medium leaving the turbine is condensed by the condenser 103 and sent to the evaporator 100 again by the circulation pump 104 via the preheater 105, and the above cycle is repeated.
  • n-pentane (nC 5 H 12 ) is mainly used as a natural medium used under conditions of a geothermal heat source temperature of 130 to 140 ° C. and a cooling source temperature of 15 ° C. to 30 ° C.
  • the condenser cooling source is generally circulating cooling water or air, the temperature of the cooling source differs greatly between winter and summer. Therefore, when the condenser is designed only based on the cooling capacity required in the summer, the cooling capacity of the condenser is further enhanced when the cooling source temperature decreases in the winter.
  • Patent Documents 2 to 6 below are known as apparatuses for removing air mixed in a medium in an apparatus related to power generation.
  • Patent Document 2 discloses a device including an air extraction device for extracting air from the discharge water of a condenser in a binary power generation device that uses water instead of a low boiling point medium.
  • a working fluid obtained by mixing a high-boiling point medium and a low-boiling point medium is supplied from a steam generator 1 that heats a solution of the working fluid to generate steam, and the steam generator 1.
  • Steam turbine 2 driven by steam, condenser 3 that cools the steam discharged from the steam turbine and condenses it into a solution, and supply pump that supplies the solution supplied from condenser 3 to steam generator 1 16 is a power system provided with a power cycle circuit 10 that circulates each in the order of 16, and in the condenser 3 so that the lowest pressure that can occur in the condenser 3 in the power cycle circuit 10 is a pressure near atmospheric pressure.
  • a power system is disclosed in which the concentration of the low boiling medium of the working fluid is determined.
  • Patent Document 4 a chamber having a piston inside is provided in the upper part of the condenser, and a valve connecting the space below the piston of the chamber and the condenser and the lower part of the chamber are cooled by a coolant through a wall.
  • An apparatus comprising cooling means and a discharge valve connected to the lower part of the chamber is disclosed.
  • a sealed chamber is provided at the top of the condenser, and this chamber is provided with a movable diaphragm that divides the inside of the chamber into an upper part and a lower part, and is arranged in series between the condenser and the lower part of the chamber.
  • an apparatus including two flow control valves, a cooling means for cooling the lower part of the chamber with a coolant through a wall, and a discharge valve connected to the lower part of the chamber.
  • JP 62-26304 A Japanese Patent Laid-Open No. 2003-120513 JP 2007-262909 A US Pat. No. 5,119,635 US Patent No. 5,113,927 US Pat. No. 5,487,765
  • Patent Document 2 uses water as a medium, there is a problem that the heat source must be 100 ° C. or higher and a lower temperature heat source cannot be used.
  • Patent Document 3 since the concentration of the low boiling point medium is determined so that the minimum pressure that can occur in the condenser in winter is a pressure close to atmospheric pressure, the condenser pressure in summer increases and the power generation efficiency increases. There has been a problem of lowering.
  • Patent Documents 4, 5, and 6 disclose an apparatus for removing air from a medium, but the operation timing of the apparatus merely gives an example of periodically operating every 20 minutes. There was a problem that the air removal operation was performed more than necessary, and the amount of medium outflow increased.
  • the present invention provides a mixed air removal device that can detect air mixed in a medium flow path of a power generation device and reduce the amount of working medium discharged outside the device without stopping the power generation device. It aims at providing the provided electric power generating apparatus.
  • the present invention provides a heat exchanger for generating a medium gas by exchanging heat between a medium having a boiling point lower than that of water and a heat source, and a medium gas supplied from the heat exchanger.
  • a turbine that rotates under pressure, a generator coupled to the turbine, a condenser that cools the medium gas discharged from the turbine, and the medium discharged from the condenser to the heat exchanger
  • a power generation apparatus comprising: a circulation pump to be supplied; a medium flow path that circulates through the heat exchanger, the turbine, the condenser, and the circulation pump; and an air removal device that removes air mixed in the medium.
  • the air removal device is configured to store a gas in a medium provided on the outlet side of the condenser, a pressure gauge that measures a pressure in the gas storage unit, and a temperature in the gas storage unit. With a thermometer to measure And calculating a pressure threshold value based on the saturated vapor pressure value of the medium calculated using the temperature of the thermometer, and comparing the pressure value of the pressure gauge with the pressure threshold value into the medium.
  • a control unit that determines whether or not air is mixed, and a discharge unit that discharges the gas in the gas storage unit when it is determined that air is mixed.
  • the discharge unit when the control unit determines that air is mixed in, includes a first container in which the gas stored in the gas storage unit is transferred, and a liquid medium in the first container.
  • Medium supply means for supplying and compressing the gas, and exhausting the gas remaining in the first container after the medium supply.
  • the medium supply means may comprise a liquid medium tank for storing the liquid medium, and a liquid medium supply pump for supplying the liquid medium from the liquid medium tank into the first container.
  • the medium supply unit includes a valve provided on the outlet side of the circulation pump of the medium flow path, and a branch pipe that branches from a pipe between the circulation pump and the valve and connects the first container And the valve provided in the branch pipe, and the control unit closes the valve provided on the outlet side of the circulation pump of the medium flow path when it is determined that air is mixed, and the branch You may comprise so that control which opens the valve provided in piping may be performed.
  • the discharge means is provided in a pipe connecting the first valve provided in a pipe connecting the gas storage part and the lower part of the first container, and a pipe connecting the liquid medium supply pump and the first container.
