WO2013024701A1 - α-オレフィンオリゴマーおよびその製造方法 - Google Patents

α-オレフィンオリゴマーおよびその製造方法 Download PDF

Info

Publication number
WO2013024701A1
WO2013024701A1 PCT/JP2012/069511 JP2012069511W WO2013024701A1 WO 2013024701 A1 WO2013024701 A1 WO 2013024701A1 JP 2012069511 W JP2012069511 W JP 2012069511W WO 2013024701 A1 WO2013024701 A1 WO 2013024701A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
component
olefin oligomer
different
Prior art date
Application number
PCT/JP2012/069511
Other languages
English (en)
French (fr)
Inventor
深奈子 辻
岡本 卓治
藤村 剛経
南 裕
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP12824078.5A priority Critical patent/EP2746302A1/en
Priority to CN201280039398.9A priority patent/CN103717623A/zh
Priority to US14/238,165 priority patent/US20140194637A1/en
Priority to CA2844806A priority patent/CA2844806A1/en
Publication of WO2013024701A1 publication Critical patent/WO2013024701A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • C07C2/34Metal-hydrocarbon complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/146Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/21Alkatrienes; Alkatetraenes; Other alkapolyenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/24Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the present invention relates to an ⁇ -olefin oligomer and a method for producing the same, and more particularly to an ⁇ -olefin oligomer useful as a wax component or a lubricating oil component and a method for producing the same.
  • Patent Document 1 discloses a polymer obtained by polymerizing a higher ⁇ -olefin having 10 or more carbon atoms using a metallocene catalyst, and in the examples, a catalyst using a racemic bibridged complex is used.
  • Patent Document 2 discloses a method for producing an ⁇ -olefin polymer in which an ⁇ -olefin having 4 or more carbon atoms is polymerized using a metallocene catalyst, and in the examples, a meso-type bibridged complex having two different crosslinking groups A catalyst using is used.
  • ⁇ -olefin oligomers have been produced using metallocene-based catalysts, but in the systems using conventional metallocene-based catalysts, the selectivity of the product is generally constant (Schulz-Flory). Distribution, see Non-Patent Documents 1 to 3), in the production of the low molecular weight region, a very low molecular weight, particularly a dimer is produced in large quantities, leading to an increase in the VOC (volatile organic compound) component, The solid oligomer has a problem that the dimer component causes stickiness. For example, when used as a wax component or a lubricating oil component, it is necessary to remove unnecessary ultra-low molecular weight components by distillation, and the yield of the product is reduced. However, it can be obtained by the methods described in Patent Documents 1 to 5. Further, the ⁇ -olefin oligomer is not sufficient for reducing the amount of the dimer component, and further performance improvement is desired.
  • Patent Document 1 discloses a polymer obtained by polymerizing a higher ⁇ -olefin having 10 or more carbon atoms using a metallocene-based catalyst.
  • a catalyst using a racemic bibridged complex is disclosed. Although it is used, when a racemic metallocene complex is used, the molecular weight decreases when the reaction temperature is raised, but a low molecular weight product cannot be obtained because of high regularity.
  • Patent Document 2 discloses a method for producing an ⁇ -olefin polymer in which an ⁇ -olefin having 4 or more carbon atoms is polymerized using a metallocene catalyst. In the examples, two different bridging groups (C / Si) are disclosed.
  • Patent Document 3 discloses a method for producing an ⁇ -olefin polymer in which an ⁇ -olefin having 10 carbon atoms is polymerized using a metallocene catalyst. In the examples, a non-bridged metallocene catalyst is used. However, there is a problem that the dimer component amount is about 20% and the VOC (volatile organic compound) component is large.
  • Patent Document 4 discloses a method for producing an ⁇ -olefin polymer in which an ⁇ -olefin having 10 or more carbon atoms is polymerized using a metallocene catalyst, and in the Examples, two different bridging groups (Et / Et) are disclosed. The catalyst using the meso-type bi-bridged complex having a) is used, but the amount of the trimer component is small compared to the amount of the dimer component, so that the VOC component is large.
  • Patent Document 5 discloses a method for producing an ⁇ -olefin polymer in which an ⁇ -olefin having 5 or more carbon atoms is polymerized using a metallocene catalyst.
  • non-crosslinked or crosslinked type, substituted or non-polymerized is disclosed.
  • a catalyst using a substitution type catalyst is used, it is characterized in that the polymer ends are terminated with 2,1 bonds (including 7 mol% or more of 1,2-disubstituted compounds), and is structurally different from the present invention. Different.
  • the present invention has been made in view of the above circumstances, and provides an ⁇ -olefin oligomer that does not follow the Schulz-Flory distribution, has a low trimming viscosity, has a large amount of trimer components, and a small amount of hexamer components, and a method for producing the same. It is for the purpose.
  • the present invention relates to the following ⁇ -olefin oligomer and method for producing an ⁇ -olefin oligomer.
  • ⁇ -olefin oligomer satisfying the following (1) to (6), (1)
  • the trimer component ratio C3 (mass%) is larger than the theoretical value obtained by the SF distribution.
  • the hexamer component ratio C6 (mass%) is smaller than the theoretical value obtained by the SF distribution.
  • the 100 ° C. kinematic viscosity is 20 mm 2 / s or less.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and A and A ′ are a hydrocarbon group having 1 to 20 carbon atoms, a carbon group having 1 to 20 carbon atoms, A crosslinking group selected from a halogen-containing hydrocarbon group, a silicon-containing group, a germanium-containing group, and a tin-containing group is shown, and A and A ′ are different from each other.
  • m and n represent an integer of 1 or more, m and n are different from each other, and m + n is 3 or more.
  • each R 2 independently represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 4 carbon atoms, a silicon-containing group or a heteroatom-containing group. Represents a group selected from: The bond indicated by the broken line bridging group - (A) m -, - (A ') n - represents a bond with. ] 3.
  • (A) a meso-type transition metal compound represented by the following formula (I), and (B) (B-1) reacting with the transition metal compound of the component (A) or a derivative thereof to form an ionic complex
  • M represents a metal element of Groups 3 to 10 of the periodic table
  • X represents a ⁇ -binding ligand, and when there are a plurality of X, the plurality of X are the same or different.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and A and A ′ are a hydrocarbon group having 1 to 20 carbon atoms, a carbon group having 1 to 20 carbon atoms, A crosslinking group selected from a halogen-containing hydrocarbon group, a silicon-containing group, a germanium-containing group, and a tin-containing group is shown, and A and A ′ are different from each other.
  • m and n represent an integer of 1 or more, m and n are different from each other, and m + n is 3 or more.
  • each R 2 independently represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 4 carbon atoms, a silicon-containing group or a heteroatom-containing group. Represents a group selected from: The bond indicated by the wavy line represents a bond with a bridging group — (A) m — or — (A ′) n —. ] 4).
  • (A) a meso-type transition metal compound represented by the following formula (I), and (B) (B-1) reacting with the transition metal compound of the component (A) or a derivative thereof to form an ionic complex
  • a method for producing an ⁇ -olefin oligomer characterized by using a polymerization catalyst containing a compound capable of being synthesized and (B-2) at least one component selected from aluminoxane, [In the formula (I), M represents a metal element of Groups 3 to 10 of the periodic table, X represents a ⁇ -binding ligand, and when there are a plurality of X, the plurality of X are the same or different.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and A and A ′ are a hydrocarbon group having 1 to 20 carbon atoms, a carbon group having 1 to 20 carbon atoms, A crosslinking group selected from a halogen-containing hydrocarbon group, a silicon-containing group, a germanium-containing group, and a tin-containing group is shown, and A and A ′ are different from each other.
  • m and n represent an integer of 1 or more, m and n are different from each other, and m + n is 3 or more.
  • each R 2 independently represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 4 carbon atoms, a silicon-containing group or a heteroatom-containing group. Represents a group selected from: The bond having a wavy line is bonded to a bridging group-(A) m -,-(A ') n- . ] 5. 5.
  • a bridging group represented by — (A) m — is represented by the following formula (IV)
  • a bridging group represented by — (A ′) n — is represented by the following formula (IV ′):
  • An aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, an oxygen atom-containing group having 1 to 20 carbon atoms, an amine-containing group having 1 to 20 carbon atoms, or 1 carbon atom Represents ⁇ 20 halogen-containing groups.
  • m and n are each independently an integer of 1 or more. ] 8).
  • aluminoxane as the component (B-2) is a chain aluminoxane represented by the following formula (VII) and / or a cyclic aluminoxane represented by the following formula (VIII):
  • VIII Production method of olefin oligomer, (In the formula, R 9 represents a hydrocarbon group or halogen atom having 1 to 20 carbon atoms, w represents an average degree of polymerization, and is a number of 2 to 50. Note that each R 9 may be the same as each other. May be different), 9.
  • a low-order ⁇ -olefin oligomer that does not follow the Schulz-Flory distribution, has a low viscosity, a large amount of trimer components, and a large amount of hexamer components, and a method for producing the same. .
  • the ⁇ -olefin oligomer according to the present invention satisfies the above conditions (1) to (6) and can be obtained by the method for producing an ⁇ -olefin oligomer according to the present invention described later.
  • the ⁇ -olefin oligomer of the present invention will be specifically described below including the conditions (1) to (6).
  • Trimer component ratio C3 In the ⁇ -olefin oligomer of the present invention, the trimer component ratio C3 (unit: mass%) is larger than the theoretical value obtained by the Schulz-Flory distribution (hereinafter sometimes abbreviated as SF distribution).
  • each oligomer component (dimer, trimer, tetramer, etc.) in the total amount of oligomer is calculated from the chain growth probability ⁇ . be able to. Specifically, when the probability that an n-mer (n is an integer of 2 or more) in the polymerization reaction becomes an n + 1-mer is defined as a chain growth probability ⁇ , the n-mer does not become an n + 1-mer but is directly chain-transferred.
  • the molar ratio of the n-mer component in the ⁇ -olefin oligomer composition is obtained from the following formula (1) based on the chain growth probability ⁇ .
  • N-mer component molar ratio ⁇ (n ⁇ 2) ⁇ (1 ⁇ ) (1)
  • n represents an integer of 2 or more.
  • the chain growth probability ⁇ is defined to be calculated from the dimer component ratio C2 (unit: mass%).
  • the mass of each n-mer component is represented by the following formula (i).
  • each n-mer component ratio Cn (unit: mass%) is expressed by the following formula (I) because the above formula (i) is the numerator and the above formula (ii) is the denominator.
  • the theoretical values of the trimer component ratio C3 and the hexamer component ratio C6 described later are based on the measured value of the dimer component ratio C2 of the ⁇ -olefin oligomer, and the chain growth probability ⁇ according to the above formula (I). Is calculated by the above formula (I) based on the obtained chain growth probability ⁇ and the target n value, and this is compared with the actually measured value of the ⁇ -olefin oligomer.
  • the ⁇ -olefin oligomer of the present invention has a trimer component ratio C3 larger than the amount determined by the Schulz-Flory distribution. Further, in the ⁇ -olefin oligomer of the present invention, C3 is preferably 5% or more, more preferably 10% or more larger than the theoretical value obtained by the SF distribution. When the trimer component ratio C3 does not satisfy the above-mentioned rule, the dimer component ratio C2 is excessive as compared with the trimer component ratio C3, and ⁇ - There arises a problem that an olefin oligomer cannot be obtained and a problem of environmental deterioration due to a decrease in productivity and an increase in waste.
  • the dimer component becomes a component having 32 or more carbon atoms, and therefore it should be removed by an operation such as distillation. Is difficult and remains contained in the product. Therefore, when there are many dimer components, melting
  • the hexamer component ratio C6 (unit: mass%) is smaller than the theoretical value obtained by the SF distribution.
  • the above-mentioned n-mer component ratio Cn can be determined using, for example, gas chromatography (GC).
  • kinematic viscosity ⁇ - olefin oligomer of the present invention has a kinematic viscosity at 100 ° C. were measured according to JIS K2283 is not more than 20 mm 2 / s, in the range of 2 ⁇ 20mm 2 / s More preferably, it is in the range of 3 to 15 mm 2 / s, and further preferably in the range of 4 to 10 mm 2 / s.
  • VOC volatile organic compound
  • the ⁇ -olefin oligomer of the present invention has a mesotriad fraction [mm] measured by 13 C-NMR of 40 mol% or less, preferably 25 to 40 mol%, more preferably 30 to 40 mol%. More preferably, it is 32 to 38 mol%.
  • the mesotriad fraction [mm] is more than 40 mol%, the low temperature characteristics are poor. Further, the mesotriad fraction [mm] is more preferably 25 mol% or more and less than 40 mol% in terms of low temperature characteristics.
  • the ⁇ -olefin oligomer of the present invention has 0.2 to 1.0 vinylidene groups per molecule, preferably 0.3 to 1.0 vinylidene groups per molecule. More preferably, it has 0.5 to 1.0 vinylidene groups per molecule.
  • treatment such as secondary modification is possible, and it is particularly useful as a wax component.
  • reaction conditions such as temperature and hydrogen amount may be adjusted.
  • the ⁇ -olefin oligomer of the present invention has an average carbon number of the monomer unit of 6 to 30, preferably 6 to 24, and more preferably 6 to 18.
  • the ⁇ -olefin oligomer of the present invention has a low degree of polymerization, and when the average carbon number is less than 6, it is difficult to form a liquid polymer, or the amount of VOC (volatile organic compound) component increases. Difficult to apply to oil applications. Moreover, when the said average carbon number exceeds 30, a monomer tends to become a solid and is inferior to a low-temperature characteristic.
  • the average carbon number indicates the molar average carbon number of each monomer unit when two or more kinds of ⁇ -olefins are used as raw materials.
  • the average carbon number of a copolymer obtained by using 1-hexene and 1-dodecene at a molar ratio of 1: 2 is 10.
  • the ⁇ -olefin unit having 4 or more carbon atoms is preferably 100 mol%.
  • monomer units other than ⁇ -olefin units having 4 or more carbon atoms include ⁇ -olefin units having 3 or less carbon atoms.
  • the ⁇ -olefin having 4 or more carbon atoms is preferably an ⁇ -olefin having 6 to 16 carbon atoms, more preferably an ⁇ -olefin having 6 to 14 carbon atoms, for use as a lubricating oil. It may be copolymerized.
