WO2013024769A1 - Film formation device and film formation method - Google Patents

Film formation device and film formation method Download PDF

Info

Publication number
WO2013024769A1
WO2013024769A1 PCT/JP2012/070225 JP2012070225W WO2013024769A1 WO 2013024769 A1 WO2013024769 A1 WO 2013024769A1 JP 2012070225 W JP2012070225 W JP 2012070225W WO 2013024769 A1 WO2013024769 A1 WO 2013024769A1
Authority
WO
WIPO (PCT)
Prior art keywords
material gas
film forming
film
film formation
supply
Prior art date
Application number
PCT/JP2012/070225
Other languages
French (fr)
Japanese (ja)
Inventor
美子 鎌田
林 輝幸
小野 裕司
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020147003510A priority Critical patent/KR20140054043A/en
Publication of WO2013024769A1 publication Critical patent/WO2013024769A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • the present invention relates to a film forming apparatus and a film forming method used for forming a light emitting layer in the manufacture of an organic EL element, for example.
  • organic EL elements using electroluminescence (EL) have been developed. Since organic EL elements emit light by themselves, they have advantages such as an excellent viewing angle compared to liquid crystal displays (LCDs) and the like, and future development is expected.
  • LCDs liquid crystal displays
  • the most basic structure of this organic EL element is a sandwich structure in which an anode (anode) layer, a light emitting layer and a cathode (cathode) layer are formed on a glass substrate.
  • a transparent electrode made of ITO is used for the anode layer on the glass substrate.
  • ITO Indium Tin Oxide
  • Such an organic EL element is manufactured by sequentially forming a light emitting layer and a cathode layer on a glass substrate on which an ITO layer (anode layer) is formed in advance, and further forming a sealing film layer. Is common.
  • the light-emitting layer is formed in the organic EL element as described above in a vapor deposition apparatus.
  • the film thickness of the light emitting layer or the like in the vapor deposition apparatus needs to be controlled to a predetermined film thickness from the viewpoint of light emission efficiency and the like, and a film thickness control technique has been devised conventionally.
  • the film thickness measurement method described in Patent Document 1 is used to measure the film thickness using a crystal oscillator for measurement, and the film thickness of the film formed on the crystal oscillator.
  • a technique for calculating the relationship between the thickness of a film actually formed on a substrate and controlling the thickness of the film formed on the substrate is known.
  • the measurement crystal resonator is provided in the vicinity of the substrate, for example, as in the film thickness measurement method described in Patent Document 1, the measurement is performed by depositing a film forming material on the crystal resonator.
  • the measurement crystal unit has a device lifetime, and as the film thickness deposited on the measurement crystal unit increases, the film thickness deposited on the substrate cannot be accurately reproduced, and the measurement reliability May change over time.
  • it is necessary to frequently replace the crystal resonator in accordance with a predetermined number of times of measurement and there is a problem in that efficient film thickness measurement cannot be performed.
  • the above-described conventional film thickness control method can calculate the film formation rate in a mixed gas in which a plurality of types of gases are mixed.
  • the film formation rate of each material gas before mixing cannot be calculated, there is a problem that film thickness measurement and film thickness control cannot be performed with high accuracy.
  • an object of the present invention is to extend the life of a crystal resonator used for film thickness measurement in a film formation process. Further, when film formation is performed using a plurality of types of material gases, film thickness control can be performed based on the relationship between the film formation amount for each material gas and the film formation amount for a mixed gas. An apparatus and a film forming method are provided.
  • a film forming apparatus for forming a thin film on a substrate, a depressurizable material supplying part for supplying a carrier gas and a material gas, and a material on the upper surface of the substrate.
  • a head for injecting gas, and the material supply unit and the head communicate with each other via a material gas supply path, and the material gas supply path is provided with a branch flow path branched from the material gas supply path,
  • a film forming apparatus is provided in which a measuring device for measuring a film forming amount of the material gas is connected to the branch flow path.
  • a control valve for controlling the supply of the carrier gas and the material gas from the material supply unit may be provided in the material gas supply channel and the branch channel.
  • the measurement apparatus may include a crystal resonator for measuring a film thickness and a shutter for controlling the injection of the material gas to the crystal resonator.
  • the head, the branch channel, and the measuring device may be arranged in the same chamber heated to a predetermined temperature.
  • a plurality of the material supply units are provided, a different material gas supply path is provided for each material supply unit, and the measurement device is connected to each of the plurality of branch flow paths branched from the different material gas supply paths. It may be.
  • a plurality of the material supply units are provided, a different material gas supply path is provided for each of the material supply units, and one measurement device that is common to a plurality of branch flow paths branched from the different material gas supply paths May be connected.
  • a carrier gas introduction mechanism that introduces a carrier gas to the material gas supply path via a carrier gas introduction path may be provided. Further, a plurality of the material supply parts are provided, a different material gas supply path is provided for each material supply part, and a common supply path to which the different material gas supply paths are connected is provided, branching from the different material gas supply paths Each of the plurality of branch channels may be connected to the measuring device, and may be provided with a carrier gas introduction mechanism that introduces a carrier gas to the common supply channel via a carrier gas introduction channel.
  • a thin film deposition method for controlling a film thickness based on a relationship between a deposition rate on a substrate and a deposition rate on a deposition material supply unit.
  • the flow rate of the film forming material gas supplied from the supply unit is a predetermined value or less
  • a carrier gas not containing the film forming material gas is supplied to form a film with a flow rate equal to or higher than the predetermined value.
  • this film forming method there are a plurality of types of film forming material gases, and the total of the supply amounts of the plurality of types of film forming material gases and the supply amount of the carrier gas not including the film forming material gases are constant.
  • a film may be formed.
  • film thickness control can be performed based on the relationship between the film formation amount for each material gas and the film formation amount for a mixed gas.
  • FIG. 1 is a side sectional view of the film forming apparatus 1.
  • the vapor deposition head which ejects organic material gas to the board
  • substrate G is a hole transport layer, a non-light-emitting layer (electronic block), for example Layer), blue light-emitting layer, red light-emitting layer, green light-emitting layer, and electron transport layer may be prepared in plural, but in this embodiment, there are two kinds of material gases A description will be given by taking as an example a film forming apparatus in which only one vapor deposition head is provided, two kinds of material gases are mixed in the vapor deposition head, and the mixed gas is jetted onto the substrate.
  • the film forming apparatus 1 includes a processing chamber 10 for performing a film forming process for the substrate G.
  • the inside of the processing chamber 10 is heated to a predetermined temperature by a heater (not shown).
  • a substrate holding table 12 that holds the substrate G is provided below the inside of the processing chamber 10, and the substrate G is, for example, electrostatic in a state in which the film formation target surface faces upward (in a face-up state) during the film formation process. It is held on the substrate holding table 12 by a method such as chucking.
  • a head 20 that ejects organic material gas is installed in the vicinity of the upper side of the substrate holding table 12, and the substrate 20 in a state where the opening surface (material gas ejection surface) 21 of the head 20 is held by the substrate holding table 12.
  • the structure is such that it faces the G upper surface (film formation target surface).
  • the inside of the processing chamber 10 communicates with a vacuum pump 23 through an exhaust pipe 22 and is evacuated when measuring a film forming rate or during a film forming process.
  • material supply mechanisms 30 and 31 as a material supply unit that vaporizes an organic material by heating and supplies a material gas vaporized by a carrier gas to the head 20. Is provided.
  • two material supply mechanisms 30 and 31 are provided, and each material supply mechanism supplies a first material gas and a second material gas.
  • the material supply mechanism 30 and the head 20 communicate with each other via a material gas supply path 40.
  • the material supply mechanism 30 is provided with a heater (not shown) for heating the organic material inside, and the organic material gas (first material gas) heated and generated (vaporized) in the material supply mechanism 30 is the material gas. It is introduced into the head 20 via the supply path 40. Further, an openable / closable exhaust line 42 is provided in the middle of the material gas supply path 40 so that the material gas or the like staying in the material gas supply path 40 can be exhausted.
  • the material supply mechanism 30 is connected to a carrier gas introduction mechanism 45 that allows a carrier gas, for example, argon gas, to flow into the material supply mechanism 30 via the flow path 43, and the carrier gas that has flowed in from the carrier gas introduction mechanism 45.
  • a carrier gas for example, argon gas
  • the material gas generated in the material supply mechanism 30 by the flow of the gas flows to the material gas supply path 40.
  • the inflow of the carrier gas from the carrier gas introduction mechanism 45 to the material supply mechanism 30 is controlled by opening / closing a control valve V1 provided on the flow path 43.
  • the material supply mechanism 31 and the head 20 communicate with each other via a material gas supply path 41.
  • the material supply mechanism 31 is provided with a heater (not shown) for heating the organic material inside, and the organic material gas (second material gas) heated and generated (vaporized) in the material supply mechanism 31 is the material gas. It is introduced into the head 20 via the supply path 41. Further, in the middle of the material gas supply path 41, an openable / closable exhaust line 42 is provided in the same manner as the material gas supply path 40, and the material gas and the like remaining in the material gas supply path 40 are exhausted. The configuration is possible.
  • the material supply mechanism 31 is connected to a carrier gas introduction mechanism 49 that allows a carrier gas, for example, argon gas, to flow into the material supply mechanism 31 via the flow path 47, and the carrier gas that has flowed in from the carrier gas introduction mechanism 49.
  • a carrier gas for example, argon gas
  • the material gas generated in the material supply mechanism 31 due to the flow of the gas flows to the material gas supply path 41.
  • the inflow of the carrier gas from the carrier gas introduction mechanism 49 to the material supply mechanism 31 is controlled by opening and closing a control valve V2 provided on the flow path 47.
  • the first material gas and the second material gas introduced into the head 20 through the material gas supply path 40 and the material gas supply path 41 are mixed in the head 20 to become a mixed gas, and the mixed gas is transferred from the opening surface 21 to the substrate. G is sprayed to form a film.
  • the material gas supply path 40 is provided with a branch flow path 50 that branches in the middle of the material gas supply path 40, and the branch flow path 50 is connected to the measuring device 60.
  • a control valve V3 for controlling the introduction of the first material gas to the head 20 is provided in the vicinity of the head side of the material gas supply path 40, and the branch material flow path 50 is connected to the first material gas measuring device 60.
  • a control valve V4 for controlling the introduction is provided. That is, when the first material gas flowing from the material supply mechanism 30 is introduced only into the head 20 by suitably controlling the control valves V3 and V4, the head 20 and the measuring device 60 are introduced. It is the structure which can switch the case where it introduces to both.
  • the material gas supply channel 41 is provided with a branch channel 51 that branches in the middle of the material gas supply channel 41, and the branch channel 51 is connected to the measuring device 61.
  • a control valve V5 for controlling the introduction of the second material gas into the head 20 is provided in the vicinity of the head side of the material gas supply path 41, and the branch material channel 51 is connected to the second material gas measuring device 61.
  • a control valve V6 for controlling the introduction is provided. That is, by appropriately controlling the control valves V5 and V6, the second material gas flowing from the material supply mechanism 31 is introduced only into the head 20, the case where only the measurement device 61 is introduced, and the head 20 and the measurement device 61. It is the structure which can switch the case where it introduces to both.
  • the measuring device 60 and the measuring device 61 have the same configuration, and have a crystal resonator 65 and a shutter 66.
  • the shutter 66 is configured to be openable and closable.
  • a material gas first material gas, second material gas
  • the material gas is measured. It is injected into the internal crystal unit 65.
  • the amount of material gas introduced into the measuring devices 60 and 61 may be extremely small, and the branch flow paths 50 and 51 have a cross-sectional area. It is preferable that the piping is small.
  • FIG. 2 is an explanatory diagram of the manufacturing process of the organic EL element A manufactured by various film forming apparatuses including the film forming apparatus 1 according to the embodiment of the present invention.
  • a substrate G having an anode (anode) layer 70 formed thereon is prepared.
  • the substrate G is made of a transparent material made of, for example, glass.
  • the anode layer 70 is made of a transparent conductive material such as ITO (Indium Tin Oxide).
  • the anode layer 70 is formed on the upper surface of the substrate G, for example, by sputtering.
  • the light emitting layer (organic layer) 71 is formed into a film by the vapor deposition method on the anode layer 70.
  • FIG. The film forming apparatus 1 according to the present embodiment is used, for example, when the light emitting layer 71 is formed by vapor deposition.
  • the light emitting layer 71 has, for example, a multilayer structure in which a hole transport layer, a non-light emitting layer (electron block layer), a blue light emitting layer, a red light emitting layer, a green light emitting layer, and an electron transport layer are stacked.
  • a cathode (cathode) layer 72 made of, for example, Ag, Al, or the like is formed on the light emitting layer 71 by, for example, sputtering using a mask.
  • the light emitting layer 71 is patterned by, for example, dry etching the light emitting layer 71 using the cathode layer 72 as a mask.
  • an insulating sealing film layer made of, for example, silicon nitride (SiN) so as to cover the periphery of the light emitting layer 71 and the cathode layer 72 and the exposed portion of the anode layer 70. 73 is deposited.
  • the sealing film layer 73 is formed by, for example, a ⁇ wave plasma CVD method.
  • the manufactured organic EL element A can make the light emitting layer 71 emit light by applying a voltage between the anode layer 70 and the cathode layer 72.
  • Such an organic EL element A can be applied to a display device and a surface light emitting element (illumination, light source, etc.), and can be used for various other electronic devices.
  • the film thickness control of the formed thin film is performed by the measuring apparatuses 60 and 61. This is performed based on the relationship between the film formation amount calculated by the measurement and the film thickness of the thin film formed on the substrate. Therefore, hereinafter, the measurement performed in the film forming apparatus 1 shown in FIG. 1 will be described.
  • the control valves V1, V2, V4, and V6 are opened while the control valves V3 and V5 are closed, and film formation is performed.
  • the first material gas is caused to flow through the material gas supply path 40 and the second material gas is caused to flow through the material gas supply path 41 with the same flow rate and flow speed as the flow rate and flow speed that are sometimes flowed.
  • FIG. 3 is an explanatory diagram showing the gas flow in this case. In the state shown in FIG. 3, each material gas is flowed, and the first material gas and the second material gas are introduced into the measuring devices 60 and 61, respectively.
  • the shutters 66 in the measuring devices 60 and 61 are opened, and film formation is performed on the crystal resonator 65 using only the first material gas and the second material gas, respectively. Since film formation on the crystal unit 65 is preferably minimal from the viewpoint of the life of the apparatus, it is desirable that the shutter 66 is appropriately opened and closed. For example, only when measurement as shown in FIG. 3 is performed. It is desirable to open the shutter 66 and close the shutter 66 as soon as possible after the measurement is completed.
  • FIG. 4 is an explanatory diagram showing the gas flow in this case.
  • both the first material gas and the second material gas are introduced into the head 20, mixed in the head 20 (mixed gas), and then sprayed from the opening surface 21 onto the upper surface of the substrate G. Is done. That is, the film forming process for the substrate G is performed using two kinds of material gases (first material gas and second material gas).
  • the film formation with the mixed gas is actually performed on the substrate G shown in FIG. 4 and the case where the measurement is performed by the measuring devices 60 and 61 shown in FIG.
  • the flow rate and flow velocity of the first material gas and the second material gas are the same.
  • the measurement results in the measuring devices 60 and 61 that is, the film formation amounts of the respective materials with respect to the crystal unit 65 and the respective material gases are introduced into the head 20, and the film formation is performed on the substrate G. A relationship with the film formation amount can be obtained.
  • the flow rate and flow rate of each material gas necessary for forming a thin film with a predetermined thickness on the substrate G are determined, and the thin film with a desired thickness is placed on the substrate G. It is possible to form a film (film thickness control).
  • the crystal resonators that have been placed in the vicinity of the substrate for the conventional film thickness control are respectively placed in the measuring devices connected to the branch flow paths through which each material gas flows individually, The amount of the material gas deposited can be suppressed as compared with the conventional case, and the life of the apparatus can be extended.
  • the branch flow path is an extremely thin pipe compared to the material gas supply path, the life of the crystal unit can be ensured more reliably.
  • the present invention has been described above, but the present invention is not limited to the illustrated embodiment. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.
  • the film forming process in which the organic material is formed on the substrate by vapor deposition has been described as an example.
  • the present invention also applies when the film forming process is performed using an inorganic material gas. Applicable.
  • the material supply mechanism, the head, and the measuring apparatus are arranged in the same processing chamber, but separate chambers for storing the respective apparatuses. It is also possible to connect the plurality of chambers by piping. In addition, when three or more kinds of material gases are mixed and a film forming process is performed on the substrate, it is obvious that the effect of the present invention can be obtained by providing a measuring device corresponding to each material gas.
  • each material gas is introduced into the measuring devices 60 and 61 (shown in FIG. 3) and the case where the material gas is introduced into the head 20 (shown in FIG. 4) are performed.
  • the present invention is not limited to this.
  • each material gas is introduced into the measuring devices 60 and 61 and at the same time, each material gas is also introduced into the head 20 to perform the film formation process on the substrate G and calculate the film formation amount and the film formation rate. Is possible.
  • FIG. 5 is an explanatory diagram showing the gas flow when the material gas is introduced into the measuring devices 60 and 61 and also into the head 20. As shown in FIG. 5, when the material gas is introduced into the measuring devices 60 and 61 and simultaneously into the head 20, the material gas is allowed to flow with all the control valves V1 to V6 being opened.
  • the two measuring devices for measuring each gas are divided into the branch flow paths branched from the material gas supply paths of the respective material gases. Although it is assumed that they are connected, it is also possible to connect only one measuring device to be disposed in the processing chamber and connect each branch channel to one common measuring device.
  • FIG. 6 is a schematic explanatory diagram of a film forming apparatus 100 according to the second embodiment of the present invention when only one measuring apparatus is provided.
  • the same components as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 6 shows an example in which all the control valves (V1 to V6) are opened. However, during the measurement for calculating the film formation amount and the film formation rate, each control valve is opened and closed. It is preferably controlled.
  • the branch channel 50 and the branch channel 51 are connected to one common measuring device 101.
  • the first material gas including argon gas
  • the control valves V1, V4 and closing the control valves V2, V3, V5, V6 are introduced into the measuring apparatus 101 by opening only the control valves V1, V4 and closing the control valves V2, V3, V5, V6.
  • measurement is performed with a crystal resonator, and then only the control valves V2, V6 are opened, and the control valves V1, V3, V4, V5 are closed to introduce only the second material gas into the measurement apparatus 101.
  • a single measurement device 101 can be used to measure a plurality (here, two types) of material gases.
  • FIG. 7 is a schematic explanatory view of a film forming apparatus 200 according to another embodiment of the present invention. Note that in FIG. 7, the case where the film formation apparatus 200 performs film formation using one kind of material gas is described. However, the invention according to another embodiment described here is not limited thereto, and The present invention can also be applied when two kinds of material gases are used as in the embodiment.
  • a measuring device 212 is provided outside the processing chamber 10 via a gate valve 202, and a measuring device 213 is provided via a gate valve 203.
  • two branch flow paths 220 and 221 branching in the middle of the material gas supply path 40 are provided.
  • the branch flow path 220 opens toward the gate valve 202, and the branch flow path 221 faces the gate valve 203. Open.
  • a shutter 230 that can be opened and closed is provided between the opening 220 a of the branch flow path 220 and the gate valve 202, and a shutter 231 that can be opened and closed between the opening 221 a of the branch flow path 221 and the gate valve 203. Is provided.
  • the material gas ejected from the branch flow paths 220 and 221 does not reach the measuring devices 212 and 213 when the shutters 230 and 231 are closed, and the shutters 230 and 231 and the gate valves 202 and 203 are opened. And only when the shutters 230 and 231 are opened, the inside of the measuring devices 212 and 213 is reached.
  • the diameters of the branch flow paths 220 and 221 are preferably less than 8.5% of the diameter of the material gas supply path 40.
  • FIG. 8 is a schematic view showing an example of the shape of the shutters 230 and 231.
  • the shape of the shutters 230 and 231 is a shape provided with a plurality of holes 235 that open in the direction in which the material gas is ejected.
  • the material particles in the material gas ejected toward the shutter 230 (231) enter the hole 235 as shown by the broken line in FIG.
  • the reflection of the material gas (material particles) on the shutter surface is prevented. That is, scattering of the material gas (material particles) reflected in the processing chamber 10 is suppressed, and the occurrence of a device failure or the like is avoided.
  • crystal resonators 215 and 216 are arranged inside the measuring devices 212 and 213, respectively. These crystal resonators 215 and 216 are arranged so as to be taken out of the apparatus.
  • the measuring devices 212 and 213 are provided with an exhaust passage 240 that communicates with both internal spaces and that is evacuated by a vacuum pump (not shown).
  • the exhaust passage 240 is branched into an exhaust pipe 240a communicating with the measuring device 212 and an exhaust pipe 240b communicating with the measuring device 213.
  • the exhaust pipe 240a and the exhaust pipe 240b are provided with control valves V7 and V8, respectively. ing. Exhaust (evacuation) inside the measuring devices 212 and 213 can be controlled by opening and closing the control valves V7 and V8.
  • the measuring devices 212 and 213 are provided with an N 2 gas supply path 252 communicating with the N 2 gas supply unit 250 for purging the N 2 gas in both.
  • the N 2 gas supply path 252 branches into an N 2 gas supply pipe 252a and a measurement apparatus 252b communicating with the measurement device 212, and a control valve is provided for each of the N 2 gas supply pipe 252a and the N 2 gas supply pipe 252b.
  • V9 and V10 are provided. The supply of N 2 gas into the measuring devices 212 and 213 is controlled by opening and closing the control valves V9 and V10.
  • the measurement of the material gas in the film thickness control at the time of film formation is performed by the crystal resonator.
  • the material gas is supplied from the material supply mechanism 30 to the head 20 via the material gas supply path 40 during film formation, but in this embodiment, a branch flow flows along the material gas supply path 40. Since the paths 220 and 221 are provided, a part of the material gas flowing through the material gas supply path 40 is ejected from the opening 220a of the branch flow path 220 and the opening 221a of the branch flow path 221 during film formation. ing.
  • the inside of the measurement device 212 is set in a reduced pressure state (vacuum state), and the gate valve 202 and the shutter 230 are placed. Is opened so that the gas ejected from the branch flow path 220 (opening 220a) flows into the measuring device 212. Then, the material gas is injected into the crystal resonator 215 inside the measuring device 212. By comparing the film thickness of the thin film formed on the crystal resonator 215 with the film thickness of the thin film formed on the substrate G, the film formation rate of the material gas is calculated.
  • the differential pressure between the internal pressure P1 of the branch flow path 220 and the internal pressure P2 of the measuring device 212 is set to the internal pressure of the head 20 (particularly the internal pressure near the opening surface 21) and the substrate. It is preferable to approach (equalize) the differential pressure with the internal pressure on the upper surface of G. Furthermore, it is preferable that the distance between the opening 220a of the branch flow path 220 and the crystal resonator 215 in the measuring device 212 is equal to the distance between the opening surface 21 of the head 20 and the substrate G.
  • the film formation rate of the material gas is calculated by comparing the film thickness of the thin film formed on the crystal resonator 215 with the film thickness of the thin film formed on the substrate G. This is because it is preferable to make the film forming conditions closer. Note that the same method is used when the film formation rate is measured by the measurement device 213.
  • the shutters 230 and 231 are closed, and the gate valves 202 and 203 are further closed so that the material gas does not flow into the measuring devices 212 and 213. That is, the inside of the processing chamber 10 and the inside of the measuring devices 212 and 213 are spatially separated.
  • the measurement by the crystal resonators 215 and 216 disposed in the measuring devices 212 and 213 is to measure the frequency of the resonator that fluctuates due to the material deposited by the adhesion of the material gas on the resonator.
  • the measuring devices 212 and 213 it is necessary for the measuring devices 212 and 213 to periodically take out the crystal resonator and replace it or clean it with hot gas or the like.
  • the measurement apparatus 213 can appropriately measure the film formation rate.
  • the measurement apparatus 212 when the crystal resonator 216 in the measurement device 213 is taken out, the shutter 231 and the gate valve 203 are closed, the control valve V8 is closed, and the control valve V10 is turned on. This is done by opening and purging N 2 gas into the measuring device 213. Even when the operation for taking out the crystal resonator 216 in the measurement apparatus 213 is performed as described above, the measurement apparatus 212 can appropriately measure the film formation rate.
  • the film forming rate is measured simultaneously with either the measuring apparatus 212 or the measuring apparatus 213.
  • the quartz vibrator can be replaced and cleaned.
  • the film forming rate is measured by the measuring apparatuses 212 and 213 simultaneously with the film forming process on the substrate G, precise film thickness control is performed. It is possible.
  • the processing chamber 10 and the measuring devices 212 and 213 can be spatially separated, when the measurement accuracy of the measuring device is deteriorated, the entire film forming device 200 is stopped and cooled and opened to the atmosphere. It is possible to replace and clean the crystal unit in the measuring device without performing it. That is, since the crystal unit is exchanged and cleaned while the film formation process is performed, the throughput of the entire apparatus can be improved.
  • one measuring device for example, the measuring device
  • the other measuring device for example, the measuring device 213
  • the inside of the one measuring device the measuring device 212
  • the quartz crystal can be removed and replaced or cleaned. In other words, it is possible to replace and clean the crystal unit in the measuring apparatus while performing the film forming process while maintaining the highly accurate film thickness control.
  • the film forming rate cannot be measured at the time of exchanging and cleaning the crystal unit, so the film forming process has to be stopped.
  • the crystal unit in the measuring apparatus that is not performing the measurement is replaced and washed, so that it is precise and efficient. Film forming process is realized.
  • the shielding plate 255 is provided to prevent the material gas ejected from the branch flow path 220 and the material gas ejected from the branch flow path 221 from affecting each other. It can also be provided.
  • FIG. 9 is a schematic explanatory diagram of a film forming apparatus 200 in which a shielding plate 255 is provided at a suitable position. As shown in FIG. 9, the shielding plates 255 are provided at, for example, three locations between the shutter 230 and the shutter 231, the side portion of the shutter 230 (head 20 side) and the side portion of the shutter 231 (material supply mechanism 30 side). It is done.
  • the shielding plate 255 By providing the shielding plate 255, the material gas ejected from the branch flow path 220 and the material gas ejected from the branch flow path 221 are prevented from affecting each other, and further ejected from the branch flow paths 220 and 221. Thus, the material gas is prevented from being scattered in the processing chamber 10 and causing an apparatus failure or the like.
  • FIG. 10 is a schematic explanatory view of a film forming apparatus 200 provided with an exhaust line 260 at a suitable position.
  • the exhaust line 260 is provided in the vicinity of the gate valve 202, for example, and communicates with an exhaust device such as a vacuum pump (not shown).
  • an exhaust device such as a vacuum pump (not shown).
  • the position where the exhaust line 260 is provided is not limited to the position shown in FIG. 10 as long as it is a position where the scattered material gas can be suitably exhausted.
  • the third embodiment of the present invention has been described with reference to FIGS. 7 to 10 exemplifying the case where film formation is performed using one kind of material gas.
  • the first embodiment is described above.
  • a carrier gas for example, argon gas
  • a carrier gas for example, argon gas
  • a certain relationship is normally secured between the film formation amount (film formation rate) on the crystal resonator and the film formation amount (film formation rate) on the substrate G. It is supposed to be.
  • the present inventors installed a crystal resonator in the vicinity of the head (that is, in the vicinity of the substrate G), and the film formation amount (film formation rate) of the crystal resonator in the vicinity of the head and the crystal vibration of the measuring apparatus. The film formation amount in the child was compared.
  • FIG. 11 is an explanatory diagram showing a schematic configuration of the film forming apparatus 300 in which the present study was performed.
  • the film forming apparatuses 300 and 300a shown in FIGS. 11 and 13 described below components having the same functional configuration as those in the first to third embodiments are denoted by the same reference numerals. Description is omitted. Further, in the film forming apparatus according to FIGS. 11 and 13, the case where there is one kind of film forming material is illustrated.
  • the film forming apparatus 300 communicates with an optical detection device 310 such as a Fourier transform infrared spectroscopy (FTIR) device provided in the middle of the material gas supply path 40 from the branch flow path 50.
  • a measuring device 60 is provided.
  • the optical detection device 310 includes a measurement optical path 310b for measuring the concentration of a material gas used for film formation and a film formation rate, and a light source for irradiating measurement light (for example, infrared light) to the measurement optical path 310b.
  • 310a and a detector 310c that receives the light emitted from the light source 310a and passed through the measurement light path 310b, and detects the absorption spectrum of the received light.
  • the measurement optical path 310 b is arranged in the processing chamber 10, while the light source 310 a and the detector 310 c are arranged outside the processing chamber 10. Therefore, the processing chamber 10 is provided with a transmission window 312 for allowing the light emitted from the light source 310a to reach the measurement optical path 310b, and a transmission window 313 for allowing the light passing through the measurement optical path 310b to reach the detector 310c. It has been.
  • the transmission windows 312 and 313 are windows made of, for example, calcium fluoride that can transmit light while suppressing light attenuation. Moreover, the specific installation location of these transmission windows 312 and 313 is, for example, in the vicinity of both ends in the longitudinal direction of the measurement optical path 310b.
  • the optical detection device 310 can accurately measure the concentration of the material gas flowing in the measurement optical path 310b and the film formation rate of the material gas.
  • the optical detector 310 measures the concentration of the material gas flowing through the material gas supply path 40 and the film formation rate, but accurately measures the film formation rate of the thin film actually formed on the substrate G. Since it is not possible, it is used as an auxiliary for measuring the deposition rate.
  • a crystal resonator 315 is also provided in the vicinity of the substrate G, and the same gas as the material gas that is actually injected from the head 20 onto the substrate G is also injected into the crystal resonator 315. It has a configuration.
  • the inventors flow a material gas at a predetermined temperature (for example, 290 ° C.) through the material gas supply path 40, and form a film on the crystal resonator 65 in the measuring apparatus 60 at that time.
  • a predetermined temperature for example, 290 ° C.
  • FIG. 12 shows the carrier gas flow rate (Ar Flow in the figure) in the material gas supply path 40 and the crystal vibration in the vicinity of the head when a material gas of 290 ° C. is used in the film forming apparatus 300 having the configuration shown in FIG. 6 is a graph showing a relationship between a film formation amount of the child element 315 and a film formation amount of the crystal resonator 65 of the measuring device 60 (Head / Pass in the figure).
  • the carrier gas flow rate is a predetermined amount or more (about 5 sccm or more in FIG. 12)
  • the ratio is substantially constant (in FIG.
  • the film formation amount (film formation rate) for the crystal resonator and the film formation amount (film formation) for the substrate G are formed. It can be seen that there is no problem if the film thickness control is performed assuming that there is a certain relationship (correlation) in (rate).
  • the carrier gas flow rate that is, the material gas flow rate
  • a predetermined amount less than about 5 sccm in FIG. 12
  • the film formation amount of the crystal resonator 315 in the vicinity of the head and the crystal resonator 65 of the measuring device are formed.
  • the ratio with the amount of film is not constant. This is because when the carrier gas flow rate is less than a predetermined amount, a sufficient amount of material gas does not easily flow into the measuring device 60 or the head 20, so that the measurement value varies, and the crystal resonator 315 in the vicinity of the head 20 is formed. It is considered that the factor is that the ratio between the amount and the film formation amount of the crystal resonator 65 of the measuring device 60 is not constant.
  • the inventors of the present invention have only the carrier gas (that is, does not include the material gas) with respect to the material gas supply path 40 in order to always set the flow rate of the carrier gas flowing through the entire material gas supply path 40 to a predetermined amount or more. It was invented to provide a carrier gas introduction path to introduce the.
  • a film forming apparatus 300a having a configuration in which the carrier gas introduction path 320 is provided will be described.
  • FIG. 13 is a schematic explanatory diagram of a film forming apparatus 300a having a structure in which a carrier gas introduction path is further provided in the film forming apparatus having the structure shown in FIG.
  • the material gas supply path 40 is provided with a carrier gas introduction path 320 for introducing a predetermined amount of carrier gas into the supply path 40
  • the carrier gas introduction path 320 is a carrier gas introduction mechanism 321.
  • Communicating with The carrier gas introduction path 320 is provided with a control valve V11 that can be opened and closed.
  • the material from the carrier gas introduction mechanism 321 is used regardless of whether the flow rate of the carrier gas including the material gas introduced from the carrier gas introduction mechanism 45 is low or high.
  • the flow rate of the entire carrier gas flowing in the material gas supply path 40 can be adjusted to a predetermined amount.
  • the flow rate of the entire carrier gas flowing through the material gas supply path 40 is determined in advance by the film forming conditions and the like.
  • the flow rate is such that the ratio with the film formation amount of 65 is substantially constant, and it is clear that there is a certain correlation between the film formation amount on the crystal resonator 65 and the film formation amount on the substrate G.
  • the material gas introduced from the carrier gas introduction mechanism 45 is included by adopting an apparatus configuration in which the material gas supply passage 40 can be introduced from a carrier gas introduction passage 320 that does not contain a material gas. Even if the flow rate of the carrier gas is low, the flow rate of the entire carrier gas flowing in the material gas supply path 40 can be set to a predetermined flow rate or more. Therefore, a sufficient amount of material gas does not flow into the measurement apparatus 60 as described above, and the ratio between the film formation amount of the crystal resonator 315 near the head and the film formation amount of the crystal resonator 65 of the measurement apparatus 60 is constant.
  • FIG. 14 shows the flow rate of the carrier gas flowing in the material supply mechanism 30 when the carrier gas not containing the material gas is fixed at 5 sccm from the carrier gas introduction mechanism 321 in the apparatus configuration shown in FIG. ) And the ratio (Head / Pass in the drawing) of the film formation amount of the crystal resonator 315 in the vicinity of the head and the film formation amount of the crystal resonator 65 of the measuring device 60.
  • the temperature of the material gas is exemplarily illustrated as in FIG.
  • the film formation of the crystal resonator 315 in the vicinity of the head is possible whatever the flow rate of the carrier gas flowing in the material supply mechanism 30 is.
  • the ratio between the amount and the film formation amount of the crystal resonator 65 of the measuring device is substantially constant (about 2.5 in FIG. 14).
  • the ratio (Head / Pass) between the film formation amount of the crystal resonator 315 near the head and the film formation amount of the crystal resonator 65 of the measuring apparatus is not constant, whereas in FIG. It is clear that it is almost constant.
  • the film formation amount (film formation rate) on the crystal resonator 65 in the measuring device 60 when the flow rate of the entire carrier gas flowing through the material gas supply path 40 is set to a predetermined flow rate or more, the film formation amount (film formation rate) on the crystal resonator 65 in the measuring device 60. It can be understood that a thin film having a desired film thickness is formed on the substrate G if the film formation is performed assuming that there is a certain relationship (correlation) between the film formation amount (film formation rate) and the substrate G.
  • FIG. 15 is a schematic explanatory diagram of a film forming apparatus 350 according to the fifth embodiment.
  • constituent elements having the same functional configuration as those of the first to fourth embodiments are illustrated using the same reference numerals as appropriate, and description thereof is omitted.
  • two measuring devices 60 having the same device configuration are installed as in the first embodiment, but for convenience of explanation, a measuring device that measures the first material gas is used.
  • a measuring device for measuring 60a and the second material gas is 60b.
  • the material gas supply path 40 that supplies the first material gas and the material gas supply path 41 that supplies the second material gas have the same common supply path 352 (that is, , Corresponding to the material gas supply path of the mixed gas), and the end of the common supply path 352 is connected to the head 20. That is, the first material gas supplied from the material gas supply path 40 and the second material gas supplied from the material gas supply path 41 are mixed in the common supply path 352 and introduced into the head 20 as a mixed gas. It has become.
  • the material gas supply path 40 is provided with a measuring device 60a
  • the material gas supply path 41 is provided with a measuring device 60b.
  • the common supply path 352 is provided with a carrier gas introduction path 320 for introducing a predetermined amount of carrier gas into the common supply path 352 in addition to the material gas supply paths 40 and 41. It communicates with the carrier gas introduction mechanism 321.
  • the carrier gas introduction path 320 is provided with a control valve V11 that can be opened and closed.
  • a plurality of material gases (in this embodiment, two kinds of first material gas and second material gas) are mixed, as in the first embodiment.
  • the measurement is performed for each material gas by using a crystal resonator (measuring device 60a, 60b) for each material gas before being mixed.
  • the relationship between the obtained measurement result and the film thickness when the film is actually formed on the substrate by the mixed gas is calculated, and the film thickness can be precisely controlled.
  • a carrier gas containing a material (a mixed gas containing a material gas) can be supplied to the common supply path 352 at a constant flow rate of a predetermined amount or more.
  • the following problems also exist. That is, in the film forming apparatus 350 having the configuration shown in FIG. 15, in order to change the film forming conditions when the mixed gas is supplied to the common supply path 352 at a flow rate of a predetermined amount or more to perform the film forming process on the substrate G. For example, when only the supply amount of the second material gas is changed, the flow rate of the entire mixed gas flowing in the common supply path 352 is also changed.
  • the film formation rate of the second material gas whose supply amount is changed naturally also changes, but the flow rate of the entire mixed gas changes.
  • the film forming rate of the first material gas also varies. That is, there is a problem in that only the supply amount of the second material gas is changed, which also affects the measurement of the deposition rate of the first material gas whose supply amount is not changed.
  • the film formation conditions are, for example, when the supply amount of the first material gas is 1 sccm, the supply amount of the second material gas is 2 sccm, and the supply amount of the carrier gas from the carrier gas introduction path 320 is 4 sccm.
  • the film formation rate of the first material gas in the measuring apparatus 60a is 2 nm / sec
  • the film formation rate of the first material gas in the crystal resonator 315 is 4 nm / sec.
  • the supply amount of the second material gas is changed to a flow rate of 4 sccm, the flow rate of the entire mixed gas varies from 7 sccm to 9 sccm.
  • the film formation rate of the first material gas in the crystal unit 315 should be measured as 2 nm / sec. May be measured as a value lower than 2 nm / sec (for example, 1.5 nm / sec).
  • the inventors changed the supply amount of the carrier gas supplied from the carrier gas introduction path 320 in accordance with the change in the supply amount of the second material gas, so that the entire mixed gas
  • the second material gas supply rate fluctuation is performed by controlling the flow rate of the first material gas to be constant before and after the second material gas supply amount fluctuation. It has been found that the problem of being affected can be avoided. That is, in the above specific example, the carrier gas supply amount from the carrier gas introduction path 320 is reduced from 4 sccm to 2 sccm, so that the flow rate of the entire mixed gas remains at the original 7 sccm, and the first material gas film formation rate is measured. The problem that the influence of the fluctuation of the second material gas supply amount appears can be avoided.
  • the carrier gas introduction path 320 when forming a film on the substrate G with a mixed gas in which a plurality of types of material gases are mixed, the film formation of other material gases due to the fluctuation of the flow rate of each material gas is performed.
  • the influence on the rate measurement can be suppressed, and the film thickness control and film formation can be performed without impairing the correlation between the film formation rate for the crystal resonator and the film formation rate for the substrate G in the measurement apparatus described above. It becomes possible.
  • the carrier gas introduction path 320 is provided as one independent flow path.
  • only the carrier gas is introduced into the flow path of the material gas supply paths 40 and 41.
  • An introduction path can also be provided individually.
  • the configuration in which the introduction of the carrier gas from the carrier gas introduction path 320 is performed from the upstream of each material gas (first material gas / second material gas) is illustrated and described in FIG.
  • the present invention is not limited to such an apparatus configuration.
  • the carrier gas introduction path 320 is directly communicated with the head 20, and each material gas is disposed along the carrier gas flow direction along the carrier gas introduction path 320.
  • the material gas supply paths 40 and 41 may be connected to the carrier gas introduction path 320 so as to supply.
  • FIG. 16 is a schematic explanatory diagram of a film forming apparatus 350 ′ according to the sixth embodiment.
  • a carrier gas introduction path 320 is provided so as to communicate with the head 20, and the material gas supply path 40 and the material gas supply path 41 are provided in the middle of the carrier gas introduction path 320. Is connected.
  • the flow direction of each material gas (first material gas and second material gas) that merges from the material gas supply paths 40 and 41 is the carrier gas. It is configured to be in a direction along the flow of the carrier gas in the introduction path 320 (see the arrow in FIG. 16).
  • the carrier gas flows backward from the carrier gas introduction path 320 to the material gas supply paths 40 and 41, and the material gas from the material gas supply paths 40 and 41 to the carrier gas introduction path 320. Therefore, it is possible to perform an efficient film forming process.
  • the effect of preventing the backflow is further ensured by setting the flow rate of the carrier gas in the carrier gas introduction channel 320 to a flow rate larger than the flow rates of the material gases in the material gas supply channels 40 and 41.
  • the present invention can be applied to, for example, a film forming apparatus and a film forming method used for forming a light emitting layer in manufacturing an organic EL element.