  • the control unit determines that air is mixed, the control unit closes the second valve and the third valve, opens the first valve and the fifth valve, and allows the gas in the gas storage unit to flow.
  • the first valve and the fifth valve are closed, the second valve is opened, and the liquid medium supply pump supplies the liquid medium to the first container to compress the gas. Then, the third valve is opened with the fourth valve closed to transfer the gas in the first container to the second container, and then the third valve is closed and the fourth valve is closed. Control is performed to open the valve and discharge the gas in the second container to the outside of the second container.
  • the apparatus may further include a combustor that burns a medium remaining in the gas discharged from the second container, an air supply unit that supplies air to the combustor, and the combustor and the air.
  • a pipe connected to the supply unit may include a sixth valve, and the control unit may control the opening degree of the fourth valve and the sixth valve to adjust the flow rate.
  • control unit determines that air is mixed when the pressure value of the pressure gauge is larger than the pressure threshold value, and the pressure threshold value is calculated by adding a margin value to the saturated vapor pressure value.
  • the margin value is a preset fixed value or a proportional value obtained by multiplying the saturated vapor pressure value by a coefficient.
  • a spray nozzle for spraying the liquid medium into the first container.
  • chlorofluorocarbons such as R245fa and organic low boiling point media such as n-pentane are used.
  • the pressure threshold value obtained by adding a margin value to the saturated vapor pressure value of the medium calculated based on the temperature of the liquid phase part of the gas storage part and the pressure value of the gas phase part of the gas storage part are compared.
  • the amount of working medium discharged outside the apparatus can be reduced.
  • the fall of power generation efficiency by the air which is not condensed with a condenser mixes in a medium, and the condensation capability of a condenser falls can be prevented.
  • FIG. 5 is a diagram showing the volume ratio of n-pentane saturated in air using pressure and temperature as parameters. It is the figure which showed the volume ratio of each container of the apparatus which concerns on the Example of this invention, and the pentane accompanying rate. It is a figure which shows the structure of the electric power generating apparatus using the conventional general low boiling-point medium.
  • FIG. 1 is a diagram showing a configuration of a mixed air removing apparatus according to an embodiment of the present invention.
  • the condenser 103 in FIG. 1 corresponds to the condenser 103 in FIG.
  • the gas storage part 1 is connected to the upper part of the outlet side collector of the condenser 103, and the air mixed in the medium is recovered in the gas storage part 1 through the outlet side collector.
  • the gas reservoir 1 is provided with a thermometer 10 that measures the temperature in the gas reservoir 1 and a pressure gauge 11 that measures the pressure in the gas reservoir 1.
  • the first container 2 is connected to the gas storage unit 1 through a valve 12 by piping. Furthermore, a pipe connecting the upper part of the first container 2 and the gas storage unit 1 is installed, and a valve 16 is installed in this pipe. A pressure gauge 7, a liquid level gauge (high liquid level) 8, and a liquid level gauge (low liquid level) 9 are installed in the first container 2 in order from the top of the container.
  • the liquid medium supply pump 18 is connected to the inside of the first container 2 by piping via a liquid pentane flow meter 6 and a valve 13.
  • a spray nozzle 25 is installed at the liquid pentane outlet of the pipe.
  • the second container 3 is connected to the upper part of the first container 2 by piping through the valve 14.
  • the combustor 4 includes a combustion catalyst therein, and a lower portion of the combustor 4 is connected to the second container 3 through a valve 15 by piping.
  • the air supply means 19 is connected to the combustor 4 through a valve 17 by piping.
  • the pentane supplied from the second container 3 is mixed with the air supplied from the air supply means 19 and burned by the combustion catalyst of the combustor 4 to become exhaust gas.
  • the generated exhaust gas is released to the atmosphere.
  • the combustor 4 is provided with a heater 4a for controlling the combustion catalyst to a predetermined temperature in order to make the combustion catalyst function.
  • the combustor 4, the air supply unit 19, the valve 17, and the piping connecting them are not essential, and are not necessary when the gas discharged from the valve 15 is diluted with the atmosphere without being burned.
  • the control unit 5 is connected to the thermometer 10, the pressure gauge 11, the pressure gauge 7, the liquid level gauge (high liquid level) 8, the liquid level gauge (low liquid level) 9, and the flow meter 6 through signal lines, respectively. A signal from each device is input to the control unit 5.
  • the control unit 5 is connected to the valves 12, 13, 14, 15, 16, and 17 by electric wiring, and controls the opening and closing of each valve.
  • the circulation pump 104 is also used as the liquid medium supply pump 18, and the liquid medium tank 24 is replaced by a pipe between the condenser 103 and the circulation pump 104, A valve may be provided in the pipe, the pipe may be branched from between the valve and the circulation pump 104 and connected to the first container 2, and the valve 13 may be provided in the branch pipe.
  • the control unit 5 executes the aeration detection step S1, the medium liquefaction step S2, and the discharge step S3 in this order. After the discharge step S3 is completed, the control unit 5 returns to the aeration detection step S1.
  • the mixed air removal device may be operated at all times, but the pressure of the pressure gauge 11 has become the atmospheric pressure or lower (when the medium is n-pentane, the medium temperature is 36 ° C. or lower) after the previous operation. It is more desirable to operate it only when it is confirmed. This is because if the pressure in the medium flow path continues to be at or above atmospheric pressure, it is difficult for air to enter the medium flow path from the outside air.
  • the control unit 5 acquires a signal from the pressure gauge 11 installed in the gas phase part of the gas storage unit 1 and a signal from the thermometer 10 installed in the liquid phase part of the gas storage unit 1, and based on the temperature of the thermometer.
  • the pressure threshold value obtained by adding a margin value to the saturated vapor pressure value of the medium calculated in this way is calculated. Then, when the pressure value of the pressure gauge 11 is equal to or lower than the pressure threshold value, the measurement of the pressure value and the temperature is continued.