  • an ⁇ -olefin having 16 or more carbon atoms it can be dealt with by making the average carbon number in the range of 6 to 14 by copolymerizing with an ⁇ -olefin having 4 to 12 carbon atoms.
  • ⁇ -olefin having 6 or more carbon atoms include 1-hexene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 1-tetracocene, 1-hexacocene, 1-octacocene, 1-triacontene and the like can be used, and one or more of these can be used.
  • an ⁇ -olefin oligomer useful as a lubricating oil component can be obtained by using these raw material monomers.
  • the ⁇ -olefin may be a branched olefin.
  • the ⁇ -olefin oligomer of the present invention usually has a weight average molecular weight (Mw) of 9000 or less, preferably 100 to 9000, more preferably 300 to 7000, and particularly preferably 500 to 5000. .
  • Mw weight average molecular weight
  • the ⁇ -olefin oligomer of the present invention usually has a molecular weight distribution (Mw / Mn) of 1.5 or less, preferably 1.0 to 1.5, more preferably 1.1 to 1.5. .
  • the ⁇ -olefin oligomer of the present invention preferably has a viscosity index (VI) of 150 or more, more preferably 170 or more.
  • a viscosity index (VI) of 150 or more, more preferably 170 or more.
  • the proportion of the dimer component is preferably 60% by mass or less, and more preferably 30% by mass or less.
  • the proportion of the dimer component exceeds 60% by mass, a large amount of the dimer is produced, and therefore, there is a problem that an ⁇ -olefin oligomer suitable for the intended use cannot be obtained even if purification treatment is performed after production. The problem of environmental deterioration due to a decrease in productivity and an increase in waste occurs.
  • the ⁇ -olefin oligomer of the present invention further reduces the amount of dimer components, has a small molecular weight distribution value, and is close to a uniform composition, so that a product in the target viscosity region can be obtained.
  • it since it has almost no performance-decreasing component, it is useful as a wax or lubricating oil component.
  • the proportion of the dimer component can be determined using, for example, gas chromatography (GC).
  • the ⁇ -olefin oligomer of the present invention is mainly useful as a wax component and a lubricating oil component, particularly a toner release agent and ink component, a resin modifier, an adhesive component, an adhesive component, a lubricating oil component, It is useful as an organic / inorganic composite material, a heat storage material, a fuel oil modifier such as light oil, an asphalt modifier, and a high-performance wax.
  • cosmetics lipsticks, pomades, creams, eyebrows, eye shadows, tics, packs, shampoos, rinses
  • medical osteointments, suppositories, emulsions, surgical dressings, poultices), stationery (crayons) , Crepes, pencils, carbon paper), for glazing (wood, furniture, leather, automobiles, paper, confectionery, textiles), for candles, skin cream, textile oils, confectionery materials, model materials, sculpture materials, leather finishing materials, Insulation material Wax paper, musical instruments, grafting wax printing, mold article manufacturing Fruit wax coating, various greases, ski wax, wax dyeing, polish, car wax, metalworking oil, rubber anti-aging agent, tire, adhesion Agent, processed paper, heat storage agent, agrochemical, fertilizer, abrasive (metal, stainless steel), oil lubricant (grease, mold release agent, paint), dental dental wax, fixed use (lens, embedding) It is useful as a component.
  • the method for producing an ⁇ -olefin oligomer of the present invention comprises (A) a meso-type transition metal compound represented by the following formula (I), and (B) (B-1) the transition metal compound of component (A) A polymerization catalyst containing at least one component selected from a compound capable of reacting with a derivative to form an ionic complex and (B-2) aluminoxane is used.
  • M represents a metal element of Groups 3 to 10 of the periodic table
  • X represents a ⁇ -binding ligand
  • Y represents a Lewis base
  • a and A ′ are a hydrocarbon group having 1 to 20 carbon atoms, a carbon group having 1 to 20 carbon atoms, A crosslinking group selected from a halogen-containing hydrocarbon group, a silicon-containing group, a germanium-containing group, and a tin-containing group is shown, and A and A ′ are different from each other.
  • n and n represent an integer of 1 or more, m and n are different from each other, and m + n is 3 or more.
  • q is an integer of 1 to 5 and represents [(valence of M) ⁇ 2]
  • r represents an integer of 0 to 3
  • E is a group represented by the following formula (II), Two E's may be the same or different.
  • One of m and n is preferably 1 and the other is an integer of 2 or more, and one is 1 and the other is 2 in particular.
  • each R 2 independently represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 4 carbon atoms, a silicon-containing group or a heteroatom-containing group.
  • specific examples of the metal elements of Groups 3 to 10 of the periodic table represented by M include titanium, zirconium, hafnium, yttrium, vanadium, chromium, manganese, nickel, cobalt, palladium, and Examples include lanthanoid metals.
  • titanium, zirconium and hafnium are preferable from the viewpoint of olefin polymerization activity and the like, and zirconium is most preferable from the viewpoint of yield of terminal vinylidene group and catalytic activity.
  • X represents a ⁇ -bonding ligand, and when there are a plurality of Xs, the plurality of Xs may be the same or different, and may be cross-linked with other X, E, or Y.
  • Specific examples of X include a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an amide group having 1 to 20 carbon atoms, carbon Examples thereof include silicon-containing groups having 1 to 20 carbon atoms, phosphide groups having 1 to 20 carbon atoms, sulfide groups having 1 to 20 carbon atoms, and acyl groups having 1 to 20 carbon atoms.
  • halogen atom examples include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.
  • hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group, cyclohexyl group, octyl group; vinyl group, propenyl group, cyclohexenyl group, etc.
  • An arylalkyl group such as benzyl group, phenylethyl group, phenylpropyl group; phenyl group, tolyl group, dimethylphenyl group, trimethylphenyl group, ethylphenyl group, propylphenyl group, biphenyl group, naphthyl group, methylnaphthyl group Group, anthracenyl group, aryl group such as phenanthonyl group, and the like.
  • alkyl groups such as methyl group, ethyl group, and propyl group
  • aryl groups such as phenyl group are preferable.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • Examples of the aryloxy group having 6 to 20 carbon atoms include phenoxy group, methylphenoxy group, and dimethylphenoxy group.
  • Examples of the amide group having 1 to 20 carbon atoms include dimethylamide group, diethylamide group, dipropylamide group, dibutylamide group, dicyclohexylamide group, methylethylamide group, and other alkylamide groups, divinylamide group, and dipropenylamide group.
  • Alkenylamide groups such as dicyclohexenylamide group; arylalkylamide groups such as dibenzylamide group, phenylethylamide group and phenylpropylamide group; arylamide groups such as diphenylamide group and dinaphthylamide group.
  • Examples of the silicon-containing group having 1 to 20 carbon atoms include monohydrocarbon-substituted silyl groups such as methylsilyl group and phenylsilyl group; dihydrocarbon-substituted silyl groups such as dimethylsilyl group and diphenylsilyl group; trimethylsilyl group, triethylsilyl group, Trihydrocarbon-substituted silyl groups such as tripropylsilyl group, tricyclohexylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, tolylsilylsilyl group and trinaphthylsilyl group; hydrocarbons such as trimethylsilyl ether group Examples thereof include substituted silyl ether groups; silicon-substituted alkyl groups such as trimethylsilylmethyl group; silicon-substituted aryl groups such as trimethylsilylpheny
  • Examples of the phosphide group having 1 to 20 carbon atoms include dimethyl phosphide group, diethyl phosphide group, dipropyl phosphide group, dibutyl phosphide group, dicyclohexyl phosphide group, and dioctyl phosphide group; An alkenyl phosphide group such as a fido group, a dipropenyl phosphide group and a dicyclohexenyl phosphide group; an arylalkyl phosphide group such as a dibenzyl phosphide group and a bis (phenylethylphenyl) phosphide group; a diphenyl phosphide group and a di Examples thereof include aryl phosphide groups such as a tolyl phosphide group and a dinaphthyl phosphide group.
  • Examples of the sulfide group having 1 to 20 carbon atoms include alkyl sulfide groups such as methyl sulfide group, ethyl sulfide group, propyl sulfide group, butyl sulfide group, hexyl sulfide group, cyclohexyl sulfide group, octyl sulfide group; vinyl sulfide group, propenyl sulfide Group, alkenyl sulfide group such as cyclohexenyl sulfide group; arylalkyl sulfide group such as benzyl sulfide group, phenylethyl sulfide group, phenylpropyl sulfide group; phenyl sulfide group, tolyl sulfide group, dimethylphenyl sulfide group, trimethylphenyl sulfide group, E
  • acyl group having 1 to 20 carbon atoms examples include formyl group, acetyl group, propionyl group, butyryl group, valeryl group, palmitoyl group, stearoyl group, oleoyl group and other alkyl acyl groups, benzoyl group, toluoyl group, salicyloyl group, Examples thereof include arylacyl groups such as cinnamoyl group, naphthoyl group and phthaloyl group, and oxalyl group, malonyl group and succinyl group respectively derived from dicarboxylic acid such as oxalic acid, malonic acid and succinic acid.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and may be cross-linked with other Y, E, or X.
  • Specific examples of the Lewis base of Y include amines, ethers, phosphines, thioethers and the like.
  • amines having 1 to 20 carbon atoms examples include methylamine, ethylamine, propylamine, butylamine, cyclohexylamine, methylethylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, and dicyclohexylamine.
  • Alkylamines such as vinylamine, propenylamine, cyclohexenylamine, divinylamine, dipropenylamine, dicyclohexenylamine, etc .; arylalkylamines such as phenylethylamine, phenylpropylamine; phenylamine, diphenylamine, dinaphthylamine, etc. Arylamine is mentioned.
  • ethers include aliphatic single ether compounds such as methyl ether, ethyl ether, propyl ether, isopropyl ether, butyl ether, isobutyl ether, n-amyl ether, and isoamyl ether; methyl ethyl ether, methyl propyl ether, methyl isopropyl ether, Aliphatic hybrid ether compounds such as methyl-n-amyl ether, methyl isoamyl ether, ethyl propyl ether, ethyl isopropyl ether, ethyl butyl ether, ethyl isobutyl ether, ethyl n-amyl ether, ethyl isoamyl ether; vinyl ether, allyl ether, methyl Aliphatic unsaturated ether compounds such as vinyl ether, methyl allyl ether, ethyl vinyl ether, ethy
  • phosphines include phosphines having 1 to 20 carbon atoms. Specifically, monohydrocarbon substituted phosphines such as methylphosphine, ethylphosphine, propylphosphine, butylphosphine, hexylphosphine, cyclohexylphosphine, octylphosphine; dimethylphosphine, diethylphosphine, dipropylphosphine, dibutylphosphine, dihexylphosphine, dicyclohexyl Dihydrocarbon-substituted phosphines such as phosphine and dioctylphosphine; alkylphosphines such as trihydrocarbylphosphine such as trimethylphosphine, triethylphosphine, tripropylphosphine, tributylphosphine, trihexyl
  • the crosslinkable group represented by — (A) m — is preferably represented by the following formula (IV), and the crosslinkable group represented by — (A ′) n — is represented by the following formula ( IV ′) is preferred.
  • B and B ′ each independently represent a carbon atom, a silicon atom, a germanium atom, or a tin atom
  • R 3 and R 4 each independently represent a hydrogen atom.
  • An aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, an oxygen atom-containing group having 1 to 20 carbon atoms, an amine-containing group having 1 to 20 carbon atoms, or 1 carbon atom Represents ⁇ 20 halogen-containing groups.
  • m and n are each independently an integer of 1 or more.
  • bridging group represented by-(A) m-and- (A ') n- include ethylene group, tetramethylethylene group, 1,2-cyclohexylene group, tetramethyldisylylene group, dimethyl group.
  • examples thereof include a silylene methylene group, a dimethylsilylene isopropylidene group, and a tetramethyldiggermylene group.
  • an ethylene group, and dimethylsilylene group is preferable, and more specifically, - represented by - (A) m - and - (A ') n Of the cross-linking groups, one is preferably an ethylene group and the other is preferably a dimethylsilylene group.
  • a transition metal compound having a double bridged bisindenyl derivative represented by the following formula (III) as a ligand is preferable.
  • the complex structure in the basic skeleton is a meso type having 1,1′- and 2,2′-crosslinked structures.
  • M, — (A) m —, — (A ′) n —, R 2 , q and r are the same as in general formula (I).
  • transition metal compound represented by the general formula (I) include (1,1′-ethylene) (2,2′-tetramethyldisilene) -bis (indenyl) zirconium dichloride, (1,1′- Tetramethyldisilylene) (2,2′-ethylene) -bis (indenyl) zirconium dichloride, (1,1′-tetramethylethylene) (2,2′-tetramethyldisilylene) -bis (indenyl) zirconium dichloride, (1,1′-tetramethyldisiylene) (2,2′-tetramethylethylene) -bis (indenyl) zirconium dichloride, (1,1′-dimethylsilylenemethylene) (2,2′-ethylene) -bis ( 3-methylindenyl) zirconium dichloride, (1,1'-ethylene) (2,2'-dimethylsilylenemethylene) -bis 3-methylindenyl) zirconium dichloride,
  • the component (B-1) of the component (B) is any compound that can form an ionic complex by reacting with the meso-type transition metal compound of the component (A) or a derivative thereof.
  • L 1 is a Lewis base
  • [Z] ⁇ is a non-coordinating anion [Z 1 ] ⁇ and [Z 2 ] ⁇
  • [Z 1 ] ⁇ is a plurality of Anion in which the group is bonded to the element, that is, [M 1 G 1 G 2 ... G f ] ⁇ (where M 1 is an element of Group 5 to 15 of the periodic table, preferably Group 13 to 15 of the periodic table.
  • G 1 to G f are each a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 6 to 20 carbon atoms.
  • Two or more of .G 1 ⁇ G f indicating a good .f also form a ring is an integer of [(valence of central metal M 1) +1]), [Z 2] -.
  • a Lewis base may be coordinated.
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group or an arylalkyl group, and R 5 and R 6 are a cyclopentadienyl group and a substituted group, respectively.
  • R 7 represents an alkyl group having 1 to 20 carbon atoms, an aryl group, an alkylaryl group or an arylalkyl group.
  • R 8 represents a macrocyclic ligand such as tetraphenylporphyrin or phthalocyanine.