Abstract

[Problem] To increase the service life of a quartz resonator used to measure film thickness in a film formation process, and to provide a film formation device and film formation method whereby film thickness can be controlled on the basis of the relationship between the amount of film formation for mixed gas and the amount of film formation for individual material gases when films are formed using a plurality of types of material gases. [Solution] Provided is a film formation device for forming a thin film on a substrate, the film formation device characterized in comprising: a material supply part for supplying a carrier gas and a material gas, the material supply part being capable of decompression; and a head for ejecting the material gas onto the top surface of the substrate; the material supply part and the head being communicated through a material gas supply channel; a branched flow channel for branching from the material gas supply channel being provided to the material gas supply channel; and a measurement device for measuring the amount of film formation of the material gas being connected to the branched flow channel.

Description

成膜装置及び成膜方法Film forming apparatus and film forming method
 本発明は、例えば有機EL素子の製造における発光層の成膜に用いる成膜装置及び成膜方法に関する。 The present invention relates to a film forming apparatus and a film forming method used for forming a light emitting layer in the manufacture of an organic EL element, for example.
 近年、エレクトロルミネッセンス(EL:Electro Luminescence)を利用した有機EL素子が開発されている。有機EL素子は、自発光するので、液晶ディスプレー(LCD)などに比べて視野角に優れている等の利点があり、今後の発展が期待されている。 In recent years, organic EL elements using electroluminescence (EL) have been developed. Since organic EL elements emit light by themselves, they have advantages such as an excellent viewing angle compared to liquid crystal displays (LCDs) and the like, and future development is expected.
 この有機EL素子の最も基本的な構造は、ガラス基板上にアノード(陽極)層、発光層およびカソード(陰極)層を重ねて形成したサンドイッチ構造である。発光層の光を外に取り出すために、ガラス基板上のアノード層には、ITO(Indium Tin Oxide)からなる透明電極が用いられる。かかる有機EL素子は、表面にITO層(アノード層)が予め形成されたガラス基板上に、発光層とカソード層を順に成膜し、更に封止膜層を成膜することによって製造されるのが一般的である。 The most basic structure of this organic EL element is a sandwich structure in which an anode (anode) layer, a light emitting layer and a cathode (cathode) layer are formed on a glass substrate. In order to extract light from the light emitting layer to the outside, a transparent electrode made of ITO (Indium Tin Oxide) is used for the anode layer on the glass substrate. Such an organic EL element is manufactured by sequentially forming a light emitting layer and a cathode layer on a glass substrate on which an ITO layer (anode layer) is formed in advance, and further forming a sealing film layer. Is common.
 以上のような有機EL素子における発光層の成膜は、蒸着処理装置において行われるのが一般的である。蒸着処理装置における発光層等の膜厚は、発光効率等の観点から所定の膜厚に制御される必要があり、従来より膜厚制御技術が創案されてきた。 Generally, the light-emitting layer is formed in the organic EL element as described above in a vapor deposition apparatus. The film thickness of the light emitting layer or the like in the vapor deposition apparatus needs to be controlled to a predetermined film thickness from the viewpoint of light emission efficiency and the like, and a film thickness control technique has been devised conventionally.
 膜厚制御技術としては、例えば特許文献1に記載された膜厚測定方法のような、測定用の水晶振動子を用いて膜厚測定を行い、水晶振動子に成膜された膜の膜厚と実際に基板に成膜された膜の膜厚の関係性を算出し、基板に成膜される膜の膜厚制御を行う技術が知られている。 As a film thickness control technique, for example, the film thickness measurement method described in Patent Document 1 is used to measure the film thickness using a crystal oscillator for measurement, and the film thickness of the film formed on the crystal oscillator There is known a technique for calculating the relationship between the thickness of a film actually formed on a substrate and controlling the thickness of the film formed on the substrate.
特開2008-122200号公報JP 2008-122200 A
 しかしながら、例えば上記特許文献1に記載された膜厚測定方法等のように、測定用水晶振動子を基板の近傍に設けた場合、水晶振動子に成膜材料が蒸着されることで測定が行われ、その水晶振動子への蒸着が進行すると共に、測定精度が劣化してしまうといった問題点があった。即ち、測定用の水晶振動子には装置寿命が存在し、測定用の水晶振動子に蒸着される膜厚が厚くなるにつれて、基板に蒸着される膜厚を正確に再現できず、測定信頼度が経時的に変化してしまう恐れがあった。これにより、例えば所定の測定回数に応じて頻繁に水晶振動子の交換を行う必要があり、効率的な膜厚測定が行われないといった問題点があった。 However, when the measurement crystal resonator is provided in the vicinity of the substrate, for example, as in the film thickness measurement method described in Patent Document 1, the measurement is performed by depositing a film forming material on the crystal resonator. However, there is a problem that the deposition accuracy on the quartz crystal unit advances and the measurement accuracy deteriorates. In other words, the measurement crystal unit has a device lifetime, and as the film thickness deposited on the measurement crystal unit increases, the film thickness deposited on the substrate cannot be accurately reproduced, and the measurement reliability May change over time. As a result, for example, it is necessary to frequently replace the crystal resonator in accordance with a predetermined number of times of measurement, and there is a problem in that efficient film thickness measurement cannot be performed.
 また、基板への成膜を複数種類の材料ガスを蒸着させることによって行う場合に、上記従来の膜厚制御方法では、複数種類のガスが混合された混合ガスにおける成膜レートは算出可能であるものの、混合前の各材料ガスの成膜レートは算出できないため、膜厚測定・膜厚制御が高精度で行われないといった問題点もあった。 In addition, when film formation on a substrate is performed by vapor deposition of a plurality of types of material gases, the above-described conventional film thickness control method can calculate the film formation rate in a mixed gas in which a plurality of types of gases are mixed. However, since the film formation rate of each material gas before mixing cannot be calculated, there is a problem that film thickness measurement and film thickness control cannot be performed with high accuracy.
 そこで、上記問題点に鑑み、本発明の目的は、成膜処理において膜厚測定に用いられる水晶振動子の長寿命化を図ることにある。さらに、複数種の材料ガスを用いて成膜を行う際に、個別の材料ガスについての成膜量と混合ガスについての成膜量の関係性に基き膜厚制御を行うことが可能な成膜装置及び成膜方法を提供することにある。 Therefore, in view of the above problems, an object of the present invention is to extend the life of a crystal resonator used for film thickness measurement in a film formation process. Further, when film formation is performed using a plurality of types of material gases, film thickness control can be performed based on the relationship between the film formation amount for each material gas and the film formation amount for a mixed gas. An apparatus and a film forming method are provided.
 前記の目的を達成するため、本発明によれば、基板に薄膜を成膜させる成膜装置であって、キャリアガスおよび材料ガスを供給する減圧自在な材料供給部と、前記基板の上面に材料ガスを噴射させるヘッドと、を備え、前記材料供給部と前記ヘッドは材料ガス供給路を介して連通し、前記材料ガス供給路には、材料ガス供給路から分岐する分岐流路が設けられ、前記分岐流路には材料ガスの成膜量を測定する測定装置が接続されている、成膜装置が提供される。 In order to achieve the above object, according to the present invention, there is provided a film forming apparatus for forming a thin film on a substrate, a depressurizable material supplying part for supplying a carrier gas and a material gas, and a material on the upper surface of the substrate. A head for injecting gas, and the material supply unit and the head communicate with each other via a material gas supply path, and the material gas supply path is provided with a branch flow path branched from the material gas supply path, A film forming apparatus is provided in which a measuring device for measuring a film forming amount of the material gas is connected to the branch flow path.
 上記成膜装置においては、前記材料ガス供給路および前記分岐流路には、前記材料供給部からのキャリアガスおよび材料ガスの供給を制御する制御バルブが設けられていてもよい。また、前記測定装置は、膜厚測定用の水晶振動子と、前記水晶振動子への材料ガスの噴射を制御するシャッターとを備えていてもよい。 In the film forming apparatus, a control valve for controlling the supply of the carrier gas and the material gas from the material supply unit may be provided in the material gas supply channel and the branch channel. In addition, the measurement apparatus may include a crystal resonator for measuring a film thickness and a shutter for controlling the injection of the material gas to the crystal resonator.
 前記ヘッド、前記分岐流路および前記測定装置は、所定の温度に加熱された同一チャンバー内に配置されてもよい。また、前記材料供給部は複数設けられ、それぞれの材料供給部ごとに異なる材料ガス供給路が設けられ、前記異なる材料ガス供給路から分岐する複数の分岐流路にはそれぞれ前記測定装置が接続されていてもよい。また、前記材料供給部は複数設けられ、それぞれの材料供給部ごとに異なる材料ガス供給路が設けられ、前記異なる材料ガス供給路から分岐する複数の分岐流路には共通する1つの前記測定装置が接続されていてもよい。 The head, the branch channel, and the measuring device may be arranged in the same chamber heated to a predetermined temperature. In addition, a plurality of the material supply units are provided, a different material gas supply path is provided for each material supply unit, and the measurement device is connected to each of the plurality of branch flow paths branched from the different material gas supply paths. It may be. In addition, a plurality of the material supply units are provided, a different material gas supply path is provided for each of the material supply units, and one measurement device that is common to a plurality of branch flow paths branched from the different material gas supply paths May be connected.
 前記材料ガス供給路に対してキャリアガス導入路を介してキャリアガスを導入するキャリアガス導入機構が設けられていても良い。また、前記材料供給部は複数設けられ、それぞれの材料供給部ごとに異なる材料ガス供給路と、前記異なる材料ガス供給路が接続される共通供給路が設けられ、前記異なる材料ガス供給路から分岐する複数の分岐流路にはそれぞれ前記測定装置が接続され、前記共通供給路に対してキャリアガス導入路を介してキャリアガスを導入するキャリアガス導入機構が設けられていても良い。 A carrier gas introduction mechanism that introduces a carrier gas to the material gas supply path via a carrier gas introduction path may be provided. Further, a plurality of the material supply parts are provided, a different material gas supply path is provided for each material supply part, and a common supply path to which the different material gas supply paths are connected is provided, branching from the different material gas supply paths Each of the plurality of branch channels may be connected to the measuring device, and may be provided with a carrier gas introduction mechanism that introduces a carrier gas to the common supply channel via a carrier gas introduction channel.
 また、別の観点からの本発明によれば、基板における成膜レートと、成膜材料の供給部における成膜レートとの関係性に基いて膜厚を制御する、薄膜の成膜方法であって、前記供給部から供給される成膜材料ガスの流量が所定値以下の場合、成膜材料ガスに加えて、成膜材料ガスを含まないキャリアガスを供給し所定値以上の流量として成膜を行う、成膜方法が提供される。この成膜方法においては、前記成膜材料ガスは複数種であり、複数種の成膜材料ガスの供給量の合計と、成膜材料ガスを含まないキャリアガスの供給量との合計を一定として成膜を行っても良い。 According to another aspect of the present invention, there is provided a thin film deposition method for controlling a film thickness based on a relationship between a deposition rate on a substrate and a deposition rate on a deposition material supply unit. When the flow rate of the film forming material gas supplied from the supply unit is a predetermined value or less, in addition to the film forming material gas, a carrier gas not containing the film forming material gas is supplied to form a film with a flow rate equal to or higher than the predetermined value. A film forming method is provided. In this film forming method, there are a plurality of types of film forming material gases, and the total of the supply amounts of the plurality of types of film forming material gases and the supply amount of the carrier gas not including the film forming material gases are constant. A film may be formed.
 本発明によれば、成膜処理において膜厚測定に用いられる水晶振動子の長寿命化を図ることができる。さらに、複数種の材料ガスを用いて成膜を行う際に、個別の材料ガスについての成膜量と混合ガスについての成膜量の関係性に基き膜厚制御を行うことが可能な成膜装置及び成膜方法を提供することができる。 According to the present invention, it is possible to extend the life of a crystal resonator used for film thickness measurement in a film forming process. Further, when film formation is performed using a plurality of types of material gases, film thickness control can be performed based on the relationship between the film formation amount for each material gas and the film formation amount for a mixed gas. An apparatus and a film formation method can be provided.
本発明の実施の形態にかかる成膜装置の側面断面図である。It is side surface sectional drawing of the film-forming apparatus concerning embodiment of this invention. 有機EL素子の製造工程の説明図である。It is explanatory drawing of the manufacturing process of an organic EL element. 測定装置のみに材料ガスを流す場合のガスの流れを示す説明図である。It is explanatory drawing which shows the flow of the gas in the case of flowing material gas only to a measuring apparatus. ヘッドのみに材料ガスを流す場合のガスの流れを示す説明図である。It is explanatory drawing which shows the flow of the gas in the case of flowing material gas only to a head. 測定装置およびヘッドに材料ガスを流す場合のガスの流れを示す説明図である。It is explanatory drawing which shows the flow of gas when flowing material gas into a measuring apparatus and a head. 本発明の第2の実施の形態にかかる成膜装置の概略説明図である。It is a schematic explanatory drawing of the film-forming apparatus concerning the 2nd Embodiment of this invention. 本発明の第3の実施の形態にかかる成膜装置の概略説明図である。It is a schematic explanatory drawing of the film-forming apparatus concerning the 3rd Embodiment of this invention. シャッターの形状の一例を示す概略図である。It is the schematic which shows an example of the shape of a shutter. 好適な位置に遮蔽板を設けた成膜装置の概略説明図である。It is a schematic explanatory drawing of the film-forming apparatus which provided the shielding board in the suitable position. 好適な位置に排気ラインを設けた成膜装置の概略説明図である。It is a schematic explanatory drawing of the film-forming apparatus which provided the exhaust line in the suitable position. 水晶振動子を基板近傍に設けた構成の成膜装置の概略説明図である。It is a schematic explanatory drawing of the film-forming apparatus of the structure which provided the crystal oscillator in the board | substrate vicinity. キャリアガス流量と、ヘッド近傍の水晶振動子の成膜量と材料ガス供給路途上の水晶振動子の成膜量との比、との関係を示すグラフである。4 is a graph showing a relationship between a carrier gas flow rate and a ratio between a film formation amount of a crystal resonator in the vicinity of a head and a film formation amount of a crystal resonator in a material gas supply path. 本発明の第4の実施の形態にかかる、キャリアガス導入路を設けた構成の成膜装置の概略説明図である。It is a schematic explanatory drawing of the film-forming apparatus of the structure which provided the carrier gas introduction path concerning the 4th Embodiment of this invention. キャリアガス導入機構から材料ガスを含まないキャリアガスを5sccmで固定して流した場合の、材料供給機構において流れるキャリアガス流量と、ヘッド近傍の水晶振動子の成膜量と材料ガス供給路途上の水晶振動子の成膜量との比、との関係を示すグラフである。When a carrier gas not containing a material gas is supplied at a rate of 5 sccm from the carrier gas introduction mechanism, the flow rate of the carrier gas flowing in the material supply mechanism, the film formation amount of the crystal unit near the head, and the material gas supply path It is a graph which shows the relationship with the ratio with the film-forming amount of a crystal oscillator. 本発明の第5の実施の形態にかかる成膜装置の概略説明図である。It is a schematic explanatory drawing of the film-forming apparatus concerning the 5th Embodiment of this invention. 本発明の第6の実施の形態にかかる成膜装置の概略説明図である。It is a schematic explanatory drawing of the film-forming apparatus concerning the 6th Embodiment of this invention.
 1、100、200、300、300a、350、350’…成膜装置
 10…処理チャンバー
 12…基板保持台
 20…ヘッド
 21…開口面
 22…排気管
 23…真空ポンプ
 30、31…材料供給機構
 40、41…材料ガス供給路
 42…排気ライン
 43、47…流路
 45、49、321…キャリアガス導入機構
 50、51、220、221…分岐流路
 60、61、101、212、213…測定装置
 65、215、216、315…水晶振動子
 66…シャッター
 202、203…ゲートバルブ
 230、231…シャッター
 235…穴部
 240…排気路
 250…Nガス供給部
 252…Nガス供給路
 255…遮蔽板
 260…排気ライン
 310…光学的検知装置
 312、313…透過窓
 320…キャリアガス導入路
 352…共通供給路
V1~V11…制御バルブ
 G…基板
DESCRIPTION OF SYMBOLS 1,100,200,300,300a, 350,350 '... Film-forming apparatus 10 ... Processing chamber 12 ... Substrate holding stand 20 ... Head 21 ... Opening surface 22 ... Exhaust pipe 23 ... Vacuum pump 30, 31 ... Material supply mechanism 40 , 41 ... Material gas supply path 42 ... Exhaust line 43, 47 ... Flow path 45, 49, 321 ... Carrier gas introduction mechanism 50, 51, 220, 221 ... Branch flow path 60, 61, 101, 212, 213 ... Measuring device 65,215,216,315 ... crystal resonator 66 ... shutter 202, 203 ... gate valves 230 and 231 ... shutter 235 ... hole 240 ... exhaust path 250 ... N 2 gas supply unit 252 ... N 2 gas supply channel 255 ... shield Plate 260 ... Exhaust line 310 ... Optical detection device 312, 313 ... Transmission window 320 ... Carrier gas introduction path 352 ... Common Supply path V1 ~ V11 ... control valve G ... substrate
 以下、本発明の実施の形態について図面を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、以下の実施の形態においては、有機材料(以下、単に材料とも呼称する)を用いて有機EL素子を製造する場合を例示して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted. In the following embodiments, a case where an organic EL element is manufactured using an organic material (hereinafter also simply referred to as a material) will be described as an example.
 (第1の実施の形態)
 以下には本発明の第1の実施の形態として、例えば有機EL素子の製造工程における発光層の蒸着工程(成膜工程)に用いられる成膜装置1について図面を参照して説明する。図1は、成膜装置1の側面断面図である。なお、有機材料ガス(以下、単に材料ガスとも呼称する)を用いた蒸着工程を行う場合には、基板Gに有機材料ガスを噴出させる蒸着ヘッドは、例えばホール輸送層、非発光層(電子ブロック層)、青発光層、赤発光層、緑発光層、電子輸送層等の複数の有機層の蒸着のために複数用意される場合もあるが、本実施の形態では材料ガスが2種類であり、蒸着ヘッドは1つのみ設けられ、2種類の材料ガスが蒸着ヘッド内において混合され、混合されたガスが基板に噴射されることで成膜が行われる成膜装置を例示して説明する。
(First embodiment)
Hereinafter, as a first embodiment of the present invention, for example, a film forming apparatus 1 used in a light emitting layer deposition process (film forming process) in a manufacturing process of an organic EL element will be described with reference to the drawings. FIG. 1 is a side sectional view of the film forming apparatus 1. In addition, when performing the vapor deposition process using organic material gas (henceforth only material gas), the vapor deposition head which ejects organic material gas to the board | substrate G is a hole transport layer, a non-light-emitting layer (electronic block), for example Layer), blue light-emitting layer, red light-emitting layer, green light-emitting layer, and electron transport layer may be prepared in plural, but in this embodiment, there are two kinds of material gases A description will be given by taking as an example a film forming apparatus in which only one vapor deposition head is provided, two kinds of material gases are mixed in the vapor deposition head, and the mixed gas is jetted onto the substrate.
 図1に示すように、成膜装置1は基板Gの成膜処理を行う処理チャンバー10を備えている。この処理チャンバー10の内部は図示しないヒータによって所定の温度に加熱されている。処理チャンバー10の内部下方には、基板Gを保持する基板保持台12が設けられ、成膜処理時には、基板Gが成膜対象面を上に向けた状態で(フェースアップ状態で)例えば静電チャック等の方式で基板保持台12に保持される。また、基板保持台12の上方近傍には、有機材料ガスを噴出するヘッド20が設置されており、ヘッド20の開口面(材料ガス噴出面)21が基板保持台12に保持された状態の基板G上面(成膜対象面)に対向するような構成となっている。また、処理チャンバー10の内部は、排気管22を介して真空ポンプ23に連通しており、成膜レート測定時や成膜処理時には真空引きされる。 As shown in FIG. 1, the film forming apparatus 1 includes a processing chamber 10 for performing a film forming process for the substrate G. The inside of the processing chamber 10 is heated to a predetermined temperature by a heater (not shown). A substrate holding table 12 that holds the substrate G is provided below the inside of the processing chamber 10, and the substrate G is, for example, electrostatic in a state in which the film formation target surface faces upward (in a face-up state) during the film formation process. It is held on the substrate holding table 12 by a method such as chucking. In addition, a head 20 that ejects organic material gas is installed in the vicinity of the upper side of the substrate holding table 12, and the substrate 20 in a state where the opening surface (material gas ejection surface) 21 of the head 20 is held by the substrate holding table 12. The structure is such that it faces the G upper surface (film formation target surface). Further, the inside of the processing chamber 10 communicates with a vacuum pump 23 through an exhaust pipe 22 and is evacuated when measuring a film forming rate or during a film forming process.
