JP2006005118A - Semiconductor manufacturing apparatus - Google Patents

Semiconductor manufacturing apparatus Download PDF

Info

Publication number
JP2006005118A
JP2006005118A JP2004179257A JP2004179257A JP2006005118A JP 2006005118 A JP2006005118 A JP 2006005118A JP 2004179257 A JP2004179257 A JP 2004179257A JP 2004179257 A JP2004179257 A JP 2004179257A JP 2006005118 A JP2006005118 A JP 2006005118A
Authority
JP
Japan
Prior art keywords
exhaust pipe
semiconductor manufacturing
manufacturing apparatus
gas discharge
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004179257A
Other languages
Japanese (ja)
Inventor
Shuhei Yada
修平 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004179257A priority Critical patent/JP2006005118A/en
Publication of JP2006005118A publication Critical patent/JP2006005118A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor manufacturing apparatus which can prevent treatment property variations by plugging of gas discharge piping in vapor phase epitaxy equipment etc. <P>SOLUTION: A crystal resonator sensor 2 is installed at interior of a gas discharge piping 1, and wiring of a signal line 3 is performed so that a signal can be lead outside. Frequency variation measured by the crystal resonator sensor 2 is outputted to a data processor 4 such as a personal computer installed at exterior of the gas discharge piping 1. Correlation between frequency variation and closing status of the gas discharge piping is obtained. Limit of frequency variation until piping closing is established beforehand, and alarm is generated from the data processor 4 when a critical point is detected. Vapor phase epitaxy treatment is stopped when alarm is generated, internal cleaning work of the gas discharge piping 1 is performed, and pressure fluctuation by piping closing is prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半導体製造工程で使用される半導体製造装置に関し、特に原料ガス等により排気配管に発生する詰まり状況をモニターできる構造に関するものである。   The present invention relates to a semiconductor manufacturing apparatus used in a semiconductor manufacturing process, and more particularly to a structure capable of monitoring a clogging state generated in an exhaust pipe by a raw material gas or the like.

半導体装置製造におけるMOCVD装置などでは、チャンバー内に気相成長を行うために原料ガスが大量に供給される。   In an MOCVD apparatus or the like in semiconductor device manufacturing, a large amount of source gas is supplied to perform vapor phase growth in a chamber.

しかしながら一般的に、気相成長に際しての原料利用効率は低く、チャンバーに供給されたガスの大部分は排気配管を通って外部のガス処理装置などに排出される。排気配管に多量のガスが流れることにより、配管内に反応生成物が堆積し、配管詰まりを引き起こす。排気配管が詰まると気相成長を行うチャンバーの排気量が変動するため、成長される薄膜の膜厚や膜質が不均一性となりやすいので、排気配管内の反応生成物を定期的に清掃する必要がある。   However, in general, the raw material utilization efficiency during vapor phase growth is low, and most of the gas supplied to the chamber is discharged to an external gas processing device or the like through an exhaust pipe. When a large amount of gas flows through the exhaust pipe, reaction products accumulate in the pipe and cause clogging of the pipe. If the exhaust pipe is clogged, the exhaust volume of the chamber for vapor phase growth will fluctuate, and the film thickness and film quality of the grown thin film will tend to be uneven. Therefore, it is necessary to clean the reaction products in the exhaust pipe regularly. There is.

しかしながら、排気配管は一般的にSUSなどの金属材料でできており、また配管内部を目視確認するための覗き窓にも反応生成物が堆積するため、排気配管内の詰まり具合を目視により確認することは困難であった。   However, the exhaust pipe is generally made of a metal material such as SUS, and the reaction product accumulates in a viewing window for visually checking the inside of the pipe, so that the clogging in the exhaust pipe is visually confirmed. It was difficult.