  • M 2 includes elements in groups 1 to 3, 11 to 13, and 17 of the periodic table, and M 3 represents elements in groups 7 to 12 of the periodic table. ] What is represented by these can be used conveniently.
  • L 1 examples include ammonia, methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N, N-dimethylaniline, trimethylamine, triethylamine, tri-n-butylamine, methyldiphenylamine, Amines such as pyridine, p-bromo-N, N-dimethylaniline, p-nitro-N, N-dimethylaniline, phosphines such as triethylphosphine, triphenylphosphine, diphenylphosphine, thioethers such as tetrahydrothiophene, benzoic acid Examples thereof include esters such as ethyl acid, and nitriles such as acetonitrile and benzonitrile.
  • R 4 examples include hydrogen, methyl group, ethyl group, benzyl group, and trityl group.
  • R 5 and R 6 include cyclopentadienyl group and methylcyclopentadienyl group. , Ethylcyclopentadienyl group, pentamethylcyclopentadienyl group, and the like.
  • R 7 examples include a phenyl group, p- tolyl group, p- etc. methoxyphenyl group can be mentioned, as specific examples of R 8 may include tetraphenylporphyrin, phthalocyanine, allyl, methallyl .
  • M 2 include Li, Na, K, Ag, Cu, Br, I, and I 3
  • M 3 include Mn, Fe, Co, Ni, and Zn. And so on.
  • [Z 1 ] ⁇ that is, [M 1 G 1 G 2 ... G f ]
  • specific examples of M 1 include B, Al, Si, P, As, Sb, etc., preferably B and Al.
  • G 1 and G 2 to G f include a dimethylamino group and a diethylamino group as a dialkylamino group, a methoxy group, an ethoxy group, an n-butoxy group and a phenoxy group as an alkoxy group or an aryloxy group.
  • Hydrocarbon groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-octyl, n-eicosyl, phenyl, p-tolyl, benzyl, 4-t -Butylphenyl group, 3,5-dimethylphenyl group, etc., fluorine, chlorine, bromine, iodine as halogen atoms, p-fluorophenyl group, 3,5-difluorophenyl group, pentachlorophenyl group as heteroatom-containing hydrocarbon groups, 3,4,5-trifluorophenyl group, pentafluorophenyl group, 3,5-bis (trifluoro Romechiru) phenyl group, such as bis (trimethylsilyl) methyl group, pentamethyl antimony group as organic metalloid group, trimethylsilyl group, trimethylgermyl group, diphenylarsine group, di
  • Noncoordinating anions i.e. pKa of -10 or less Bronsted acid alone or Bronsted acid and Lewis acid combined conjugate base [Z 2] -
  • Examples of trifluoromethanesulfonic acid anion (CF 3 SO 3 ) ⁇ bis (trifluoromethanesulfonyl) methyl anion, bis (trifluoromethanesulfonyl) benzyl anion, bis (trifluoromethanesulfonyl) amide, perchlorate anion (ClO 4 ) ⁇ , trifluoroacetate anion (CF 3 CO 2 ) ⁇ , Hexafluoroantimony anion (SbF 6 ) ⁇ , fluorosulfonic acid anion (FSO 3 ) ⁇ , chlorosulfonic acid anion (ClSO 3 ) ⁇ , fluorosulfonic acid anion / 5-antimony fluoride (FSO 3 / SbF 5 ) -
  • ionic compound that reacts with the transition metal compound of component (A) or a derivative thereof to form an ionic complex, ie, component (B-1), include triethylammonium tetraphenylborate. , Tri-n-butylammonium tetraphenylborate, trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl (tri-n-butyl) ammonium tetraphenylborate, benzyl (tri-n-butyl) ammonium tetraphenylborate, dimethyl Diphenylammonium tetraphenylborate, triphenyl (methyl) ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methylpyridinium tetraphenylborate, Zirpyridinium tetraphenylborate.
  • R 9 is 1 to 20 carbon atoms, preferably represents an alkyl group of 1 to 12, an alkenyl group, an aryl group, a hydrocarbon group or a halogen atom such as an aryl group, w is represents an average degree of polymerization, Usually a number of 2 to 50, preferably 2 to 40, wherein each R 9 may be the same or different, and a chain aluminoxane represented by the general formula (VIII):
  • Examples of the method for producing the aluminoxane include a method in which an alkylaluminum is brought into contact with a condensing agent such as water, but the means is not particularly limited and may be reacted according to a known method.
  • a method in which an organoaluminum compound is dissolved in an organic solvent and brought into contact with water (2) a method in which an organoaluminum compound is initially added during polymerization, and water is added later, (3) Crystal water contained in metal salts, etc., a method of reacting water adsorbed on inorganic or organic materials with an organoaluminum compound, (4) a method of reacting a tetraalkyldialuminoxane with a trialkylaluminum and further reacting with water is there.
  • the aluminoxane may be insoluble in toluene. These aluminoxanes may be used alone or in combination of two or more.
  • the use ratio of (A) catalyst component to (B) catalyst component is preferably 10: 1 to 1: 100 in terms of molar ratio when (B-1) compound is used as (B) catalyst component.
  • the range of 2: 1 to 1:10 is desirable, and if it deviates from the above range, the catalyst cost per unit mass polymer becomes high, which is not practical.
  • the molar ratio is preferably in the range of 1: 1 to 1: 1000000, more preferably 1:10 to 1: 10000. When deviating from this range, the catalyst cost per unit mass polymer becomes high, which is not practical.
  • the catalyst component (B), (B-1) and (B-2) may be used alone or in combination of two or more.
  • the polymerization catalyst for producing the ⁇ -olefin oligomer of the present invention can use an organoaluminum compound as the component (C) in addition to the components (A) and (B).
  • an organoaluminum compound of the component (C) the general formula (IX) R 10 v AlJ 3-v (IX) [Wherein R 10 represents an alkyl group having 1 to 10 carbon atoms, J represents a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom, and v represents 1 to 3 carbon atoms. Which is an integer].
  • Specific examples of the compound represented by the general formula (IX) include trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum fluoride. , Diisobutylaluminum hydride, diethylaluminum hydride, ethylaluminum sesquichloride and the like.
  • an organoaluminum compound to which a hydrocarbon group having 4 or more carbon atoms is bonded is preferable from the viewpoint of excellent high-temperature stability, and a hydrocarbon group having 4 to 8 carbon atoms is more preferable from this viewpoint. More preferably, when the reaction temperature is 100 ° C. or higher, a hydrocarbon group having 6 to 8 carbon atoms is more preferable.
  • the above organoaluminum compounds may be used singly or in combination of two or more.
  • the use ratio of the catalyst component (A) to the catalyst component (C) is preferably 1: 1 to 1: 10000, more preferably 1: 5 to 1: 2000, still more preferably 1:10 to 1 in terms of molar ratio. : The range of 1000 is desirable.
  • At least one of the catalyst components can be supported on a suitable carrier and used.
  • the type of the carrier is not particularly limited, and any of inorganic oxide carriers, other inorganic carriers, and organic carriers can be used. In particular, inorganic oxide carriers or other inorganic carriers are preferable.
  • the inorganic oxide carrier examples include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , Fe 2 O 3 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 and mixtures thereof.
  • examples thereof include silica alumina, zeolite, ferrite, and glass fiber. Of these, SiO 2 and Al 2 O 3 are particularly preferable.
  • the inorganic oxide carrier may contain a small amount of carbonate, nitrate, sulfate and the like.
  • a magnesium compound represented by the general formula MgR 11 x X 1 y typified by MgCl 2 , Mg (OC 2 H 5 ) 2 or the like, or a complex salt thereof can be used.
  • R 11 represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms
  • X 1 represents a halogen atom or an alkyl group having 1 to 20 carbon atoms
  • x is 0 to 2
  • y is 0 to 2
  • x + y 2.
  • Each R 11 and each X 1 may be the same or different.
  • the organic carrier examples include polymers such as polystyrene, styrene-divinylbenzene copolymer, polyethylene, poly 1-butene, substituted polystyrene, polyarylate, starch, and carbon.
  • the catalyst carrier used in the production of the ⁇ -olefin oligomer of the present invention MgCl 2 , MgCl (OC 2 H 5 ), Mg (OC 2 H 5 ) 2 , SiO 2 , Al 2 O 3 and the like are preferable.
  • the properties of the carrier vary depending on the type and production method, but the average particle size is usually 1 to 300 ⁇ m, preferably 10 to 200 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the specific surface area of the carrier is usually 1 ⁇ 1000m 2 / g, preferably 50 ⁇ 500m 2 / g, pore volume is usually 0.1 ⁇ 5cm 3 / g, preferably 0.3 ⁇ 3cm 3 / g is there. When either the specific surface area or the pore volume deviates from the above range, the catalytic activity may be lowered.
  • the specific surface area and pore volume can be determined, for example, from the volume of nitrogen gas adsorbed according to the BET method [J. Am. Chem. Soc. 60, 309 (1983)].
  • the carrier is an inorganic oxide carrier
  • the method for supporting at least one of the component (A) and the component (B) on the carrier is not particularly limited. For example, (1) at least one of the component (A) and the component (B) is mixed with the carrier.
  • Method (2) A method in which a support is treated with an organoaluminum compound or a halogen-containing silicon compound and then mixed with at least one of the component (A) and the component (B) in an inert solvent, (3) the support and (A) Method of reacting component and / or component (B) with organoaluminum compound or halogen-containing silicon compound, (4) (B) component or (A) after (A) component or (B) component is supported on a carrier ) A method of mixing with the component, (5) a method of mixing the contact reaction product of the component (A) with the component (B) with the carrier, and (6) a carrier during the contact reaction of the component (A) with the component (B). How to coexist It is possible to have.
  • an organoaluminum compound as the component (C) can also be added.
  • the catalyst obtained in this manner may be used for polymerization after removing the solvent once as a solid and may be used for polymerization as it is.
  • the catalyst can be generated by carrying out the supporting operation of at least one of the component (A) and the component (B) on the carrier. For example, at least one of the component (A) and the component (B), a support, and, if necessary, the organoaluminum compound of the component (C) are added, and an olefin such as ethylene is added at normal pressure to 2 MPa (gauge), and -20 A method of preliminarily polymerizing at 200 ° C. for about 1 minute to 2 hours to produce catalyst particles can be used.
  • the ratio of the component (B-1) to the support used in the catalyst used for the production of the ⁇ -olefin oligomer of the present invention is preferably 1: 5 to 1: 10000, more preferably 1:10 to 1: 1, in mass ratio.
  • the ratio of the component (B-2) to the carrier is preferably 1: 0.5 to 1: 1000, more preferably 1: 1 to 1:50 by mass ratio. desirable.
  • the ratio of the component (A) to the carrier used is preferably 1: 5 to 1: 10000, more preferably 1:10 to 1: 500 in terms of mass ratio.
  • the average particle diameter of the polymerization catalyst thus prepared is usually 2 to 200 ⁇ m, preferably 10 to 150 ⁇ m, particularly preferably 20 to 100 ⁇ m, and the specific surface area is usually 20 to 1000 m 2 / g, preferably 50-500 m 2 / g. If the average particle size is less than 2 ⁇ m, fine powder in the polymer may increase, and if it exceeds 200 ⁇ m, coarse particles in the polymer may increase.
  • the activity may decrease, and when it exceeds 1000 m 2 / g, the bulk density of the polymer may decrease.
  • the amount of transition metal in 100 g of the support is usually 0.05 to 10 g, particularly preferably 0.1 to 2 g. If the amount of transition metal is outside the above range, the activity may be lowered. In this way, a polymer having an industrially advantageous high bulk density and an excellent particle size distribution can be obtained by supporting it on a carrier.
  • the polymerization method is not particularly limited, and any method such as a slurry polymerization method, a gas phase polymerization method, a bulk polymerization method, a solution polymerization method, or a suspension polymerization method may be used.
  • a slurry polymerization method and a solution polymerization method are particularly preferable.
  • the polymerization temperature is usually from 0 to 200 ° C., more preferably from 20 to 200 ° C., particularly preferably from 100 to 200 ° C.
  • the ratio of the catalyst to the reaction raw material is preferably from 1 to 108, particularly preferably from 100 to 105, as the raw material monomer / the component (A) (molar ratio).
  • the viscosity of the ⁇ -olefin oligomer is controlled by the reaction temperature, but may be controlled by thermal decomposition and peroxide decomposition of a high-viscosity ⁇ -olefin oligomer synthesized in advance.
  • the polymerization time is usually 5 minutes to 30 hours, preferably 15 minutes to 25 hours.
  • the hydrogen pressure is preferably normal pressure to 10 MPa (gauge), preferably normal pressure to 5.0 MPa (gauge). More preferably, the pressure is from normal pressure to 1.0 MPa (gauge).
  • a polymerization solvent for example, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and decalin, alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclohexane, aliphatics such as pentane, hexane, heptane and octane Hydrocarbons, halogenated hydrocarbons such as chloroform and dichloromethane can be used. These solvents may be used alone or in combination of two or more. Moreover, it can carry out without a solvent depending on the polymerization method.
  • a polymerization catalyst may be prepared by performing preliminary polymerization.
  • the prepolymerization can be performed, for example, by bringing a small amount of olefin into contact with the catalyst component, but the method is not particularly limited, and a known method can be used.
  • the olefin used for the prepolymerization is not particularly limited, and examples thereof include (D) ⁇ -olefin having 3 to 18 carbon atoms, or a mixture thereof. The same olefin as that used in the polymerization may be used. Is advantageous.
  • the prepolymerization include preparing a polymerization catalyst by previously contacting (A) component, (B) component and (D) an ⁇ -olefin having 3 to 18 carbon atoms, or (A) component, (B There is an example in which a polymerization catalyst is prepared by previously contacting a component (C) and a component (C) and (D) an ⁇ -olefin having 3 to 18 carbon atoms.
  • the prepolymerization temperature is usually ⁇ 20 to 200 ° C., preferably ⁇ 10 to 130 ° C., more preferably 0 to 80 ° C.
  • an aliphatic hydrocarbon, aromatic hydrocarbon, monomer or the like can be used as a solvent.
  • the prepolymerization may be carried out without a solvent.
