JP2010196082A - Vacuum vapor deposition apparatus - Google Patents

Vacuum vapor deposition apparatus Download PDF

Info

Publication number
JP2010196082A
JP2010196082A JP2009038813A JP2009038813A JP2010196082A JP 2010196082 A JP2010196082 A JP 2010196082A JP 2009038813 A JP2009038813 A JP 2009038813A JP 2009038813 A JP2009038813 A JP 2009038813A JP 2010196082 A JP2010196082 A JP 2010196082A
Authority
JP
Japan
Prior art keywords
film thickness
vapor deposition
substrate
thickness sensor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009038813A
Other languages
Japanese (ja)
Inventor
Naoto Fukuda
直人 福田
Shingo Nakano
真吾 中野
Yoshiyuki Nakagawa
善之 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009038813A priority Critical patent/JP2010196082A/en
Publication of JP2010196082A publication Critical patent/JP2010196082A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To carry out the highly precise control of film thickness by correcting measured data using a film thickness sensor for control. <P>SOLUTION: A vapor deposition source 10 for producing the vapor of a vapor deposition material to be deposited on a substrate 31, the film thickness sensor 20 for control which uses a crystal oscillator to control the temperature of the vapor deposition source 10 by monitoring the vapor of the vapor deposition material and a film thickness sensor 40 for correction which uses a crystal oscillator are provided. The precision of the film thickness control is improved by correcting the measured date by the film thickness sensor 20 for control based on the correction value obtained by the film thickness sensor 40 for correction which measures the vapor deposition rate discontinuously. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有機EL素子を製造するための真空蒸着装置に関するものである。   The present invention relates to a vacuum evaporation apparatus for manufacturing an organic EL element.

有機EL素子は、一般的に透明導電膜(例えばインジウム錫酸化物)からなる陽極と金属(例えばAl)からなる陰極との間に、有機薄膜層として正孔輸送層、発光層、電子輸送層等を形成する。陽極側から注入された正孔と、陰極側から注入された電子が、それぞれ正孔輸送層、電子輸送層を介して発光層で再結合することにより、発光を得る電子デバイスである。   An organic EL element generally has a hole transport layer, a light emitting layer, and an electron transport layer as an organic thin film layer between an anode made of a transparent conductive film (for example, indium tin oxide) and a cathode made of a metal (for example, Al). Etc. The electronic device obtains light emission by recombining holes injected from the anode side and electrons injected from the cathode side in the light emitting layer through the hole transport layer and the electron transport layer, respectively.

この有機EL素子の製造方法の一つとして、真空蒸着法が知られている。有機EL材料をルツボに入れ、真空装置内で蒸着材料の気化温度以上にルツボ等を加熱することで、蒸着材料の蒸気を発生させ、有機EL素子の基体となる基板に堆積して有機薄膜層を形成する。   As one method for producing the organic EL element, a vacuum vapor deposition method is known. Organic EL material is put in a crucible, and the vapor of the vapor deposition material is generated by heating the crucible or the like above the vaporization temperature of the vapor deposition material in a vacuum device, and deposited on the substrate that is the base of the organic EL element, and the organic thin film layer Form.

この有機EL素子の製造工程において、水晶振動子を用いた膜厚モニターにより蒸着レートをモニターし、有機EL材料の蒸発量を制御する方法が知られている。蒸着レートをモニターしなければ、成膜中の基板への付着量が不明となり、基板上での膜厚を目標とする値に合わせることが不可能となる。   In the manufacturing process of the organic EL element, a method is known in which the evaporation rate is monitored by a film thickness monitor using a crystal resonator to control the evaporation amount of the organic EL material. If the deposition rate is not monitored, the amount of adhesion to the substrate during film formation becomes unknown, and it becomes impossible to match the film thickness on the substrate to the target value.

しかし、水晶振動子への有機EL材料の付着量が増すに従って、膜厚モニターの示す蒸着レート指示値と、基板上での付着量に差異が生じてくる。これは、水晶振動子に付着する有機EL材料の膜厚の増加に伴い、水晶振動子の周波数が変化することに起因する。この現象は、膜厚の目標値範囲が特に狭い場合に問題となる。通常、有機EL素子の一層当たりの膜厚は、数十〜100[nm]程度であることから、蒸着レート指示値と基板上での付着量の差は製造歩留り低下の要因となる。   However, as the adhesion amount of the organic EL material to the crystal resonator increases, a difference occurs between the deposition rate instruction value indicated by the film thickness monitor and the adhesion amount on the substrate. This is due to the fact that the frequency of the crystal resonator changes as the film thickness of the organic EL material attached to the crystal resonator increases. This phenomenon becomes a problem when the target value range of the film thickness is particularly narrow. Usually, since the film thickness per layer of the organic EL element is about several tens to 100 [nm], the difference between the deposition rate instruction value and the adhesion amount on the substrate causes the production yield to decrease.

このような問題を解決するため、特許文献1には、膜厚制御用の水晶モニターと膜厚補正用の光学モニターとを備えた蒸着装置が開示されている。この蒸着装置は、光学モニターで目標膜厚近くまで制御し、その後、光学モニターの値で水晶モニターの値を補正してから水晶モニターにより目標膜厚となるまで精度良く膜厚を制御する。   In order to solve such a problem, Patent Document 1 discloses a vapor deposition apparatus including a crystal monitor for film thickness control and an optical monitor for film thickness correction. This vapor deposition apparatus controls the film thickness close to the target film thickness with the optical monitor, and then corrects the value of the crystal monitor with the value of the optical monitor and then accurately controls the film thickness until the target film thickness is reached with the crystal monitor.

特開2003−35520号公報JP 2003-35520 A

ところが、特許文献1に記載されているように、光学モニターは水晶振動子に比べて膜厚の分解能が低く、有機EL素子の1層あたりの膜厚が数十〜100[nm]程度の薄膜は、光学モニターで正確に計測するのは難しい。つまり、光学モニターで計測中は、膜厚レート指示値と基板上への付着量との差異を小さくすることは難しく、有機EL素子の製造には適していない。   However, as described in Patent Document 1, the optical monitor has a lower film thickness resolution than a crystal resonator, and a thin film having a thickness of several tens to 100 [nm] per layer of organic EL elements. Is difficult to measure accurately with an optical monitor. That is, during the measurement with the optical monitor, it is difficult to reduce the difference between the film thickness rate instruction value and the amount of adhesion on the substrate, which is not suitable for manufacturing an organic EL element.

本発明は、蒸着レートを正確に計測し、高精度の膜厚制御を行うことを可能とする真空蒸着装置を提供することを目的とするものである。   An object of the present invention is to provide a vacuum deposition apparatus that can accurately measure a deposition rate and perform highly accurate film thickness control.