  • the margin value is a fixed value or a proportional value obtained by multiplying the saturated vapor pressure value of the medium calculated based on the temperature of the thermometer by a coefficient.
  • the saturated vapor pressure (Ps) at the temperature (T1) is calculated using the following formula 1.
  • Ps 0.0003 (T1) 3 +0.0159 (T1) 2 +1.1844 (T1) +24.316 (Formula 1)
  • the margin value is determined through several tests in consideration of the number and condition of joints. For example, in the case of a fixed value, it is about 10% at 1 atmosphere. In the case of a proportional value, the coefficient is set to about 0.1.
  • the medium liquefaction step S2 will be described.
  • the air-containing gas stored in the gas storage unit is transferred to the first container 2, the gas is compressed by adding a liquid medium to the first container 2, and the medium in the gas is liquefied. Reduce the amount of media.
  • the valves 12 and 16 are opened, and air-containing gas is supplied from the gas reservoir 1. Move to first container 2.
  • the detection value of the liquid level gauge (low liquid level) 9 for measuring the liquid level of the medium in the first container 2 is equal to or higher than a predetermined low liquid level threshold
  • the valves 12 and 16 are kept open.
  • the detected value of the liquid level gauge (low liquid level) 9 becomes lower than a predetermined low liquid level threshold
  • the valves 12 and 16 are closed and the first container 2 is sealed.
  • the valve 13 is opened, and the liquid medium is supplied from the liquid medium tank 24 to the first container 2 by the liquid medium supply pump 18. While the detection value of the liquid level gauge (high liquid level) 8 is equal to or lower than a predetermined high liquid level threshold, the state in which the valve 13 is opened is continued.
  • T2 T1 ⁇ [P2 / P1] (k-1) / mk (Equation 2)
  • T2 Gas temperature after compression (K)
  • T1 Gas temperature before compression (K)
  • P2 Gas pressure after compression (mPa)
  • P1 Gas pressure before compression (mPa)
  • k Specific heat ratio
  • m Number of compression stages For example, when 30 ° C. air saturated with pentane is adiabatically compressed from 101 kPa to 1 MPa, the temperature difference ( ⁇ T) is 83 ° C.
  • this temperature rise can be suppressed by injecting into the first container 2 liquid pentane that has been refined by a spray nozzle.
  • a part of n-pentane saturated with the air-containing gas can be cooled, liquefied and recovered. If spray injection is performed, the temperature in the 1st container 2 can be rapidly reduced rather than the method of injecting liquid pentane without spraying.
  • the discharging process S3 will be described.
  • the counter is initialized to zero.
  • the first container 2 and the second container 3 are communicated, and a part of the gas compressed in the first container 2 is moved to the second container 3.
  • the state in which the valve 15 is closed and the valve 14 is opened is continued for a predetermined time. Thereafter, the valve 14 is closed.
  • valve 15 When the gas discharged from the valve 15 is diluted in the atmosphere without burning, the valve 15 may be opened to release the gas to the atmosphere as it is.
  • the combustor 4 includes a ceramic honeycomb filter in which platinum fine particles are supported as a combustion catalyst. In a state where the inside of the combustor 4 is heated to 200 to 350 ° C.
  • the valve 17 and the valve 15 are opened, and gas and air are supplied to the combustor 4 to burn the medium. This state is continued for a predetermined time. Thereafter, the valve 15 and the valve 17 are closed. Thereafter, 1 is added to the counter, and when the counter is less than the predetermined number N times, the process returns as shown in FIG. If the counter is greater than or equal to the predetermined number N times, the loop is exited.
  • the number N is appropriately set according to the volume and pressure of the compressed gas in the first container 2 and the volume of the second container 3. Combustion of the gas in the combustor 4 is not essential for removing air mixed in the medium flow path from the medium flow path, but when a combustible gas medium is used, it is released as it is to the atmosphere. Can be prevented.
  • the pressure is released from the first container 2 to the gas reservoir 1 and the medium is moved. Specifically, the valve 16 and the valve 12 are opened, and the valve 16 and the valve 12 are closed after a predetermined time has elapsed. Then, the process returns to the air mixing detection step S1.
  • Equation 3 The reason why the amount of medium in the mixed gas can be reduced by compressing the mixed gas of air and medium will be described below.
  • the amount Fst of n-pentane saturated with air can be expressed by the following Equation 3.
  • Fst Fa ⁇ (Ps / (Pc ⁇ Ps)) (Equation 3)
  • Fst Standard state quantity of n-pentane saturated in air at temperature t (Nm 3 )
  • Fa Standard state quantity of air (Nm 3 )
  • Ps saturated vapor pressure of n-pentane at temperature t (kPa)
  • Pc Operating pressure (kPa)
  • FIG. 5 shows the result of calculating the volume ratio of n-pentane saturated in the air from Equation 3 using the pressure and temperature as parameters.
  • FIG. 6 is a diagram showing the relationship between the volume ratio of each container of the apparatus according to the embodiment of the present invention and the pentane incident rate as an example in the case where the temperature is constant at 30 ° C.
  • C0 represents the volume of the gas reservoir 1
  • C1 represents the volume of the first container 2
  • C2 represents the volume of the second container 3.
  • the amount of n-pentane combusted in the combustor 4 is important in terms of operation management because it greatly varies depending on the ratio of the volume C1 of the first container 2 and the volume C2 of the second container 3. That is, the air accumulated and compressed in the first container 2 is saturated with n-pentane in the compressed pressure state.
  • Gas storage part 2 First container 3: Second container 4: Combustor (combustion catalyst filling) 4a: heater 5: control unit 6: flow meter of liquid pentane 7: pressure gauge of the first container 8: liquid level gauge of the first container (high liquid level) 9: Level gauge of the first container (low liquid level) 10: Thermometer in gas reservoir 11: Pressure gauge in gas reservoir 12, 13, 14, 15, 16, 17: Valve 18: Liquid medium supply pump 24: Liquid medium tank 25: Spray nozzle 19: Air supply section S1 : Air mixing detection step S2: Medium liquefaction step S3: Discharge step 100: Evaporator 101: Turbine 102: Generator 103: Condenser 104: Circulation pump 105: Preheater