 また、図1に示すように、処理チャンバー10内には、加熱によって有機材料を気化させ、キャリアガスによって気化された材料ガスをヘッド20に供給する材料供給部としての材料供給機構30、31が設けられている。なお、本実施の形態にかかる成膜装置1においては、2つの材料供給機構30、31が備えられ、それぞれの材料供給機構が第1材料ガス、第2材料ガスを供給するものとして説明する。 Further, as shown in FIG. 1, in the processing chamber 10, there are material supply mechanisms 30 and 31 as a material supply unit that vaporizes an organic material by heating and supplies a material gas vaporized by a carrier gas to the head 20. Is provided. In the film forming apparatus 1 according to the present embodiment, two material supply mechanisms 30 and 31 are provided, and each material supply mechanism supplies a first material gas and a second material gas.
 材料供給機構30とヘッド20は材料ガス供給路40を介して連通している。材料供給機構30には内部の有機材料を加熱するヒータ(図示せず)が備えられており、材料供給機構30において加熱・生成(気化)された有機材料ガス(第1材料ガス)が材料ガス供給路40を介してヘッド20に導入される。また、この材料ガス供給路40の途中には、開閉自在な排気ライン42が設けられており、材料ガス供給路40内に滞留した材料ガスなどを排気することが可能な構成となっている。 The material supply mechanism 30 and the head 20 communicate with each other via a material gas supply path 40. The material supply mechanism 30 is provided with a heater (not shown) for heating the organic material inside, and the organic material gas (first material gas) heated and generated (vaporized) in the material supply mechanism 30 is the material gas. It is introduced into the head 20 via the supply path 40. Further, an openable / closable exhaust line 42 is provided in the middle of the material gas supply path 40 so that the material gas or the like staying in the material gas supply path 40 can be exhausted.
一方、材料供給機構30には流路43を介して例えばアルゴンガスであるキャリアガスを材料供給機構30に流入させるキャリアガス導入機構45が接続されており、キャリアガス導入機構45から流入したキャリアガスの流れによって材料供給機構30内で生成された材料ガスは材料ガス供給路40に流される。なお、このキャリアガス導入機構45から材料供給機構30へのキャリアガスの流入は、流路43上に設けられた制御バルブV1の開閉によって制御される。 On the other hand, the material supply mechanism 30 is connected to a carrier gas introduction mechanism 45 that allows a carrier gas, for example, argon gas, to flow into the material supply mechanism 30 via the flow path 43, and the carrier gas that has flowed in from the carrier gas introduction mechanism 45. The material gas generated in the material supply mechanism 30 by the flow of the gas flows to the material gas supply path 40. The inflow of the carrier gas from the carrier gas introduction mechanism 45 to the material supply mechanism 30 is controlled by opening / closing a control valve V1 provided on the flow path 43.
 また、同様に材料供給機構31とヘッド20は材料ガス供給路41を介して連通している。材料供給機構31には内部の有機材料を加熱するヒータ(図示せず)が備えられており、材料供給機構31において加熱・生成(気化)された有機材料ガス(第2材料ガス)が材料ガス供給路41を介してヘッド20に導入される。また、この材料ガス供給路41の途中には、上記材料ガス供給路40と同様に、開閉自在な排気ライン42が設けられており、材料ガス供給路40内に滞留した材料ガスなどを排気することが可能な構成となっている。 Similarly, the material supply mechanism 31 and the head 20 communicate with each other via a material gas supply path 41. The material supply mechanism 31 is provided with a heater (not shown) for heating the organic material inside, and the organic material gas (second material gas) heated and generated (vaporized) in the material supply mechanism 31 is the material gas. It is introduced into the head 20 via the supply path 41. Further, in the middle of the material gas supply path 41, an openable / closable exhaust line 42 is provided in the same manner as the material gas supply path 40, and the material gas and the like remaining in the material gas supply path 40 are exhausted. The configuration is possible.
一方、材料供給機構31には流路47を介して例えばアルゴンガスであるキャリアガスを材料供給機構31に流入させるキャリアガス導入機構49が接続されており、キャリアガス導入機構49から流入したキャリアガスの流れによって材料供給機構31内で生成された材料ガスは材料ガス供給路41に流される。なお、このキャリアガス導入機構49から材料供給機構31へのキャリアガスの流入は、流路47上に設けられた制御バルブV2の開閉によって制御される。 On the other hand, the material supply mechanism 31 is connected to a carrier gas introduction mechanism 49 that allows a carrier gas, for example, argon gas, to flow into the material supply mechanism 31 via the flow path 47, and the carrier gas that has flowed in from the carrier gas introduction mechanism 49. The material gas generated in the material supply mechanism 31 due to the flow of the gas flows to the material gas supply path 41. The inflow of the carrier gas from the carrier gas introduction mechanism 49 to the material supply mechanism 31 is controlled by opening and closing a control valve V2 provided on the flow path 47.
 そして、材料ガス供給路40および材料ガス供給路41を通ってヘッド20に導入された第1材料ガスおよび第2材料ガスはヘッド20内において混合され混合ガスとなり、開口面21から混合ガスが基板Gに対して噴射され、成膜が行われる。 The first material gas and the second material gas introduced into the head 20 through the material gas supply path 40 and the material gas supply path 41 are mixed in the head 20 to become a mixed gas, and the mixed gas is transferred from the opening surface 21 to the substrate. G is sprayed to form a film.
 また、材料ガス供給路40には、この材料ガス供給路40の途上で分岐する分岐流路50が設けられており、分岐流路50は測定装置60に接続している。ここで、材料ガス供給路40のヘッド側近傍にはヘッド20への第1材料ガスの導入を制御する制御バルブV3が設けられ、分岐流路50には第1材料ガスの測定装置60への導入を制御する制御バルブV4が設けられている。即ち、制御バルブV3、V4の制御を好適に行うことにより材料供給機構30から流される第1材料ガスをヘッド20のみに導入する場合、測定装置60にのみ導入する場合およびヘッド20と測定装置60の双方に導入する場合を切り替えることが可能な構成となっている。 Further, the material gas supply path 40 is provided with a branch flow path 50 that branches in the middle of the material gas supply path 40, and the branch flow path 50 is connected to the measuring device 60. Here, a control valve V3 for controlling the introduction of the first material gas to the head 20 is provided in the vicinity of the head side of the material gas supply path 40, and the branch material flow path 50 is connected to the first material gas measuring device 60. A control valve V4 for controlling the introduction is provided. That is, when the first material gas flowing from the material supply mechanism 30 is introduced only into the head 20 by suitably controlling the control valves V3 and V4, the head 20 and the measuring device 60 are introduced. It is the structure which can switch the case where it introduces to both.
 また同様に、材料ガス供給路41には、この材料ガス供給路41の途上で分岐する分岐流路51が設けられており、分岐流路51は測定装置61に接続している。ここで、材料ガス供給路41のヘッド側近傍にはヘッド20への第2材料ガスの導入を制御する制御バルブV5が設けられ、分岐流路51には第2材料ガスの測定装置61への導入を制御する制御バルブV6が設けられている。即ち、制御バルブV5、V6の制御を好適に行うことにより材料供給機構31から流される第2材料ガスをヘッド20のみに導入する場合、測定装置61にのみ導入する場合およびヘッド20と測定装置61の双方に導入する場合を切り替えることが可能な構成となっている。 Similarly, the material gas supply channel 41 is provided with a branch channel 51 that branches in the middle of the material gas supply channel 41, and the branch channel 51 is connected to the measuring device 61. Here, a control valve V5 for controlling the introduction of the second material gas into the head 20 is provided in the vicinity of the head side of the material gas supply path 41, and the branch material channel 51 is connected to the second material gas measuring device 61. A control valve V6 for controlling the introduction is provided. That is, by appropriately controlling the control valves V5 and V6, the second material gas flowing from the material supply mechanism 31 is introduced only into the head 20, the case where only the measurement device 61 is introduced, and the head 20 and the measurement device 61. It is the structure which can switch the case where it introduces to both.
 測定装置60および測定装置61は同一の構成であり、水晶振動子65とシャッター66を有している。シャッター66は開閉自在に構成され、シャッター66の開いた状態において、分岐流路50、51から材料ガス(第1材料ガス、第2材料ガス)が導入された場合に、その材料ガスが測定装置内部の水晶振動子65に噴射される。この水晶振動子65に成膜される薄膜の膜厚と、同条件でもって基板Gに対して成膜される薄膜の膜厚を比較することにより、材料ガスの成膜レートが算出される。なお、水晶振動子65への成膜には多量の材料ガスの付着は必要とされないため、測定装置60、61に導入される材料ガスは極めて微量でよく、分岐流路50、51は断面積の小さい配管であることが好ましい。 The measuring device 60 and the measuring device 61 have the same configuration, and have a crystal resonator 65 and a shutter 66. The shutter 66 is configured to be openable and closable. When a material gas (first material gas, second material gas) is introduced from the branch flow paths 50 and 51 in a state where the shutter 66 is opened, the material gas is measured. It is injected into the internal crystal unit 65. By comparing the film thickness of the thin film formed on the crystal resonator 65 with the film thickness of the thin film formed on the substrate G under the same conditions, the film formation rate of the material gas is calculated. Since a large amount of material gas is not required to be deposited on the crystal unit 65, the amount of material gas introduced into the measuring devices 60 and 61 may be extremely small, and the branch flow paths 50 and 51 have a cross-sectional area. It is preferable that the piping is small.
 以上、図1を参照して説明したように構成される成膜装置1において、基板Gに対する薄膜の成膜が行われる。図2は、本発明の実施の形態にかかる成膜装置1を含む種々の成膜装置によって製造される有機EL素子Aの製造工程の説明図である。先ず、図2(a)に示すように、上面にアノード(陽極)層70が成膜された基板Gが用意される。基板Gは、例えばガラス等よりなる透明な材料からなる。また、アノード層70は、ITO(Indium Tin Oxide)等の透明な導電性材料よりなる。なお、アノード層70は、例えばスパッタリング法などにより基板Gの上面に形成される。 In the film forming apparatus 1 configured as described above with reference to FIG. 1, a thin film is formed on the substrate G. FIG. 2 is an explanatory diagram of the manufacturing process of the organic EL element A manufactured by various film forming apparatuses including the film forming apparatus 1 according to the embodiment of the present invention. First, as shown in FIG. 2A, a substrate G having an anode (anode) layer 70 formed thereon is prepared. The substrate G is made of a transparent material made of, for example, glass. The anode layer 70 is made of a transparent conductive material such as ITO (Indium Tin Oxide). The anode layer 70 is formed on the upper surface of the substrate G, for example, by sputtering.
 そして、図2(a)に示すように、アノード層70の上に、発光層(有機層)71が蒸着法によって成膜される。本実施の形態にかかる成膜装置1は、例えばこの発光層71を蒸着法によって成膜する場合に用いられる。なお、発光層71は、例えば、ホール輸送層、非発光層(電子ブロック層)、青発光層、赤発光層、緑発光層、電子輸送層を積層した多層構成などからなる。 And as shown to Fig.2 (a), the light emitting layer (organic layer) 71 is formed into a film by the vapor deposition method on the anode layer 70. FIG. The film forming apparatus 1 according to the present embodiment is used, for example, when the light emitting layer 71 is formed by vapor deposition. The light emitting layer 71 has, for example, a multilayer structure in which a hole transport layer, a non-light emitting layer (electron block layer), a blue light emitting layer, a red light emitting layer, a green light emitting layer, and an electron transport layer are stacked.
 次に、図2(b)に示すように、発光層71の上に、例えばAg、Al等からなるカソード(陰極)層72が、例えばマスクを用いたスパッタリングにより形成される。 Next, as shown in FIG. 2B, a cathode (cathode) layer 72 made of, for example, Ag, Al, or the like is formed on the light emitting layer 71 by, for example, sputtering using a mask.
 次に、図2(c)に示すように、カソード層72をマスクにして、発光層71を例えばドライエッチングすることにより、発光層71がパターニングされる。 Next, as shown in FIG. 2C, the light emitting layer 71 is patterned by, for example, dry etching the light emitting layer 71 using the cathode layer 72 as a mask.
 次に、図2(d)に示すように、発光層71およびカソード層72の周囲と、アノード層70の露出部を覆うように、例えば窒化シリコン(SiN)よりなる絶縁性の封止膜層73が成膜される。この封止膜層73の形成は、例えば、μ波プラズマCVD法によって行われる。 Next, as shown in FIG. 2D, an insulating sealing film layer made of, for example, silicon nitride (SiN) so as to cover the periphery of the light emitting layer 71 and the cathode layer 72 and the exposed portion of the anode layer 70. 73 is deposited. The sealing film layer 73 is formed by, for example, a μ wave plasma CVD method.
このようにして、製造された有機EL素子Aは、アノード層70とカソード層72の間に電圧を加えることによって、発光層71を発光させることができる。かかる有機EL素子Aは、表示装置や面発光素子(照明・光源等)に適用することができ、その他、種々の電子機器に用いることが可能である。 Thus, the manufactured organic EL element A can make the light emitting layer 71 emit light by applying a voltage between the anode layer 70 and the cathode layer 72. Such an organic EL element A can be applied to a display device and a surface light emitting element (illumination, light source, etc.), and can be used for various other electronic devices.
 例えば図2(a)に示す発光層71を本実施の形態にかかる成膜装置1を用いた蒸着法によって成膜する場合、成膜される薄膜の膜厚制御は、測定装置60、61による測定で算出された成膜量と基板に成膜された薄膜の膜厚との関係性に基いて行われる。そこで、以下には、図1に示した成膜装置1において行われる測定について説明する。 For example, when the light emitting layer 71 shown in FIG. 2A is formed by the vapor deposition method using the film forming apparatus 1 according to this embodiment, the film thickness control of the formed thin film is performed by the measuring apparatuses 60 and 61. This is performed based on the relationship between the film formation amount calculated by the measurement and the film thickness of the thin film formed on the substrate. Therefore, hereinafter, the measurement performed in the film forming apparatus 1 shown in FIG. 1 will be described.
 先ず、第1材料ガスと第2材料ガスそれぞれの個別の成膜量を算出するために、制御バルブV3、V5を閉じた状態で、制御バルブV1、V2、V4、V6を開放し、成膜時に流される流量・流速と同じ流量・流速でもって材料ガス供給路40に第1材料ガスを流し、材料ガス供給路41に第2材料ガスを流す。図3は、この場合のガスの流れを示す説明図である。この図3に示した状態で各材料ガスが流され、測定装置60、61にそれぞれ第1材料ガス、第2材料ガスが導入される。この時、各測定装置60、61内のシャッター66は開放されており、水晶振動子65にはそれぞれ第1材料ガスのみ、第2材料ガスのみによる成膜が行われる。なお、水晶振動子65への成膜は、装置寿命の観点から最小限であることが好ましいため、シャッター66は適宜開閉されることが望ましく、例えば図3に示すような測定を行う場合にのみシャッター66を開放し、測定終了後には適宜速やかにシャッター66を閉じることが望ましい。 First, in order to calculate the individual film formation amounts of the first material gas and the second material gas, the control valves V1, V2, V4, and V6 are opened while the control valves V3 and V5 are closed, and film formation is performed. The first material gas is caused to flow through the material gas supply path 40 and the second material gas is caused to flow through the material gas supply path 41 with the same flow rate and flow speed as the flow rate and flow speed that are sometimes flowed. FIG. 3 is an explanatory diagram showing the gas flow in this case. In the state shown in FIG. 3, each material gas is flowed, and the first material gas and the second material gas are introduced into the measuring devices 60 and 61, respectively. At this time, the shutters 66 in the measuring devices 60 and 61 are opened, and film formation is performed on the crystal resonator 65 using only the first material gas and the second material gas, respectively. Since film formation on the crystal unit 65 is preferably minimal from the viewpoint of the life of the apparatus, it is desirable that the shutter 66 is appropriately opened and closed. For example, only when measurement as shown in FIG. 3 is performed. It is desirable to open the shutter 66 and close the shutter 66 as soon as possible after the measurement is completed.
 次に、制御バルブV1、V2、V3、V5を開放し、制御バルブV4、V6を閉じ、上記測定装置60、61による測定を行った場合と同じ流量・流速でもって材料ガス供給路40に第1材料ガスを流し、材料ガス供給路41に第2材料ガスを流す。図4はこの場合のガスの流れを示す説明図である。図4に示すように、第1材料ガス、第2材料ガスは共にヘッド20内に導入され、ヘッド20内において混合された後(混合ガスとなって)、開口面21から基板G上面に噴射される。即ち、2種類の材料ガス(第1材料ガス、第2材料ガス)を用いて基板Gに対する成膜処理が行われる。 Next, the control valves V 1, V 2, V 3, V 5 are opened, the control valves V 4, V 6 are closed, and the material gas supply passage 40 is connected to the material gas supply path 40 with the same flow rate and flow velocity as those measured by the measuring devices 60, 61. 1 material gas is flowed and 2nd material gas is flowed to the material gas supply path 41. FIG. 4 is an explanatory diagram showing the gas flow in this case. As shown in FIG. 4, both the first material gas and the second material gas are introduced into the head 20, mixed in the head 20 (mixed gas), and then sprayed from the opening surface 21 onto the upper surface of the substrate G. Is done. That is, the film forming process for the substrate G is performed using two kinds of material gases (first material gas and second material gas).
 ここで、図4に示した実際に基板Gに混合ガスによる成膜を行っている場合と、図3に示した測定装置60、61による測定を行っている場合とで、各材料ガス(第1材料ガス、第2材料ガス)の流量・流速は同じである。このため、測定装置60、61における測定結果、即ち水晶振動子65に対する各材料の成膜量と、それぞれの材料ガスをヘッド20に導入し、基板Gに成膜を行った場合の基板Gにおける成膜量との関係性が得られる。 Here, in the case where the film formation with the mixed gas is actually performed on the substrate G shown in FIG. 4 and the case where the measurement is performed by the measuring devices 60 and 61 shown in FIG. The flow rate and flow velocity of the first material gas and the second material gas are the same. For this reason, the measurement results in the measuring devices 60 and 61, that is, the film formation amounts of the respective materials with respect to the crystal unit 65 and the respective material gases are introduced into the head 20, and the film formation is performed on the substrate G. A relationship with the film formation amount can be obtained.
 そして、得られた関係性に基き、基板Gに所定の膜厚の薄膜を成膜するために必要な各材料ガスの流量・流速等が定められ、所望の膜厚の薄膜を基板G上に成膜すること(膜厚制御)が可能となる。 Based on the obtained relationship, the flow rate and flow rate of each material gas necessary for forming a thin film with a predetermined thickness on the substrate G are determined, and the thin film with a desired thickness is placed on the substrate G. It is possible to form a film (film thickness control).
 以上、図3および図4を参照して説明した方法によって基板Gに対する成膜時の膜厚制御を精度よく行うことができる。即ち、複数の材料ガス(本実施の形態では2種類)を混合させた混合ガスによって基板への成膜を行う場合に、混合される前の各材料ガスごとに個別に水晶振動子を用いた測定を行い、各材料ガスごとに得られた測定結果と実際に混合ガスによって基板に成膜を行った場合の膜厚との関係性が算出され、精密な膜厚制御を行うことが可能となる。加えて、従来膜厚制御のために基板の近傍に配置されていた水晶振動子を各材料ガスが個別に流れる分岐流路に接続された測定装置にそれぞれ配置することとしたため、水晶振動子への材料ガスの付着量が従来よりも抑えられ、装置寿命の長寿命化が実現される。ここで、分岐流路が材料ガス供給路に比べ極めて細い配管である場合、水晶振動子の長寿命化がより確実に担保される。 As described above, it is possible to accurately control the film thickness during film formation on the substrate G by the method described with reference to FIGS. That is, when a film is formed on a substrate with a mixed gas obtained by mixing a plurality of material gases (in this embodiment, two types), a crystal resonator is used for each material gas before being mixed. Measurements are made, and the relationship between the measurement results obtained for each material gas and the film thickness when the film is actually formed on the substrate with a mixed gas is calculated, enabling precise film thickness control Become. In addition, since the crystal resonators that have been placed in the vicinity of the substrate for the conventional film thickness control are respectively placed in the measuring devices connected to the branch flow paths through which each material gas flows individually, The amount of the material gas deposited can be suppressed as compared with the conventional case, and the life of the apparatus can be extended. Here, in the case where the branch flow path is an extremely thin pipe compared to the material gas supply path, the life of the crystal unit can be ensured more reliably.