本発明の真空蒸着装置は、基板を保持する保持機構と、前記基板に成膜するための蒸着材料の蒸気を発生させる蒸着源と、前記基板に成膜中に蒸着材料の蒸着レートを計測し、前記蒸着源の温度制御を行うための制御用膜厚センサーと、前記制御用膜厚センサーによる計測データに基づいて前記蒸着源の温度制御を行う制御系と、蒸着材料の蒸着レートを計測し、前記制御用膜厚センサーによる計測データを補正するための補正値を前記制御系に出力する補正用膜厚センサーと、を有することを特徴とする。   The vacuum vapor deposition apparatus of the present invention includes a holding mechanism that holds a substrate, a vapor deposition source that generates vapor of a vapor deposition material for forming a film on the substrate, and a vapor deposition rate of the vapor deposition material during film formation on the substrate. A film thickness sensor for controlling the temperature of the vapor deposition source, a control system for controlling the temperature of the vapor deposition source based on measurement data from the film thickness sensor for control, and measuring a vapor deposition rate of the vapor deposition material. And a correction film thickness sensor that outputs a correction value for correcting measurement data obtained by the control film thickness sensor to the control system.

基板に成膜する蒸着材料の蒸着レートを制御するための制御用膜厚センサーの計測データを、補正用膜厚センサーによって不連続的に計測された蒸着材料の蒸着レートにより補正する。逐次補正される制御用膜厚センサーの計測データによって蒸着源を制御することで、基板に成膜される薄膜の膜厚を高精度で管理し、有機EL素子の製造歩留まりを向上させることができる。   The measurement data of the control film thickness sensor for controlling the vapor deposition rate of the vapor deposition material deposited on the substrate is corrected by the vapor deposition rate of the vapor deposition material measured discontinuously by the correction film thickness sensor. By controlling the deposition source according to the measurement data of the control film thickness sensor that is sequentially corrected, the film thickness of the thin film formed on the substrate can be managed with high accuracy, and the production yield of the organic EL element can be improved. .

実施例1による真空蒸着装置を示す模式図である。1 is a schematic diagram showing a vacuum vapor deposition apparatus according to Example 1. FIG. 実施例2による真空蒸着装置を示す模式図である。6 is a schematic diagram showing a vacuum evaporation apparatus according to Example 2. FIG. 実施例1の一変形例を示す模式図である。FIG. 6 is a schematic diagram illustrating a modified example of the first embodiment. 実施例1の別の変形例を示す模式図である。FIG. 10 is a schematic diagram illustrating another modification of the first embodiment. 実施例1の別の変形例を示す模式図である。FIG. 10 is a schematic diagram illustrating another modification of the first embodiment. 一従来例による真空蒸着装置を示す模式図である。It is a schematic diagram which shows the vacuum evaporation system by one prior art example. 実施例1において計測された膜厚及び補正値を示すグラフである。3 is a graph showing a film thickness and a correction value measured in Example 1. 実施例2に用いたAlq3の補正値を示すグラフである。6 is a graph showing correction values for Alq3 used in Example 2. 実施例2に用いたCoumarin6の補正値を示すグラフである。6 is a graph showing correction values for Coumarin 6 used in Example 2. 実施例2において得られた、Alq3+Coumarin6の膜厚を示すグラフである。6 is a graph showing the film thickness of Alq3 + Coumarin6 obtained in Example 2. 図6の従来例において得られた膜厚を示すグラフである。It is a graph which shows the film thickness obtained in the prior art example of FIG.

本発明を実施するための最良の形態を、図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1に示すように、蒸着源10は、蒸着材料11を収容するルツボ12と、ルツボ12を加熱するためのヒーター13と、蓋14と、リフレクター15と、を備えている。蒸着材料11は、ルツボ12内で加熱され、蓋14の開口部から蒸気が放出される。蒸着源10から発生する蒸気は、保持機構30に保持された成膜用の基板31の成膜面上にマスク32を介して付着し、薄膜を形成する。   As shown in FIG. 1, the vapor deposition source 10 includes a crucible 12 that accommodates the vapor deposition material 11, a heater 13 for heating the crucible 12, a lid 14, and a reflector 15. The vapor deposition material 11 is heated in the crucible 12, and vapor is released from the opening of the lid 14. The vapor generated from the vapor deposition source 10 adheres to the film formation surface of the film formation substrate 31 held by the holding mechanism 30 via the mask 32 to form a thin film.

蒸着源10から発生する蒸気が基板31に堆積する速度(蒸着レート)は、水晶振動子を備えた制御用膜厚センサー20によって計測される。制御用膜厚センサー20は、その計測データを、蒸着源10を温度制御し、蒸発量を制御する制御系に出力する。この制御用膜厚センサー20とは別に、制御用膜厚センサー20の計測データを補正する補正値を出力するための、水晶振動子を備えた補正用膜厚センサー40が設けられている。補正用膜厚センサー40は、蒸着源10から発生する蒸気を遮断するためのシャッター41を備え、制御用膜厚センサー20への補正値を出力するために、蒸着源10から発生する蒸気を不連続的にモニターする。制御用膜厚センサー20には、必要に応じてパイプや遮蔽板などを設けてもよい。補正用膜厚センサー40は、基板31の近傍に設けられていることが望ましいが、これに限定されるものではない。尚、補正値は下記のような式で算出される。   The rate at which vapor generated from the vapor deposition source 10 accumulates on the substrate 31 (vapor deposition rate) is measured by the control film thickness sensor 20 provided with a crystal resonator. The control film thickness sensor 20 outputs the measurement data to a control system that controls the temperature of the vapor deposition source 10 and controls the evaporation amount. In addition to the control film thickness sensor 20, a correction film thickness sensor 40 having a crystal resonator for outputting a correction value for correcting the measurement data of the control film thickness sensor 20 is provided. The correction film thickness sensor 40 includes a shutter 41 for blocking the vapor generated from the vapor deposition source 10, and in order to output a correction value to the control film thickness sensor 20, the vapor generated from the vapor deposition source 10 is not detected. Monitor continuously. The control film thickness sensor 20 may be provided with a pipe, a shielding plate, or the like as necessary. The correction film thickness sensor 40 is preferably provided in the vicinity of the substrate 31, but is not limited thereto. The correction value is calculated by the following formula.

再補正値 = 補正値 × t1 / t2 ・・・(式1)
t1:補正用膜厚センサー40の指示値
t2:制御用膜厚センサー20の指示値
Re-correction value = correction value x t1 / t2 (Equation 1)
t1: Indicated value of the correction film thickness sensor 40
t2: indicated value of the control film thickness sensor 20

ここで、それぞれ同一の膜厚センサ−で複数回成膜を行う場合、前回の成膜で用いた再補正値が補正値となり、その補正値を制御用膜厚センサー20および補正用膜厚センサー40の計測データを用いて補正した値が再補正値となる。ただし、膜厚センサーの初回使用時においては、補正値は任意の値となり、再補正値は制御用膜厚センサ−の計測データを用いた補正値となる。   Here, when a plurality of film formations are performed with the same film thickness sensor, the re-correction value used in the previous film formation becomes a correction value, and the correction value is used as the control film thickness sensor 20 and the correction film thickness sensor. The value corrected using the 40 measurement data becomes the re-correction value. However, when the film thickness sensor is used for the first time, the correction value is an arbitrary value, and the re-correction value is a correction value using measurement data of the control film thickness sensor.