従来の排気配管の監視方法としては、排気配管の差圧を測定し、閉塞状況を把握する方法や、排気配管から気体を迂回させるバイパス管を備え、バイパス管内に移動部材を収納し、移動部材が移動しないと配管詰まりがあったと検知するなどの方法があった(例えば特許文献1参照)。
特開平8−191039号公報
Conventional methods for monitoring exhaust pipes include a method of measuring the differential pressure of the exhaust pipes to grasp the clogging situation, and a bypass pipe that bypasses gas from the exhaust pipe, and a moving member is accommodated in the bypass pipe. There is a method of detecting that there is a clogged pipe if it does not move (see, for example, Patent Document 1).
JP-A-8-191039

しかしながら、従来の排気配管の監視方法には、以下の課題がある。まず、排気配管の差圧により閉塞状況を把握する方法では、配管内は低圧に真空引きされているため、差圧の変動を検出した時点においてはすでに80%〜90%の閉塞を起こしている状況であり、異常検出が遅いという問題がある。また、バイパス管の移動部材を検知する方法においても、排気配管がほとんど詰まった状態でないとバイパス管での異常を検出できないため、異常検出が遅く、また実際の排気配管内部を監視していないという問題点を有している。   However, the conventional exhaust pipe monitoring method has the following problems. First, in the method of grasping the blockage state by the differential pressure of the exhaust pipe, since the inside of the pipe is evacuated to a low pressure, the blockage of 80% to 90% has already occurred at the time when the fluctuation of the differential pressure is detected. There is a problem that the abnormality detection is slow. Also, in the method of detecting the moving member of the bypass pipe, the abnormality in the bypass pipe cannot be detected unless the exhaust pipe is almost clogged, so the abnormality detection is slow and the inside of the actual exhaust pipe is not monitored. Has a problem.

そこで、本発明は上記問題点に鑑み、排気配管内部の閉塞状況を常時に監視し、異常を早期に発見できる構造を有する半導体製造装置を提供するものである。   Therefore, in view of the above-described problems, the present invention provides a semiconductor manufacturing apparatus having a structure capable of constantly monitoring a clogging state inside an exhaust pipe and detecting an abnormality at an early stage.

上記問題点を解決するために本発明の半導体製造装置は、チャンバーに処理用ガスを導入し、基体の処理を行う半導体製造装置であって、前記真空処理装置には排気配管が接続されており、前記排気配管内部に水晶振動子センサが設置され、前記排気配管外部に前記水晶振動子センサの出力信号を収集し、演算処理して前記排気配管のメンテナンス時期を決定するデータ処理装置を備えている。   In order to solve the above problems, a semiconductor manufacturing apparatus of the present invention is a semiconductor manufacturing apparatus for introducing a processing gas into a chamber and processing a substrate, and an exhaust pipe is connected to the vacuum processing apparatus. A quartz crystal sensor installed in the exhaust pipe, and a data processing device for collecting the output signal of the crystal vibrator sensor outside the exhaust pipe and calculating and determining a maintenance timing of the exhaust pipe. Yes.

前記水晶振動子センサの共振周波数が、前記水晶振動子センサの共振周波数変化と前記排気配管の閉塞状態との相関から予め定められた所定の周波数変化量に達すると、前記データ処理装置から前記チャンバーでの処理を停止するための信号が送られることが好ましい。   When the resonance frequency of the crystal resonator sensor reaches a predetermined frequency change amount determined in advance from the correlation between the change in the resonance frequency of the crystal resonator sensor and the closed state of the exhaust pipe, the chamber is transferred from the data processing device. It is preferable that a signal for stopping the processing at is sent.

前記水晶振動子センサは、前記排気配管に設けられた取り外し可能な外部ポート内に設置されることがさらに好ましい。   More preferably, the crystal oscillator sensor is installed in a removable external port provided in the exhaust pipe.

前記半導体製造装置は、MOCVD装置であることが好ましい。   The semiconductor manufacturing apparatus is preferably an MOCVD apparatus.

以上のように本発明によれば、排気配管内部の反応生成物による閉塞状況をリアルタイムに検知することで適切なメンテナンス時期を決定し、排気配管の閉塞によるチャンバー内部の圧力変動を抑止し、均一な膜厚や膜質で気相成長等の処理を行うことができる。   As described above, according to the present invention, an appropriate maintenance timing is determined by detecting in real time the clogged state of the reaction product inside the exhaust pipe, and the pressure fluctuation inside the chamber due to the clogging of the exhaust pipe is suppressed, and uniform. A process such as vapor phase growth can be performed with a suitable film thickness and film quality.