 以上、本発明の実施の形態の一例(第1の実施の形態)を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。例えば、上記第1の実施の形態では有機材料を蒸着によって基板上に成膜させる成膜処理を例に挙げて説明したが、無機材料ガスを用いて成膜処理を行う場合にも本願発明は適用可能である。 The example of the embodiment of the present invention (the first embodiment) has been described above, but the present invention is not limited to the illustrated embodiment. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood. For example, in the first embodiment, the film forming process in which the organic material is formed on the substrate by vapor deposition has been described as an example. However, the present invention also applies when the film forming process is performed using an inorganic material gas. Applicable.
 また、上記第1の実施の形態にかかる成膜装置1において、材料供給機構、ヘッド、測定装置は同一の処理チャンバー内に配置されているものとしたが、それぞれの装置を格納する別々のチャンバーを設けそれら複数のチャンバーを配管によって接続することも可能である。また、3種類以上の材料ガスを混合して基板への成膜処理を行う場合に、それぞれの材料ガスに対応する測定装置を設けることで、本発明の効果が得られることは明らかである。 In the film forming apparatus 1 according to the first embodiment, the material supply mechanism, the head, and the measuring apparatus are arranged in the same processing chamber, but separate chambers for storing the respective apparatuses. It is also possible to connect the plurality of chambers by piping. In addition, when three or more kinds of material gases are mixed and a film forming process is performed on the substrate, it is obvious that the effect of the present invention can be obtained by providing a measuring device corresponding to each material gas.
 また、上記第1の実施の形態では、各材料ガスを測定装置60、61に導入する場合(図3に示す場合)と、ヘッド20に導入する場合(図4に示す場合)をそれぞれ行う場合を説明したが、本発明はこれに限られない。例えば、測定装置60、61に各材料ガスを導入すると同時にヘッド20にもそれぞれの材料ガスを導入し、基板Gへの成膜処理を行うと共に成膜量や成膜レートの算出を行うことも可能である。 In the first embodiment, the case where each material gas is introduced into the measuring devices 60 and 61 (shown in FIG. 3) and the case where the material gas is introduced into the head 20 (shown in FIG. 4) are performed. However, the present invention is not limited to this. For example, each material gas is introduced into the measuring devices 60 and 61 and at the same time, each material gas is also introduced into the head 20 to perform the film formation process on the substrate G and calculate the film formation amount and the film formation rate. Is possible.
 図5は、材料ガスを測定装置60、61に導入すると共にヘッド20にも導入する場合のガスの流れを示す説明図である。図5に示すように、材料ガスを測定装置60、61に導入すると同時にヘッド20にも導入する場合、制御バルブV1~V6は全て開放された状態で材料ガスが流される。 FIG. 5 is an explanatory diagram showing the gas flow when the material gas is introduced into the measuring devices 60 and 61 and also into the head 20. As shown in FIG. 5, when the material gas is introduced into the measuring devices 60 and 61 and simultaneously into the head 20, the material gas is allowed to flow with all the control valves V1 to V6 being opened.
 このように、測定装置60、61とヘッド20の双方に材料ガスを同時に導入することにより、基板Gへの成膜処理を中断することなく成膜量や成膜レートの算出を行うことが可能となり、効率的に膜厚制御が行われる。 In this way, by simultaneously introducing the material gas into both the measuring devices 60 and 61 and the head 20, it is possible to calculate the deposition amount and deposition rate without interrupting the deposition process on the substrate G. Thus, the film thickness is efficiently controlled.
 (第2の実施の形態)
 上記第1の実施の形態では、成膜処理に2種類の材料ガスを用いる場合に、各ガスの測定を行う2つの測定装置をそれぞれの材料ガスの材料ガス供給路から分岐する分岐流路に接続させるものとしたが、処理チャンバー内に配置する測定装置を1つのみとし、各分岐流路を共通する1つの測定装置に接続させることもできる。
(Second Embodiment)
In the first embodiment, when two kinds of material gases are used for the film forming process, the two measuring devices for measuring each gas are divided into the branch flow paths branched from the material gas supply paths of the respective material gases. Although it is assumed that they are connected, it is also possible to connect only one measuring device to be disposed in the processing chamber and connect each branch channel to one common measuring device.
 図6は測定装置を1つのみ設けた場合の、本発明の第2の実施の形態にかかる成膜装置100の概略説明図である。なお、図6において上記実施の形態と同じ構成要素については同一の符号を付して、その説明は省略する。また、図6においては、全ての制御バルブ(V1~V6)を開放した状態を例として図示しているが、成膜量や成膜レートの算出のための測定時には、各制御バルブの開閉は好適に制御される。 FIG. 6 is a schematic explanatory diagram of a film forming apparatus 100 according to the second embodiment of the present invention when only one measuring apparatus is provided. In FIG. 6, the same components as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. FIG. 6 shows an example in which all the control valves (V1 to V6) are opened. However, during the measurement for calculating the film formation amount and the film formation rate, each control valve is opened and closed. It is preferably controlled.
図6に示すように、成膜装置100においては、分岐流路50および分岐流路51が共通する1つの測定装置101に接続されている。この場合において、例えば、制御バルブV1、V4のみを開放し、制御バルブV2、V3、V5、V6を閉じた状態とすることで、測定装置101に第1材料ガスのみ(アルゴンガス含む)を導入させ水晶振動子による測定を行い、その後、制御バルブV2、V6のみ開放し、制御バルブV1、V3、V4、V5を閉じた状態とすることで測定装置101に第2材料ガスのみを導入させて測定を行うといったように、1つの共通する測定装置101を用いて複数(ここでは2種類)の材料ガスについての測定を行うことができる。 As shown in FIG. 6, in the film forming apparatus 100, the branch channel 50 and the branch channel 51 are connected to one common measuring device 101. In this case, for example, only the first material gas (including argon gas) is introduced into the measuring apparatus 101 by opening only the control valves V1, V4 and closing the control valves V2, V3, V5, V6. Then, measurement is performed with a crystal resonator, and then only the control valves V2, V6 are opened, and the control valves V1, V3, V4, V5 are closed to introduce only the second material gas into the measurement apparatus 101. As in the case of performing measurement, a single measurement device 101 can be used to measure a plurality (here, two types) of material gases.
即ち、1つの測定装置101のみを用いて複数種類の材料ガスのそれぞれに対して水晶振動子を用いた測定を行い、精度良く成膜量や成膜レートについての測定結果が得られるため、水晶振動子の寿命については上記実施の形態の場合より劣るものの、上記実施の形態で説明した場合に比べ装置コスト等の面で有益である。 In other words, since only one measuring apparatus 101 is used to measure each of a plurality of types of material gases using a crystal resonator, and the measurement results regarding the film formation amount and film formation rate can be obtained with high accuracy, Although the life of the vibrator is inferior to that of the above-described embodiment, it is more advantageous in terms of apparatus cost than the case described in the above-described embodiment.
 (第3の実施の形態)
 上記第1の実施の形態においては、各分岐流路50、51に対してそれぞれ1つの測定装置60、61が設けられている場合を図示して説明したが、例えば同一の材料ガスの測定を処理チャンバー外部に設けた2つの測定装置によって行うことも可能である。そこで、以下では本発明の第3の実施の形態として、同一の材料ガスを測定する測定装置を2つ設けた場合を、図7を参照して説明する。なお、図7に示す他の実施の形態にかかる成膜装置200において、測定装置の構成以外の構成要素については上記実施の形態と同様であるため、同一の符号を付し、その説明は省略する。
(Third embodiment)
In the first embodiment, the case where one measuring device 60, 61 is provided for each branch channel 50, 51 has been illustrated and described. For example, the same material gas is measured. It is also possible to use two measuring devices provided outside the processing chamber. Therefore, in the following, as a third embodiment of the present invention, a case where two measuring devices for measuring the same material gas are provided will be described with reference to FIG. In addition, in the film forming apparatus 200 according to another embodiment shown in FIG. 7, the constituent elements other than the configuration of the measuring apparatus are the same as those in the above embodiment, and thus the same reference numerals are given and the description thereof is omitted. To do.
図7は本発明の他の実施の形態にかかる成膜装置200の概略説明図である。なお、図7において成膜装置200では1種類の材料ガスを用いて成膜を行う場合を説明するが、ここで説明する他の実施の形態にかかる発明はこれに限られるものではなく、上記実施の形態のように2種類の材料ガスを用いる場合にも適用できる。 FIG. 7 is a schematic explanatory view of a film forming apparatus 200 according to another embodiment of the present invention. Note that in FIG. 7, the case where the film formation apparatus 200 performs film formation using one kind of material gas is described. However, the invention according to another embodiment described here is not limited thereto, and The present invention can also be applied when two kinds of material gases are used as in the embodiment.
 図7に示すように、成膜装置200においては、処理チャンバー10の外部にはゲートバルブ202を介して測定装置212が設けられ、ゲートバルブ203を介して測定装置213が設けられている。また、材料ガス供給路40の途上で分岐する2つの分岐流路220、221が設けられており、分岐流路220はゲートバルブ202に向けて開口し、分岐流路221はゲートバルブ203に向けて開口している。分岐流路220の開口部220aとゲートバルブ202との間には開閉自在なシャッター230が設けられており、分岐流路221の開口部221aとゲートバルブ203との間には開閉自在なシャッター231が設けられている。即ち、分岐流路220、221から噴出された材料ガスは、シャッター230、231が閉じている場合には測定装置212、213には到達せず、シャッター230、231及びゲートバルブ202、203が開放し且つシャッター230、231が開いている場合にのみ測定装置212、213の内部に到達する。なお、分岐流路220、221の径は材料ガス供給路40の径の8.5%未満であることが好ましい。 As shown in FIG. 7, in the film forming apparatus 200, a measuring device 212 is provided outside the processing chamber 10 via a gate valve 202, and a measuring device 213 is provided via a gate valve 203. Further, two branch flow paths 220 and 221 branching in the middle of the material gas supply path 40 are provided. The branch flow path 220 opens toward the gate valve 202, and the branch flow path 221 faces the gate valve 203. Open. A shutter 230 that can be opened and closed is provided between the opening 220 a of the branch flow path 220 and the gate valve 202, and a shutter 231 that can be opened and closed between the opening 221 a of the branch flow path 221 and the gate valve 203. Is provided. That is, the material gas ejected from the branch flow paths 220 and 221 does not reach the measuring devices 212 and 213 when the shutters 230 and 231 are closed, and the shutters 230 and 231 and the gate valves 202 and 203 are opened. And only when the shutters 230 and 231 are opened, the inside of the measuring devices 212 and 213 is reached. The diameters of the branch flow paths 220 and 221 are preferably less than 8.5% of the diameter of the material gas supply path 40.
 上記シャッター230、231は閉じた際に分岐流路220、221から噴出する材料ガスがゲートバルブ202、203に付着し、装置不良を発生させるのを回避するものである。このシャッター230、231の形状は噴出された材料ガスの反射が効率的に防止される形状であることが好ましい。図8はシャッター230、231の形状の一例を示す概略図である。図8に示すように、シャッター230、231の形状は、材料ガスが噴出される方向に対して開口する穴部235を複数備えた形状である。この図8に示すシャッター230(231)においては、シャッター230(231)に向けて噴出された材料ガス中の材料粒子が、図8中の破線で示すように、穴部235内に入り込むことで、シャッター表面での材料ガス(材料粒子)の反射が防止される。即ち、処理チャンバー10内に反射した材料ガス(材料粒子)が飛散することが抑制され、装置不良等の発生が回避される。 When the shutters 230 and 231 are closed, the material gas ejected from the branch passages 220 and 221 is prevented from adhering to the gate valves 202 and 203 to cause a device failure. It is preferable that the shutters 230 and 231 have a shape that can efficiently prevent the reflection of the ejected material gas. FIG. 8 is a schematic view showing an example of the shape of the shutters 230 and 231. As shown in FIG. 8, the shape of the shutters 230 and 231 is a shape provided with a plurality of holes 235 that open in the direction in which the material gas is ejected. In the shutter 230 (231) shown in FIG. 8, the material particles in the material gas ejected toward the shutter 230 (231) enter the hole 235 as shown by the broken line in FIG. The reflection of the material gas (material particles) on the shutter surface is prevented. That is, scattering of the material gas (material particles) reflected in the processing chamber 10 is suppressed, and the occurrence of a device failure or the like is avoided.
 一方、測定装置212、213の内部には水晶振動子215、216がそれぞれ配置されている。この水晶振動子215、216は装置外部への取り出し自在に配置されている。また、測定装置212、213には、双方の内部空間に連通し、図示しない真空ポンプによって真空引きを行う排気路240が設けられている。この排気路240は測定装置212に連通する排気管240aと、測定装置213に連通する排気管240bとに分岐しており、排気管240aと排気管240bにはそれぞれ制御バルブV7、V8が設けられている。制御バルブV7、V8の開閉により、測定装置212、213内部の排気(真空引き)を制御することが可能な構成となっている。 On the other hand, crystal resonators 215 and 216 are arranged inside the measuring devices 212 and 213, respectively. These crystal resonators 215 and 216 are arranged so as to be taken out of the apparatus. In addition, the measuring devices 212 and 213 are provided with an exhaust passage 240 that communicates with both internal spaces and that is evacuated by a vacuum pump (not shown). The exhaust passage 240 is branched into an exhaust pipe 240a communicating with the measuring device 212 and an exhaust pipe 240b communicating with the measuring device 213. The exhaust pipe 240a and the exhaust pipe 240b are provided with control valves V7 and V8, respectively. ing. Exhaust (evacuation) inside the measuring devices 212 and 213 can be controlled by opening and closing the control valves V7 and V8.
 また、測定装置212、213には、双方の内部にNガスをパージするためのNガス供給部250に連通するNガス供給路252が設けられている。このNガス供給路252は測定装置212に連通するNガス供給管252aと、測定装置252bとに分岐しており、Nガス供給管252aとNガス供給管252bにはそれぞれ制御バルブV9、V10が設けられている。制御バルブV9、V10の開閉により、測定装置212、213内部へのNガスの供給が制御される。 In addition, the measuring devices 212 and 213 are provided with an N 2 gas supply path 252 communicating with the N 2 gas supply unit 250 for purging the N 2 gas in both. The N 2 gas supply path 252 branches into an N 2 gas supply pipe 252a and a measurement apparatus 252b communicating with the measurement device 212, and a control valve is provided for each of the N 2 gas supply pipe 252a and the N 2 gas supply pipe 252b. V9 and V10 are provided. The supply of N 2 gas into the measuring devices 212 and 213 is controlled by opening and closing the control valves V9 and V10.
 以上図7を参照して説明したように構成される成膜装置200において、以下に説明するように、成膜時の膜厚制御における材料ガスの水晶振動子による測定が行われる。上記実施の形態と同じく、成膜時には材料供給機構30から材料ガス供給路40を介してヘッド20に材料ガスが供給されるが、本実施の形態では、材料ガス供給路40の途上に分岐流路220、221が設けられているため、成膜時には、分岐流路220の開口部220a及び分岐流路221の開口部221aからも、材料ガス供給路40を流れる材料ガスの一部が噴出している。 In the film forming apparatus 200 configured as described above with reference to FIG. 7, as described below, the measurement of the material gas in the film thickness control at the time of film formation is performed by the crystal resonator. As in the above embodiment, the material gas is supplied from the material supply mechanism 30 to the head 20 via the material gas supply path 40 during film formation, but in this embodiment, a branch flow flows along the material gas supply path 40. Since the paths 220 and 221 are provided, a part of the material gas flowing through the material gas supply path 40 is ejected from the opening 220a of the branch flow path 220 and the opening 221a of the branch flow path 221 during film formation. ing.
 ここで成膜中の膜厚制御のため、測定装置212によって材料ガスによる成膜レートの測定が行われる場合には、測定装置212内を減圧状態(真空状態)として、ゲートバルブ202とシャッター230を開放し、分岐流路220(開口部220a)から噴出されたガスが測定装置212内に流入するような状態とする。そして、材料ガスが測定装置212内部の水晶振動子215に噴射される。この水晶振動子215に成膜される薄膜の膜厚と、基板Gに対して成膜される薄膜の膜厚を比較することにより、材料ガスの成膜レートが算出される。 Here, in order to control the film thickness during film formation, when the film formation rate is measured by the material gas by the measurement device 212, the inside of the measurement device 212 is set in a reduced pressure state (vacuum state), and the gate valve 202 and the shutter 230 are placed. Is opened so that the gas ejected from the branch flow path 220 (opening 220a) flows into the measuring device 212. Then, the material gas is injected into the crystal resonator 215 inside the measuring device 212. By comparing the film thickness of the thin film formed on the crystal resonator 215 with the film thickness of the thin film formed on the substrate G, the film formation rate of the material gas is calculated.
 また、この測定装置212による成膜レートの測定においては、分岐流路220の内圧P1と測定装置212の内圧P2との差圧を、ヘッド20の内圧(特に開口面21近傍の内圧)と基板G上面の内圧との差圧に近づける(等しくする)ことが好ましい。更には、分岐流路220の開口部220aと測定装置212内の水晶振動子215との距離を、ヘッド20の開口面21と基板Gとの距離とを等しくすることが好ましい。これは、この水晶振動子215に成膜される薄膜の膜厚と、基板Gに対して成膜される薄膜の膜厚を比較することにより、材料ガスの成膜レートが算出されることから、その成膜条件をより近い条件とすることが好ましいからである。なお、測定装置213によって成膜レートの測定が行われる場合にも同様の方法によって行われる。 Further, in the measurement of the film forming rate by the measuring device 212, the differential pressure between the internal pressure P1 of the branch flow path 220 and the internal pressure P2 of the measuring device 212 is set to the internal pressure of the head 20 (particularly the internal pressure near the opening surface 21) and the substrate. It is preferable to approach (equalize) the differential pressure with the internal pressure on the upper surface of G. Furthermore, it is preferable that the distance between the opening 220a of the branch flow path 220 and the crystal resonator 215 in the measuring device 212 is equal to the distance between the opening surface 21 of the head 20 and the substrate G. This is because the film formation rate of the material gas is calculated by comparing the film thickness of the thin film formed on the crystal resonator 215 with the film thickness of the thin film formed on the substrate G. This is because it is preferable to make the film forming conditions closer. Note that the same method is used when the film formation rate is measured by the measurement device 213.
 一方、例えば成膜が安定して行われている場合などの安定操業時には、成膜レートの測定を行う必要がない場合がある。そのような場合には、シャッター230、231を閉じ、更にゲートバルブ202、203を閉じて測定装置212、213内に材料ガスが流入しない状態とする。即ち、処理チャンバー10の内部と測定装置212、213の内部が空間的に分断された状態にされる。 On the other hand, it may not be necessary to measure the film formation rate during stable operation such as when film formation is performed stably. In such a case, the shutters 230 and 231 are closed, and the gate valves 202 and 203 are further closed so that the material gas does not flow into the measuring devices 212 and 213. That is, the inside of the processing chamber 10 and the inside of the measuring devices 212 and 213 are spatially separated.
 また、測定装置212、213内に配置される水晶振動子215、216による測定は、振動子上への材料ガスの付着によって堆積された材料に起因して変動する振動子の周波数を測定することで行われるが、振動子上に多量の材料が堆積してしまうと、測定精度が悪化する。そこで、測定装置212、213では定期的に水晶振動子を取り出し、交換あるいはホットガス等による洗浄を行うことが必要である。なお、一般的に水晶振動子による測定精度を保つためには、測定時の振動子の周波数が約1%程度減少した段階で交換・洗浄することが好ましい。 In addition, the measurement by the crystal resonators 215 and 216 disposed in the measuring devices 212 and 213 is to measure the frequency of the resonator that fluctuates due to the material deposited by the adhesion of the material gas on the resonator. However, if a large amount of material is deposited on the vibrator, the measurement accuracy deteriorates. Therefore, it is necessary for the measuring devices 212 and 213 to periodically take out the crystal resonator and replace it or clean it with hot gas or the like. In general, in order to maintain the measurement accuracy of the crystal resonator, it is preferable to replace and clean at the stage where the frequency of the resonator during measurement is reduced by about 1%.
例えば測定装置212内の水晶振動子215を取り出す場合には、シャッター230及びゲートバルブ202を閉じ、更に制御バルブV7を閉じた状態とする。この状態で制御バルブV9を開放し、測定装置212内にNガスをパージする。そして、測定装置212内の内圧が大気圧程度になった段階で例えば測定装置212に設けられた取出し口等から水晶振動子215を取り出す。なお、このように測定装置212内の水晶振動子215を取り出す作業を行っている場合にも、測定装置213においては適宜成膜レートの測定を行うことが可能である。 For example, when the crystal resonator 215 in the measuring device 212 is taken out, the shutter 230 and the gate valve 202 are closed, and the control valve V7 is closed. In this state, the control valve V9 is opened, and the measuring apparatus 212 is purged with N 2 gas. Then, when the internal pressure in the measuring device 212 reaches about atmospheric pressure, for example, the crystal resonator 215 is taken out from a take-out port provided in the measuring device 212 or the like. Even when the operation of taking out the crystal resonator 215 in the measurement apparatus 212 is performed as described above, the measurement apparatus 213 can appropriately measure the film formation rate.