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

【課題】発電装置の媒体流路に混入した空気を検出し、混入した空気を自動で除去する空気除去装置を備えた発電装置を提供する。 【解決手段】熱交換器とタービンと凝縮器とポンプを循環する媒体流路を備えているバイナリー発電装置における媒体流路に混入した空気を除去する方法であって、媒体流路に連通しているガス貯留部の圧力と温度に基づき、媒体の飽和蒸気圧と余裕値を加えた圧力閾値を演算し、気相部の圧力と圧力閾値を比較して、媒体に空気が混入したことを検知する空気混入検出工程(S1)と、媒体と空気との混合ガスを加圧して混合ガス中の媒体量を減らしたガスを作る媒体液化工程(S2)と、ガスを排出する排出工程(S3)とを順次行うことを特徴とする。

Description

発電装置
 本発明は、水よりも低沸点の媒体を作動媒体とする発電装置であって、作動媒体に混入した空気を除去する空気除去装置を備えた発電装置に関する。
 従来の蒸気タービンを用いた地熱発電で活用されてこなかった低温熱源から熱エネルギーを回収し発電する低沸点媒体を用いた発電装置は、最近エネルギー回収装置として特別に注目されている(特許文献1参照)。
 従来の低沸点媒体を用いた発電装置の基本的系統図を図7に示す。この発電装置は、蒸発器100で水よりも低沸点の媒体と熱源との間で熱交換を行いこの媒体を蒸発させ、この媒体蒸気でタービン101を回転させ、その回転力で発電機102を作動させて電力を得る。タービンを出た媒体は凝縮器103で凝縮され循環ポンプ104で予熱器105を経由して再び蒸発器100に送られ、上記のサイクルが繰り返される。
 一般に、蒸気圧が高い(すなわち、沸点が低い)媒体を使用すると蒸発器での気化は容易であるが、凝縮器での凝縮が難しくなり、逆に、蒸気圧が低い(すなわち、沸点が高い)媒体を使用すると気化が難しくなるが、凝縮が容易になる。こうした観点から、使用される媒体は、タービン入口と出口のエンタルピー差(熱落差)がなるべく大きくなる媒体が選定される。例えば、地熱熱源温度130~140℃、冷却源温度15℃~30℃の条件で使用される天然媒体としてはn-ペンタン(nC512)が主に利用されている。
 凝縮器の冷却源は一般に循環冷却水または大気であるので、冬と夏では冷却源の温度が大幅に異なる。そのため、凝縮器が夏季に必要とされる冷却能力に基づいてのみ設計された場合、冬季に冷却源温度が低下すると、凝縮器の冷却能力が一段と増強される。
 しかし、図4に示すように、n-ペンタンの蒸気圧は36℃以下になると101kPa以下になる為、冬季に凝縮器出口の温度が36℃以下になると媒体流路は大気圧以下になる場合がある。そうなると、凝縮器本体及びその接続配管の各種の継手またはタービンの軸のメカニカルシール部分などから媒体流路へ空気が混入する可能性がある。
そこで、発電に関係する装置において媒体に混入する空気を除去する装置として、下記特許文献2から6が知られている。
 特許文献2には、低沸点媒体の代わりに水を使用するバイナリー発電装置において、復水器の排出水から空気を抽出するための空気抽出装置を備えた装置が開示されている。
 特許文献3には、高沸点媒体と低沸点媒体とを混合してなる作動流体が、当該作動流体の溶液を加熱して蒸気を発生する蒸気発生器1と、蒸気発生器1から供給された蒸気により駆動する蒸気タービン2と、蒸気タービンから排出された蒸気を冷却して溶液に復水させる復水器3と、復水器3から供給された溶液を蒸気発生器1に供給する供給ポンプ16との順に夫々を循環する動力サイクル回路10を備えた動力システムであって、動力サイクル回路10における復水器3で起り得る最低圧力が大気圧近傍圧力となるように、復水器3での作動流体の低沸点媒体の濃度が決定されている動力システムが開示されている。
 特許文献4には、内部にピストンを備えたチャンバーを凝縮器の上部に備え、チャンバーのピストン下方の空間と凝縮器の間を接続するバルブと、壁を介してチャンバー下部を冷却材で冷却する冷却手段と、チャンバー下部に接続された排出バルブを備えている装置が開示されている。
 特許文献5,6には、凝縮器の上部に密閉されたチャンバーを備え、このチャンバーは、チャンバー内を上部と下部に分ける可動のダイアフラムを備え、凝縮器とチャンバー下部の間に直列に配置された2つの流量制御バルブと、壁を介してチャンバー下部を冷却材で冷却する冷却手段と、チャンバー下部に接続された排出バルブを備えている装置が開示されている。
特開昭62-26304号公報 特開2003-120513号公報 特開2007-262909号公報 米国特許5,119,635号公報 米国特許5,113,927号公報 米国特許5,487,765号公報
 上記特許文献2は、媒体に水を用いているために、熱源が100℃以上でなければならず、より低温の熱源を用いることができないという課題があった。
上記特許文献3は、冬季に復水器で起こりうる最低圧力が大気圧近傍圧力になるように低沸点媒体の濃度が決定されているので、夏季の復水器の圧力が高くなり、発電効率が低下するという課題があった。
 上記特許文献4,5,6は、媒体から空気を除去する装置が開示されているが、その装置の作動タイミングは、20分毎に定期的に作動させる例を挙げているに過ぎないため、必要以上に空気除去動作が行われて媒体の流出量が多くなるという課題があった。
上記課題を鑑み、本発明は、発電装置を停止することなしに、発電装置の媒体流路に混入した空気を検出し、装置外へ排出される作動媒体の量を低減できる混入空気除去装置を備えた発電装置を提供することを目的とする。
 前記目的を達成するために、本発明は、水よりも沸点が低い媒体と熱源との間で熱交換し媒体ガスを発生させる熱交換器と、前記熱交換器から供給される前記媒体ガスの圧力を受けて回転するタービンと、前記タービンに連結された発電機と、前記タービンから排出された前記媒体ガスを冷却する凝縮器と、前記凝縮器から排出された前記媒体を前記熱交換器に供給する循環ポンプと、前記熱交換器と前記タービンと前記凝縮器と前記循環ポンプとを循環する媒体流路と、前記媒体に混入した空気を除去する空気除去装置とを備えた発電装置において、前記空気除去装置が、前記凝縮器の出口側に設けられた媒体中のガスを貯留するガス貯留部と、前記ガス貯留部中の圧力を測定する圧力計と、前記ガス貯留部中の温度を測定する温度計とを備え、さらに、前記温度計の温度を用いて算出された前記媒体の飽和蒸気圧値に基づいて圧力閾値を算出し、前記圧力計の圧力値と前記圧力閾値とを比較して媒体中への空気が混入したか否かを判定する制御部と、空気が混入したと判定した場合に、前記ガス貯留部のガスを排出する排出手段と、を備えることを特徴とした。
 また、前記排出手段は、前記制御部により空気が混入したと判定された場合に、前記ガス貯留部に貯留された前記ガスが移送される第1容器と、前記第1容器に液状の媒体を供給して前記ガスを圧縮する媒体供給手段とを備え、前記媒体供給後に前記第1容器内に残留したガスを排出するものとした。