基板31及びマスク32は、チャンバー50内に保持機構30にて保持されており、必要であれば、保持機構30に回転機構を設けてもよい。また、基板31及びマスク32は、保持機構30によりチャンバー内にどのように配置されていてもよい。蒸着源10の蓋14に設けられた開口部と、基板31の成膜面との間には、図示しないシャッターが個別に設けられていてもよい。蓋14に設けられた開口部にシャッターが設けられていれば、開口部から発生する蒸気を自由に遮断することが可能となる。   The substrate 31 and the mask 32 are held by the holding mechanism 30 in the chamber 50. If necessary, the holding mechanism 30 may be provided with a rotation mechanism. Further, the substrate 31 and the mask 32 may be arranged in the chamber by the holding mechanism 30 in any way. A shutter (not shown) may be individually provided between the opening provided in the lid 14 of the vapor deposition source 10 and the film formation surface of the substrate 31. If a shutter is provided in the opening provided in the lid 14, it is possible to block off the steam generated from the opening.

チャンバー50は、図示しないアライメント機構を備えていて、マスク32に高精細マスクを用いて、マスク蒸着による微細パターン形成を行ってもよい。チャンバー50内を排気するための図示しない真空排気系は、迅速に高真空領域まで排気できる能力を持った真空ポンプを用いることが望ましい。   The chamber 50 may include an alignment mechanism (not shown), and may use a high-definition mask as the mask 32 to form a fine pattern by mask vapor deposition. As a vacuum exhaust system (not shown) for exhausting the inside of the chamber 50, it is desirable to use a vacuum pump having a capability of exhausting quickly to a high vacuum region.

この真空蒸着装置を有機EL素子の製造に用いる場合は、ゲートバルブ51により他の真空装置と接続し、有機EL素子を作製するための様々な工程を行えばよい。有機EL素子の製造装置には、様々な工程を行うチャンバーが複数備えてあることが望ましく、チャンバー50はそれらの一部であることが望ましい。   When this vacuum vapor deposition apparatus is used for manufacturing an organic EL element, the gate valve 51 may be connected to another vacuum apparatus to perform various processes for manufacturing the organic EL element. The organic EL element manufacturing apparatus preferably includes a plurality of chambers for performing various processes, and the chamber 50 is preferably a part of them.

基板31が大型基板である場合は、複数の蒸着源10を用いて、基板31の成膜面に対して膜厚むらの少ない均一な蒸着膜形成を行うことが望ましい。   In the case where the substrate 31 is a large substrate, it is desirable to use the plurality of vapor deposition sources 10 to form a uniform vapor deposition film with little film thickness unevenness on the film formation surface of the substrate 31.

蒸着源10の蓋14に設けられた開口部の開口面積、開口形状、材質等は個別に異なっていてもよく、開口形状は、円形、矩形、楕円形など、どのような形状でもよい。開口面積及び開口形状がそれぞれ異なることにより、基板31上での膜厚制御性がより向上する場合がある。また同じ理由で、ルツボ12の形状、材質等は個別に異なっていてもよい。   The opening area, the opening shape, the material, and the like of the opening provided in the lid 14 of the vapor deposition source 10 may be individually different, and the opening shape may be any shape such as a circle, a rectangle, or an ellipse. When the opening area and the opening shape are different, the film thickness controllability on the substrate 31 may be further improved. For the same reason, the shape, material, etc. of the crucible 12 may be individually different.

マスク32に高精細マスクを用いて、マスク蒸着による微細パターン形成を行う場合は、マスクへの熱影響を考慮して、蒸着源10を移動させながら成膜を行ってもよい。また、基板31及びマスク32を移動させながら成膜を行ってもよい。   When a fine pattern is formed by mask vapor deposition using a high-definition mask as the mask 32, film formation may be performed while moving the vapor deposition source 10 in consideration of the thermal effect on the mask. Further, film formation may be performed while moving the substrate 31 and the mask 32.

図2は、別の実施形態による真空蒸着装置を示す。これは、複数の蒸着源10a、10bと、各蒸着源10a、10bから発生する蒸気の蒸着レートをそれぞれ検出して膜厚制御を行うための制御用膜厚センサー20a、20b及び補正用膜厚センサー40a、40bを備える。   FIG. 2 shows a vacuum deposition apparatus according to another embodiment. This is a control film thickness sensor 20a, 20b and a correction film thickness for detecting a plurality of vapor deposition sources 10a, 10b, and vapor deposition rates of vapors generated from the respective vapor deposition sources 10a, 10b, respectively. Sensors 40a and 40b are provided.

このように、複数の蒸着源を用いて、同じ蒸着材料の蒸気を発生させてもよいし、それぞれ異なる蒸着材料を用いた共蒸着膜を成膜してもよい。   As described above, vapors of the same vapor deposition material may be generated using a plurality of vapor deposition sources, or co-deposition films using different vapor deposition materials may be formed.

図1は実施例1による真空蒸着装置を示す。蒸着源10のルツボには、蒸着材料11として有機EL材料であるトリス(8−ヒドロキシキノリナト)アルミニウム(Alq3)を10.0[g]充填し、ルツボ12に蓋14を取り付けた。ルツボ11に充填されたAlq3は、蓋14の開口部を介して蒸発する。ルツボ12と蓋14の接合部はフランジ形状として、蒸発したAlq3の開口部以外からの漏れを防止した。蒸着源10は、基板31の成膜面に対向して配置されている。制御用膜厚センサー20は、基板31に向かう蒸着源10から発生した蒸気を遮ることのない位置に配置した。蓋14の開口部から、基板31の成膜面までの距離は300[mm]とした。蓋14の開口部から、制御用膜厚センサー20までの距離は200[mm]とした。   FIG. 1 shows a vacuum deposition apparatus according to the first embodiment. The crucible of the vapor deposition source 10 was filled with 10.0 [g] of tris (8-hydroxyquinolinato) aluminum (Alq3), which is an organic EL material, as the vapor deposition material 11, and the lid 14 was attached to the crucible 12. Alq 3 filled in the crucible 11 evaporates through the opening of the lid 14. The joint between the crucible 12 and the lid 14 has a flange shape to prevent leakage from other than the opening of the evaporated Alq3. The vapor deposition source 10 is disposed to face the film formation surface of the substrate 31. The control film thickness sensor 20 was disposed at a position where the vapor generated from the vapor deposition source 10 toward the substrate 31 was not blocked. The distance from the opening of the lid 14 to the film formation surface of the substrate 31 was set to 300 [mm]. The distance from the opening of the lid 14 to the control film thickness sensor 20 was 200 [mm].