以下、本発明の実施の形態を、図面を参照しながら説明する。図1は、本発明の実施の形態におけるMOCVD装置の排気配管を示す模式図である。図1において1は排気配管、2は水晶振動子センサ、3は信号線、4はデータ処理装置である。上記構成において、本発明の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an exhaust pipe of an MOCVD apparatus in an embodiment of the present invention. In FIG. 1, 1 is an exhaust pipe, 2 is a crystal oscillator sensor, 3 is a signal line, and 4 is a data processing device. In the above configuration, an embodiment of the present invention will be described.

水晶振動子センサ2は、電極への物質の付着による水晶片の厚み変化を共振周波数の変化により測定するセンサである。水晶振動子センサは極微量の付着量変化も安定に検出できるセンサとして一般に知られ、半導体製造分野では累積膜厚量の管理用途などに用いられている。水晶振動子の共振周波数は以下の公式で表される。   The quartz oscillator sensor 2 is a sensor that measures a change in thickness of a quartz piece due to adhesion of a substance to an electrode by a change in resonance frequency. The quartz resonator sensor is generally known as a sensor that can stably detect a very small amount of change in the amount of adhesion, and is used for the purpose of managing the accumulated film thickness in the semiconductor manufacturing field. The resonance frequency of the crystal unit is expressed by the following formula.

f=1/2t(√C/ρ) (式1)
ここで、tは水晶片の厚み、Cは付着物質の弾性定数、ρは付着物質の密度である。
f = 1 / 2t (√C / ρ) (Formula 1)
Here, t is the thickness of the crystal piece, C is the elastic constant of the attached substance, and ρ is the density of the attached substance.

共振周波数の変化は、付着物質による弾性定数の変化と物質の付着厚みを水晶密度に換算したときの厚み寸法で決まり、この結果として付着物の重量に換算することができる。   The change in the resonance frequency is determined by the change in the elastic constant due to the attached substance and the thickness dimension when the attached thickness of the substance is converted into the crystal density, and as a result, it can be converted into the weight of the attached substance.

本実施の形態のように弾性定数Cの変化が無視できる乾式の場合には、重量のみによる周波数変化となる。排気配管1には気相成長を行うチャンバー(図示せず)から排出されたガスが流れる。排出されたガスには気相成長に利用されず、未反応成分を多量に含むガスが流れる。そのため、排気配管1内を流れる間に残留ガスが反応し、反応生成物となって排気配管1内部に堆積していく。   In the case of a dry type in which the change in the elastic constant C can be ignored as in the present embodiment, the frequency change is caused only by weight. A gas exhausted from a chamber (not shown) for vapor phase growth flows through the exhaust pipe 1. The exhausted gas is not used for vapor phase growth, and a gas containing a large amount of unreacted components flows. For this reason, the residual gas reacts while flowing in the exhaust pipe 1 and becomes a reaction product and accumulates in the exhaust pipe 1.

水晶振動子センサ2は排気配管1内に設置されているため、水晶振動子センサ2の定期清掃を行うまでの間、反応生成物が継続して堆積される。水晶振動子センサ2から出力される周波数変化を、信号線3を通して排気配管1外部に設置されたデータ処理装置4へと送信し、データ処理装置4にて常時、周波数変化のサンプリングを行う。水晶振動子センサ2から出力される周波数変化と排気配管1内部の閉塞状況との相関データをあらかじめ明確にしておき、排気配管1の定期清掃が必要な時点でデータ処理装置4からアラームを発生させ、定期清掃を行う。適切な定期清掃を行うことで、チャンバー内の圧力変動を抑止し、均一な膜厚・膜質の気相成長を行う。   Since the quartz oscillator sensor 2 is installed in the exhaust pipe 1, reaction products are continuously deposited until the quartz oscillator sensor 2 is regularly cleaned. The frequency change output from the crystal oscillator sensor 2 is transmitted to the data processing device 4 installed outside the exhaust pipe 1 through the signal line 3, and the data processing device 4 always samples the frequency change. Correlation data between the frequency change output from the quartz crystal sensor 2 and the blockage inside the exhaust pipe 1 is clarified in advance, and an alarm is generated from the data processing device 4 when the exhaust pipe 1 needs to be periodically cleaned. Perform regular cleaning. By performing appropriate periodic cleaning, pressure fluctuations in the chamber are suppressed, and vapor deposition with a uniform film thickness and film quality is performed.