 また、前記媒体供給手段は、前記液状の媒体を貯留する液状媒体タンクと、前記液状媒体タンクから前記液状の媒体を前記第1容器内に供給する液状媒体供給ポンプとから構成してもよく、あるいは、前記媒体供給手段は、前記媒体流路の前記循環ポンプの出口側に設けられた弁と、前記循環ポンプと前記弁の間の配管から分岐して前記第1容器とを接続する分岐配管と、前記分岐配管に設けられた弁とからなり、前記制御部は、空気が混入したと判定した場合に、前記媒体流路の前記循環ポンプの出口側に設けられた弁を閉じ、前記分岐配管に設けた弁を開く制御を行うよう構成してもよい。
 さらに、前記排出手段が、前記ガス貯留部と前記第1容器の下部との間を接続する配管に設けた第1弁と、前記液状媒体供給ポンプと前記第1容器とを接続する配管に設けた第2弁と、前記第1容器上部と第2容器とを接続する配管に設けた第3弁と、前記第2容器から前記ガスを排気する第4弁と、前記ガス貯留部と前記第1容器の上部とを接続する配管に設けられた第5弁と、を備えることを特徴とする。
 また、前記制御部は、空気が混入したと判定した場合に、前記第2弁と前記第3弁と閉じ、前記第1弁と前記第5弁とを開いて前記ガス貯留部内の前記ガスを前記第1容器へ移送した後、前記第1弁と前記第5弁を閉じて前記第2弁を開いて前記液状媒体供給ポンプで前記第1容器に液体の媒体を供給して前記ガスを圧縮し、次に、前記第4弁を閉じた状態で前記第3弁を開いて前記第1容器内の前記ガスを前記第2容器へ移送させた後、前記第3弁を閉じて前記第4弁を開いて前記第2容器内の前記ガスを前記第2容器の外へ排出する制御を行うことを特徴とする。
 また、前記第2容器から排出された前記ガス中に残留する媒体を燃焼する燃焼器と、前記燃焼器に空気を供給する空気供給部を備えることとしてもく、さらに、前記燃焼器と前記空気供給部とを接続する配管に第6弁を備え、前記制御部は、前記第4弁と前記第6弁の開度を制御し流量調整を行なうこととしてもよい。
 また、前記制御部は、前記圧力計の圧力値が前記圧力閾値より大きい場合に、空気が混入したと判定することとし、前記圧力閾値は、前記飽和蒸気圧値に余裕値を加算して算出されることが好ましい。尚、前記余裕値は、予め設定された固定値、もしくは、前記飽和蒸気圧値に係数を乗じた比例値とする。
 さらに、前記液状の媒体を前記第1容器内に散布するスプレーノズルを備えることが好ましい。
 本発明に用いられる媒体としては、特にR245faなどの各種フロンやn-ペンタンなどの有機性低沸点媒体が用いられる。
 本発明によれば、ガス貯留部の液相部の温度に基づいて算出された前記媒体の飽和蒸気圧値に余裕値を加えた圧力閾値と、ガス貯留部の気相部の圧力値を比較して空気の混入を検知しているので、発電装置の媒体流路に空気が混入したことを自動で検出できる。また、装置外へ排出される作動媒体の量を低減できる。そして、凝縮器で凝縮されない空気が媒体に混入して凝縮器の凝縮能力が低下することによる発電効率の低下を防止できる。
本発明の実施例に係る装置の構成を示す図である。 本発明の実施例に係る装置の作動シーケンスの概要を示す図である。 本発明の実施例に係る装置の作動シーケンスの詳細を示す図である。 n-ペンタンの飽和蒸気圧線図である。 圧力と温度をパラメーターとして、空気中に飽和するn-ペンタンの容積比率を表した図である。 本発明の実施例に係る装置の各容器の容積比とペンタン随伴率を示した図である。 従来の一般的な低沸点媒体を用いた発電装置の構成を示す図である。
以下、この発明の実施の形態について図に基づいて説明する。まず、本発明の実施形態の例について、図1~6に基づいて以下に説明する。
 図1は、この発明の実施例に係る混入空気除去装置の構成を示す図である。図1の凝縮器103は、図7の凝縮器103に相当する。ガス貯留部1は、凝縮器103の出口側コレクタの上部に接続されており、媒体に混入した空気は、出口側コレクタを介してガス貯留部1内に回収される。ガス貯留部1には、ガス貯留部1内の温度を測定する温度計10と、ガス貯留部1内の圧力を測定する圧力計11が設置されている。
 第1容器2は、弁12を介して配管でガス貯留部1と接続している。さらに、第1容器2の上部とガス貯留部1を接続する配管が設置されており、この配管に弁16が設置されている。第1容器2には、容器上方から順に圧力計7と液面計(高液面)8と液面計(低液面)9が設置されている。
 液状媒体供給ポンプ18は、液体ペンタンの流量計6と弁13を介して配管で第1容器2の内部に接続されている。この配管の液体ペンタン出口には、スプレーノズル25が設置されている。
 第2容器3は、弁14を介して配管で第1容器2の上部に接続されている。
 燃焼器4は、内部に燃焼触媒を備え、同燃焼器4の下部は、弁15を介して第2容器3と配管で接続されている。空気供給手段19は、弁17を介して配管で燃焼器4と接続されている。第2容器3から供給されたペンタンは、空気供給手段19から供給された空気と混合され、燃焼器4の燃焼触媒で燃焼され、排ガスになる。生じた排ガスは、大気に放出される。燃焼器4には、燃焼触媒を機能させるために、燃焼触媒を所定の温度に制御するヒーター4aが設置されている。燃焼器4と空気供給部19と弁17およびそれらを接続する配管は必須の構成ではなく、弁15から排出されるガスを燃焼させずに大気で希釈する場合は、不要である。
 制御部5は、温度計10と圧力計11と圧力計7と液面計(高液面)8と液面計(低液面)9と流量計6にそれぞれ信号線で接続されており、各機器からの信号はそれぞれ制御部5に入力される。また、制御部5は、弁12,13,14,15,16,17にそれぞれ電気配線で接続されており、各弁の開閉を制御している。
 尚、本実施例の別の態様としては、循環ポンプ104を液状媒体供給ポンプ18と兼用し、液状媒体タンク24を凝縮器103から循環ポンプ104の間の配管で代用し、循環ポンプ104出口の配管に弁を設けて、この弁と循環ポンプ104の間から配管を分岐させて第一容器2へ接続し、その分岐配管に弁13を備える構成にしてもよい。
 次に本装置の動作について説明する。図2、図3は、本発明の第1の実施形態に係る装置の作動シーケンスの概要を示す図である。制御部5は、空気混入検出工程S1、媒体液化工程S2、排出工程S3の順に実行し、排出工程S3が終了した後、空気混入検出工程S1に戻る。混入空気除去装置は、常時作動することとしても良いが、前回作動した時以降に圧力計11の圧力が大気圧以下(媒体がn-ペンタンの場合、媒体温度が36℃以下)になった事が確認された時のみ作動させることがより望ましい。なぜならば、媒体流路内の圧力が大気圧以上の状態が継続していれば、外気から媒体流路内に空気が混入し難いからである。
 まず、空気混入検出工程S1について説明する。
 制御部5は、ガス貯留部1の気相部に設置された圧力計11の信号とガス貯留部1の液相部に設置された温度計10の信号を取得し、温度計の温度に基づいて算出された媒体の飽和蒸気圧値に余裕値(マージン)を加えた圧力閾値を計算する。そして、圧力計11の圧力値が圧力閾値以下の場合は圧力値および温度の計測を続け、圧力計11の圧力値が圧力閾値より高い場合は媒体に空気が混入したと判断し、次の工程に進む。また、上記余裕値は、固定値とするか、もしくは、前記温度計の温度に基づいて算出された前記媒体の飽和蒸気圧値に係数をかけた比例値とする。具体的には、下記の式1を用いて、温度(T1)における飽和蒸気圧(Ps)を演算する。