基板31として、100[mm]×100[mm]×0.7[mm]のガラス基板を、ゲートバルブ51を介してチャンバー50と接合された図示しない基板ストック装置に11枚セットした。基板ストック装置内を図示しない真空排気系により1.0×10−4[Pa]以下まで排気した。チャンバー50内も、図示しない真空排気系により1.0×10−4[Pa]以下まで排気し、排気した後にヒーター13でルツボ12を200[℃]まで加熱した。ヒーターパワーはルツボ12の底面付近の温度に基づいて制御した。まず、ルツボ12の底面付近の温度を200[℃]のまま30[min]保持してAlq3の脱ガスを行った。 As the substrate 31, 11 glass substrates of 100 [mm] × 100 [mm] × 0.7 [mm] were set in a substrate stock apparatus (not shown) joined to the chamber 50 through the gate valve 51. The inside of the substrate stock apparatus was evacuated to 1.0 × 10 −4 [Pa] or less by a vacuum exhaust system (not shown). The inside of the chamber 50 was also evacuated to 1.0 × 10 −4 [Pa] or less by a vacuum exhaust system (not shown), and after evacuation, the crucible 12 was heated to 200 [° C.] with the heater 13. The heater power was controlled based on the temperature near the bottom of the crucible 12. First, Alq3 was degassed while maintaining the temperature near the bottom of the crucible 12 at 200 [° C.] for 30 [min].

次に、制御用膜厚センサー20において蒸着レートが1.0[nm/sec]となる温度までルツボ12を加熱した。制御用膜厚センサー20において、蒸着レートが1.0[nm/sec]となったところで、基板ストック装置から基板搬送機構を用いて、チャンバー50へ基板を1枚搬入して成膜を行った。基板31の中心部分で膜厚が100[nm]となるように成膜して、成膜を終えた基板31を直ちに搬出して、次の基板31を搬入するというプロセスで、11枚の基板31に上記の条件で成膜を行った。基板31への成膜は、制御用膜厚センサー20の水晶振動子の周波数が0.015[MHz]低下する毎に行った。また、各基板31への成膜前に、補正用膜厚センサー40の近傍に設けられたシャッター41を開き、補正用膜厚センサー40によって計測された蒸着レートに基づく補正値を求めて、制御用膜厚センサー20の計測データ(蒸着レート)を補正した。   Next, the crucible 12 was heated to a temperature at which the deposition rate in the control film thickness sensor 20 was 1.0 [nm / sec]. In the film thickness sensor 20 for control, when the vapor deposition rate reached 1.0 [nm / sec], a single substrate was carried into the chamber 50 from the substrate stock apparatus using the substrate transport mechanism to form a film. . In the process of depositing the film at the central portion of the substrate 31 so that the film thickness becomes 100 [nm], the substrate 31 that has been deposited is immediately unloaded, and the next substrate 31 is loaded. No. 31 was formed under the above conditions. Film formation on the substrate 31 was performed each time the frequency of the crystal resonator of the control film thickness sensor 20 decreased by 0.015 [MHz]. Further, before film formation on each substrate 31, the shutter 41 provided in the vicinity of the correction film thickness sensor 40 is opened, and a correction value based on the deposition rate measured by the correction film thickness sensor 40 is obtained and controlled. The measurement data (deposition rate) of the film thickness sensor 20 for use was corrected.

上記の方法で成膜を行い、基板31の中央部付近の膜厚を触針式段差計により測定した。その結果と、補正用膜厚センサー40による補正値を図7に示す。図7から判るように、目標膜厚100[nm]に対して、測定膜厚は±2.0[%]の範囲におさまっている。このことから、Alq3を目標膜厚に対して精度良く成膜できていたことが判った。   Film formation was performed by the above method, and the film thickness near the center of the substrate 31 was measured with a stylus type step gauge. The result and the correction value by the correction film thickness sensor 40 are shown in FIG. As can be seen from FIG. 7, the measured film thickness falls within the range of ± 2.0 [%] with respect to the target film thickness of 100 [nm]. From this, it was found that Alq3 was formed with high accuracy with respect to the target film thickness.

本実施例においては、蒸着源10として図1に示す構成を用いたが、これに限定されるものではない。蒸着源10の数についても、これに限定されるものではない。また、各膜厚センサーの位置等もこれに限定されるものではない。   In the present embodiment, the configuration shown in FIG. 1 is used as the vapor deposition source 10, but it is not limited to this. The number of vapor deposition sources 10 is not limited to this. Further, the position of each film thickness sensor is not limited to this.

基板31に大判のものを用いる場合には、保持機構30を回転させて、基板31の成膜面内でむらのない膜厚分布を得ればよい。高精細マスクを用いる場合は、アライメントステージを用いてマスク蒸着による微細パターン形成を行ってもよい。この際、高精細マスクへの熱影響が問題となるようであれば、蒸着源10においてリフレクター15を多く用いればよいし、必要であればリフレクター15に冷却パイプや空冷パイプを設けてもよい。   When a large-sized substrate 31 is used, the holding mechanism 30 may be rotated to obtain a uniform film thickness distribution within the film formation surface of the substrate 31. When a high-definition mask is used, a fine pattern may be formed by mask vapor deposition using an alignment stage. At this time, if the thermal influence on the high-definition mask becomes a problem, a large number of reflectors 15 may be used in the vapor deposition source 10, and a cooling pipe or an air cooling pipe may be provided in the reflector 15 if necessary.

なお、図3に示すように、蒸着源10を図示しない蒸着源搬送機構により搬送させて、基板31に蒸着膜の形成を行ってもよい。また、図4に示すように、基板31とマスク32を図示しない蒸着源搬送機構により搬送させて、成膜を行ってもよい。また、図5に示すように、基板31とマスク32が、チャンバー50の設置面に対して垂直、もしくは垂直に近い角度になるように保持機構30で保持し、蒸着膜の形成を行ってもよい。   In addition, as shown in FIG. 3, the vapor deposition source 10 may be conveyed by the vapor deposition source conveyance mechanism which is not shown in figure, and a vapor deposition film may be formed in the board | substrate 31. FIG. Moreover, as shown in FIG. 4, the substrate 31 and the mask 32 may be transported by a vapor deposition source transport mechanism (not shown) to perform film formation. In addition, as shown in FIG. 5, even if the substrate 31 and the mask 32 are held by the holding mechanism 30 so that the substrate 31 and the mask 32 are at an angle perpendicular to the installation surface of the chamber 50 or close to the perpendicular, Good.