以下、より具体的な実施の形態について説明を行う。SUS部材からなる排気配管1の内部に、水晶振動子センサ2を設置し、外部に信号を取り出せるように信号線3の配線を行う。この構成をMOCVD装置に適用した場合を考えてみると、当該装置では、基板の上に所望の膜を化学気相成長させるためにPH3(ホスフィン)のようなP(リン)を含むガスが大量に用いられることが多い。 Hereinafter, more specific embodiments will be described. A crystal resonator sensor 2 is installed inside the exhaust pipe 1 made of a SUS member, and the signal line 3 is wired so that a signal can be taken out to the outside. Considering the case where this configuration is applied to an MOCVD apparatus, in this apparatus, a gas containing P (phosphorus) such as PH 3 (phosphine) is used for chemical vapor deposition of a desired film on a substrate. Often used in large quantities.

しかしながら、一般的に気相成長に際しての原料ガスの利用効率は低く、排気配管にはチャンバーから排気された未反応のガスが多量に流れる。P(リン)は低温で固体化する性質を持っており、そのため、排気配管1内にて未反応のP(リン)が固体化し、反応生成物となって配管1内に堆積する。また、水晶振動子センサ2が配管1内部に設置されているため、水晶振動子センサ2にも反応生成物が堆積して共振周波数が経時的に変化していく。   However, in general, the utilization efficiency of the raw material gas at the time of vapor phase growth is low, and a large amount of unreacted gas exhausted from the chamber flows in the exhaust pipe. P (phosphorus) has a property of solidifying at a low temperature. Therefore, unreacted P (phosphorus) is solidified in the exhaust pipe 1 and is deposited in the pipe 1 as a reaction product. Further, since the crystal resonator sensor 2 is installed inside the pipe 1, reaction products accumulate on the crystal resonator sensor 2 and the resonance frequency changes with time.

水晶振動子センサ2により計測された周波数変化を排気配管1外部に設置したパーソナルコンピュータなどのデータ処理装置4に出力する。データ処理装置4においては、水晶振動子センサ2からの信号を継続的に収集し、周波数変化の履歴管理を行う。   The frequency change measured by the crystal oscillator sensor 2 is output to a data processing device 4 such as a personal computer installed outside the exhaust pipe 1. The data processing device 4 continuously collects signals from the crystal resonator sensor 2 and manages the history of frequency changes.

周波数変化と排気配管の閉塞状況の相関を求め、配管が閉塞するまでの周波数変化量の限界をあらかじめ設定し、限界点を検出した時点でデータ処理装置4からアラームを発生するようにしておく。アラームが発生した時点で気相成長処理を停止し、排気配管1の内部清掃作業を行い、配管閉塞による圧力変動を防止する。これら作業を実施することにより、膜厚・膜質とも均一な気相成長を行うことができる。   The correlation between the frequency change and the exhaust pipe blockage state is obtained, the limit of the frequency change amount until the pipe is blocked is set in advance, and an alarm is generated from the data processing device 4 when the limit point is detected. When the alarm is generated, the vapor phase growth process is stopped, the inside of the exhaust pipe 1 is cleaned, and the pressure fluctuation due to the pipe blockage is prevented. By performing these operations, uniform vapor phase growth can be performed for both film thickness and film quality.

なお、排気配管1に取り外し可能な外部ポート(図示せず)を設け、外部ポートに水晶振動子センサ2を設置すれば、排気配管1の定期清掃の際に水晶振動子センサ2の清掃および交換が容易になる。   If the exhaust pipe 1 is provided with a removable external port (not shown) and the crystal resonator sensor 2 is installed in the external port, the quartz resonator sensor 2 is cleaned and replaced when the exhaust pipe 1 is periodically cleaned. Becomes easier.