  • the intrinsic viscosity [ ⁇ ] (measured in 135 ° C. decalin) of the prepolymerized product is 0.1 deciliter / g or more, and the amount of the prepolymerized product per 1 mmol of the transition metal component in the catalyst is 1. It is desirable to adjust the conditions so as to be ⁇ 10000 g, particularly 10 to 1000 g.
  • Methods for changing the characteristics of the ⁇ -olefin oligomer include selection of the type of catalyst component, amount used, polymerization temperature, and polymerization in the presence of hydrogen. An inert gas such as nitrogen may be present. In the production method of the present invention, when the reaction is carried out at a high temperature, the degree of polymerization tends to decrease, and when a monomer having a small carbon number is used, the degree of polymerization tends to increase.
  • [Mesotriad fraction [mm]] It was determined using 13 C-NMR by the method described in [Macromolecules 24, 2334 (1991); Polymer, 30, 1350 (1989)].
  • [Amount of vinylidene group] The number of terminal vinylidene groups was determined by 1 H-NMR measurement as follows according to a conventional method. Based on the ratio of the side chain methyl group appearing at ⁇ 0.8 to 1.0 and the vinylidene group appearing at ⁇ 4.8 to 4.6 (2H) obtained from 1 H-NMR measurement, the vinylidene group The content (C) (mol%) was calculated.
  • Example 1 reaction by preactivation at 50 ° C. and hydrogen pressure of 0.15 MPa
  • Example 2 (Sequential reaction at 50 ° C. and hydrogen pressure of 0.15 MPa) In a 1 liter autoclave dried by heating, 400 ml of 1-decene, 1 mmol of triisobutylaluminum, (1,1′-ethylene) (2,2′-dimethylsilylene) -bis (indenyl) zirconium dichloride, 2 ⁇ mol, dimethylaniline Nitrokispentafluorophenylborate 8 micromol was added, and hydrogen 0.15 MPa was further introduced. After polymerization for 5 hours at 50 ° C. with stirring, an ⁇ -olefin oligomer was obtained. The obtained reaction solution was treated as described in Example 1, and then physical properties were measured.
  • Example 3 (Sequential reaction under 90 ° C. and hydrogen pressure 0.15 MPa) In a 1 liter autoclave dried by heating, 400 ml of 1-decene, 1 mmol of triisobutylaluminum, (1,1′-ethylene) (2,2′-dimethylsilylene) -bis (indenyl) zirconium dichloride, 2 ⁇ mol, dimethylaniline Nitrokispentafluorophenylborate 8 micromol was added, and hydrogen 0.15 MPa was further introduced. After polymerization for 5 hours at 90 ° C. with stirring, an ⁇ -olefin oligomer was obtained. The obtained reaction solution was treated as described in Example 1, and then physical properties were measured.
  • Example 4 (Sequential reaction under 120 ° C. and hydrogen pressure 0.15 MPa) In a 1 liter autoclave dried by heating, 400 ml of 1-decene, 1 mmol of triisobutylaluminum, (1,1′-ethylene) (2,2′-dimethylsilylene) -bis (indenyl) zirconium dichloride, 2 ⁇ mol, dimethylaniline Nitrokispentafluorophenylborate 8 micromol was added, and hydrogen 0.15 MPa was further introduced. After polymerization for 5 hours at 120 ° C. with stirring, an ⁇ -olefin oligomer was obtained. The obtained reaction solution was treated as described in Example 1, and then physical properties were measured.
  • Example 5 (Sequential reaction at 50 ° C. under a hydrogen pressure of 0.05 MPa) In a 1 liter autoclave dried by heating, 400 ml of 1-decene, 1 mmol of triisobutylaluminum, (1,1′-ethylene) (2,2′-dimethylsilylene) -bis (indenyl) zirconium dichloride, 2 ⁇ mol, dimethylaniline 8 ⁇ mol of tetrakispentafluorophenyl borate was added, and 0.05 MPa of hydrogen was further introduced. After polymerization for 5 hours at 50 ° C. with stirring, an ⁇ -olefin oligomer was obtained. The obtained reaction solution was treated as described in Example 1, and then physical properties were measured.
  • Example 6 (Sequential reaction under 50 ° C. and hydrogen pressure of 0.30 MPa) In a 1 liter autoclave dried by heating, 400 ml of 1-decene, 1 mmol of triisobutylaluminum, (1,1′-ethylene) (2,2′-dimethylsilylene) -bis (indenyl) zirconium dichloride, 2 ⁇ mol, dimethylaniline Nitrokispentafluorophenylborate 8 micromol was added and hydrogen 0.30 MPa was further introduced. After polymerization for 5 hours at 50 ° C. with stirring, an ⁇ -olefin oligomer was obtained. The obtained reaction solution was treated as described in Example 1, and then physical properties were measured.
  • Comparative Example 1 (Sequential reaction under 80 ° C. and hydrogen pressure 0.15 MPa) In a heat-dried 1 liter autoclave, 400 ml of 1-decene, 1 mmol of triisobutylaluminum, (1,1′-methylene) (2,2′-dimethylsilylene) -bis (indenyl) zirconium dichloride, 2 ⁇ mol, dimethylaniline Nitrokispentafluorophenylborate 8 micromol was added, and hydrogen 0.15 MPa was further introduced. After polymerization for 5 hours at 80 ° C. with stirring, an ⁇ -olefin oligomer was obtained. The obtained reaction solution was treated as described in Example 1, and then physical properties were measured.
  • Comparative Example 2 (Sequential reaction under 50 ° C. and hydrogen pressure of 0.05 MPa) In a heat-dried 1 liter autoclave, 400 ml of 1-decene, 1 mmol of triisobutylaluminum, (1,1′-methylene) (2,2′-dimethylsilylene) -bis (indenyl) zirconium dichloride, 2 ⁇ mol, dimethylaniline 8 ⁇ mol of tetrakispentafluorophenyl borate was added, and 0.05 MPa of hydrogen was further introduced. After polymerization for 5 hours at 50 ° C. with stirring, an ⁇ -olefin oligomer was obtained. The obtained reaction solution was treated as described in Example 1, and then physical properties were measured.
  • Table 1 shows the physical properties of the ⁇ -olefin oligomers obtained in the above examples and comparative examples.
  • an ⁇ -olefin oligomer having a large amount of trimer components and a method for producing the same without following the Schulz-Flory distribution.
  • the ⁇ -olefin oligomer of the present invention is useful as a wax component or a lubricating oil component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)

Abstract

 下記(1)~(6)を満たすα-オレフィンオリゴマー及び特定の二架橋メソ型錯体を用いるα-オレフィンオリゴマーの製造方法により、Schulz-Flory分布に従わず、低粘度でありながら二量体成分が少量のα-オレフィンオリゴマーおよびその製造方法を提供すると。 (1)三量体成分比率C3(質量%)が、S-F分布により求められる理論値よりも大きい。 (2)六量体成分比率C6(質量%)が、S-F分布により求められる理論値よりも小さい。 (3)100℃動粘度が20mm2/s以下である。 (4)13C-NMRで測定されるメソトリアッド分率[mm]が40mol%以下である。 (5)ビニリデン基を1分子当り0.2~1.0個有する。 (6)モノマー単位の平均炭素数が6~30である。 ここで、上記S-F分布は、二量体成分比率C2(質量%)より算出される連鎖成長確率αに基づいて算出される。

Description

α-オレフィンオリゴマーおよびその製造方法
 本発明は、α-オレフィンオリゴマーおよびその製造方法に関し、さらに詳しくは、ワックス成分や潤滑油成分として有用なα-オレフィンオリゴマーおよびその製造方法に関する。
 近年メタロセン系触媒を用いてα-オレフィンオリゴマーが製造され、ワックス成分や潤滑油成分として使用されている。例えば、特許文献1はメタロセン系触媒を使用して炭素数10以上の高級α-オレフィンを重合して得られた重合体を開示し、実施例においてはラセミ型二架橋錯体を使用する触媒が使用されている。特許文献2はメタロセン系触媒を使用して炭素数4以上のα-オレフィンを重合させるα-オレフィン重合体の製造方法を開示し、実施例においては2つの異なる架橋基を有するメソ型二架橋錯体を使用する触媒が使用されている。
 このように、これまでもメタロセン系触媒を用いて、α-オレフィンオリゴマーが製造されているが、従来のメタロセン系触媒を用いた系では一般的に生成物の選択性が一定規則(Schulz-Flory分布、非特許文献1~3参照)に従うため、低分子量領域の製造においては超低分子量体、特に二量体が多量に生成し、VOC(揮発性有機化合物)成分の増加につながるという問題や、固体オリゴマーについては二量体成分がべたつきの原因なるという問題があった。例えばワックス成分や潤滑油成分として使用する際は、不要な超低分子量成分を蒸留にて除去する必要があり、製品の収率が低下するが、特許文献1~5に記載の方法で得られたαオレフィンオリゴマーは二量体成分量の低減には十分ではなく、さらなる性能向上が望まれる。
国際公開第03/070790号 特開2001-335607号公報 国際公開第2010/053022号 国際公開第2010/117028号 特表第2009-501836号公報
J.Am.Chem.Soc.,1940,62(6),1561-1565 Adv.Polymer.Sci,1974,15(1),1-30 J.Am.Chem.Soc.,2004,126,10701-10712