本実施例の効果を検証するために、図6に示す従来構成の真空蒸着装置で成膜した場合の比較実験を行った。チャンバー150内の基板131及びマスク132からなる被成膜物に向かって、ルツボ112、ヒーター113等からなる蒸着源110からAlq3の蒸気を発生させ、蓋114に設けた開口部を介して蒸着させた。成膜中、制御用膜厚センサー120による蒸着レートが1.0[nm/sec]となる温度までルツボ112を加熱し、蒸着レートが1.0[nm/sec]で保持されるように制御した。   In order to verify the effect of this example, a comparative experiment was performed in the case where the film was formed by the vacuum deposition apparatus having the conventional configuration shown in FIG. A vapor of Alq3 is generated from a vapor deposition source 110 composed of a crucible 112, a heater 113, and the like toward a film formation target composed of a substrate 131 and a mask 132 in the chamber 150, and vapor-deposited through an opening provided in the lid 114. It was. During film formation, the crucible 112 is heated to a temperature at which the deposition rate by the control film thickness sensor 120 is 1.0 [nm / sec], and the deposition rate is controlled at 1.0 [nm / sec]. did.

成膜後、基板131の中央部付近の膜厚をαステップにより測定した。その結果を図11に示す。図11から判るように、目標膜厚100[nm]に対して、測定膜厚は±4.8[%]となった。これは、制御用膜厚センサー120に付着するAlq3の量と、基板上への付着量との差異が時間経過と共に変化しているためであり、水晶振動子の周波数低下に伴う現象である。   After film formation, the film thickness near the center of the substrate 131 was measured by an α step. The result is shown in FIG. As can be seen from FIG. 11, the measured film thickness was ± 4.8 [%] with respect to the target film thickness of 100 [nm]. This is because the difference between the amount of Alq3 adhering to the control film thickness sensor 120 and the amount adhering on the substrate changes with the passage of time, and this is a phenomenon accompanying a decrease in the frequency of the crystal resonator.

これにより、従来構成の真空蒸着装置よりも、本実施例の真空蒸着装置が優れていると判った。   Thereby, it turned out that the vacuum vapor deposition apparatus of a present Example is superior to the vacuum vapor deposition apparatus of a conventional structure.

図2は実施例2による真空蒸着装置を示す。蒸着源10aのルツボ12aに、蒸着材料11aとして有機EL材料であるAlq3を10.0[g]充填し、ルツボ12aに蓋14aを取り付け、蒸着源10aにセットした。ルツボ12aに充填されたAlq3は、蓋14aの開口部を介して蒸発する。ルツボ12aと蓋14aの接合部はフランジ形状として、蒸発したAlq3の開口部以外からの漏れを防止した。蒸着源10bのルツボ12bには、蒸着材料11bとして有機EL材料である3−(2−ベンゾチアゾリル)−7−(ジエチルアミノ)クマリン(Coumarin6)を10.0[g]充填し、ルツボ12bに蓋14bを取り付け、蒸着源10bにセットした。ルツボ12bに充填されたCoumarin6は、蓋14bの開口部を介して蒸発する。ルツボ12bと蓋14bの接合部はフランジ形状として、Coumarin6の開口部以外からの漏れを防止した。   FIG. 2 shows a vacuum deposition apparatus according to the second embodiment. The crucible 12a of the vapor deposition source 10a was filled with 10.0 [g] of Alq3, which is an organic EL material, as the vapor deposition material 11a, and the lid 14a was attached to the crucible 12a and set in the vapor deposition source 10a. Alq3 filled in the crucible 12a evaporates through the opening of the lid 14a. The joint between the crucible 12a and the lid 14a has a flange shape to prevent leakage from other than the opening portion of the evaporated Alq3. The crucible 12b of the vapor deposition source 10b is filled with 10.0 [g] of 3- (2-benzothiazolyl) -7- (diethylamino) coumarin (Coumarin 6), which is an organic EL material, as the vapor deposition material 11b, and the crucible 12b is covered with the lid 14b. And set in the vapor deposition source 10b. The Coumarin 6 filled in the crucible 12b evaporates through the opening of the lid 14b. The joint between the crucible 12b and the lid 14b has a flange shape to prevent leakage from other than the opening of the Coumarin 6.

蒸着源10a、10bは、基板31の成膜面に対向して配置されている。制御用膜厚センサー20a、20bは、基板31に向かう蒸着源10a、10bから発生した蒸気を遮ることのないような位置に配置した。制御用膜厚センサー20aは、蒸着源10aで発生し、蓋14aに設けられた開口部を介して出てくるAlq3の蒸気のみをモニターできる位置に配置した。制御用膜厚センサー20bは、蒸着源10bで発生し、蓋14bに設けられた開口部を介して出てくるCoumarin6の蒸気のみをモニターできる位置に配置した。   The vapor deposition sources 10 a and 10 b are arranged to face the film formation surface of the substrate 31. The control film thickness sensors 20a and 20b are arranged at positions that do not block the vapor generated from the vapor deposition sources 10a and 10b toward the substrate 31. The control film thickness sensor 20a is disposed at a position where only the vapor of Alq3 generated by the vapor deposition source 10a and coming out through the opening provided in the lid 14a can be monitored. The control film thickness sensor 20b was disposed at a position where only the vapor of the Coumarin 6 generated by the vapor deposition source 10b and exiting through the opening provided in the lid 14b can be monitored.

蓋14a、14bのそれぞれの開口部から、基板31の成膜面までの距離は300[mm]とした。蓋14aの開口部から、制御用膜厚センサー20aまでの距離は100[mm]とした。蓋14bの開口部から、制御用膜厚センサー20bまでの距離は100[mm]とした。   The distances from the openings of the lids 14a and 14b to the film formation surface of the substrate 31 were 300 [mm]. The distance from the opening of the lid 14a to the control film thickness sensor 20a was 100 [mm]. The distance from the opening of the lid 14b to the control film thickness sensor 20b was 100 [mm].

また、蒸着源10a、10bから発生した蒸気をモニターできる位置に、補正用膜厚センサー40a、40bを配置した。補正用膜厚センサー40a、40bにはそれぞれ、シャッター41a、41bが設けられている。蓋14aの開口部から、補正用膜厚センサー40aまでの距離は100[mm]とした。蓋14bの開口部から、補正用膜厚センサー40bまでの距離は100[mm]とした。   Further, the correction film thickness sensors 40a and 40b are arranged at positions where the vapor generated from the vapor deposition sources 10a and 10b can be monitored. The correction film thickness sensors 40a and 40b are provided with shutters 41a and 41b, respectively. The distance from the opening of the lid 14a to the correction film thickness sensor 40a was 100 [mm]. The distance from the opening of the lid 14b to the correction film thickness sensor 40b was 100 [mm].