Ps=0.0003(T1)3+0.0159(T1)2+1.1844(T1)+24.316・・・(式1)
 余裕値は、継手の数や状態を考慮して何回かの試験を経て決める。例えば、固定値の場合は、1気圧時の10%程度とする。比例値とする場合は、前記係数を0.1程度とする。
 次に、媒体液化工程S2について説明する。この工程では、ガス貯留部内に貯留した空気含有ガスを第1容器2へ移送し、第1容器2に液体の媒体を加えることでガスを圧縮して、ガス中の媒体を液化し、ガス中の媒体量を減らす。
 具体的には、図1に示す混入空気除去装置の弁12,13,14,15,16,17をそれぞれ閉じた状態後、弁12,16を開いて、ガス貯留部1から空気含有ガスを第1容器2へ移動させる。第1容器2内の媒体の液面を計測する液面計(低液面)9の検出値が予め定めた低液面閾値以上の場合は弁12,16を開いた状態を継続する。液面計(低液面)9の検出値が予め定めた低液面閾値より低くなると弁12,16を閉じ、第1容器2を密閉する。その後、弁13を開き、液状媒体供給ポンプ18で液状媒体タンク24から第1容器2へ液状媒体を供給する。液面計(高液面)8の検出値が予め定めた高液面閾値以下の間、弁13を開いた状態を継続する。
 第1容器2内に液体ペンタンを導入して空気含有ガスを圧縮する時、ガス温度が上昇する。この温度上昇は下記の式2で与えられる。
T2=T1×[P2/P1](k-1)/mk・・・・・・・・・・・・・・(式2)
T2:圧縮後のガスの温度(K)
T1:圧縮前のガス温度(K)
P2:圧縮後のガスの圧力(mPa)
P1:圧縮前のガス圧力(mPa)
k:比熱比
m:圧縮段数
 例えば、ペンタンで飽和した30℃の空気を101kPaから1MPaに断熱圧縮すると、上昇温度差(ΔT)は83℃である。単に液体ペンタンを第1容器2内へ注入するのではなく、スプレーノズルで微細化した液体ペンタンを第1容器2内に注入することで、この温度上昇を抑制できる。空気含有ガスに飽和していたn-ペンタンの一部は、冷却されて液化し、回収できる。スプレー注入を行えば、スプレーする事なく液体ペンタンを注入する方法より第1容器2内の温度を速やかに低下できる。
 液面計(高液面)8の検出値が予め定めた高液面閾値より高くなると、弁13を閉じ、液状媒体供給ポンプ18を停止する。
 次に、排出工程S3を説明する。まず、カウンターを0に初期化する。そして、第1容器2と第2容器3を連通し、第1容器2で圧縮されたガスの一部を第2容器3に移動させる。具体的には、弁15を閉じ、弁14を開いた状態を予め定めた時間継続する。その後、弁14を閉じる。
 次に、第2容器3から装置外へガスを放出する。この際、燃焼器4と空気供給部19と弁17およびそれらを接続する配管は必須の構成ではない。例えば、弁15から排出されるガスを燃焼させずに大気で希釈する場合は、弁15を開放してガスを大気にそのまま放出してもよい。
 ガスを燃やして大気に放出する場合は、ガスに含まれる酸素だけでは完全燃焼できないことが想定される。例えば、n-ペンタンの場合、空気との混合比がn-ペンタンの燃焼範囲(1.5%~7.8%)を超える場合は、酸素を供給する必要がある。この範囲に空気量を調整する為、弁17を介して空気が投入される。この空気としては、圧縮空気供給設備から供給することが望ましく、例えば、装置の計装機器を作動させるための計装用空気を使用してもよい。具体的には、次の手順で行う。燃焼器4は、燃焼触媒として白金微粒子を担持させたセラミックハニカムフィルターを内部に備えている。燃焼器4内を200~350℃になるようにヒーター4aで加熱された状態で、弁17と弁15を開いて燃焼器4へガスと空気を供給して媒体を燃焼する。この状態を予め定めた時間継続する。その後、弁15と弁17を閉じる。その後、カウンターに1を加え、カウンターが予め定めた回数N回未満の場合、図3に示したように戻る。カウンターが予め定めた回数N回以上の場合、このループから抜ける。回数Nは、第1容器2の圧縮された後のガスの体積と圧力および第2容器3の容積に応じて適切に設定する。燃焼器4でガスを燃焼させることは、媒体流路に混入した空気を媒体流路から除去するために必須ではないが、可燃性ガスの媒体を用いている場合、大気にそのまま放出されることを防止できる。
 次に、第1容器2からガス貯留部1へ圧力を逃がすと共に媒体を移動させる。具体的には、弁16と弁12を開き、予め定めた時間経過後、弁16と弁12を閉じる。そして、上記空気混入検出工程S1に戻る。
 空気と媒体の混合ガスを圧縮することで混合ガス中の媒体量を減らすことができる理由を次に説明する。空気に飽和するn-ペンタンの量Fstは、下記の式3で表わすことができる。
Fst=Fa×(Ps/(Pc-Ps))・・・・・・・・・・・・・(式3)
Fst:温度tで空気に飽和するn-ペンタンの標準状態量(Nm3
Fa:空気の標準状態量(Nm3
Ps:温度tでのn-ペンタンの飽和蒸気圧(kPa)
Pc:運転圧力(kPa)
 この式3から、空気中に飽和するn-ペンタンの容積比率に関して、圧力と温度をパラメーターとして計算した結果を図5に示す。図5から解るように、圧力が高い程、また温度が低い程、空気に飽和するペンタンが少ない事がわかる。特に圧力を高くする事は空気に飽和して系外へ持ち出されるn-ペンタンを少なくする上で極めて有効である事がわかる。
 次に、n-ペンタンの損失量に関して述べる。図6は、温度が30℃一定の場合の例として本発明の実施例に係る装置の各容器の容積比とペンタン随伴率の関係を示す図である。C0はガス貯留部1の容積、C1は、第1容器2の容積、C2は、第2容器3の容積を表す。燃焼器4で燃焼されるn-ペンタン量は、第1容器2の容積C1と第2容器3の容積C2の比で大きく異なるので、運転管理上重要である。即ち、第1容器2に蓄積され圧縮された空気は、圧縮された圧力状態でn-ペンタンが飽和状態にある。その後、弁14を開けて、第1容器2と第2容器3を連通させると、第1容器2の圧力は第2容器3の容積増加に見合った分だけ低下する。そうすると、第1容器2内には液体のペンタンが存在するので、圧力低下分に見合った分だけ式3にしたがってガス中のn-ペンタン量は増加する。この事は容積比(C2/C1)が小さい程、装置外に放出されるn-ペンタン量が少なくなる事を示している。なお、C1/C0の比は、ペンタン随伴率に殆ど影響がない。
1:ガス貯留部
2:第1容器
3:第2容器
4:燃焼器(燃焼触媒充填)
4a:ヒーター
5:制御部
6:液体ペンタンの流量計
7:第1容器の圧力計
8:第1容器の液面計(高液面)
9:第1容器の液面計(低液面)
10:ガス貯留部の温度計
11:ガス貯留部の圧力計
12,13,14,15,16,17:弁
18:液状媒体供給ポンプ
24:液状媒体タンク
25:スプレーノズル
19:空気供給部
S1:空気混入検出工程
S2:媒体液化工程
S3:排出工程
100:蒸発器
101:タービン
102:発電機
103:凝縮器
104:循環ポンプ
105:予熱器