 特許文献1は、メタロセン系触媒を使用して炭素数10以上の高級α-オレフィンを重合して得られた重合体を開示しており、実施例においてはラセミ型二架橋錯体を用いた触媒が使用されているが、ラセミ型メタロセン錯体を用いた場合、反応温度を上げると分子量が低くなるが、規則性が高いため低分子量体は得られない。
 特許文献2は、メタロセン系触媒を使用して炭素数4以上のα-オレフィンを重合させるα-オレフィン重合体の製造方法を開示しており、実施例においては2つの異なる架橋基(C/Si)を有するメソ型二架橋錯体を用いた触媒が使用されているが、動粘度の低いものは得られていない。
 特許文献3は、メタロセン系触媒を使用して炭素数10のα-オレフィンを重合させるα-オレフィン重合体の製造方法を開示しており、実施例においては非架橋型メタロセン触媒が使用されているが、二量体成分量が20%程度あり、VOC(揮発性有機化合物)成分が多いという問題がある。
 特許文献4は、メタロセン系触媒を使用して炭素数10以上のα-オレフィンを重合させるα-オレフィン重合体の製造方法を開示しており、実施例においては2つの異なる架橋基(Et/Et)を有するメソ型二架橋錯体を用いた触媒が使用されているが、二量体成分量に比して三量体成分量が少ないため、VOC成分が多い。
 特許文献5は、メタロセン系触媒を使用して炭素数5以上のα-オレフィンを重合させるα-オレフィン重合体の製造方法を開示しており、実施例においては非架橋または架橋型、置換または非置換型触媒を用いた触媒が使用されているが、ポリマー末端が2,1結合で停止する(1,2-二置換体を7mol%以上含む)ことを特徴としており、本願発明とは構造的に異なる。
 本発明は上記事情に鑑みなされたもので、Schulz-Flory分布に従わず、低粘度でありながら三量体成分が多く、六量体成分が少量のα-オレフィンオリゴマーおよびその製造方法を提供することを目的とするものである。
 本発明者らは鋭意研究を重ねた結果、特定の二架橋メソ型錯体を用いることで、上記課題を解決し得ることを見出し本発明の完成に至った。
 すなわち本発明は、以下のα-オレフィンオリゴマーおよびα-オレフィンオリゴマーの製造方法に関するものである。
1.下記(1)~(6)を満たすα-オレフィンオリゴマー、
(1)三量体成分比率C3(質量%)が、S-F分布により求められる理論値よりも大きい。
(2)六量体成分比率C6(質量%)が、S-F分布により求められる理論値よりも小さい。
(3)100℃動粘度が20mm2/s以下である。
(4)13C-NMRで測定されるメソトリアッド分率[mm]が40mol%以下である。
(5)ビニリデン基を1分子当り0.2~1.0個有する。
(6)モノマー単位の平均炭素数が6~30である。
 ここで、上記S-F分布は、二量体成分比率C2(質量%)より算出される連鎖成長確率αに基づいて算出される。
2.(A)下記式(I)で表されるメソ型遷移金属化合物、
Figure JPOXMLDOC01-appb-C000009
[式(I)中、Mは周期律表第3~10族の金属元素を示し、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、A及びA’は、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、及びスズ含有基、から選ばれる架橋基を示し、AとA’とは互いに異なる。m及びnは1以上の整数を示し、mとnとは互いに異なり、m+nは3以上である。qは1~5の整数であって〔(Mの原子価)-2〕を示し、rは0~3の整数を示し、Eは、下記式(II)で表される基であって、2つのEは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000010
[式(II)中、R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~4のハロゲン含有炭化水素基、珪素含有基及びヘテロ原子含有基から選ばれる基を示す。波線で示される結合は架橋基-(A)m-、-(A’)n-との結合を表す。]
3.(A)下記式(I)で表されるメソ型遷移金属化合物、及び(B)(B-1)該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B-2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒を用いて得られる上記1に記載のα-オレフィンオリゴマー、
Figure JPOXMLDOC01-appb-C000011
[式(I)中、Mは周期律表第3~10族の金属元素を示し、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、A及びA’は、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、及びスズ含有基、から選ばれる架橋基を示し、AとA’とは互いに異なる。m及びnは1以上の整数を示し、mとnとは互いに異なり、m+nは3以上である。qは1~5の整数であって〔(Mの原子価)-2〕を示し、rは0~3の整数を示し、Eは、下記式(II)で表される基であって、2つのEは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000012
[式(II)中、R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~4のハロゲン含有炭化水素基、珪素含有基及びヘテロ原子含有基から選ばれる基を示す。波線で示される結合は架橋基-(A)m-、-(A’)n-との結合を表す。]
4.(A)下記式(I)で表されるメソ型遷移金属化合物、及び(B)(B-1)該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B-2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒を用いることを特徴とするα-オレフィンオリゴマーの製造方法、
Figure JPOXMLDOC01-appb-C000013
[式(I)中、Mは周期律表第3~10族の金属元素を示し、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、A及びA’は、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、及びスズ含有基、から選ばれる架橋基を示し、AとA’とは互いに異なる。m及びnは1以上の整数を示し、mとnとは互いに異なり、m+nは3以上である。qは1~5の整数であって〔(Mの原子価)-2〕を示し、rは0~3の整数を示し、Eは、下記式(II)で表される基であって、2つのEは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000014
[式(II)中、R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~4のハロゲン含有炭化水素基、珪素含有基及びヘテロ原子含有基から選ばれる基を示す。波線を有する結合は架橋基-(A)m-、-(A’)n-に結合する。]
5.前記重合用触媒として、少なくとも前記(A)成分及び(B)成分、並びに(C)有機アルミニウムを予め接触させたものを使用する、上記4に記載のα-オレフィンオリゴマーの製造方法、
6.前記重合用触媒として、少なくとも前記(A)成分、(B)成分、(C)成分及び(D)炭素数3~18のα-オレフィンを予め接触させたものを使用する、上記5に記載のα-オレフィンオリゴマーの製造方法、
7.前記式(I)において、-(A)m-で表される架橋基が下記式(IV)で表され、-(A’)n-で表される架橋基が下記式(IV’)で表される上記4~6のいずれかに記載のα-オレフィンオリゴマーの製造方法、
Figure JPOXMLDOC01-appb-C000015
[式(IV)及び(IV’)中、B及びB’は、それぞれ独立に、炭素原子、ケイ素原子、ゲルマニウム原子、またはスズ原子を表し、R3及びR4は、それぞれ独立に、水素原子、炭素数1~20の脂肪族炭化水素基、炭素数6~20の芳香族炭化水素基、炭素数1~20の酸素原子含有基、炭素数1~20のアミン含有基、または炭素数1~20のハロゲン含有基を表す。m及びnは、それぞれ独立に1以上の整数である。]
8.(B-2)成分のアルミノキサンが、下記式(VII)で表される鎖状アルミノキサン及び/又は下記式(VIII)で表される環状アルミノキサンである上記4~7のいずれかに記載のα-オレフィンオリゴマーの製造方法、
Figure JPOXMLDOC01-appb-C000016
(式中、R9は炭素数1~20の炭化水素基又はハロゲン原子を示し、wは平均重合度を示し、2~50の数である。尚、各R9は互いに同一であっても異なっていてもよい。)、
9.40~200℃の温度で反応させる上記4~8のいずれかに記載のα-オレフィンオリゴマーの製造方法、及び
10.常圧~10MPa(G)の範囲の水素圧で反応させる上記4~9のいずれかに記載のα-オレフィンオリゴマーの製造方法、
を提供する。
 本発明によれば、Schulz-Flory分布に従わず、低粘度でありながら三量体成分が多く、六量体成分が多量の、低規則性のα-オレフィンオリゴマーおよびその製造方法が提供される。
[α-オレフィンオリゴマー]
 本発明に係るα-オレフィンオリゴマーは、上述の(1)~(6)の条件を満たすものであり、後述の本発明に係るα-オレフィンオリゴマーの製造方法により得ることができる。
 以下、(1)~(6)の各条件を含め、本発明のα-オレフィンオリゴマーについて具体的に説明する。
(1)三量体成分比率C3
 本発明のα-オレフィンオリゴマーは、三量体成分比率C3(単位:質量%)がSchulz-Flory分布(以下、S-F分布と略記することがある。)により求められる理論値よりも大きい。
 従来のSchulz-Flory分布に従うα-オレフィン重合体においては、オリゴマー全量に占める各オリゴマー成分(二量体、三量体、四量体等)量は、連鎖成長確率αよりその理論値を算出することができる。具体的には、重合反応中のn量体(nは2以上の整数)がn+1量体になる確率を連鎖成長確率αとした場合、n量体がn+1量体にならずにそのまま連鎖移動(重合停止)する確率は(1-α)で表されるため、α-オレフィンオリゴマー組成物におけるn量体成分のモル比は、連鎖成長確率αに基づき、下記式(1)より求められる。
 (n量体成分モル比)=α(n-2)×(1-α)   (1)
(式中、nは2以上の整数を表す。)
 また、上記連鎖成長確率αは、二量体成分比率C2(単位:質量%)より算出されるものと定義される。
 ここで、α-オレフィンオリゴマー単量体単位の分子量をmとすると、各n量体成分の質量は下記式(i)で表される。
 (n量体成分質量)=n×m×α(n-2)×(1-α)   (i)
 同様に、各量体成分の質量の総和(α-オレフィンオリゴマーの質量)は、下記式(ii)で表される。
Figure JPOXMLDOC01-appb-M000017
 従って、各n量体成分比率Cn(単位:質量%)は、上記式(i)を分子とし、上記式(ii)を分母とするものであるため、以下に示す式(I)で表される。
Figure JPOXMLDOC01-appb-M000018
 上記三量体成分比率C3や、後述する六量体成分比率C6の理論値は、まずα-オレフィンオリゴマーの二量体成分比率C2の測定値に基づき、上記式(I)によって連鎖成長確率αを算出し、得られた連鎖成長確率αと目的とするn値に基づき、上記式(I)により算出し、これをα-オレフィンオリゴマーの実測値と比較する。
 本発明のα-オレフィンオリゴマーは、三量体成分比率C3が、Schulz-Flory分布により求められる量よりも多い。
 さらに本発明のα-オレフィンオリゴマーは、C3がS-F分布により求められる理論値より5%以上大きいことが好ましく、10%以上大きいことがより好ましい。
 三量体成分比率C3が上記規定を満たさない場合、三量体成分比率C3に比して二量体成分比率C2が過大であり、製造後に精製処理を施しても目的の用途に適するα-オレフィンオリゴマーが得られないという問題や、生産性の低下や廃棄物の増加による環境悪化の問題が生じる。また、例えば炭素数16以上のα-オレフィンオリゴマーにおいては二量体成分が多く含まれている場合、二量体成分は炭素数が32以上の成分になることから蒸留等の操作で除去することは困難であり、製品中に含まれたままになる。そのため、二量体成分が多いと融点降下が起こり、融点分布が広がることからべたつき成分が多くなるなどの不具合が生じる。
(2)六量体成分比率C6
 本発明のα-オレフィンオリゴマーは、六量体成分比率C6(単位:質量%)が、S-F分布により求められる理論値よりも小さい。
 上述のn量体成分比率Cnは、例えばガスクロマトグラフィー(GC)を用いて求めることができる。
(3)100℃動粘度
 本発明のα-オレフィンオリゴマーは、JIS K2283に準拠して測定した100℃における動粘度が20mm2/s以下であり、2~20mm2/sの範囲であることが好ましく、より好ましくは3~15mm2/sの範囲、さらに好ましくは4~10mm2/sの範囲である。
 100℃における動粘度が2mm2/s以上であるとVOC(揮発性有機化合物)成分が少なく、また20mm2/s以下であると、潤滑油用途に用いた場合、粘性抵抗による動力損失が抑制され、燃費改善効果が得られる。
(4)メソトリアッド分率[mm]
 本発明のα-オレフィンオリゴマーは、13C-NMRで測定されるメソトリアッド分率[mm]が40mol%以下であり、好ましくは25~40モル%であり、より好ましくは30~40モル%であり、さらに好ましくは32~38モル%である。メソトリアッド分率[mm]が40モル%超であると、低温特性に劣る。また、メソトリアッド分率[mm]が25モル%以上でかつ40モル%未満であると、低温特性の点でより好ましい。
(5)ビニリデン基量
 本発明のα-オレフィンオリゴマーは、ビニリデン基を1分子当り0.2~1.0個有するものであり、好ましくはビニリデン基を1分子当り0.3~1.0個有するものであり、より好ましくはビニリデン基を1分子当り0.5~1.0個有するものである。上記範囲内であることで、極性が必要な場合は2次変性等の処理が可能であり、特にワックス成分として有用である。ビニリデン基数を上記範囲内にするためには温度や水素量等の反応条件を調節すればよい。
(6)モノマー単位の平均炭素数
 本発明のα-オレフィンオリゴマーは、モノマー単位の平均炭素数が6~30であり、6~24であることが好ましく、6~18であることがより好ましい。本発明のα-オレフィンオリゴマーは重合度が低いものであり、上記平均炭素数が6未満である場合には液状重合体になりにくかったり、VOC(揮発性有機化合物)成分が多くなるため、潤滑油用途への適用が難しい。また、上記平均炭素数が30を超える場合、モノマーが固体になりやすく、低温特性に劣る。
 なお、上記平均炭素数とは、二種以上のα-オレフィンを原料として用いる場合には、各モノマー単位のモル平均炭素数を示し、一種のα-オレフィンのみを原料として用いる場合は、このα-オレフィンの炭素数を指す。例えば、1-ヘキセンと1-ドデセンを1:2のモル比で用いて得られる共重合体の平均炭素数は10となる。
 本発明のα-オレフィンオリゴマーにおいて、炭素数4以上のα-オレフィン単位は好ましくは100mol%である。炭素数4以上のα-オレフィン単位以外の単量体単位としては、例えば、炭素数3以下のα-オレフィン単位が挙げられる。炭素数4以上のα-オレフィンは、潤滑油用途としては好ましくは炭素数6~16のα-オレフィンであり、より好ましくは炭素数6~14のα-オレフィンであり、それぞれ単独で用いても共重合させてもよい。また、炭素数16以上のα-オレフィンを使用する場合は炭素数4~12のα-オレフィンと共重合させることにより、平均炭素数を6~14の範囲にすることで対応できる。炭素数6以上のα-オレフィンの具体例としては、1-ヘキセン、1-オクテン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、1-テトラコセン、1-ヘキサコセン、1-オクタコセン、1-トリアコンテン等が挙げられ、これらのうち一種又は二種以上を用いることができる。本発明においては、これらの原料モノマーを使用することで、潤滑油成分として有用なα-オレフィンオリゴマーが得られる。上記α-オレフィンは、分岐オレフィンであってもよい。
 本発明のα-オレフィンオリゴマーは、通常、重量平均分子量(Mw)が9000以下であり、好ましくは、100~9000であり、より好ましくは、300~7000であり、特に好ましくは500~5000である。重量平均分子量(Mw)が9000以下であると粘度が高くなりすぎず、低分子量体としての特徴を示す。