基板31として、100[mm]×100[mm]×0.7[mm]のガラス基板を、ゲートバルブ51を介してチャンバー50と接合された図示しない基板ストック装置に11枚セットした。基板ストック装置内を図示しない真空排気系により1.0×10−4[Pa]以下まで排気した。チャンバー50内も、図示しない真空排気系により1.0×10−4[Pa]以下まで排気し、排気した後にヒーター13a、13bでルツボ12a、12bを200[℃]まで加熱した。ヒーターパワーはルツボ12a、12bの底面付近の温度を基に制御した。まず、ルツボ12a、12bの底面付近の温度を200[℃]のまま30[min]保持してAlq3及びCoumarin6の脱ガスを行った。 As the substrate 31, 11 glass substrates of 100 [mm] × 100 [mm] × 0.7 [mm] were set in a substrate stock apparatus (not shown) joined to the chamber 50 through the gate valve 51. The inside of the substrate stock apparatus was evacuated to 1.0 × 10 −4 [Pa] or less by a vacuum exhaust system (not shown). The chamber 50 was also evacuated to 1.0 × 10 −4 [Pa] or less by a vacuum exhaust system (not shown), and after evacuation, the crucibles 12a and 12b were heated to 200 [° C.] by the heaters 13a and 13b. The heater power was controlled based on the temperature near the bottom of the crucibles 12a and 12b. First, Alq3 and Coumarin 6 were degassed while maintaining the temperature near the bottom of crucibles 12a and 12b at 30 [min] while maintaining the temperature at 200 [° C.].

次に、制御用膜厚センサー20a、20bにおいて蒸着レートがそれぞれ1.0[nm/sec]、0.3[nm/sec]となる温度までルツボ12a、12bを加熱した。制御用膜厚センサー20a、20bにおいて、蒸着レートがそれぞれ1.0[nm/sec]、0.3[nm/sec]となったところで、基板ストック装置から基板搬送機構を用いて、チャンバー50へ基板を1枚搬入して成膜を行った。基板31の中心部分で膜厚が130[nm]となるように成膜して、成膜を終えた基板31を直ちに搬出して、次の基板31を搬入するというプロセスで、11枚の基板31に上記の条件で成膜を行った。基板31への成膜は、制御用膜厚センサー20aの水晶振動子の周波数が0.015[MHz]低下する毎に行った。また、各基板31への成膜前に、シャッター41a、41bを開き、補正用膜厚センサー40a、40bによる蒸着レートに基づく補正値を求めて、制御用膜厚センサー20a、20bの蒸着レートを補正した。基板31への成膜中、制御用膜厚センサー20a、20bによる蒸着レートの大きな変動は無かった。   Next, the crucibles 12a and 12b were heated to temperatures at which the deposition rates were 1.0 [nm / sec] and 0.3 [nm / sec] in the control film thickness sensors 20a and 20b, respectively. In the control film thickness sensors 20a and 20b, when the deposition rates become 1.0 [nm / sec] and 0.3 [nm / sec], respectively, the substrate stock apparatus transfers the chamber 50 to the chamber 50 using the substrate transport mechanism. One substrate was carried in to form a film. In the process of depositing the film at the central portion of the substrate 31 so that the film thickness becomes 130 [nm], the substrate 31 that has been deposited is immediately unloaded, and the next substrate 31 is loaded. No. 31 was formed under the above conditions. Film formation on the substrate 31 was performed each time the frequency of the crystal resonator of the control film thickness sensor 20a decreased by 0.015 [MHz]. Further, before film formation on each substrate 31, the shutters 41a and 41b are opened, a correction value based on the vapor deposition rate by the correction film thickness sensors 40a and 40b is obtained, and the vapor deposition rates of the control film thickness sensors 20a and 20b are determined. Corrected. During film formation on the substrate 31, there was no significant variation in the deposition rate by the control film thickness sensors 20a and 20b.

上記の方法で成膜を行い、実施例1と同様に、基板31の中央部付近の膜厚を触針式段差計により測定した。成膜に用いた2つの補正値も含めて、それらのデータを図8、図9、図10に示す。図10から判るように、目標膜厚130[nm]に対して、測定膜厚は±1.9[%]の範囲におさまっている。このことから、Alq3とCoumarin6が足し合わされた膜厚は、基板31の成膜中において精度良く制御できていたことが判った。   Film formation was performed by the method described above, and the film thickness in the vicinity of the center portion of the substrate 31 was measured with a stylus type step gauge in the same manner as in Example 1. The data including the two correction values used in the film formation are shown in FIG. 8, FIG. 9, and FIG. As can be seen from FIG. 10, the measured film thickness is within a range of ± 1.9 [%] with respect to the target film thickness of 130 [nm]. From this, it was found that the film thickness obtained by adding Alq3 and Coumarin 6 could be accurately controlled during the film formation of the substrate 31.

このように、本実施例によれば、Alq3とCoumarin6との共蒸着膜形成においても、補正用膜厚センサー40a、40bを用いることによって、安定した膜厚を維持できることが判った。   Thus, according to the present example, it was found that a stable film thickness can be maintained by using the correction film thickness sensors 40a and 40b even in the co-deposition film formation of Alq3 and Coumarin6.

本実施例においては、蒸着源として図2に示す構成を用いたが、これに限定されるものではない。蒸着源の数についても、これに限定されるものではない。また、制御用膜厚センサー及び補正用膜厚センサーの配置等もこれに限定されるものではない。   In the present embodiment, the configuration shown in FIG. 2 is used as the vapor deposition source, but the present invention is not limited to this. The number of vapor deposition sources is not limited to this. Further, the arrangement of the control film thickness sensor and the correction film thickness sensor is not limited to this.

基板に大判のものを用いる場合には、保持機構を回転させて、基板の成膜面内でむらのない膜厚分布を得ればよい。高精細マスクを用いる場合は、アライメントステージを用いてマスク蒸着による微細パターン形成を行ってもよい。この際、高精細マスクへの熱影響が問題となるようであれば、蒸着源においてリフレクターを多く用いればよいし、必要であればリフレクターに冷却パイプや空冷パイプを設けてもよい。   When a large-sized substrate is used, the holding mechanism may be rotated to obtain a uniform film thickness distribution in the film formation surface of the substrate. When a high-definition mask is used, a fine pattern may be formed by mask vapor deposition using an alignment stage. At this time, if the thermal influence on the high-definition mask becomes a problem, a large number of reflectors may be used in the vapor deposition source, and if necessary, a cooling pipe or an air cooling pipe may be provided in the reflector.