また、一系統の排気配管に対して複数の水晶振動子センサを設置する場合や、複数の排気配管をもつマルチチャンバー方式の半導体製造設備において、各排気配管に水晶振動子センサを設置した場合においては、各水晶振動子センサからの周波数変化を1台のパーソナルコンピュータに接続することで、複数箇所・系統の排気配管をパーソナルコンピュータで一元管理することができ、適正なメンテナンス時期を決定するだけでなく、閉塞状況の偏りにより引き起こされる成膜レートのチャンバー間差などの課題抽出を行うことができる。   Also, when installing multiple quartz crystal sensors for one exhaust pipe, or when installing quartz crystal sensors in each exhaust pipe in a multi-chamber semiconductor manufacturing facility with multiple exhaust pipes By connecting the frequency changes from each crystal oscillator sensor to a single personal computer, the exhaust pipes at multiple locations / systems can be centrally managed by the personal computer, and only an appropriate maintenance time is determined. In addition, it is possible to extract a problem such as a difference in film formation rate between chambers caused by unevenness of the blocking state.

なお、本実施の形態ではMOCVD装置を例にとって説明したが、その他の装置、例えば真空引きされたチャンバー内に基板を設置し、エッチングガスを流して基板ないしは基板上に形成された特定の層を加工するドライエッチング装置や無機系原料ガスを用いたCVD装置等に適用しても同様の効果が得られる。   Note that although the MOCVD apparatus has been described as an example in this embodiment mode, a substrate is set in another apparatus, for example, a vacuumed chamber, and an etching gas is supplied to the substrate or a specific layer formed on the substrate. The same effect can be obtained when applied to a dry etching apparatus for processing, a CVD apparatus using an inorganic source gas, or the like.

また、CVD装置に適用する際には、チャンバー内を真空引きしてから成長処理を開始する減圧式CVDだけでなく、常圧CVD装置に用いてもよい。   In addition, when applied to a CVD apparatus, the present invention may be used not only for the low pressure CVD in which the growth process is started after the chamber is evacuated but also for the atmospheric pressure CVD apparatus.

本発明の半導体製造装置は、排気配管の詰まりによる処理特性の変動を未然に防ぐことが可能な装置として、特にMOCVD装置等に適用する場合に有用である。   The semiconductor manufacturing apparatus of the present invention is useful particularly when applied to an MOCVD apparatus or the like as an apparatus that can prevent fluctuations in processing characteristics due to clogging of exhaust pipes.

本発明の実施の形態におけるMOCVD装置の排気配管を示す模式図The schematic diagram which shows the exhaust piping of the MOCVD apparatus in embodiment of this invention

符号の説明Explanation of symbols

1 排気配管
2 水晶振動子センサ
3 信号線
4 パソコン
1 Exhaust piping 2 Quartz crystal sensor 3 Signal line 4 Personal computer

Claims (4)

チャンバーに処理用ガスを導入し、基体の処理を行う半導体製造装置であって、
前記真空処理装置には排気配管が接続されており、
前記排気配管内部に水晶振動子センサが設置され、
前記排気配管外部に前記水晶振動子センサの出力信号を収集し、演算処理して前記排気配管のメンテナンス時期を決定するデータ処理装置を備えた半導体製造装置。
A semiconductor manufacturing apparatus for introducing a processing gas into a chamber and processing a substrate,
An exhaust pipe is connected to the vacuum processing apparatus,
A quartz crystal sensor is installed inside the exhaust pipe,
A semiconductor manufacturing apparatus provided with a data processing device that collects output signals of the crystal oscillator sensor outside the exhaust pipe, performs arithmetic processing, and determines a maintenance time of the exhaust pipe.
前記水晶振動子センサの共振周波数が、前記水晶振動子センサの共振周波数変化と前記排気配管の閉塞状態との相関から予め定められた所定の周波数変化量に達すると、前記データ処理装置から前記チャンバーでの処理を停止するための信号が送られることを特徴とする請求項1記載の半導体製造装置。 When the resonance frequency of the crystal resonator sensor reaches a predetermined frequency change amount determined in advance from the correlation between the change in the resonance frequency of the crystal resonator sensor and the closed state of the exhaust pipe, the chamber is transferred from the data processing device. The semiconductor manufacturing apparatus according to claim 1, wherein a signal for stopping the processing at is sent. 前記水晶振動子センサは、前記排気配管に設けられた取り外し可能な外部ポート内に設置されることを特徴とする請求項1または2記載の半導体製造装置。 3. The semiconductor manufacturing apparatus according to claim 1, wherein the crystal resonator sensor is installed in a removable external port provided in the exhaust pipe. 前記半導体製造装置は、MOCVD装置であることを特徴とする請求項1ないし3のいずれかに記載の半導体製造装置。 The semiconductor manufacturing apparatus according to claim 1, wherein the semiconductor manufacturing apparatus is an MOCVD apparatus.
JP2004179257A 2004-06-17 2004-06-17 Semiconductor manufacturing apparatus Pending JP2006005118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179257A JP2006005118A (en) 2004-06-17 2004-06-17 Semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004179257A JP2006005118A (en) 2004-06-17 2004-06-17 Semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2006005118A true JP2006005118A (en) 2006-01-05