 また、本発明のα-オレフィンオリゴマーは、通常、分子量分布(Mw/Mn)が1.5以下であり、好ましくは1.0~1.5、より好ましくは1.1~1.5である。分子量分布(Mw/Mn)が1.5以下であることで組成分布が狭くなり、目的の性状を有する化合物の含有量が増加する。
 なお、上記の重量平均分子量(Mw)、分子量分布(Mw/Mn)は、GPC法(ポリスチレン換算)により求めることができる。
 また、本発明のα-オレフィンオリゴマーは、粘度指数(VI)が150以上であることが好ましく、より好ましくは170以上である。粘度指数(VI)が150未満であると、低温始動性が悪くなる。高粘度指数であるほど温度依存性は低くなり潤滑油として好ましい。
 本願のα-オレフィンオリゴマーは、二量体成分の割合が60質量%以下であることが好ましく、30質量%以下であることがより好ましい。二量体成分の割合が60質量%を超える場合、二量体が多量に生成しているため、製造後に精製処理を施しても目的の用途に適するα-オレフィンオリゴマーが得られないという問題や、生産性の低下や廃棄物の増加による環境悪化の問題が生じる。上記規定を満たすことで、本願発明のα-オレフィンオリゴマーはさらに二量体成分量が低減され、分子量分布値が小さく均一な組成に近くなることから目的とする粘度領域の製品を得ることができ、かつ性能低下成分がほとんどないため、ワックスや潤滑油成分として有用となる。
 上記の二量体成分の割合は、例えばガスクロマトグラフィー(GC)を用いて求めることができる。
 本発明のα-オレフィンオリゴマーは、主にワックス成分および潤滑油成分として有用であり、特にトナー用離型剤およびインキ成分、樹脂の改質剤、粘着剤成分、接着剤成分、潤滑油成分、有機無機複合材料、蓄熱材、軽油などの燃料油の改質剤、アスファルトの改質剤、高性能ワックスとして有用である。また、上記以外にも化粧品(口紅、ポマード、クリーム、眉墨、アイシャドウ、チック、パック、シャンプー、リンス)、医療用(軟膏、座薬、乳剤、外科用包帯材、湿布材)、文房具用(クレヨン、クレパス、鉛筆、カーボン紙)、艶出し用(木材、家具、皮革、自動車、紙、菓子、繊維)、蝋燭用、皮クリーム、繊維油剤、製菓材料、模型材料、彫刻材料、皮革仕上げ材、絶縁材料蝋紙、楽器、接木用蝋材印刷用、鋳型用品の製造果物のワックスコーティング、各種グリース、スキーワックス、蝋けつ染、ポリシュ、カーワックス、金属加工油、ゴム老化防止剤、タイヤ、接着剤、加工紙、蓄熱剤、農薬、肥料、研磨剤用(金属、ステンレス)、油滑剤(グリース、離型剤、塗料)、歯科用デンタルワックス、固定用途(レンズ、包埋)等の成分として有用である。
[α-オレフィンオリゴマーの製造方法]
 本発明のα-オレフィンオリゴマーの製造方法は、(A)下記式(I)で表されるメソ型遷移金属化合物、及び(B)(B-1)該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B-2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒を用いることを特徴とする。
Figure JPOXMLDOC01-appb-C000019
[式(I)中、Mは周期律表第3~10族の金属元素を示し、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、A及びA’は、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、及びスズ含有基、から選ばれる架橋基を示し、AとA’とは互いに異なる。m及びnは1以上の整数を示し、mとnとは互いに異なり、m+nは3以上である。qは1~5の整数であって〔(Mの原子価)-2〕を示し、rは0~3の整数を示し、Eは、下記式(II)で表される基であって、2つのEは同一でも異なっていてもよい。]
 上記m及びnは、一方が1であって他方が2以上の整数であると好ましく、一方が1であって他方が2であると特に好ましい。
Figure JPOXMLDOC01-appb-C000020
[式(II)中、R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~4のハロゲン含有炭化水素基、珪素含有基及びヘテロ原子含有基から選ばれる基を示す。波線で示される結合は架橋基-(A)m-、-(A’)n-との結合を表す。]
 上記一般式(I)において、Mで表される周期律表第3~10族の金属元素の具体例としては、チタン,ジルコニウム,ハフニウム,イットリウム,バナジウム,クロム,マンガン,ニッケル,コバルト,パラジウム及びランタノイド系金属などが挙げられる。これらの中ではオレフィン重合活性などの点からチタン,ジルコニウム及びハフニウムが好適であり、末端ビニリデン基の収率及び触媒活性の点から、ジルコニウムが最も好適である。
 Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E又はYと架橋していてもよい。このXの具体例としては、ハロゲン原子,炭素数1~20の炭化水素基,炭素数1~20のアルコキシ基,炭素数6~20のアリールオキシ基,炭素数1~20のアミド基,炭素数1~20の珪素含有基,炭素数1~20のホスフィド基,炭素数1~20のスルフィド基,炭素数1~20のアシル基などが挙げられる。
 ハロゲン原子としては、塩素原子、フッ素原子、臭素原子、ヨウ素原子が挙げられる。
 炭素数1~20の炭化水素基として具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、オクチル基などのアルキル基;ビニル基、プロペニル基、シクロヘキセニル基などのアルケニル基;ベンジル基、フェニルエチル基、フェニルプロピル基などのアリールアルキル基;フェニル基、トリル基、ジメチルフェニル基、トリメチルフェニル基、エチルフェニル基、プロピルフェニル基、ビフェニル基、ナフチル基、メチルナフチル基、アントラセニル基、フェナントニル基などのアリール基などが挙げられる。なかでもメチル基、エチル基、プロピル基などのアルキル基やフェニル基などのアリール基が好ましい。
 炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基等が挙げられる。炭素数6~20のアリールオキシ基としては、フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基等が挙げられる。
 炭素数1~20のアミド基としては、ジメチルアミド基、ジエチルアミド基、ジプロピルアミド基、ジブチルアミド基、ジシクロヘキシルアミド基、メチルエチルアミド基等のアルキルアミド基や、ジビニルアミド基、ジプロペニルアミド基、ジシクロヘキセニルアミド基などのアルケニルアミド基;ジベンジルアミド基、フェニルエチルアミド基、フェニルプロピルアミド基などのアリールアルキルアミド基;ジフェニルアミド基、ジナフチルアミド基などのアリールアミド基が挙げられる。
 炭素数1~20の珪素含有基としては、メチルシリル基、フェニルシリル基などのモノ炭化水素置換シリル基;ジメチルシリル基、ジフェニルシリル基などのジ炭化水素置換シリル基;トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリシクロヘキシルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリトリルシリル基、トリナフチルシリル基などのトリ炭化水素置換シリル基;トリメチルシリルエーテル基などの炭化水素置換シリルエーテル基;トリメチルシリルメチル基などの珪素置換アルキル基;トリメチルシリルフェニル基などの珪素置換アリール基などが挙げられる。なかでもトリメチルシリルメチル基、フェニルジメチルシリルエチル基などが好ましい。
 炭素数1~20のホスフィド基としては、ジメチルホスフィド基、ジエチルホスフィド基、ジプロピルホスフィド基、ジブチルホスフィド基、ジシクロヘキシルホスフィド基、ジオクチルホスフィド基などのアルキルホスフィド基;ジビニルホスフィド基、ジプロペニルホスフィド基、ジシクロヘキセニルホスフィド基などのアルケニルホスフィド基;ジベンジルホスフィド基、ビス(フェニルエチルフェニル)ホスフィド基などのアリールアルキルホスフィド基;ジフェニルホスイフィド基、ジトリルホスフィド基、ジナフチルホスフィド基などのアリールホスフィド基が挙げられる。
 炭素数1~20のスルフィド基としては、メチルスルフィド基、エチルスルフィド基、プロピルスルフィド基、ブチルスルフィド基、ヘキシルスルフィド基、シクロヘキシルスルフィド基、オクチルスルフィド基などのアルキルスルフィド基;ビニルスルフィド基、プロペニルスルフィド基、シクロヘキセニルスルフィド基などのアルケニルスルフィド基;ベンジルスルフィド基、フェニルエチルスルフィド基、フェニルプロピルスルフィド基などのアリールアルキルスルフィド基;フェニルスルフィド基、トリルスルフィド基、ジメチルフェニルスルフィド基、トリメチルフェニルスルフィド基、エチルフェニルスルフィド基、プロピルフェニルスルフィド基、ビフェニルスルフィド基、ナフチルスルフィド基、メチルナフチルスルフィド基、アントラセニルスルフィド基、フェナントニルスルフィド基などのアリールスルフィド基が挙げられる。
 炭素数1~20のアシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、バレリル基、パルミトイル基、ステアロイル基、オレオイル基等のアルキルアシル基、ベンゾイル基、トルオイル基、サリチロイル基、シンナモイル基、ナフトイル基、フタロイル基等のアリールアシル基、シュウ酸、マロン酸、コハク酸等のジカルボン酸からそれぞれ誘導されるオキサリル基、マロニル基、スクシニル基等が挙げられる。
 一方、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のYやE又はXと架橋していてもよい。このYのルイス塩基の具体例としては、アミン類,エーテル類,ホスフィン類,チオエーテル類などを挙げることができる。
 アミンとしては、炭素数1~20のアミンが挙げられ、具体的には、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、シクロヘキシルアミン、メチルエチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジシクロヘキシルアミン等のアルキルアミン;ビニルアミン、プロペニルアミン、シクロヘキセニルアミン、ジビニルアミン、ジプロペニルアミン、ジシクロヘキセニルアミンなどのアルケニルアミン;フェニルエチルアミン、フェニルプロピルアミンなどのアリールアルキルアミン;フェニルアミン、ジフェニルアミン、ジナフチルアミンなどのアリールアミンが挙げられる。
 エーテル類としては、メチルエーテル、エチルエーテル、プロピルエーテル、イソプロピルエーテル、ブチルエーテル、イソブチルエーテル、n-アミルエーテル、イソアミルエーテル等の脂肪族単一エーテル化合物;メチルエチルエーテル、メチルプロピルエーテル、メチルイソプロピルエーテル、メチル-n-アミルエーテル、メチルイソアミルエーテル、エチルプロピルエーテル、エチルイソプロピルエーテル、エチルブチルエーテル、エチルイソブチルエーテル、エチル-n-アミルエーテル、エチルイソアミルエーテル等の脂肪族混成エーテル化合物;ビニルエーテル、アリルエーテル、メチルビニルエーテル、メチルアリルエーテル、エチルビニルエーテル、エチルアリルエーテル等の脂肪族不飽和エーテル化合物;アニソール、フェネトール、フェニルエーテル、ベンジルエーテル、フェニルベンジルエーテル、α-ナフチルエーテル、β-ナフチルエーテル等の芳香族エーテル化合物、酸化エチレン、酸化プロピレン、酸化トリメチレン、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等の環式エーテル化合物が挙げられる。
 ホスフィン類としては、炭素数1~20のホスフィンが挙げられる。具体的には、メチルホスフィン、エチルホスフィン、プロピルホスフィン、ブチルホスフィン、ヘキシルホスフィン、シクロヘキシルホスフィン、オクチルホスフィンなどのモノ炭化水素置換ホスフィン;ジメチルホスフィン、ジエチルホスフィン、ジプロピルホスフィン、ジブチルホスフィン、ジヘキシルホスフィン、ジシクロヘキシルホスフィン、ジオクチルホスフィンなどのジ炭化水素置換ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリシクロヘキシルホスフィン、トリオクチルホスフィンなどのトリ炭化水素置換ホスフィン等のアルキルホスフィンや、ビニルホスフィン、プロペニルホスフィン、シクロヘキセニルホスフィンなどのモノアルケニルホスフィンやホスフィンの水素原子をアルケニルが2個置換したジアルケニルホスフィン;ホスフィンの水素原子をアルケニルが3個置換したトリアルケニルホスフィン;ベンジルホスフィン、フェニルエチルホスフィン、フェニルプロピルホスフィンなどのアリールアルキルホスフィン;ホスフィンの水素原子をアリール又はアルケニルが3個置換したジアリールアルキルホスフィン又はアリールジアルキルホスフィン;フェニルホスフィン、トリルホスフィン、ジメチルフェニルホスフィン、トリメチルフェニルホスフィン、エチルフェニルホスフィン、プロピルフェニルホスフィン、ビフェニルホスフィン、ナフチルホスフィン、メチルナフチルホスフィン、アントラセニルホスフィン、フェナントニルホスフィン;ホスフィンの水素原子をアルキルアリールが2個置換したジ(アルキルアリール)ホスフィン;ホスフィンの水素原子をアルキルアリールが3個置換したトリ(アルキルアリール)ホスフィンなどのアリールホスフィンが挙げられる。チオエーテル類としては、前記のスルフィドが挙げられる。
 前記式(I)において、-(A)m-で表される架橋基が下記式(IV)で表されることが好ましく、-(A’)n-で表される架橋基が下記式(IV’)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000021
[式(IV)及び(IV’)中、B及びB’は、それぞれ独立に、炭素原子、ケイ素原子、ゲルマニウム原子、またはスズ原子を表し、R3及びR4は、それぞれ独立に、水素原子、炭素数1~20の脂肪族炭化水素基、炭素数6~20の芳香族炭化水素基、炭素数1~20の酸素原子含有基、炭素数1~20のアミン含有基、または炭素数1~20のハロゲン含有基を表す。m及びnは、それぞれ独立に1以上の整数である。]
 上記-(A)m-、-(A’)n-で表される架橋基の具体例としては、エチレン基,テトラメチルエチレン基,1,2-シクロヘキシレン基,テトラメチルジシリレン基,ジメチルシリレンメチレン基,ジメチルシリレンイソプロピリデン基,テトラメチルジゲルミレン基などを挙げることができる。これらの中では、重合活性がより高くなる点から、エチレン基,及びジメチルシリレン基が好適であり、より具体的には、-(A)m-及び-(A’)n-で表される架橋基のうち、一方がエチレン基であり、他方がジメチルシリレン基であることが好ましい。
 このような式(I)で表されるメソ型遷移金属化合物の中では、下記式(III)で表される二重架橋型ビスインデニル誘導体を配位子とする遷移金属化合物が好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記基本骨格における錯体構造は、1,1’-および2,2’-架橋構造を有するメソ型である。
 上記一般式(III)において、M,-(A)m-,-(A’)n-,R2、q及びrは、一般式(I)と同じである。
 一般式(I)で表される遷移金属化合物の具体例としては(1,1’-エチレン)(2,2’-テトラメチルジシリレン)-ビス(インデニル)ジルコニウムジクロリド、(1,1’-テトラメチルジシリレン)(2,2’-エチレン)-ビス(インデニル)ジルコニウムジクロリド、(1,1’-テトラメチルエチレン)(2,2’-テトラメチルジシリレン)-ビス(インデニル)ジルコニウムジクロリド、(1,1’-テトラメチルジシリレン)(2,2’-テトラメチルエチレン)-ビス(インデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレンメチレン)(2,2’-エチレン)-ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-ジメチルシリレンメチレン)-ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-テトラメチルジゲルミレン)-ビス(インデニル)ジルコニウムジクロリド、(1,1’-テトラメチルジゲルミレン)(2,2’-エチレン)-ビス(インデニル)ジルコニウムジクロリド、(1,1’-シクロヘキシレン)(2,2’-テトラメチルジシリレン)-ビス(インデニル)ジルコニウムジクロリド、(1,1’-テトラメチルジシリレン)(2,2’-シクロヘキシレン)-ビス(インデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-ジメチルシリレン)-ビス(インデニル)ジルコニウムジクロリド、