なお、実施例1と同様に、蒸着源を蒸着源搬送機構により搬送させて、基板に蒸着膜の形成を行ってもよい。また、基板とマスクを蒸着源搬送機構により搬送させて、蒸着膜の形成を行ってもよい。また、基板とマスクを、チャンバーの設置面に対して垂直、もしくは垂直に近い角度になるように保持機構で保持して蒸着膜の形成を行ってもよい。共蒸着膜形成を行う場合には、蒸着源を少なくとも2つ以上用いればよい。共蒸着膜形成の際は、制御用膜厚センサーと補正用膜厚センサーが、複数の蒸着源に個別に設けられていることが望ましく、必要に応じてパイプや遮蔽版などの蒸気遮断手段を設けてもよい。   As in the first embodiment, the vapor deposition source may be transported by the vapor deposition source transport mechanism to form the vapor deposition film on the substrate. Alternatively, the deposition film may be formed by transporting the substrate and the mask by a deposition source transport mechanism. Alternatively, the vapor deposition film may be formed by holding the substrate and the mask with a holding mechanism so as to be perpendicular to the chamber installation surface or at an angle close to perpendicular. When forming a co-evaporated film, at least two evaporation sources may be used. When forming a co-evaporated film, it is desirable that a control film thickness sensor and a correction film thickness sensor are individually provided in a plurality of vapor deposition sources, and if necessary, a vapor blocking means such as a pipe or a shielding plate is provided. It may be provided.

10、10a、10b 蒸着源
11、11a、11b 蒸着材料
12、12a、12b ルツボ
13、13a、13b ヒーター
14、14a、14b 蓋
15、15a、15b リフレクター
20、20a、20b 制御用膜厚センサー
30 保持機構
31 基板
32 マスク
40、40a、40b 補正用膜厚センサー
41、41a、41b シャッター
50 チャンバー
51 ゲートバルブ
10, 10a, 10b Deposition source 11, 11a, 11b Deposition material 12, 12a, 12b Crucible 13, 13a, 13b Heater 14, 14a, 14b Lid 15, 15a, 15b Reflector 20, 20a, 20b Control film thickness sensor 30 Holding Mechanism 31 Substrate 32 Mask 40, 40a, 40b Film thickness sensor for correction 41, 41a, 41b Shutter 50 Chamber 51 Gate valve

Claims (4)

基板を保持する保持機構と、
前記基板に成膜するための蒸着材料の蒸気を発生させる蒸着源と、
前記基板に成膜中に蒸着材料の蒸着レートを計測し、前記蒸着源の温度制御を行うための制御用膜厚センサーと、
前記制御用膜厚センサーによる計測データに基づいて前記蒸着源の温度制御を行う制御系と、
蒸着材料の蒸着レートを計測し、前記制御用膜厚センサーによる計測データを補正するための補正値を前記制御系に出力する補正用膜厚センサーと、を有することを特徴とする真空蒸着装置。
A holding mechanism for holding the substrate;
A vapor deposition source for generating vapor of a vapor deposition material for forming a film on the substrate;
A film thickness sensor for control for measuring the evaporation rate of the evaporation material during film formation on the substrate and controlling the temperature of the evaporation source,
A control system for controlling the temperature of the vapor deposition source based on measurement data obtained by the control film thickness sensor;
A vacuum deposition apparatus comprising: a correction film thickness sensor that measures a deposition rate of a deposition material and outputs a correction value for correcting measurement data by the control film thickness sensor to the control system.
前記制御用膜厚センサー及び前記補正用膜厚センサーは、それぞれ水晶振動子によって蒸着レートを計測することを特徴とする請求項1に記載の真空蒸着装置。   The vacuum deposition apparatus according to claim 1, wherein each of the control film thickness sensor and the correction film thickness sensor measures a deposition rate with a crystal resonator. 基板への成膜中は前記補正用膜厚センサーへの蒸着材料の蒸気を遮断するためのシャッターを備えることを特徴とする請求項1又は2に記載の真空蒸着装置。   The vacuum evaporation apparatus according to claim 1, further comprising a shutter for blocking vapor of the evaporation material to the correction film thickness sensor during film formation on the substrate. 請求項1ないし3のいずれかに記載の真空蒸着装置を用いて有機EL素子の薄膜を成膜する工程を有することを特徴とする有機EL素子の製造方法。   A method for producing an organic EL element, comprising the step of forming a thin film of an organic EL element using the vacuum vapor deposition apparatus according to claim 1.
JP2009038813A 2009-02-23 2009-02-23 Vacuum vapor deposition apparatus Pending JP2010196082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038813A JP2010196082A (en) 2009-02-23 2009-02-23 Vacuum vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038813A JP2010196082A (en) 2009-02-23 2009-02-23 Vacuum vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JP2010196082A true JP2010196082A (en) 2010-09-09

Family

ID=42821100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038813A Pending JP2010196082A (en) 2009-02-23 2009-02-23 Vacuum vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JP2010196082A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120114833A1 (en) * 2010-11-04 2012-05-10 Canon Kabushiki Kaisha Film formation apparatus and film formation method
CN102465264A (en) * 2010-11-04 2012-05-23 佳能株式会社 Vacuum vapor deposition system
CN102465262A (en) * 2010-11-04 2012-05-23 佳能株式会社 Film formation apparatus
CN102465276A (en) * 2010-11-04 2012-05-23 佳能株式会社 Film formation apparatus and film formation method
JP2012112035A (en) * 2010-11-04 2012-06-14 Canon Inc Vacuum vapor deposition system
WO2012108698A2 (en) * 2011-02-09 2012-08-16 서울대학교 산학협력단 Small-molecule thin film having bulk heterojunction and method for forming organic solar cell including same
WO2013024769A1 (en) * 2011-08-12 2013-02-21 東京エレクトロン株式会社 Film formation device and film formation method
CN103305796A (en) * 2012-03-12 2013-09-18 株式会社日立高新技术 Evaporation source apparatus, vacuum deposition apparatus, and method of manufacturing organic EL display device
KR20140007684A (en) * 2012-07-10 2014-01-20 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
CN104613911A (en) * 2015-01-16 2015-05-13 上海大学 Deposition film thickness distribution measuring system
WO2015182090A1 (en) * 2014-05-26 2015-12-03 株式会社アルバック Film-forming device, method for measuring film thickness of organic film, and film thickness sensor for organic film
JP2016040415A (en) * 2010-11-04 2016-03-24 キヤノン株式会社 Film deposition apparatus
KR20160147009A (en) * 2014-07-15 2016-12-21 가부시키가이샤 아루박 Film thickness control device, film thickness control method, and film formation device
CN107287575A (en) * 2017-05-22 2017-10-24 茆胜 Coating system and film plating process
CN109594053A (en) * 2018-12-07 2019-04-09 京东方科技集团股份有限公司 A kind of evaporation coating device, vapor deposition method of adjustment and computer-readable medium
KR20200068288A (en) * 2018-12-05 2020-06-15 주식회사 원익아이피에스 Substrate processing apparatus and method of substrate processing
CN112697081A (en) * 2020-12-15 2021-04-23 江苏集萃有机光电技术研究所有限公司 Film thickness measuring system and method
WO2024116599A1 (en) * 2022-11-29 2024-06-06 キヤノントッキ株式会社 Film forming device and film forming method