Claims (11)

  1. 水よりも沸点が低い媒体と熱源との間で熱交換し媒体ガスを発生させる熱交換器と、
    前記熱交換器から供給される前記媒体ガスの圧力を受けて回転するタービンと、
    前記タービンに連結された発電機と、
    前記タービンから排出された前記媒体ガスを冷却する凝縮器と、
    前記凝縮器から排出された前記媒体を前記熱交換器に供給する循環ポンプと、
    前記熱交換器と前記タービンと前記凝縮器と前記循環ポンプとを循環する媒体流路と、
    前記媒体に混入した空気を除去する空気除去装置と
    を備えた発電装置において、
    前記空気除去装置は、
    前記凝縮器の出口側に設けられた媒体中のガスを貯留するガス貯留部と、
    前記ガス貯留部中の圧力を測定する圧力計と、
    前記ガス貯留部中の温度を測定する温度計と、
    前記温度計の温度を用いて算出された前記媒体の飽和蒸気圧値に基づいて圧力閾値を算出し、前記圧力計の圧力値と前記圧力閾値とを比較して媒体中へ空気が混入したか否かを判定する制御部と、
    空気が混入したと判定された場合に、前記ガス貯留部のガスを排出する排出手段を備えたことを特徴とする発電装置。
  2. 前記排出手段は、
    前記制御部により空気が混入したと判定された場合に、前記ガス貯留部に貯留された前記ガスが移送される第1容器と、
    前記第1容器に液状の媒体を供給して前記ガスを圧縮する媒体供給手段と、を備え、
    前記媒体供給後に、前記第1容器内に残留したガスを排出することを特徴とする請求項1に記載の発電装置。
  3. 前記媒体供給手段は、前記液状の媒体を貯留する液状媒体タンクと、前記液状媒体タンクから前記液状の媒体を前記第1容器内に供給する液状媒体供給ポンプとを備えたことを特徴とする請求項2に記載の発電装置。
  4. 前記排出手段は、
    前記ガス貯留部と前記第1容器の下部との間を接続する配管に設けた第1弁と、
    前記液状媒体供給ポンプと前記第1容器とを接続する配管に設けた第2弁と、
    前記第1容器上部と第2容器とを接続する配管に設けた第3弁と、
    前記第2容器から前記ガスを排気する第4弁と、
    前記ガス貯留部と前記第1容器の上部とを接続する配管に設けられた第5弁と、
    を備えたことを特徴とする請求項3に記載の発電装置。
  5. 前記制御部は、空気が混入したと判定した場合に、
    前記第2弁と前記第3弁と閉じ、前記第1弁と前記第5弁とを開いて前記ガス貯留部内の前記ガスを前記第1容器へ移送した後、前記第1弁と前記第5弁を閉じて前記第2弁を開いて前記液状媒体供給ポンプで前記第1容器に液体の媒体を供給して前記ガスを圧縮し、
    次に、前記第4弁を閉じた状態で前記第3弁を開いて前記第1容器内の前記ガスを前記第2容器へ移送させた後、前記第3弁を閉じて前記第4弁を開いて前記第2容器内の前記ガスを前記第2容器の外へ排出する制御を行うことを特徴とする請求項4に記載の発電装置。
  6. 前記第2容器から排出された前記ガス中に残留する媒体を燃焼する燃焼器と、
    前記燃焼器に空気を供給する空気供給部と、を備えたことを特徴とする請求項4または5に記載に記載の発電装置。
  7. 前記燃焼器と前記空気供給部とを接続する配管に第6弁を備え、
    前記制御部は、前記第4弁と前記第6弁の開度を制御し流量調整を行なうことを特徴とする請求項6に記載の発電装置。
  8. 前記制御部は、前記圧力計の圧力値が前記圧力閾値より大きい場合に、空気が混入したと判定することを特徴とする請求項1から7の何れか一項に記載の発電装置。
  9. 前記圧力閾値は、前記飽和蒸気圧値に余裕値を加算して算出され、
    前記余裕値は、予め設定された固定値、もしくは、前記飽和蒸気圧値に係数を乗じた比例値であることを特徴とする請求項1から8の何れか一項に記載の発電装置。
  10. 前記液状の媒体を前記第1容器内に散布するスプレーノズルを備えたことを特徴とする請求項2から7の何れか一項に記載の発電装置。
  11. 前記媒体供給手段は、前記媒体流路の前記循環ポンプの出口側に設けられた弁と、前記循環ポンプと前記弁の間の配管から分岐して前記第1容器とを接続する分岐配管と、前記分岐配管に設けられた弁とからなり、
    前記制御部は、前記空気混入を検出した場合に、前記媒体流路の前記循環ポンプの出口側に設けられた弁を閉じ、前記分岐配管に設けた弁を開く制御を行うことを特徴とする請求項2に記載の発電装置。
PCT/JP2012/070791 2011-08-19 2012-08-16 発電装置 WO2013027643A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013529982A JP6127971B2 (ja) 2011-08-19 2012-08-16 発電装置
US14/237,393 US9512741B2 (en) 2011-08-19 2012-08-16 Power plant
NZ620693A NZ620693B2 (en) 2011-08-19 2012-08-16 Power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-179444 2011-08-19
JP2011179444 2011-08-19

Publications (1)

Publication Number Publication Date
WO2013027643A1 true WO2013027643A1 (ja) 2013-02-28

Family

ID=47746388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070791 WO2013027643A1 (ja) 2011-08-19 2012-08-16 発電装置

Country Status (3)

Country Link
US (1) US9512741B2 (ja)
JP (1) JP6127971B2 (ja)
WO (1) WO2013027643A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512941A (ja) * 2014-04-04 2017-05-25 クリメオン・エイビイ 閉ループプロセスからの非凝縮性ガスの除去
KR20190019090A (ko) * 2016-06-20 2019-02-26 아이에프피 에너지스 누벨 랭킨 사이클에 따라 기능하는 폐쇄 회로에 포함된 가스 유체를 검출 및 추출하기 위한 방법과, 이런 방법을 사용하는 디바이스
JP2021055567A (ja) * 2019-09-27 2021-04-08 株式会社神戸製鋼所 検査方法及び検査装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757335B2 (ja) * 2011-10-19 2015-07-29 富士電機株式会社 混入空気除去装置およびこれを備えた発電装置
JP6254968B2 (ja) * 2015-03-06 2017-12-27 ヤンマー株式会社 動力発生装置
US11187212B1 (en) 2021-04-02 2021-11-30 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176707A (ja) * 1984-09-21 1986-04-19 Hisaka Works Ltd 排熱回収装置
JPH03111605A (ja) * 1989-09-22 1991-05-13 Hisaka Works Ltd 非共沸混合媒体から不凝縮ガスを分離する方法
US20070234750A1 (en) * 2006-04-05 2007-10-11 Kalex,Llc. System an apparatus for complete condensation of multi-component working fluids