 (1,1’-エチレン)(2,2’-テトラメチルジシリレン)-ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-テトラメチルジシリレン)(2,2’-エチレン)-ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-テトラメチルエチレン)(2,2’-テトラメチルジシリレン)-ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-テトラメチルジシリレン)(2,2’-テトラメチルエチレン)-ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレンメチレン)(2,2’-エチレン)-ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-ジメチルシリレンメチレン)-ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-テトラメチルジゲルミレン)-ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-テトラメチルジゲルミレン)(2,2’-エチレン)-ビス(3-メチルインデニル)ジルコニウムジクロリド等及びこれらの化合物におけるジルコニウムをチタン又はハフニウムに置換したものを挙げることができ、もちろんこれらに限定されるものではない。また、他の族又はランタノイド系列の金属元素を有する類似化合物であってもよい。
(B)成分のうちの(B-1)成分としては、上記(A)成分のメソ型遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物であれば、いずれのものでも使用できるが、次の一般式(V),(VI)
(〔L1-R4k+a(〔Z〕-b・・・(V)
(〔L2k+a(〔Z〕-b・・・(VI)
(ただし、L2はM2、R563、R7 3C又はR83である。)
〔(V),(VI)式中、L1はルイス塩基、〔Z〕-は、非配位性アニオン〔Z1-及び〔Z2-、ここで〔Z1-は複数の基が元素に結合したアニオン、即ち〔M112・・・Gf-(ここで、M1は周期律表第5~15族元素、好ましくは周期律表第13~15族元素を示す。G1~Gfはそれぞれ水素原子,ハロゲン原子,炭素数1~20のアルキル基,炭素数2~40のジアルキルアミノ基,炭素数1~20のアルコキシ基,炭素数6~20のアリール基,炭素数6~20のアリールオキシ基,炭素数7~40のアルキルアリール基,炭素数7~40のアリールアルキル基,炭素数1~20のハロゲン置換炭化水素基,炭素数1~20のアシルオキシ基,有機メタロイド基、又は炭素数2~20のヘテロ原子含有炭化水素基を示す。G1~Gfのうち2つ以上が環を形成していてもよい。fは〔(中心金属M1の原子価)+1〕の整数を示す。)、〔Z2-は、酸解離定数の逆数の対数(pKa)が-10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基、あるいは一般的に超強酸と定義される酸の共役塩を示す。又、ルイス塩基が配位していてもよい。又、R4は水素原子,炭素数1~20のアルキル基,炭素数6~20のアリール基,アルキルアリール基又はアリールアルキル基を示し、R5及びR6はそれぞれシクロペンタジエニル基,置換シクロペンタジエニル基,インデニル基又はフルオレニル基、R7は炭素数1~20のアルキル基,アリール基,アルキルアリール基又はアリールアルキル基を示す。R8はテトラフェニルポルフィリン,フタロシアニン等の大環状配位子を示す。kは〔L1-R4〕,〔L2〕のイオン価数で1~3の整数、aは1以上の整数、b=(k×a)である。M2は、周期律表第1~3、11~13、17族元素を含むものであり、M3は、周期律表第7~12族元素を示す。〕
で表されるものを好適に使用することができる。
 ここで、L1の具体例としては、アンモニア,メチルアミン,アニリン,ジメチルアミン,ジエチルアミン,N-メチルアニリン,ジフェニルアミン,N,N-ジメチルアニリン,トリメチルアミン,トリエチルアミン,トリ-n-ブチルアミン,メチルジフェニルアミン,ピリジン,p-ブロモ-N,N-ジメチルアニリン,p-ニトロ-N,N-ジメチルアニリンなどのアミン類、トリエチルホスフィン,トリフェニルホスフィン,ジフェニルホスフィンなどのホスフィン類、テトラヒドロチオフェンなどのチオエーテル類、安息香酸エチルなどのエステル類、アセトニトリル,ベンゾニトリルなどのニトリル類などを挙げることができる。
 R4の具体例としては水素,メチル基,エチル基,ベンジル基,トリチル基などを挙げることができ、R5,R6の具体例としては、シクロペンタジエニル基,メチルシクロペンタジエニル基,エチルシクロペンタジエニル基,ペンタメチルシクロペンタジエニル基などを挙げることができる。R7の具体例としては、フェニル基,p-トリル基,p-メトキシフェニル基などを挙げることができ、R8の具体例としてはテトラフェニルポルフィリン,フタロシアニン,アリル,メタリルなどを挙げることができる。又、M2の具体例としては、Li,Na,K,Ag,Cu,Br,I,I3などを挙げることができ、M3の具体例としては、Mn,Fe,Co,Ni,Znなどを挙げることができる。又、〔Z1-、即ち〔M112・・・Gf〕において、M1の具体例としてはB,Al,Si,P,As,Sbなど、好ましくはB及びAlが挙げられる。又、G1,G2~Gfの具体例としては、ジアルキルアミノ基としてジメチルアミノ基,ジエチルアミノ基など、アルコキシ基若しくはアリールオキシ基としてメトキシ基,エトキシ基,n-ブトキシ基,フェノキシ基など、炭化水素基としてメチル基,エチル基,n-プロピル基,イソプロピル基,n-ブチル基,イソブチル基,n-オクチル基,n-エイコシル基,フェニル基,p-トリル基,ベンジル基,4-t-ブチルフェニル基,3,5-ジメチルフェニル基など、ハロゲン原子としてフッ素,塩素,臭素,ヨウ素,ヘテロ原子含有炭化水素基としてp-フルオロフェニル基,3,5-ジフルオロフェニル基,ペンタクロロフェニル基,3,4,5-トリフルオロフェニル基,ペンタフルオロフェニル基,3,5-ビス(トリフルオロメチル)フェニル基,ビス(トリメチルシリル)メチル基など、有機メタロイド基としてペンタメチルアンチモン基、トリメチルシリル基,トリメチルゲルミル基,ジフェニルアルシン基,ジシクロヘキシルアンチモン基,ジフェニル硼素などが挙げられる。
 非配位性のアニオン、即ちpKaが-10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基〔Z2-の具体例としては、トリフルオロメタンスルホン酸アニオン(CF3SO3-,ビス(トリフルオロメタンスルホニル)メチルアニオン,ビス(トリフルオロメタンスルホニル)ベンジルアニオン,ビス(トリフルオロメタンスルホニル)アミド,過塩素酸アニオン(ClO4-,トリフルオロ酢酸アニオン(CF3CO2-,ヘキサフルオロアンチモンアニオン(SbF6-,フルオロスルホン酸アニオン(FSO3-,クロロスルホン酸アニオン(ClSO3-,フルオロスルホン酸アニオン/5-フッ化アンチモン(FSO3/SbF5-,フルオロスルホン酸アニオン/5-フッ化砒素(FSO3/AsF5-,トリフルオロメタンスルホン酸/5-フッ化アンチモン(CF3SO3/SbF5-などを挙げることができる。
 このような前記(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成するイオン性化合物、即ち(B-1)成分化合物の具体例としては、トリエチルアンモニウムテトラフェニルボレート,トリ-n-ブチルアンモニウムテトラフェニルボレート,トリメチルアンモニウムテトラフェニルボレート,テトラエチルアンモニウムテトラフェニルボレート,メチル(トリ-n-ブチル)アンモニウムテトラフェニルボレート,ベンジル(トリ-n-ブチル)アンモニウムテトラフェニルボレート,ジメチルジフェニルアンモニウムテトラフェニルボレート,トリフェニル(メチル)アンモニウムテトラフェニルボレート,トリメチルアニリニウムテトラフェニルボレート,メチルピリジニウムテトラフェニルボレート,ベンジルピリジニウムテトラフェニルボレート,メチル(2-シアノピリジニウム)テトラフェニルボレート,トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート,トリ-n-ブチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート,トリフェニルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート,テトラ-n-ブチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート,テトラエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート,ベンジル(トリ-n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート,メチルジフェニルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート,トリフェニル(メチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート,メチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート,ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート,トリメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート,メチルピリジニウムテトラキス(ペンタフルオロフェニル)ボレート,ベンジルピリジニウムテトラキス(ペンタフルオロフェニル)ボレート,メチル(2-シアノピリジニウム)テトラキス(ペンタフルオロフェニル)ボレート,ベンジル(2-シアノピリジニウム)テトラキス(ペンタフルオロフェニル)ボレート,メチル(4-シアノピリジニウム)テトラキス(ペンタフルオロフェニル)ボレート,トリフェニルホスホニウムテトラキス(ペンタフルオロフェニル)ボレート,ジメチルアニリニウムテトラキス〔ビス(3,5-ジトリフルオロメチル)フェニル〕ボレート,フェロセニウムテトラフェニルボレート,銀テトラフェニルボレート、トリチルテトラフェニルボレート,テトラフェニルポルフィリンマンガンテトラフェニルボレート,フェロセニウムテトラキス(ペンタフルオロフェニル)ボレート,(1,1’-ジメチルフェロセニウム)テトラキス(ペンタフルオロフェニル)ボレート,デカメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレート,銀テトラキス(ペンタフルオロフェニル)ボレート、トリチルテトラキス(ペンタフルオロフェニル)ボレート,リチウムテトラキス(ペンタフルオロフェニル)ボレート,ナトリウムテトラキス(ペンタフルオロフェニル)ボレート,テトラフェニルポルフィリンマンガンテトラキス(ペンタフルオロフェニル)ボレート,銀テトラフルオロボレート,銀ヘキサフルオロ燐酸,銀ヘキサフルオロ砒素酸,過塩素酸銀,トリフルオロ酢酸銀,トリフルオロメタンスルホン酸銀などを挙げることができる。
(B-1)は一種用いてもよく、又二種以上を組み合わせて用いてもよい。
 一方、(B-2)成分のアルミノキサンとしては、一般式(VII)
Figure JPOXMLDOC01-appb-C000023
(式中、R9は炭素数1~20、好ましくは1~12のアルキル基,アルケニル基,アリール基,アリールアルキル基などの炭化水素基あるいはハロゲン原子を示し、wは平均重合度を示し、通常2~50、好ましくは2~40の数である。尚、各R9は同じでも異なっていてもよい。)で示される鎖状アルミノキサン、及び一般式(VIII)
Figure JPOXMLDOC01-appb-C000024
(式中、R9及びwは前記一般式(VII)におけるものと同じである。)で示される環状アルミノキサンを挙げることができる。
 前記アルミノキサンの製造法としては、アルキルアルミニウムと水などの縮合剤とを接触させる方法が挙げられるが、その手段については特に限定はなく、公知の方法に準じて反応させればよい。
 例えば、(1)有機アルミニウム化合物を有機溶剤に溶解しておき、これを水と接触させる方法、(2)重合時に当初有機アルミニウム化合物を加えておき、後で水を添加する方法、(3)金属塩などに含有されている結晶水、無機物や有機物への吸着水を有機アルミニウム化合物と反応させる方法、(4)テトラアルキルジアルミノキサンにトリアルキルアルミニウムを反応させ、更に水を反応させる方法などがある。尚、アルミノキサンとしては、トルエン不溶性のものであってもよい。これらのアルミノキサンは一種用いてもよく、二種以上を組み合わせて用いてもよい。
 (A)触媒成分と(B)触媒成分との使用割合は、(B)触媒成分として(B-1)化合物を用いた場合には、モル比で好ましくは10:1~1:100、より好ましくは2:1~1:10の範囲が望ましく、上記範囲を逸脱する場合は、単位質量ポリマーあたりの触媒コストが高くなり、実用的でない。又、(B-2)化合物を用いた場合には、モル比で好ましくは1:1~1:1000000、より好ましくは1:10~1:10000の範囲が望ましい。この範囲を逸脱する場合は単位質量ポリマーあたりの触媒コストが高くなり、実用的でない。又、触媒成分(B)としては(B-1),(B-2)を単独又は二種以上組み合わせて用いることもできる。又、本発明のαオレフィンオリゴマーを製造する際の重合用触媒は、上記(A)成分及び(B)成分に加えて(C)成分として有機アルミニウム化合物を用いることができる。ここで、(C)成分の有機アルミニウム化合物としては、一般式(IX)
10 vAlJ3-v・・・(IX)
〔式中、R10は炭素数1~10のアルキル基、Jは水素原子、炭素数1~20のアルコキシ基、炭素数6~20のアリール基又はハロゲン原子を示し、vは1~3の整数である〕で示される化合物が用いられる。
 前記一般式(IX)で示される化合物の具体例としては、トリメチルアルミニウム,トリエチルアルミニウム,トリイソプロピルアルミニウム,トリイソブチルアルミニウム,ジメチルアルミニウムクロリド,ジエチルアルミニウムクロリド,メチルアルミニウムジクロリド,エチルアルミニウムジクロリド,ジメチルアルミニウムフルオリド,ジイソブチルアルミニウムヒドリド,ジエチルアルミニウムヒドリド,エチルアルミニウムセスキクロリド等が挙げられる。これらの中で、炭素数4以上の炭化水素基が結合した有機アルミニウム化合物は、高温安定性に優れる点で好ましく、当該観点から炭素数4~8の炭化水素基がより好ましい。さらに好ましくは100℃以上の反応温度の場合は、炭素数6~8の炭化水素基がより好ましい。上記有機アルミニウム化合物は一種用いてもよく、二種以上を組合せて用いてもよい。
 前記(A)触媒成分と(C)触媒成分との使用割合は、モル比で好ましくは1:1~1:10000、より好ましくは1:5~1:2000、更に好ましくは1:10ないし1:1000の範囲が望ましい。該(C)触媒成分を用いることにより、遷移金属当たりの重合活性を向上させることができるが、あまり多いと有機アルミニウム化合物が無駄になるとともに、αオレフィンオリゴマー中に多量に残存し、好ましくない。
 本発明のαオレフィンオリゴマーの製造においては、触媒成分の少なくとも一種を適当な担体に担持して用いることができる。該担体の種類については特に制限はなく、無機酸化物担体、それ以外の無機担体及び有機担体のいずれも用いることができるが、特に無機酸化物担体あるいはそれ以外の無機担体が好ましい。