また、上記測定装置212の場合と同様に、測定装置213内の水晶振動子216を取り出す場合には、シャッター231及びゲートバルブ203を閉じ、更に制御バルブV8を閉じた状態とし、制御バルブV10を開放して測定装置213内にNガスをパージして行われる。なお、このように測定装置213内の水晶振動子216を取り出す作業を行っている場合にも、測定装置212においては適宜成膜レートの測定を行うことが可能である。 Similarly to the measurement device 212, when the crystal resonator 216 in the measurement device 213 is taken out, the shutter 231 and the gate valve 203 are closed, the control valve V8 is closed, and the control valve V10 is turned on. This is done by opening and purging N 2 gas into the measuring device 213. Even when the operation for taking out the crystal resonator 216 in the measurement apparatus 213 is performed as described above, the measurement apparatus 212 can appropriately measure the film formation rate.
 即ち、本実施の形態にかかる成膜装置200において成膜処理が行われている状態で、測定装置212あるいは測定装置213のどちらか一方で成膜レートの測定を行うと同時に、測定を行っていない他方の測定装置において水晶振動子の交換・洗浄を行うことが可能な構成となっている。 That is, while the film forming process is being performed in the film forming apparatus 200 according to this embodiment, the film forming rate is measured simultaneously with either the measuring apparatus 212 or the measuring apparatus 213. In the other measuring apparatus that is not present, the quartz vibrator can be replaced and cleaned.
 以上説明したように、図7に示す成膜装置200においては、基板Gへの成膜処理を行うと同時に測定装置212、213によって成膜レートが測定されるため、精密な膜厚制御を行うことが可能である。加えて、処理チャンバー10と測定装置212、213を空間的に分断可能な装置構成としたことにより、測定装置の測定精度が悪化した場合に、成膜装置200全体を止めて冷却・大気開放を行うことなく測定装置内の水晶振動子を交換・洗浄することが可能である。即ち、成膜処理を行ったままの状態で水晶振動子の交換・洗浄が行われるため、装置全体のスループットの向上が実現される。 As described above, in the film forming apparatus 200 shown in FIG. 7, since the film forming rate is measured by the measuring apparatuses 212 and 213 simultaneously with the film forming process on the substrate G, precise film thickness control is performed. It is possible. In addition, since the processing chamber 10 and the measuring devices 212 and 213 can be spatially separated, when the measurement accuracy of the measuring device is deteriorated, the entire film forming device 200 is stopped and cooled and opened to the atmosphere. It is possible to replace and clean the crystal unit in the measuring device without performing it. That is, since the crystal unit is exchanged and cleaned while the film formation process is performed, the throughput of the entire apparatus can be improved.
更には、同一(1種類)の材料ガスの成膜レートを測定するために2つの測定装置(例えば図7中の測定装置212、213)を設けたことにより、一方の測定装置(例えば測定装置212)内の水晶振動子の測定精度が悪化した場合であっても、他方の測定装置(例えば測定装置213)によって成膜レートの測定を続行しつつ、一方の測定装置(測定装置212)内の水晶振動子を取り出し、その交換・洗浄を行うことができる。即ち、高精度な膜厚制御を保った状態で成膜処理をしつつ、測定装置内の水晶振動子の交換・洗浄を行うことが可能となる。測定装置が1つのみ設けられている場合には水晶振動子の交換・洗浄時に成膜レートの測定ができないため、成膜処理を停止させなくてはならなかったが、本実施の形態にかかる成膜装置では、成膜処理を実施している状態において成膜レートの測定を行いつつ、測定を行っていない方の測定装置内の水晶振動子の交換・洗浄が行われ、精密且つ効率的な成膜処理が実現される。 Furthermore, by providing two measuring devices (for example, measuring devices 212 and 213 in FIG. 7) to measure the film forming rate of the same (one type) material gas, one measuring device (for example, the measuring device) is provided. 212) Even when the measurement accuracy of the crystal resonator in the inside deteriorates, the measurement of the film forming rate is continued by the other measuring device (for example, the measuring device 213), and the inside of the one measuring device (the measuring device 212) is continued. The quartz crystal can be removed and replaced or cleaned. In other words, it is possible to replace and clean the crystal unit in the measuring apparatus while performing the film forming process while maintaining the highly accurate film thickness control. In the case where only one measuring device is provided, the film forming rate cannot be measured at the time of exchanging and cleaning the crystal unit, so the film forming process has to be stopped. In the film forming apparatus, while the film forming rate is measured while the film forming process is being performed, the crystal unit in the measuring apparatus that is not performing the measurement is replaced and washed, so that it is precise and efficient. Film forming process is realized.
また、本実施の形態にかかる成膜装置200においては、分岐流路220から噴出する材料ガスと分岐流路221から噴出する材料ガスとが互いに影響を及ぼすことを防止するため、遮蔽板255を設けることもできる。図9は、好適な位置に遮蔽板255を設けた成膜装置200の概略説明図である。図9に示すように、遮蔽板255は、例えばシャッター230とシャッター231との間、シャッター230の側部(ヘッド20側)及びシャッター231の側部(材料供給機構30側)の3箇所に設けられる。この遮蔽板255を設けることにより、分岐流路220から噴出する材料ガスと分岐流路221から噴出する材料ガスとが互いに影響を及ぼすことが防止され、更には分岐流路220、221から噴出された材料ガスが処理チャンバー10内に飛散し、装置不良等を生じさせることが防止される。 In the film forming apparatus 200 according to the present embodiment, the shielding plate 255 is provided to prevent the material gas ejected from the branch flow path 220 and the material gas ejected from the branch flow path 221 from affecting each other. It can also be provided. FIG. 9 is a schematic explanatory diagram of a film forming apparatus 200 in which a shielding plate 255 is provided at a suitable position. As shown in FIG. 9, the shielding plates 255 are provided at, for example, three locations between the shutter 230 and the shutter 231, the side portion of the shutter 230 (head 20 side) and the side portion of the shutter 231 (material supply mechanism 30 side). It is done. By providing the shielding plate 255, the material gas ejected from the branch flow path 220 and the material gas ejected from the branch flow path 221 are prevented from affecting each other, and further ejected from the branch flow paths 220 and 221. Thus, the material gas is prevented from being scattered in the processing chamber 10 and causing an apparatus failure or the like.
更にまた、成膜装置200においては、分岐流路220、221から噴出した材料ガスが処理チャンバー10内に飛散するのを防止するための排気ライン260を設けることもできる。図10は好適な位置に排気ライン260を設けた成膜装置200の概略説明図である。図10に示すように、排気ライン260は、例えばゲートバルブ202の近傍に設けられ、図示しない真空ポンプ等の排気装置に連通している。この排気ライン260を設けることにより、分岐流路220、221から噴出した材料ガスのうち、処理チャンバー10内に飛散してしまう恐れがあるものを排気することが可能となり、装置不良や成膜不良の発生が抑制される。なお、排気ライン260を設ける位置は好適に飛散した材料ガスを排気できる位置であれば良く、図10に示した位置に限られるものではない。 Furthermore, in the film forming apparatus 200, an exhaust line 260 for preventing the material gas ejected from the branch flow paths 220 and 221 from scattering into the processing chamber 10 can be provided. FIG. 10 is a schematic explanatory view of a film forming apparatus 200 provided with an exhaust line 260 at a suitable position. As shown in FIG. 10, the exhaust line 260 is provided in the vicinity of the gate valve 202, for example, and communicates with an exhaust device such as a vacuum pump (not shown). By providing the exhaust line 260, it is possible to exhaust the material gas ejected from the branch flow paths 220 and 221 that may be scattered in the processing chamber 10, and the apparatus or the film formation is defective. Is suppressed. The position where the exhaust line 260 is provided is not limited to the position shown in FIG. 10 as long as it is a position where the scattered material gas can be suitably exhausted.
 なお、図7~図10を参照して、1種類の材料ガスを用いて成膜を行う場合を例示して、本発明の第3の実施の形態について説明したが、例えば上記第1の実施の形態と同様に2種類の材料ガスを用いて成膜処理を行う場合に、各材料ガスそれぞれの成膜レートの測定を処理チャンバー外部に設けた2つの測定装置によって行うことも当然可能である。 The third embodiment of the present invention has been described with reference to FIGS. 7 to 10 exemplifying the case where film formation is performed using one kind of material gas. For example, the first embodiment is described above. In the case of performing the film forming process using two kinds of material gases as in the above embodiment, it is naturally possible to measure the film forming rate of each material gas by using two measuring devices provided outside the processing chamber. .
 (第4の実施の形態)
 上記第1~第3の実施の形態にかかる成膜装置では、材料ガスを含むキャリアガス(例えばアルゴンガス)をキャリアガス導入機構によって材料供給機構に流入させる構成としている。この場合、特に第1の実施の形態で説明したように、通常は水晶振動子に対する成膜量(成膜レート)と基板Gに対する成膜量(成膜レート)には一定の関係性が担保されているものとしている。これを確認するため本発明者らは、ヘッド近傍(即ち基板G近傍)に水晶振動子を設置し、そのヘッド近傍の水晶振動子の成膜量(成膜レート)と、測定装置の水晶振動子における成膜量とを比較した。即ち、分岐流路を流れる材料ガスによる成膜量と、ヘッドに流入する材料ガスによる成膜量との関係性について鋭意検討を行った。図11は本検討を行った成膜装置300の概略的構成を示す説明図である。なお、以下に説明する図11、図13に示す成膜装置300、300aにおいて、上記第1~第3の実施の形態と同様の機能構成を有する構成要素については同一の符号を付し、その説明は省略する。また、図11、13にかかる成膜装置では、成膜材料が1種類である場合を例示する。
(Fourth embodiment)
In the film forming apparatuses according to the first to third embodiments, a carrier gas (for example, argon gas) containing a material gas is introduced into the material supply mechanism by the carrier gas introduction mechanism. In this case, as described in the first embodiment, a certain relationship is normally secured between the film formation amount (film formation rate) on the crystal resonator and the film formation amount (film formation rate) on the substrate G. It is supposed to be. In order to confirm this, the present inventors installed a crystal resonator in the vicinity of the head (that is, in the vicinity of the substrate G), and the film formation amount (film formation rate) of the crystal resonator in the vicinity of the head and the crystal vibration of the measuring apparatus. The film formation amount in the child was compared. That is, the inventors have intensively studied the relationship between the amount of film formed by the material gas flowing through the branch flow path and the amount of film formed by the material gas flowing into the head. FIG. 11 is an explanatory diagram showing a schematic configuration of the film forming apparatus 300 in which the present study was performed. In the film forming apparatuses 300 and 300a shown in FIGS. 11 and 13 described below, components having the same functional configuration as those in the first to third embodiments are denoted by the same reference numerals. Description is omitted. Further, in the film forming apparatus according to FIGS. 11 and 13, the case where there is one kind of film forming material is illustrated.
 図11に示すように成膜装置300には、材料ガス供給路40の途中に設けられる例えばフーリエ変換型赤外分光(FTIR)装置等の光学的検知装置310と、分岐流路50から連通する測定装置60が設けられている。ここで、光学的検知装置310は成膜に使用する材料ガスの濃度や成膜レートを測定するための測定光路310bと、測定光路310bに測定用の光(例えば赤外光)を照射する光源310aと、光源310aから照射され測定光路310bを通過した光を受光し、受光した光の吸収スペクトルの検出を行う検出器310cから構成されている。図11に示すように、測定光路310bは処理チャンバー10内に配置され、一方で光源310a及び検出器310cは処理チャンバー10外に配置されている。そこで、処理チャンバー10には、光源310aから照射された光を測定光路310bまで到達させるための透過窓312と、測定光路310bを通過した光を検出器310cまで到達させるための透過窓313が設けられている。なお、透過窓312、313は光の減衰を抑えて透過させることが可能な例えばフッ化カルシウムでできた窓である。また、これら透過窓312、313の具体的な設置箇所は例えば測定光路310bの長手方向両端部近傍である。 As shown in FIG. 11, the film forming apparatus 300 communicates with an optical detection device 310 such as a Fourier transform infrared spectroscopy (FTIR) device provided in the middle of the material gas supply path 40 from the branch flow path 50. A measuring device 60 is provided. Here, the optical detection device 310 includes a measurement optical path 310b for measuring the concentration of a material gas used for film formation and a film formation rate, and a light source for irradiating measurement light (for example, infrared light) to the measurement optical path 310b. 310a and a detector 310c that receives the light emitted from the light source 310a and passed through the measurement light path 310b, and detects the absorption spectrum of the received light. As shown in FIG. 11, the measurement optical path 310 b is arranged in the processing chamber 10, while the light source 310 a and the detector 310 c are arranged outside the processing chamber 10. Therefore, the processing chamber 10 is provided with a transmission window 312 for allowing the light emitted from the light source 310a to reach the measurement optical path 310b, and a transmission window 313 for allowing the light passing through the measurement optical path 310b to reach the detector 310c. It has been. The transmission windows 312 and 313 are windows made of, for example, calcium fluoride that can transmit light while suppressing light attenuation. Moreover, the specific installation location of these transmission windows 312 and 313 is, for example, in the vicinity of both ends in the longitudinal direction of the measurement optical path 310b.
この光学的検知装置310では測定光路310bに流れる材料ガスの濃度や当該材料ガスによる成膜レートを正確に測定することができる。なお、この光学的検知装置310は材料ガス供給路40に流れる材料ガスの濃度や成膜レートを測定するものであるが、実際に基板Gに成膜される薄膜の成膜レートを正確に測定できるものではないため、成膜レート測定のために補助的に用いられる。 The optical detection device 310 can accurately measure the concentration of the material gas flowing in the measurement optical path 310b and the film formation rate of the material gas. The optical detector 310 measures the concentration of the material gas flowing through the material gas supply path 40 and the film formation rate, but accurately measures the film formation rate of the thin film actually formed on the substrate G. Since it is not possible, it is used as an auxiliary for measuring the deposition rate.
 また、成膜装置300においては、基板G近傍にも水晶振動子315が設置されており、実際にヘッド20から基板Gに噴射される材料ガスと同じガスが水晶振動子315にも噴射される構成となっている。 Further, in the film forming apparatus 300, a crystal resonator 315 is also provided in the vicinity of the substrate G, and the same gas as the material gas that is actually injected from the head 20 onto the substrate G is also injected into the crystal resonator 315. It has a configuration.
 本発明者らは、図11に示す成膜装置300において、材料ガス供給路40に所定温度(例えば290℃)の材料ガスを流し、そのときの測定装置60内の水晶振動子65における成膜量(成膜レート)と、基板G近傍の水晶振動子315における成膜量(成膜レート)との関係性について検討した。 In the film forming apparatus 300 shown in FIG. 11, the inventors flow a material gas at a predetermined temperature (for example, 290 ° C.) through the material gas supply path 40, and form a film on the crystal resonator 65 in the measuring apparatus 60 at that time. The relationship between the amount (film formation rate) and the film formation amount (film formation rate) in the crystal resonator 315 near the substrate G was examined.
 図12は、図11に示した構成の成膜装置300において290℃の材料ガスを用いた場合の、材料ガス供給路40でのキャリアガス流量(図中Ar Flow)と、ヘッド近傍の水晶振動子315の成膜量と測定装置60の水晶振動子65の成膜量との比(図中Head/Pass)、との関係を示すグラフである。図12に示すように、キャリアガス流量が所定量以上(図12では約5sccm以上)の場合には、ヘッド近傍の水晶振動子315の成膜量と測定装置の水晶振動子65の成膜量との比は、ほぼ一定(図12では約5)となる。従って、キャリアガス流量が所定量以上の場合には、上記第1~第3の実施の形態のように、水晶振動子に対する成膜量(成膜レート)と基板Gに対する成膜量(成膜レート)に一定の関係性(相関関係)があるものとして膜厚制御を行えば問題ないことが分かる。 FIG. 12 shows the carrier gas flow rate (Ar Flow in the figure) in the material gas supply path 40 and the crystal vibration in the vicinity of the head when a material gas of 290 ° C. is used in the film forming apparatus 300 having the configuration shown in FIG. 6 is a graph showing a relationship between a film formation amount of the child element 315 and a film formation amount of the crystal resonator 65 of the measuring device 60 (Head / Pass in the figure). As shown in FIG. 12, when the carrier gas flow rate is a predetermined amount or more (about 5 sccm or more in FIG. 12), the film formation amount of the crystal resonator 315 near the head and the film formation amount of the crystal resonator 65 of the measuring device. The ratio is substantially constant (in FIG. 12, about 5). Therefore, when the carrier gas flow rate is a predetermined amount or more, as in the first to third embodiments, the film formation amount (film formation rate) for the crystal resonator and the film formation amount (film formation) for the substrate G are formed. It can be seen that there is no problem if the film thickness control is performed assuming that there is a certain relationship (correlation) in (rate).
 一方、キャリアガス流量(即ち、材料ガス流量)が所定量未満(図12では約5sccm未満)の場合には、ヘッド近傍の水晶振動子315の成膜量と測定装置の水晶振動子65の成膜量との比は一定にはならない。これは、キャリアガス流量が所定量未満の場合、十分な量の材料ガスが測定装置60やヘッド20に流入しにくくなるため測定値にばらつきが生じ、ヘッド20近傍の水晶振動子315の成膜量と測定装置60の水晶振動子65の成膜量との比が一定にならないことが要因であると考えられる。 On the other hand, when the carrier gas flow rate (that is, the material gas flow rate) is less than a predetermined amount (less than about 5 sccm in FIG. 12), the film formation amount of the crystal resonator 315 in the vicinity of the head and the crystal resonator 65 of the measuring device are formed. The ratio with the amount of film is not constant. This is because when the carrier gas flow rate is less than a predetermined amount, a sufficient amount of material gas does not easily flow into the measuring device 60 or the head 20, so that the measurement value varies, and the crystal resonator 315 in the vicinity of the head 20 is formed. It is considered that the factor is that the ratio between the amount and the film formation amount of the crystal resonator 65 of the measuring device 60 is not constant.
 そこで、本発明者らは、材料ガス供給路40全体に流れるキャリアガスの流量を常時所定量以上とするために、材料ガス供給路40に対してキャリアガスのみ(即ち、材料ガスを含まない)を導入するキャリアガス導入路を設けることを創案した。以下には、キャリアガス導入路320を設けた構成とした成膜装置300aについて説明する。 Accordingly, the inventors of the present invention have only the carrier gas (that is, does not include the material gas) with respect to the material gas supply path 40 in order to always set the flow rate of the carrier gas flowing through the entire material gas supply path 40 to a predetermined amount or more. It was invented to provide a carrier gas introduction path to introduce the. Hereinafter, a film forming apparatus 300a having a configuration in which the carrier gas introduction path 320 is provided will be described.
 図13は図11に示した構成の成膜装置に、更に、キャリアガス導入路を設けた構成の成膜装置300aの概略説明図である。図13に示すように、材料ガス供給路40には当該供給路40に所定の量のキャリアガスを導入するキャリアガス導入路320が設けられており、キャリアガス導入路320はキャリアガス導入機構321に連通している。また、キャリアガス導入路320には開閉自在な制御バルブV11が設置されている。 FIG. 13 is a schematic explanatory diagram of a film forming apparatus 300a having a structure in which a carrier gas introduction path is further provided in the film forming apparatus having the structure shown in FIG. As shown in FIG. 13, the material gas supply path 40 is provided with a carrier gas introduction path 320 for introducing a predetermined amount of carrier gas into the supply path 40, and the carrier gas introduction path 320 is a carrier gas introduction mechanism 321. Communicating with The carrier gas introduction path 320 is provided with a control valve V11 that can be opened and closed.