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488203B1 (en) * 2010-11-04 2015-01-30 캐논 가부시끼가이샤 Film formation apparatus and film formation method
CN102465276A (en) * 2010-11-04 2012-05-23 佳能株式会社 Film formation apparatus and film formation method
CN102465262A (en) * 2010-11-04 2012-05-23 佳能株式会社 Film formation apparatus
KR101487954B1 (en) * 2010-11-04 2015-01-30 캐논 가부시끼가이샤 Film formation apparatus and film formation method
CN102465263A (en) * 2010-11-04 2012-05-23 佳能株式会社 Film formation apparatus and film formation method
KR101496667B1 (en) * 2010-11-04 2015-02-27 캐논 가부시끼가이샤 Vacuum vapor deposition system
JP2012112037A (en) * 2010-11-04 2012-06-14 Canon Inc Film forming device and film forming method using the same
JP2012112035A (en) * 2010-11-04 2012-06-14 Canon Inc Vacuum vapor deposition system
JP2012112036A (en) * 2010-11-04 2012-06-14 Canon Inc Film forming device and film forming method
JP2012112038A (en) * 2010-11-04 2012-06-14 Canon Inc Film forming device and film forming method using the same
CN102560364A (en) * 2010-11-04 2012-07-11 佳能株式会社 Vacuum vapor deposition system and method of manufacturing organic electroluminescent device
US20120114833A1 (en) * 2010-11-04 2012-05-10 Canon Kabushiki Kaisha Film formation apparatus and film formation method
KR101781073B1 (en) * 2010-11-04 2017-09-22 캐논 가부시끼가이샤 Film formation apparatus and film formation method
US9382624B2 (en) 2010-11-04 2016-07-05 Canon Kabushiki Kaisha Film formation method using oscillators for measurement and calibration during calibration step performed during film formation
JP2016040415A (en) * 2010-11-04 2016-03-24 キヤノン株式会社 Film deposition apparatus
US20150176129A1 (en) * 2010-11-04 2015-06-25 Canon Kabushiki Kaisha Film formation apparatus and film formation method
JP2012112034A (en) * 2010-11-04 2012-06-14 Canon Inc Vacuum vapor deposition system
CN102465264A (en) * 2010-11-04 2012-05-23 佳能株式会社 Vacuum vapor deposition system
WO2012108698A3 (en) * 2011-02-09 2012-12-20 서울대학교 산학협력단 Small-molecule thin film having bulk heterojunction and method for forming organic solar cell including same
WO2012108698A2 (en) * 2011-02-09 2012-08-16 서울대학교 산학협력단 Small-molecule thin film having bulk heterojunction and method for forming organic solar cell including same
WO2013024769A1 (en) * 2011-08-12 2013-02-21 東京エレクトロン株式会社 Film formation device and film formation method
CN103305796A (en) * 2012-03-12 2013-09-18 株式会社日立高新技术 Evaporation source apparatus, vacuum deposition apparatus, and method of manufacturing organic EL display device
KR20140007684A (en) * 2012-07-10 2014-01-20 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101959975B1 (en) * 2012-07-10 2019-07-16 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
JP6078694B2 (en) * 2014-05-26 2017-02-08 株式会社アルバック Film forming apparatus, organic film thickness measuring method, and organic film thickness sensor
WO2015182090A1 (en) * 2014-05-26 2015-12-03 株式会社アルバック Film-forming device, method for measuring film thickness of organic film, and film thickness sensor for organic film
KR102035143B1 (en) 2014-07-15 2019-10-22 가부시키가이샤 아루박 Film thickness control device, film thickness control method, and film formation device
KR20160147009A (en) * 2014-07-15 2016-12-21 가부시키가이샤 아루박 Film thickness control device, film thickness control method, and film formation device
CN104613911A (en) * 2015-01-16 2015-05-13 上海大学 Deposition film thickness distribution measuring system
CN107287575A (en) * 2017-05-22 2017-10-24 茆胜 Coating system and film plating process
KR102411117B1 (en) * 2018-12-05 2022-06-20 주식회사 원익아이피에스 Substrate processing apparatus and method of substrate processing
KR20200068288A (en) * 2018-12-05 2020-06-15 주식회사 원익아이피에스 Substrate processing apparatus and method of substrate processing
CN109594053A (en) * 2018-12-07 2019-04-09 京东方科技集团股份有限公司 A kind of evaporation coating device, vapor deposition method of adjustment and computer-readable medium
CN112697081A (en) * 2020-12-15 2021-04-23 江苏集萃有机光电技术研究所有限公司 Film thickness measuring system and method
WO2024116599A1 (en) * 2022-11-29 2024-06-06 キヤノントッキ株式会社 Film forming device and film forming method

Similar Documents

Publication Publication Date Title
JP2010196082A (en) Vacuum vapor deposition apparatus
KR101496667B1 (en) Vacuum vapor deposition system
TWI433947B (en) Vacuum vapor deposition system
KR100711885B1 (en) Source for organic layer and the method for controlling heating source thereof
JP5539154B2 (en) Alignment method, alignment apparatus, and organic EL element manufacturing apparatus
JP2008019477A (en) Vacuum vapor deposition apparatus
JP7211793B2 (en) Evaporation rate measuring device, control method for evaporation rate measuring device, film forming device, film forming method, and method for manufacturing electronic device
US9074283B2 (en) Ion gun system, vapor deposition apparatus, and method for producing lens
JP2012502177A (en) Vapor deposition apparatus and vapor deposition method using the same
JP7364432B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
JP4611884B2 (en) Vapor deposition film thickness measuring method and vapor deposition system
KR20190015993A (en) Evaporator appratus and control method thereof
US8889214B2 (en) Deposition amount measuring apparatus, depositing apparatus including the same, and method for manufacturing light emitting display
US8899174B2 (en) Device and method for fabricating display device
KR20220154060A (en) Evaporation source device and vapor deposition apparatus
JP2008276998A (en) Film thickness sensor, thin film forming device, and manufacturing device and method of organic el display device
JP2012012689A (en) Method and apparatus for vacuum evaporation
JP2014070227A (en) Filming apparatus, and temperature control method and device for evaporation source of the filming apparatus
JP2014065942A (en) Vacuum evaporation device
JP2009149919A (en) Film thickness monitoring device and vapor deposition apparatus having the same
JP7329005B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
JP6653408B2 (en) Film forming method, film forming apparatus, element structure manufacturing method, and element structure manufacturing apparatus
JP2008144192A (en) Vacuum vapor-deposition apparatus and method for controlling the same
JP2005314730A (en) Method and apparatus for forming organic thin film
JP2014019883A (en) Vacuum deposition and vacuum deposition method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203