Family

ID=35773238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179257A Pending JP2006005118A (en) 2004-06-17 2004-06-17 Semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2006005118A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024769A1 (en) * 2011-08-12 2013-02-21 東京エレクトロン株式会社 Film formation device and film formation method
KR20170003447A (en) 2015-06-30 2017-01-09 도쿄엘렉트론가부시키가이샤 Substrate trasnfering apparatus and substrate trasnfering method
JP2017022197A (en) * 2015-07-08 2017-01-26 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
WO2020105188A1 (en) * 2018-11-22 2020-05-28 株式会社コンタミネーション・コントロール・サービス Rotational flow generation device, pipe system, semiconductor manufacturing device, and heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024769A1 (en) * 2011-08-12 2013-02-21 東京エレクトロン株式会社 Film formation device and film formation method
KR20170003447A (en) 2015-06-30 2017-01-09 도쿄엘렉트론가부시키가이샤 Substrate trasnfering apparatus and substrate trasnfering method
JP2017022197A (en) * 2015-07-08 2017-01-26 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
WO2020105188A1 (en) * 2018-11-22 2020-05-28 株式会社コンタミネーション・コントロール・サービス Rotational flow generation device, pipe system, semiconductor manufacturing device, and heat exchanger
JPWO2020105188A1 (en) * 2018-11-22 2021-10-14 株式会社コンタミネーション・コントロール・サービス Rotating flow generator, piping system, semiconductor manufacturing equipment and heat exchanger
US12038023B2 (en) 2018-11-22 2024-07-16 Contamination Control services Inc. Rotational flow generator, piping system, semiconductor manufacturing apparatus, and heat exchanger

Similar Documents

Publication Publication Date Title
IL272839B1 (en) Quartz crystal microbalance sensor for fabrication process monitoring and related method
JP2003158080A (en) Semiconductor manufacturing device, deposit removing method therein and manufacturing method for semiconductor device
US20100151599A1 (en) Apparatus and method for manufacturing semiconductor device
KR101443493B1 (en) Processing apparatus and process status checking method
CN110140190B (en) Utilization of quartz crystal microbalance for quantification of preceding stage solid formation
US20070221125A1 (en) Semiconductor processing system with wireless sensor network monitoring system incorporated therewith
US11860973B2 (en) Method and system for foreline deposition diagnostics and control
JP2003074468A (en) Evacuation system and monitoring and control method for it
JP2006005118A (en) Semiconductor manufacturing apparatus
KR101456110B1 (en) Method for detecting etch-ending-point in chamber cleaning
TWI702093B (en) Temperature controlled remote plasma clean processing system for exhaust deposit removal
JP2014049684A (en) Cleaning endpoint detection method
JP2007287935A (en) Vapor phase epitaxy device, and method for manufacturing semiconductor device using it
US20090041925A1 (en) System and Method for Endpoint Detection of a Process in a Chamber
JPH07229865A (en) Device for detecting pipe inside deposit
JP2005527985A (en) Method and apparatus for monitoring film deposition in a process chamber
JP2007311393A (en) Detector of deposit
JP2005108932A (en) Semiconductor manufacturing apparatus
JPH0878339A (en) Semiconductor manufacturing apparatus
TWI814640B (en) Cleaning method of vacuum treatment device
TW403791B (en) Quartz crystal microbalance for measurement of CVD exhaust deposits
JPH05164300A (en) Piping system
JPH0626460A (en) Exhaust vacuum pump for vacuum manufacturing device
JPH08306628A (en) Semiconductor forming equipment and its cleaning method
JPS63272027A (en) Semiconductor manufacturing equipment