 図13に示す成膜装置300aにおいては、キャリアガス導入機構45から導入される材料ガスを含むキャリアガスの流量が低流量・高流量のいずれの場合であっても、キャリアガス導入機構321から材料ガスを含まないキャリアガスを好適な量導入することによって、材料ガス供給路40に流れるキャリアガス全体の流量を所定の量に調整することが可能となっている。ここで、材料ガス供給路40に流すキャリアガス全体の流量は成膜条件等によって予め定まり、例えば図12に示したようなヘッド近傍の水晶振動子315の成膜量と測定装置の水晶振動子65の成膜量との比がほぼ一定となり、水晶振動子65に対する成膜量と基板Gに対する成膜量に一定の相関関係があることが明らかであるような流量とする。 In the film forming apparatus 300a shown in FIG. 13, the material from the carrier gas introduction mechanism 321 is used regardless of whether the flow rate of the carrier gas including the material gas introduced from the carrier gas introduction mechanism 45 is low or high. By introducing a suitable amount of carrier gas that does not contain gas, the flow rate of the entire carrier gas flowing in the material gas supply path 40 can be adjusted to a predetermined amount. Here, the flow rate of the entire carrier gas flowing through the material gas supply path 40 is determined in advance by the film forming conditions and the like. For example, the film forming amount of the crystal resonator 315 near the head and the crystal resonator of the measuring apparatus as shown in FIG. The flow rate is such that the ratio with the film formation amount of 65 is substantially constant, and it is clear that there is a certain correlation between the film formation amount on the crystal resonator 65 and the film formation amount on the substrate G.
 図13に示すように、材料ガス供給路40に材料ガスを含まないキャリアガス導入路320から導入することが可能な装置構成とすることによって、キャリアガス導入機構45から導入される材料ガスを含むキャリアガスの流量が低流量であっても、材料ガス供給路40に流れるキャリアガス全体の流量を所定の流量以上とすることができる。従って、上述したような、測定装置60に十分な量の材料ガスが流れ込まず、ヘッド近傍の水晶振動子315の成膜量と測定装置60の水晶振動子65の成膜量との比が一定にならないといった事象が回避され、測定装置60内の水晶振動子65に対する成膜量(成膜レート)と基板Gに対する成膜量(成膜レート)に一定の関係性(相関関係)があるものとして成膜を行えば、所望の膜厚の薄膜が基板G上に成膜(膜厚制御)される。 As shown in FIG. 13, the material gas introduced from the carrier gas introduction mechanism 45 is included by adopting an apparatus configuration in which the material gas supply passage 40 can be introduced from a carrier gas introduction passage 320 that does not contain a material gas. Even if the flow rate of the carrier gas is low, the flow rate of the entire carrier gas flowing in the material gas supply path 40 can be set to a predetermined flow rate or more. Therefore, a sufficient amount of material gas does not flow into the measurement apparatus 60 as described above, and the ratio between the film formation amount of the crystal resonator 315 near the head and the film formation amount of the crystal resonator 65 of the measurement apparatus 60 is constant. In other words, there is a certain relationship (correlation) between the film formation amount (film formation rate) on the crystal resonator 65 in the measuring apparatus 60 and the film formation amount (film formation rate) on the substrate G. When a film is formed, a thin film having a desired film thickness is formed on the substrate G (film thickness control).
 図14は、図13に示す装置構成において、キャリアガス導入機構321から材料ガスを含まないキャリアガスを5sccmで固定して流した場合の、材料供給機構30において流れるキャリアガス流量(図中Ar Flow)と、ヘッド近傍の水晶振動子315の成膜量と測定装置60の水晶振動子65の成膜量との比(図中Head/Pass)、との関係を示すグラフである。なお、図14に示すグラフでは、上記図12同様、材料ガスの温度は290℃の場合を例示して図示している。 FIG. 14 shows the flow rate of the carrier gas flowing in the material supply mechanism 30 when the carrier gas not containing the material gas is fixed at 5 sccm from the carrier gas introduction mechanism 321 in the apparatus configuration shown in FIG. ) And the ratio (Head / Pass in the drawing) of the film formation amount of the crystal resonator 315 in the vicinity of the head and the film formation amount of the crystal resonator 65 of the measuring device 60. In the graph shown in FIG. 14, the temperature of the material gas is exemplarily illustrated as in FIG.
図14に示すように、キャリアガス全体の流量を所定の流量以上とした場合には、材料供給機構30において流れるキャリアガス流量がいかなる値であっても、ヘッド近傍の水晶振動子315の成膜量と測定装置の水晶振動子65の成膜量との比は、ほぼ一定(図14では約2.5)となる。特に、図12と図14を比較した場合、材料供給機構30において流れるキャリアガス流量が低流量である場合(具体的には、図12、図14におけるAr Flowが約5sccm未満である場合)には、図12ではヘッド近傍の水晶振動子315の成膜量と測定装置の水晶振動子65の成膜量との比(Head/Pass)が一定ではないのに対し、図14では当該比率がほぼ一定となっていることは明らかである。 As shown in FIG. 14, when the flow rate of the entire carrier gas is set to a predetermined flow rate or higher, the film formation of the crystal resonator 315 in the vicinity of the head is possible whatever the flow rate of the carrier gas flowing in the material supply mechanism 30 is. The ratio between the amount and the film formation amount of the crystal resonator 65 of the measuring device is substantially constant (about 2.5 in FIG. 14). In particular, when FIG. 12 and FIG. 14 are compared, when the flow rate of the carrier gas flowing in the material supply mechanism 30 is low (specifically, when Ar Flow in FIGS. 12 and 14 is less than about 5 sccm). 12, the ratio (Head / Pass) between the film formation amount of the crystal resonator 315 near the head and the film formation amount of the crystal resonator 65 of the measuring apparatus is not constant, whereas in FIG. It is clear that it is almost constant.
 即ち、図14に示すグラフから、材料ガス供給路40に流れるキャリアガス全体の流量を所定の流量以上とした場合には、測定装置60内の水晶振動子65に対する成膜量(成膜レート)と基板Gに対する成膜量(成膜レート)に一定の関係性(相関関係)があるとして成膜を行えば、所望の膜厚の薄膜が基板G上に成膜されることが分かる。 That is, from the graph shown in FIG. 14, when the flow rate of the entire carrier gas flowing through the material gas supply path 40 is set to a predetermined flow rate or more, the film formation amount (film formation rate) on the crystal resonator 65 in the measuring device 60. It can be understood that a thin film having a desired film thickness is formed on the substrate G if the film formation is performed assuming that there is a certain relationship (correlation) between the film formation amount (film formation rate) and the substrate G.
 (第5の実施の形態)
 上記第4の実施の形態にかかる成膜装置300aでは、成膜材料が1種類である場合を図示して説明したが、本発明はこれに限られるものではなく、例えば成膜材料(材料ガス)を2種類用いて成膜を行う場合にも適用することができる。図15は、第5の実施の形態にかかる成膜装置350の概略説明図である。なお、図15において、上記第1~第4の実施の形態と同一の機能構成を有する構成要件については適宜同一の符号を用いて図示し、その説明は省略する。また、本実施の形態においても上記第1の実施の形態と同様、2つの同じ装置構成である測定装置60が設置されているが、説明の便宜上、第1材料ガスの測定を行う測定装置を60a、第2材料ガスの測定を行う測定装置を60bとする。
(Fifth embodiment)
In the film forming apparatus 300a according to the fourth embodiment, the case where there is one kind of film forming material has been illustrated and described. However, the present invention is not limited to this, and for example, a film forming material (material gas) This can also be applied to the case where film formation is performed using two types. FIG. 15 is a schematic explanatory diagram of a film forming apparatus 350 according to the fifth embodiment. In FIG. 15, constituent elements having the same functional configuration as those of the first to fourth embodiments are illustrated using the same reference numerals as appropriate, and description thereof is omitted. Also in this embodiment, two measuring devices 60 having the same device configuration are installed as in the first embodiment, but for convenience of explanation, a measuring device that measures the first material gas is used. A measuring device for measuring 60a and the second material gas is 60b.
 図15に示すように、成膜装置350においては、第1材料ガスを供給する材料ガス供給路40と、第2材料ガスを供給する材料ガス供給路41とが同一の共通供給路352(即ち、混合ガスの材料ガス供給路に相当する)に接続し、共通供給路352の末端はヘッド20に接続している。即ち、材料ガス供給路40から供給された第1材料ガスと、材料ガス供給路41から供給された第2材料ガスとが共通供給路352において混合され、混合ガスとしてヘッド20に導入される構成となっている。また、材料ガス供給路40には測定装置60a、材料ガス供給路41には測定装置60bがそれぞれ設けられている。 As shown in FIG. 15, in the film forming apparatus 350, the material gas supply path 40 that supplies the first material gas and the material gas supply path 41 that supplies the second material gas have the same common supply path 352 (that is, , Corresponding to the material gas supply path of the mixed gas), and the end of the common supply path 352 is connected to the head 20. That is, the first material gas supplied from the material gas supply path 40 and the second material gas supplied from the material gas supply path 41 are mixed in the common supply path 352 and introduced into the head 20 as a mixed gas. It has become. The material gas supply path 40 is provided with a measuring device 60a, and the material gas supply path 41 is provided with a measuring device 60b.
 また、共通供給路352には、材料ガス供給路40、41の他に共通供給路352に所定の量のキャリアガスを導入するキャリアガス導入路320が設けられており、キャリアガス導入路320はキャリアガス導入機構321に連通している。また、キャリアガス導入路320には開閉自在な制御バルブV11が設置されている。 The common supply path 352 is provided with a carrier gas introduction path 320 for introducing a predetermined amount of carrier gas into the common supply path 352 in addition to the material gas supply paths 40 and 41. It communicates with the carrier gas introduction mechanism 321. The carrier gas introduction path 320 is provided with a control valve V11 that can be opened and closed.
 図15に示す構成の成膜装置350においても、上記第1の実施の形態などと同様に、複数の材料ガス(本実施の形態では第1材料ガス、第2材料ガスの2種類)を混合させた混合ガスによって基板への成膜を行う場合に、混合される前の各材料ガスごとに個別に水晶振動子(測定装置60a、60b)を用いた測定を行い、各材料ガスごとに得られた測定結果と実際に混合ガスによって基板に成膜を行った場合の膜厚との関係性が算出され、精密な膜厚制御を行うことが可能となる。加えて、上記第4の実施の形態と同様に、共通供給路352に材料を含むキャリアガス(材料ガスを含む混合ガス)を、所定量以上の一定の流量で流すことができる。 In the film forming apparatus 350 having the configuration shown in FIG. 15 as well, a plurality of material gases (in this embodiment, two kinds of first material gas and second material gas) are mixed, as in the first embodiment. When the film is formed on the substrate with the mixed gas, the measurement is performed for each material gas by using a crystal resonator (measuring device 60a, 60b) for each material gas before being mixed. The relationship between the obtained measurement result and the film thickness when the film is actually formed on the substrate by the mixed gas is calculated, and the film thickness can be precisely controlled. In addition, similarly to the fourth embodiment, a carrier gas containing a material (a mixed gas containing a material gas) can be supplied to the common supply path 352 at a constant flow rate of a predetermined amount or more.
 一方、複数種(例えば本形態のような2種類の材料ガス)の材料ガスを混合して成膜を実施する場合には以下のような問題点も存在する。即ち、図15に示す構成の成膜装置350において、共通供給路352に所定量以上の流量で混合ガスを流して基板Gへの成膜処理を行う際に、成膜条件を変更するために例えば第2材料ガスの供給量のみを変動させると、共通供給路352に流れる混合ガス全体の流量も変動する。このとき、ヘッド20近傍の水晶振動子315における成膜レートの測定時に、供給量を変動させた第2材料ガスについては当然成膜レートも変動するが、混合ガス全体の流量が変動したことで、第1材料ガスの成膜レートも変動してしまう。つまり、第2材料ガスの供給量のみを変動させたことで、供給量を変動させていない第1材料ガスの成膜レート測定にも影響が及んでしまうという問題がある。 On the other hand, when a film is formed by mixing a plurality of types of material gases (for example, two types of material gases as in the present embodiment), the following problems also exist. That is, in the film forming apparatus 350 having the configuration shown in FIG. 15, in order to change the film forming conditions when the mixed gas is supplied to the common supply path 352 at a flow rate of a predetermined amount or more to perform the film forming process on the substrate G. For example, when only the supply amount of the second material gas is changed, the flow rate of the entire mixed gas flowing in the common supply path 352 is also changed. At this time, when the film formation rate is measured in the crystal resonator 315 in the vicinity of the head 20, the film formation rate of the second material gas whose supply amount is changed naturally also changes, but the flow rate of the entire mixed gas changes. The film forming rate of the first material gas also varies. That is, there is a problem in that only the supply amount of the second material gas is changed, which also affects the measurement of the deposition rate of the first material gas whose supply amount is not changed.
 換言すると、第1材料ガスについては、ガス供給量を変動させていないにもかかわらず、測定装置60aにおいて測定される成膜レートと、ヘッド20近傍の水晶振動子315において測定される成膜レートとの相関関係が変化してしまうことになり、膜厚制御に影響が出てしまう。 In other words, for the first material gas, the film formation rate measured by the measuring device 60a and the film formation rate measured by the crystal resonator 315 in the vicinity of the head 20 even though the gas supply amount is not changed. Will be changed, and the film thickness control will be affected.
具体的に説明すると、成膜条件を例えば第1材料ガスの供給量を流量1sccm、第2材料ガスの供給量を流量2sccm、キャリアガス導入路320からのキャリアガス供給量を4sccmとした場合に、測定装置60aにおける第1材料ガスの成膜レートが2nm/secであり、水晶振動子315における第1材料ガスの成膜レートが4nm/secであったとする。ここで第2材料ガスの供給量を流量4sccmに変えたとすると、混合ガス全体の流量は7sccmから9sccmに変動することになる。第1材料ガスの供給量自体は変えていないため水晶振動子315における第1材料ガスの成膜レートは2nm/secと測定されるべきであるが、混合ガス全体の流量が変動したために、実際には2nm/secより低い値(例えば1.5nm/sec)として測定されてしまう恐れがある。 More specifically, the film formation conditions are, for example, when the supply amount of the first material gas is 1 sccm, the supply amount of the second material gas is 2 sccm, and the supply amount of the carrier gas from the carrier gas introduction path 320 is 4 sccm. Assume that the film formation rate of the first material gas in the measuring apparatus 60a is 2 nm / sec, and the film formation rate of the first material gas in the crystal resonator 315 is 4 nm / sec. Here, if the supply amount of the second material gas is changed to a flow rate of 4 sccm, the flow rate of the entire mixed gas varies from 7 sccm to 9 sccm. Since the supply amount of the first material gas itself is not changed, the film formation rate of the first material gas in the crystal unit 315 should be measured as 2 nm / sec. May be measured as a value lower than 2 nm / sec (for example, 1.5 nm / sec).
 そこで、このような場合に、本発明者らは、第2材料ガスの供給量を変動させたことに伴い、キャリアガス導入路320から供給するキャリアガスの供給量を変動させて、混合ガス全体の流量を第2材料ガスの供給量変動の前と後とで一定に保つような制御を行うことで上述したような、第1材料ガスの成膜レート測定に第2材料ガスの供給量変動が影響してしまうという問題を回避することができることを知見した。即ち、上記具体例においてはキャリアガス導入路320からのキャリアガス供給量を4sccmから2sccmに減少させることで混合ガス全体の流量を元の7sccmのままとし、第1材料ガスの成膜レート測定に第2材料ガス供給量の変動の影響が出てしまうといった問題を回避することができる。 Therefore, in such a case, the inventors changed the supply amount of the carrier gas supplied from the carrier gas introduction path 320 in accordance with the change in the supply amount of the second material gas, so that the entire mixed gas As described above, the second material gas supply rate fluctuation is performed by controlling the flow rate of the first material gas to be constant before and after the second material gas supply amount fluctuation. It has been found that the problem of being affected can be avoided. That is, in the above specific example, the carrier gas supply amount from the carrier gas introduction path 320 is reduced from 4 sccm to 2 sccm, so that the flow rate of the entire mixed gas remains at the original 7 sccm, and the first material gas film formation rate is measured. The problem that the influence of the fluctuation of the second material gas supply amount appears can be avoided.
 つまり、キャリアガス導入路320を設けたことにより、複数種の材料ガスを混合した混合ガスによって基板Gへの成膜を行う場合に、各材料ガスの流量の変動による他の材料ガスの成膜レート測定への影響を抑えることができ、上述した測定装置内の水晶振動子に対する成膜レートと基板Gに対する成膜レートについての相関関係を損なうことなく膜厚制御、成膜を実施することが可能となる。 That is, by providing the carrier gas introduction path 320, when forming a film on the substrate G with a mixed gas in which a plurality of types of material gases are mixed, the film formation of other material gases due to the fluctuation of the flow rate of each material gas is performed. The influence on the rate measurement can be suppressed, and the film thickness control and film formation can be performed without impairing the correlation between the film formation rate for the crystal resonator and the film formation rate for the substrate G in the measurement apparatus described above. It becomes possible.
 なお、本実施の形態では、キャリアガス導入路320を独立した1つの流路として設ける場合を図示し説明したが、例えば材料ガス供給路40、41の流路途上に、キャリアガスのみを導入する導入路を個別に設けることもできる。 In the present embodiment, the case where the carrier gas introduction path 320 is provided as one independent flow path has been illustrated and described. However, for example, only the carrier gas is introduced into the flow path of the material gas supply paths 40 and 41. An introduction path can also be provided individually.
 (第6の実施の形態)
 上記第5の実施の形態では、キャリアガス導入路320からのキャリアガスの導入を、各材料ガス(第1材料ガス・第2材料ガス)の上流から行う構成について図15に図示し説明したが、本発明はこのような装置構成に限られるものではなく、例えばキャリアガス導入路320をヘッド20に直接連通させ、キャリアガス導入路320の途上において、キャリアガスの流れる方向に沿って各材料ガスを供給するように材料ガス供給路40、41をキャリアガス導入路320に接続する構成としても良い。
(Sixth embodiment)
In the fifth embodiment, the configuration in which the introduction of the carrier gas from the carrier gas introduction path 320 is performed from the upstream of each material gas (first material gas / second material gas) is illustrated and described in FIG. The present invention is not limited to such an apparatus configuration. For example, the carrier gas introduction path 320 is directly communicated with the head 20, and each material gas is disposed along the carrier gas flow direction along the carrier gas introduction path 320. The material gas supply paths 40 and 41 may be connected to the carrier gas introduction path 320 so as to supply.
 図16は第6の実施の形態にかかる成膜装置350’の概略説明図である。なお、上記第5の実施の形態にかかる成膜装置350と同一の機能構成を有する構成要件については適宜同一の符号で図示し、その説明は省略する。図16に示すように、成膜装置350’では、キャリアガス導入路320がヘッド20に連通するように設けられ、当該キャリアガス導入路320の途中に材料ガス供給路40及び材料ガス供給路41が接続されている。これら材料ガス供給路40、41とキャリアガス導入路320の接続部においては、材料ガス供給路40、41から合流する各材料ガス(第1材料ガス、第2材料ガス)の流れ方向がキャリアガス導入路320におけるキャリアガスの流れ(図16矢印参照)に沿う方向となるような構成となっている。 FIG. 16 is a schematic explanatory diagram of a film forming apparatus 350 ′ according to the sixth embodiment. In addition, about the component which has the same function structure as the film-forming apparatus 350 concerning the said 5th Embodiment, it shows with the same code | symbol suitably, and the description is abbreviate | omitted. As shown in FIG. 16, in the film forming apparatus 350 ′, a carrier gas introduction path 320 is provided so as to communicate with the head 20, and the material gas supply path 40 and the material gas supply path 41 are provided in the middle of the carrier gas introduction path 320. Is connected. At the connection between the material gas supply paths 40 and 41 and the carrier gas introduction path 320, the flow direction of each material gas (first material gas and second material gas) that merges from the material gas supply paths 40 and 41 is the carrier gas. It is configured to be in a direction along the flow of the carrier gas in the introduction path 320 (see the arrow in FIG. 16).
 本形態にかかる成膜装置350’においては、材料ガス供給路40、41に対するキャリアガス導入路320からのキャリアガスの逆流や、キャリアガス導入路320に対する材料ガス供給路40、41からの材料ガスの逆流が防止され、効率的な成膜処理を行うことが可能となる。なお、ここでキャリアガス導入路320におけるキャリアガスの流量を、材料ガス供給路40、41における各材料ガスの流量よりも大きい流量とすることで上記逆流防止の効果が更に担保される。 In the film forming apparatus 350 ′ according to the present embodiment, the carrier gas flows backward from the carrier gas introduction path 320 to the material gas supply paths 40 and 41, and the material gas from the material gas supply paths 40 and 41 to the carrier gas introduction path 320. Therefore, it is possible to perform an efficient film forming process. Here, the effect of preventing the backflow is further ensured by setting the flow rate of the carrier gas in the carrier gas introduction channel 320 to a flow rate larger than the flow rates of the material gases in the material gas supply channels 40 and 41.
 本発明は、例えば有機EL素子の製造における発光層の成膜に用いる成膜装置及び成膜方法に適用できる。 The present invention can be applied to, for example, a film forming apparatus and a film forming method used for forming a light emitting layer in manufacturing an organic EL element.