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591713A (en) 1979-12-05 1980-07-11 Masayoshi Maeda Method and apparatus for generation of power from waste heat or the like making use of high-pressure gas
JPS57119112A (en) * 1981-01-14 1982-07-24 Hitachi Ltd Air ejector for condenser in rankine cycle
JPS57124078A (en) 1981-01-27 1982-08-02 Hitachi Ltd Heat generator
JPS58106108A (ja) * 1981-12-18 1983-06-24 Hitachi Ltd バイナリ発電プラント凝縮器の抽気装置
JPS60201008A (ja) * 1984-03-26 1985-10-11 Hitachi Ltd プラント運転制御方法及びその装置
JPS6226304A (ja) 1985-07-29 1987-02-04 Mitsubishi Heavy Ind Ltd 蒸気−バイナリ−複合地熱発電システム
US5119635A (en) 1989-06-29 1992-06-09 Ormat Turbines (1965) Ltd. Method of a means for purging non-condensable gases from condensers
JPH03111606A (ja) 1989-09-22 1991-05-13 Hisaka Works Ltd 造水式バイナリー発電装置
US5005351A (en) * 1990-02-26 1991-04-09 Westinghouse Electric Corp. Power plant condenser control system
JPH03275903A (ja) * 1990-03-23 1991-12-06 Toshiba Corp 蒸気タービンプラントの起動方法およびその方法に使用する復水装置
US5487765A (en) 1991-03-27 1996-01-30 Ormat Turbines (1965) Ltd. Apparatus for purging non-condensable gases from condensers
US5113927A (en) 1991-03-27 1992-05-19 Ormat Turbines (1965) Ltd. Means for purging noncondensable gases from condensers
NZ248799A (en) * 1992-10-26 1996-03-26 Ormat Ind Ltd Power plant, using heat from geothermal steam and brine, with recuperator to transfer heat from organic vapor exiting turbine to organic fluid exiting condenser
JPH06300393A (ja) 1993-04-09 1994-10-28 Mitsubishi Heavy Ind Ltd 冷媒回収装置
JP2003120513A (ja) 2001-10-05 2003-04-23 Mitsubishi Heavy Ind Ltd 地熱発電装置
JP4738225B2 (ja) 2006-03-27 2011-08-03 大阪瓦斯株式会社 動力システム
GB2457266B (en) * 2008-02-07 2012-12-26 Univ City Generating power from medium temperature heat sources
JP2010159952A (ja) * 2008-12-08 2010-07-22 Kankyo Soken:Kk 冷媒ガスと非凝縮ガスの分離装置及びその方法
US8196395B2 (en) * 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8627663B2 (en) * 2009-09-02 2014-01-14 Cummins Intellectual Properties, Inc. Energy recovery system and method using an organic rankine cycle with condenser pressure regulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176707A (ja) * 1984-09-21 1986-04-19 Hisaka Works Ltd 排熱回収装置
JPH03111605A (ja) * 1989-09-22 1991-05-13 Hisaka Works Ltd 非共沸混合媒体から不凝縮ガスを分離する方法
US20070234750A1 (en) * 2006-04-05 2007-10-11 Kalex,Llc. System an apparatus for complete condensation of multi-component working fluids

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512941A (ja) * 2014-04-04 2017-05-25 クリメオン・エイビイ 閉ループプロセスからの非凝縮性ガスの除去
EP3126756A4 (en) * 2014-04-04 2017-11-08 Climeon AB Removal of non-condensble gases from a closed loop process
EP3364131A1 (en) * 2014-04-04 2018-08-22 Climeon AB Removal of non-condensble gases from a closed-loop process
KR20190019090A (ko) * 2016-06-20 2019-02-26 아이에프피 에너지스 누벨 랭킨 사이클에 따라 기능하는 폐쇄 회로에 포함된 가스 유체를 검출 및 추출하기 위한 방법과, 이런 방법을 사용하는 디바이스
JP2019522142A (ja) * 2016-06-20 2019-08-08 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles ランキンサイクルに従って機能する閉ループ回路に含まれているガス状流体を検出および抽出する方法ならびにその方法を使用するデバイス
JP7029414B2 (ja) 2016-06-20 2022-03-03 イエフペ エネルジ ヌヴェル ランキンサイクルに従って機能する閉ループ回路に含まれているガス状流体を検出および抽出する方法ならびにその方法を使用するデバイス
KR102390751B1 (ko) * 2016-06-20 2022-04-25 아이에프피 에너지스 누벨 랭킨 사이클에 따라 기능하는 폐쇄 회로에 포함된 가스 유체를 검출 및 추출하기 위한 방법과, 이런 방법을 사용하는 디바이스
JP2021055567A (ja) * 2019-09-27 2021-04-08 株式会社神戸製鋼所 検査方法及び検査装置
JP7222862B2 (ja) 2019-09-27 2023-02-15 株式会社神戸製鋼所 検査方法及び検査装置

Also Published As

Publication number Publication date
US20140190165A1 (en) 2014-07-10
JP6127971B2 (ja) 2017-05-17
NZ620693A (en) 2015-04-24
US9512741B2 (en) 2016-12-06
JPWO2013027643A1 (ja) 2015-03-19

Similar Documents

Publication Publication Date Title
JP6127971B2 (ja) 発電装置
CN102817649B (zh) 动力发生装置
KR101126833B1 (ko) 유기 랭킨 사이클 유체
RU2434145C2 (ru) Способ и система для производства энергии из теплового источника
CA2820606C (en) Parallel cycle heat engines
KR101135686B1 (ko) Orc시스템 유량계 제어방법
KR20060036109A (ko) 가스 터빈 시스템 효율 증대 방법 및 그 방법에 적절한가스 터빈 시스템
CN106896054A (zh) 一种超临界二氧化碳腐蚀实验装置
US10245527B2 (en) Solid-liquid separation device
US20100307154A1 (en) Closed thermodynamic system for producing electric power
CN104727867B (zh) 中低温余热的利用方法及其降压吸热式蒸汽动力循环系统
JP2008267341A (ja) 廃熱回収装置
JP5849557B2 (ja) 発電装置の作動媒体に混入した空気を除去する装置
KR20110079446A (ko) Orc시스템 펌프 제어방법
JP5757335B2 (ja) 混入空気除去装置およびこれを備えた発電装置
RU2412359C1 (ru) Способ работы парогазовой установки
JP5803494B2 (ja) 発電装置の作動媒体に混入した空気を除去する装置
Mikielewicz et al. Gas boiler as a heat source for the domestic micro-CHP
KR101360599B1 (ko) 작동유체 농도제어형 발전시스템 및 이를 이용한 작동유체의 농도제어 방법
CN204627689U (zh) 一种液体降压吸热式蒸汽动力循环系统
Lei et al. Analysis of waste heat recovery of power plant thermal system based on organic Rankine cycle
KR102042316B1 (ko) 폐열발전 작동유체 공급장치 및 방법
NZ620693B2 (en) Power plant
KR102390751B1 (ko) 랭킨 사이클에 따라 기능하는 폐쇄 회로에 포함된 가스 유체를 검출 및 추출하기 위한 방법과, 이런 방법을 사용하는 디바이스
KR101644547B1 (ko) 보조발전부를 포함하는 발전플랜트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529982

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14237393

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825944

Country of ref document: EP

Kind code of ref document: A1