Claims (10)

  1. 基板に薄膜を成膜させる成膜装置であって、
    キャリアガスおよび材料ガスを供給する減圧自在な材料供給部と、
    前記基板の上面に材料ガスを噴射させるヘッドと、を備え、
    前記材料供給部と前記ヘッドは材料ガス供給路を介して連通し、
    前記材料ガス供給路には、材料ガス供給路から分岐する分岐流路が設けられ、
    前記分岐流路には材料ガスの成膜量を測定する測定装置が接続されている。
    A film forming apparatus for forming a thin film on a substrate,
    A pressure-reducible material supply section for supplying a carrier gas and a material gas;
    A head for injecting a material gas onto the upper surface of the substrate,
    The material supply unit and the head communicate with each other via a material gas supply path,
    The material gas supply channel is provided with a branch channel that branches from the material gas supply channel,
    A measuring device for measuring the amount of film formation of the material gas is connected to the branch channel.
  2. 前記材料ガス供給路および前記分岐流路には、前記材料供給部からのキャリアガスおよび材料ガスの供給を制御する制御バルブが設けられている、請求項1に記載の成膜装置。 The film forming apparatus according to claim 1, wherein a control valve for controlling supply of a carrier gas and a material gas from the material supply unit is provided in the material gas supply path and the branch flow path.
  3. 前記測定装置は、膜厚測定用の水晶振動子と、前記水晶振動子への材料ガスの噴射を制御するシャッターとを備える、請求項1に記載の成膜装置。 The film forming apparatus according to claim 1, wherein the measuring apparatus includes a crystal resonator for measuring a film thickness and a shutter that controls injection of a material gas to the crystal resonator.
  4. 前記ヘッド、前記分岐流路および前記測定装置は、所定の温度に加熱された同一チャンバー内に配置される、請求項1に記載の成膜装置。 The film forming apparatus according to claim 1, wherein the head, the branch channel, and the measuring device are arranged in the same chamber heated to a predetermined temperature.
  5. 前記材料供給部は複数設けられ、それぞれの材料供給部ごとに異なる材料ガス供給路が設けられ、前記異なる材料ガス供給路から分岐する複数の分岐流路にはそれぞれ前記測定装置が接続されている、請求項1に記載の成膜装置。 A plurality of the material supply sections are provided, a different material gas supply path is provided for each material supply section, and the measuring device is connected to each of a plurality of branch flow paths branched from the different material gas supply paths. The film forming apparatus according to claim 1.
  6. 前記材料供給部は複数設けられ、それぞれの材料供給部ごとに異なる材料ガス供給路が設けられ、前記異なる材料ガス供給路から分岐する複数の分岐流路には共通する1つの前記測定装置が接続されている、請求項1に記載の成膜装置。 A plurality of the material supply units are provided, a different material gas supply path is provided for each material supply unit, and one common measuring device is connected to a plurality of branch flow paths branched from the different material gas supply paths. The film forming apparatus according to claim 1, wherein
  7. 前記材料ガス供給路に対してキャリアガス導入路を介してキャリアガスを導入するキャリアガス導入機構が設けられている、請求項1に記載の成膜装置。 The film forming apparatus according to claim 1, further comprising a carrier gas introduction mechanism that introduces a carrier gas to the material gas supply path via a carrier gas introduction path.
  8. 前記材料供給部は複数設けられ、それぞれの材料供給部ごとに異なる材料ガス供給路と、
    前記異なる材料ガス供給路が接続される共通供給路が設けられ、
    前記異なる材料ガス供給路から分岐する複数の分岐流路にはそれぞれ前記測定装置が接続され、
    前記共通供給路に対してキャリアガス導入路を介してキャリアガスを導入するキャリアガス導入機構が設けられている、請求項1に記載の成膜装置。
    A plurality of the material supply units are provided, and different material gas supply paths for each material supply unit,
    A common supply path to which the different material gas supply paths are connected is provided;
    The measuring device is connected to each of a plurality of branch channels branched from the different material gas supply channels,
    The film forming apparatus according to claim 1, further comprising a carrier gas introduction mechanism that introduces a carrier gas to the common supply path via a carrier gas introduction path.
  9. 基板における成膜レートと、成膜材料の供給部における成膜レートとの関係性に基いて膜厚を制御する、薄膜の成膜方法であって、
    前記供給部から供給される成膜材料ガスの流量が所定値以下の場合、成膜材料ガスに加えて、成膜材料ガスを含まないキャリアガスを供給し所定値以上の流量として成膜を行う、成膜方法。
    A film forming method for controlling a film thickness based on a relationship between a film forming rate on a substrate and a film forming rate in a film forming material supply unit,
    When the flow rate of the film forming material gas supplied from the supply unit is a predetermined value or less, in addition to the film forming material gas, a carrier gas not containing the film forming material gas is supplied to perform film formation at a flow rate of the predetermined value or higher. , Film formation method.
  10. 前記成膜材料ガスは複数種であり、
    複数種の成膜材料ガスの供給量の合計と、成膜材料ガスを含まないキャリアガスの供給量との合計を一定として成膜を行う、請求項9に記載の成膜方法。
    The film forming material gas is a plurality of types,
    The film forming method according to claim 9, wherein film formation is performed with a total of a supply amount of a plurality of kinds of film formation material gases and a supply amount of a carrier gas not including a film formation material gas being constant.
PCT/JP2012/070225 2011-08-12 2012-08-08 Film formation device and film formation method WO2013024769A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020147003510A KR20140054043A (en) 2011-08-12 2012-08-08 Film formation device and film formation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-176854 2011-08-12
JP2011176854 2011-08-12
JP2012-092894 2012-04-16
JP2012092894 2012-04-16

Publications (1)

Publication Number Publication Date
WO2013024769A1 true WO2013024769A1 (en) 2013-02-21

Family

ID=47715089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070225 WO2013024769A1 (en) 2011-08-12 2012-08-08 Film formation device and film formation method

Country Status (4)

Country Link
JP (1) JPWO2013024769A1 (en)
KR (1) KR20140054043A (en)
TW (1) TW201329273A (en)
WO (1) WO2013024769A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017047A1 (en) * 2018-07-20 2020-01-23 シャープ株式会社 Vapor deposition apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306366A (en) * 1997-04-28 1998-11-17 Nisshin Steel Co Ltd Method for measuring coating weight for vapor deposition plating
JP2003277913A (en) * 2002-03-26 2003-10-02 Eiko Engineering Co Ltd Molecular beam source cell for depositing thin film
JP2005039120A (en) * 2003-07-17 2005-02-10 Tokyo Electron Ltd Gasification monitor, mist detecting method, film depositing method, and film depositing equipment
JP2005325400A (en) * 2004-05-13 2005-11-24 Seiko Epson Corp Vacuum deposition system and thin film deposition method
JP2005325391A (en) * 2004-05-13 2005-11-24 Ulvac Japan Ltd Film deposition system of organic thin film
JP2006005118A (en) * 2004-06-17 2006-01-05 Matsushita Electric Ind Co Ltd Semiconductor manufacturing apparatus
JP2007039762A (en) * 2005-08-04 2007-02-15 Sony Corp Vapor deposition apparatus and vapor deposition method
WO2010038631A1 (en) * 2008-09-30 2010-04-08 東京エレクトロン株式会社 Deposition apparatus, deposition method, and storage medium having program stored therein
JP2010196082A (en) * 2009-02-23 2010-09-09 Canon Inc Vacuum vapor deposition apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306366A (en) * 1997-04-28 1998-11-17 Nisshin Steel Co Ltd Method for measuring coating weight for vapor deposition plating
JP2003277913A (en) * 2002-03-26 2003-10-02 Eiko Engineering Co Ltd Molecular beam source cell for depositing thin film
JP2005039120A (en) * 2003-07-17 2005-02-10 Tokyo Electron Ltd Gasification monitor, mist detecting method, film depositing method, and film depositing equipment
JP2005325400A (en) * 2004-05-13 2005-11-24 Seiko Epson Corp Vacuum deposition system and thin film deposition method
JP2005325391A (en) * 2004-05-13 2005-11-24 Ulvac Japan Ltd Film deposition system of organic thin film
JP2006005118A (en) * 2004-06-17 2006-01-05 Matsushita Electric Ind Co Ltd Semiconductor manufacturing apparatus
JP2007039762A (en) * 2005-08-04 2007-02-15 Sony Corp Vapor deposition apparatus and vapor deposition method
WO2010038631A1 (en) * 2008-09-30 2010-04-08 東京エレクトロン株式会社 Deposition apparatus, deposition method, and storage medium having program stored therein
JP2010196082A (en) * 2009-02-23 2010-09-09 Canon Inc Vacuum vapor deposition apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017047A1 (en) * 2018-07-20 2020-01-23 シャープ株式会社 Vapor deposition apparatus

Also Published As

Publication number Publication date
JPWO2013024769A1 (en) 2015-03-05
KR20140054043A (en) 2014-05-08
TW201329273A (en) 2013-07-16

Similar Documents

Publication Publication Date Title
TWI381768B (en) Method of and system for manufacturing organic el devices
WO2012026483A1 (en) Vapor deposition processing device and vapor deposition processing method
CN1322936C (en) Coating device, film forming method and device, making method of semiconductor elements, electric lighting device and electronic apparatus
US20100068375A1 (en) Evaporating apparatus and method for operating the same
JP6241903B2 (en) Vapor deposition apparatus, vapor deposition method using vapor deposition apparatus, and device manufacturing method
US20100071623A1 (en) Evaporating apparatus
JP7364432B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
JP6031651B2 (en) Organic thin film element manufacturing method, organic thin film element manufacturing apparatus, organic film forming method, and organic EL element manufacturing method
JP5091678B2 (en) Deposition material estimation method, analysis method, and film formation method
US20070148346A1 (en) Systems and methods for deposition of graded materials on continuously fed objects
WO2013024769A1 (en) Film formation device and film formation method
KR20140060236A (en) Film forming apparatus
WO2008018500A1 (en) Film forming device, film forming system, and film forming method
CN115011929A (en) Film forming apparatus, method of controlling film forming apparatus, and method of manufacturing electronic device
KR20090108888A (en) Carrier gas heater and deposition apparatus by using the same
JP7138673B2 (en) Electronic device manufacturing method, measuring method, and film forming apparatus
JP5032358B2 (en) Sputtering apparatus and film forming method
JP2008223067A (en) Mask member for film deposition, manufacturing method of mask member for film deposition, mask film deposition method, and film deposition apparatus
KR20120046864A (en) Gas distribution unit having oval path and upright type deposition apparatus having the gas distribution unit
KR101573687B1 (en) The apparatus for depositing the atomic layer
JP2012144811A (en) Film deposition apparatus, and film deposition method
JP2008240015A (en) Mask vapor deposition method
KR102144849B1 (en) Deposition apparatus for flat panel display device
WO2012014881A1 (en) Substrate processing device and substrate processing method
JP2012193413A (en) Vacuum deposition apparatus and method for forming thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528984

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147003510

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823832

Country of ref document: EP

Kind code of ref document: A1