 無機酸化物担体としては、具体的には、SiO2,Al23,MgO,ZrO2,TiO2,Fe23,B23,CaO,ZnO,BaO,ThO2やこれらの混合物、例えば、シリカアルミナ,ゼオライト,フェライト,グラスファイバーなどが挙げられる。これらの中では、特にSiO2,Al23が好ましい。尚、上記無機酸化物担体は、少量の炭酸塩,硝酸塩,硫酸塩などを含有してもよい。一方、上記以外の担体として、MgCl2,Mg(OC252などで代表される一般式MgR11 x1 yで表されるマグネシウム化合物やその錯塩などを挙げることができる。ここで、R11は炭素数1~20のアルキル基、炭素数1~20のアルコキシ基又は炭素数6~20のアリール基、X1はハロゲン原子又は炭素数1~20のアルキル基を示し、xは0~2、yは0~2であり、かつx+y=2である。各R11及び各X1はそれぞれ同一でもよく、又異なってもいてもよい。
 有機担体としては、ポリスチレン,スチレン-ジビニルベンゼン共重合体,ポリエチレン,ポリ1-ブテン,置換ポリスチレン,ポリアリレートなどの重合体やスターチ,カーボンなどを挙げることができる。本発明のαオレフィンオリゴマーの製造に用いられる触媒の担体としては、MgCl2,MgCl(OC25),Mg(OC252,SiO2,Al23などが好ましい。又、担体の性状は、その種類及び製法により異なるが、平均粒径は通常1~300μm、好ましくは10~200μm、より好ましくは20~100μmである。粒径が小さいと重合体中の微粉が増大し、粒径が大きいと重合体中の粗大粒子が増大し嵩密度の低下やホッパーの詰まりの原因になる。又、担体の比表面積は、通常1~1000m2/g、好ましくは50~500m2/g、細孔容積は通常0.1~5cm3/g、好ましくは0.3~3cm3/gである。比表面積又は細孔容積の何れかが上記範囲を逸脱すると、触媒活性が低下することがある。尚比表面積及び細孔容積は、例えば、BET法に従って吸着された窒素ガスの体積から求めることができる〔J.Am.Chem.Soc.、60,309(1983)参照〕。
 更に、上記担体が無機酸化物担体である場合には、通常150~1000℃、好ましくは200~800℃で焼成して用いることが望ましい。触媒成分の少なくとも一種を前記担体に担持させる場合、(A)触媒成分及び(B)触媒成分の少なくとも一方を、好ましくは(A)触媒成分及び(B)触媒成分の両方を担持させるのが望ましい。該担体に、(A)成分及び(B)成分の少なくとも一方を担持させる方法については、特に制限されないが、例えば(1)(A)成分及び(B)成分の少なくとも一方と担体とを混合する方法、(2)担体を有機アルミニウム化合物又はハロゲン含有ケイ素化合物で処理した後、不活性溶媒中で(A)成分及び(B)成分の少なくとも一方と混合する方法、(3)担体と(A)成分及び/又は(B)成分と有機アルミニウム化合物又はハロゲン含有ケイ素化合物とを反応させる方法、(4)(A)成分又は(B)成分を担体に担持させた後、(B)成分又は(A)成分と混合する方法、(5)(A)成分と(B)成分との接触反応物を担体と混合する方法、(6)(A)成分と(B)成分との接触反応に際して、担体を共存させる方法などを用いることができる。尚、上記(4)、(5)及び(6)の方法において、(C)成分の有機アルミニウム化合物を添加することもできる。
 このようにして得られた触媒は、いったん溶媒留去を行って固体として取り出してから重合に用いてもよいし、そのまま重合に用いてもよい。又、本発明のαオレフィンオリゴマーの製造においては、(A)成分及び(B)成分の少なくとも一方の担体への担持操作を重合系内で行うことにより触媒を生成させることができる。例えば、(A)成分及び(B)成分の少なくとも一方と担体と更に必要により前記(C)成分の有機アルミニウム化合物を加え、エチレンなどのオレフィンを常圧~2MPa(gauge)加えて、-20~200℃で1分~2時間程度予備重合を行い触媒粒子を生成させる方法を用いることができる。
 本発明のα-オレフィンオリゴマーの製造に用いられる触媒における(B-1)成分と担体との使用割合は、質量比で好ましくは1:5~1:10000、より好ましくは1:10~1:500とするのが望ましく、(B-2)成分と担体との使用割合は、質量比で好ましくは1:0.5~1:1000、より好ましくは1:1~1:50とするのが望ましい。(B)成分として二種以上を混合して用いる場合は、各(B)成分と担体との使用割合が質量比で上記範囲内にあることが望ましい。又、(A)成分と担体との使用割合は、質量比で、好ましくは1:5~1:10000、より好ましくは1:10~1:500とするのが望ましい。(B)成分〔(B-1)成分又は(B-2)成分〕と担体との使用割合、又は(A)成分と担体との使用割合が上記範囲を逸脱すると、活性が低下することがある。このようにして調製された重合用触媒の平均粒径は、通常2~200μm、好ましくは10~150μm、特に好ましくは20~100μmであり、比表面積は、通常20~1000m2/g、好ましくは50~500m2/gである。平均粒径が2μm未満であると重合体中の微粉が増大することがあり、200μmを超えると重合体中の粗大粒子が増大することがある。比表面積が20m2/g未満であると活性が低下することがあり、1000m2/gを超えると重合体の嵩密度が低下することがある。又、αオレフィンオリゴマーの製造に用いられる触媒において、担体100g中の遷移金属量は、通常0.05~10g、特に0.1~2gであることが好ましい。遷移金属量が上記範囲外であると、活性が低くなることがある。このように担体に担持することによって工業的に有利な高い嵩密度と優れた粒径分布を有する重合体を得ることができる。
 本発明のα-オレフィンオリゴマーの製造方法において、重合方法は特に制限されず、スラリー重合法,気相重合法,塊状重合法,溶液重合法,懸濁重合法などのいずれの方法を用いてもよいが、スラリー重合法,溶液重合法が特に好ましい。重合条件については、重合温度は通常0~200℃、より好ましくは20~200℃、特に好ましくは100~200℃である。又、反応原料に対する触媒の使用割合は、原料モノマー/上記(A)成分(モル比)が好ましくは1~108、特に100~105となることが好ましい。
 α-オレフィンオリゴマーの粘度制御は反応温度により制御を行うが、予め合成した高粘度α-オレフィンオリゴマーの熱分解および過酸化物分解により、制御してもよい。
 重合時間は通常5分~30時間、好ましくは15分~25時間である。水素圧力は好ましくは常圧~10MPa(gauge)、好ましくは常圧~5.0MPa(gauge)である。更に好ましくは常圧~1.0MPa(gauge)である。本発明のα-オレフィンオリゴマーの製造方法において、水素を添加すると重合活性が大幅に向上するので好ましい。水素添加量が大きいほど重合活性は向上するが、10MPa(G)以上より大きくても活性への影響は少なく、逆に製造設備の巨大化など不具合が生じる。
 重合溶媒を用いる場合、例えば、ベンゼン,トルエン,キシレン,エチルベンゼン、デカリンなどの芳香族炭化水素、シクロペンタン,シクロヘキサン,メチルシクロヘキサンなどの脂環式炭化水素、ペンタン,ヘキサン,ヘプタン,オクタンなどの脂肪族炭化水素、クロロホルム,ジクロロメタンなどのハロゲン化炭化水素などを用いることができる。これらの溶媒は一種を単独で用いてもよく、二種以上のものを組み合わせてもよい。また、重合方法によっては無溶媒で行うことができる。
 重合に際しては、予備重合を行うことで重合用触媒を調製してもよい。予備重合は、触媒成分に、例えば、少量のオレフィンを接触させることにより行うことができるが、その方法に特に制限はなく、公知の方法を用いることができる。予備重合に用いるオレフィンについては特に制限はなく、例えば、(D)炭素数3~18のα-オレフィン、あるいはこれらの混合物などを挙げることができるが、該重合において用いるオレフィンと同じオレフィンを用いることが有利である。予備重合の具体例としては、(A)成分、(B)成分及び(D)炭素数3~18のα-オレフィンを予め接触させて重合用触媒を調製したり、(A)成分、(B)成分、(C)成分及び(D)炭素数3~18のα-オレフィンを予め接触させて重合用触媒を調製する例が挙げられる。予備重合温度は、通常-20~200℃、好ましくは-10~130℃、より好ましくは0~80℃である。予備重合においては、溶媒として、脂肪族炭化水素,芳香族炭化水素,モノマーなどを用いることができる。又、予備重合は無溶媒で行ってもよい。予備重合においては、予備重合生成物の極限粘度〔η〕(135℃デカリン中で測定)が0.1デシリットル/g以上、触媒中の遷移金属成分1ミリモル当たりに対する予備重合生成物の量が1~10000g、特に10~1000gとなるように条件を調整することが望ましい。
 αオレフィンオリゴマーの特性を変える方法として、各触媒成分の種類、使用量、重合温度の選択、更には水素存在下での重合などがある。窒素等の不活性ガスを存在させても良い。本発明の製造方法においては、高温で反応を行うと重合度が小さくなる傾向があり、また炭素数の小さいモノマーを用いると、重合度が大きくなる傾向がある。
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。物性の測定方法および測定装置を以下に示す。
[n量体成分量]
 試料0.05gをトルエン5mlに溶解してガスクロマトグラフィー(GC)測定を行い、n量体の成分量を質量比で求めた。
(GC測定条件)
カラム:HT-SIMDISTCB(5m×0.53mmφ,膜厚:0.17μm)
カラム温度:50℃(0.1min)、20℃/minで430℃まで上昇、430℃(15min)
注入口(COC)温度:オーブントラック
検出器(FID)温度:440℃
キャリアガス:He
線速度:40cm/sec
モード:コンスタントフロー
注入量:0.5μl
 このようにして得られたn量体成分量の質量比に基づき、n量体成分量のモル比を算出した。
[連鎖成長確率α]
 2量体成分比率C2(質量%)に基づき、下記式より算出した。
Figure JPOXMLDOC01-appb-M000025
[動粘度及び粘度指数]
 動粘度は、JIS K 2283に準拠し測定した。粘度指数は、動粘度より、JIS K 2283に準拠し計算して求めた。
[重量平均分子量(Mw)、分子量分布(Mw/Mn)]
 ゲルパーミエイションクロマトグラフ(GPC)法により、重量平均分子量および分子量分布を測定した。(ポリスチレン換算)
GPC測定装置
カラム:TOSO GMHHR-H(S)HT
検出器:液体クロマトグラム用RI検出器 WATERS 150C
測定条件
溶媒:1,2,4-トリクロロベンゼン
測定温度:145℃
流速:1.0ミリリットル/分
試料濃度:2.2mg/ミリリットル
注入量:160マイクロリットル
検量線:Universal Calibration
解析プログラム:HT-GPC(Ver.1.0)
[メソトリアッド分率[mm]]
 [Macromolecules24,2334(1991);Polymer,30,1350(1989)]に記載の方法により13C-NMRを用いて求めた。
[ビニリデン基量]
 末端ビニリデン基の個数は、常法に従い1H-NMRの測定により次のように求めた。1H-NMR測定から得られたδ0.8~1.0に出現する側鎖メチル基とδ4.8~4.6(2H)に出現するビニリデン基の割合に基づいて、定法によりビニリデン基の含有量(C)(モル%)を算出した。更にゲルパーミエイションクロマトグラフィ(GPC)より求めた数平均分子量(Mn)とモノマー分子量(M)から、次式によって一分子当たりビニリデン基の個数を算出した。
 一分子当たりの末端ビニリデン基(個)=(Mn/M)×(C/100)
実施例1(50℃下、水素圧0.15MPaでの予備活性化による反応)
 撹拌子入り50ミリリットルのシュレンクに、窒素気流下、十分に窒素バブリングしたトルエン(13ミリリットル)および1-デセン(2ミリリットル、1.5g)を加えた。その後、撹拌しながらトリイソブチルアルミニウム(0.4mmol:トルエンにて2mmol/リットルに希釈したものを0.2ミリリットル)、ジメチルアニリニウム テトラキス(ペンタフルオロフェニル)ボレート(60μmol:真空乾燥した後トルエンにて20μmol/mlとなるように溶解したものを3ミリリットル)、(1,1’-エチレン)(2,2’-ジメチルシリレン)-ビス(インデニル)ジルコニウムジクロリド(40μmol:ヘプタンにて20μmol/mlとなるように溶解したものを2ミリリットル)を順に加えた。6時間撹拌することにより、溶液状の予備活性化触媒を得た(予備活性化触媒濃度:2μmol/ミリリットル)。
 加熱乾燥した1リットルオートクレーブに、1-デセン400ミリリットル、トリイソブチルアルミニウム1ミリモル、上記予備活性化触媒(1ミリリットル、Zr:2μmol)を加え、更に水素0.15MPaを導入した。撹拌しながら温度50℃で5時間重合し、得られた反応液を炭酸水素ナトリウム飽和水溶液にて脱灰及び脱水(硫酸マグネシウム使用)処理した。GC測定後、蒸留によって未反応モノマー分をカットした後、1H-NMR、13C-NMR、GPC、粘度測定を行った。
実施例2(50℃下、水素圧0.15MPaでの逐次反応)
 加熱乾燥した1リットルオートクレーブに、1-デセン400ミリリットル、トリイソブチルアルミニウム1ミリモル、(1,1’-エチレン)(2,2’-ジメチルシリレン)-ビス(インデニル)ジルコニウムジクロリド2マイクロモル、ジメチルアニリニウム テトラキスペンタフルオロフェニルボレート8マイクロモルを加え、更に水素0.15MPaを導入した。撹拌しながら温度50℃で5時間重合した後、α-オレフィンオリゴマーを得た。得られた反応液は、実施例1に記載のとおりに処理した後、物性測定を行った。
実施例3(90℃、水素圧0.15MPa下での逐次反応)
 加熱乾燥した1リットルオートクレーブに、1-デセン400ミリリットル、トリイソブチルアルミニウム1ミリモル、(1,1’-エチレン)(2,2’-ジメチルシリレン)-ビス(インデニル)ジルコニウムジクロリド2マイクロモル、ジメチルアニリニウム テトラキスペンタフルオロフェニルボレート8マイクロモルを加え、更に水素0.15MPaを導入した。撹拌しながら温度90℃で5時間重合した後、α-オレフィンオリゴマーを得た。得られた反応液は、実施例1に記載のとおりに処理した後、物性測定を行った。
実施例4(120℃、水素圧0.15MPa下での逐次反応)
 加熱乾燥した1リットルオートクレーブに、1-デセン400ミリリットル、トリイソブチルアルミニウム1ミリモル、(1,1’-エチレン)(2,2’-ジメチルシリレン)-ビス(インデニル)ジルコニウムジクロリド2マイクロモル、ジメチルアニリニウム テトラキスペンタフルオロフェニルボレート8マイクロモルを加え、更に水素0.15MPaを導入した。撹拌しながら温度120℃で5時間重合した後、α-オレフィンオリゴマーを得た。得られた反応液は、実施例1に記載のとおりに処理した後、物性測定を行った。
実施例5(50℃、水素圧0.05MPa下での逐次反応)
 加熱乾燥した1リットルオートクレーブに、1-デセン400ミリリットル、トリイソブチルアルミニウム1ミリモル、(1,1’-エチレン)(2,2’-ジメチルシリレン)-ビス(インデニル)ジルコニウムジクロリド2マイクロモル、ジメチルアニリニウム テトラキスペンタフルオロフェニルボレート8マイクロモルを加え、更に水素0.05MPaを導入した。撹拌しながら温度50℃で5時間重合した後、α-オレフィンオリゴマーを得た。得られた反応液は、実施例1に記載のとおりに処理した後、物性測定を行った。
実施例6(50℃、水素圧0.30MPa下での逐次反応)
 加熱乾燥した1リットルオートクレーブに、1-デセン400ミリリットル、トリイソブチルアルミニウム1ミリモル、(1,1’-エチレン)(2,2’-ジメチルシリレン)-ビス(インデニル)ジルコニウムジクロリド2マイクロモル、ジメチルアニリニウム テトラキスペンタフルオロフェニルボレート8マイクロモルを加え、更に水素0.30MPaを導入した。撹拌しながら温度50℃で5時間重合した後、α-オレフィンオリゴマーを得た。得られた反応液は、実施例1に記載のとおりに処理した後、物性測定を行った。
比較例1(80℃、水素圧0.15MPa下での逐次反応)
 加熱乾燥した1リットルオートクレーブに、1-デセン400ミリリットル、トリイソブチルアルミニウム1ミリモル、(1,1’-メチレン)(2,2’-ジメチルシリレン)-ビス(インデニル)ジルコニウムジクロリド2マイクロモル、ジメチルアニリニウム テトラキスペンタフルオロフェニルボレート8マイクロモルを加え、更に水素0.15MPaを導入した。撹拌しながら温度80℃で5時間重合した後、α-オレフィンオリゴマーを得た。得られた反応液は、実施例1に記載のとおりに処理した後、物性測定を行った。
比較例2(50℃、水素圧0.05MPa下での逐次反応)
 加熱乾燥した1リットルオートクレーブに、1-デセン400ミリリットル、トリイソブチルアルミニウム1ミリモル、(1,1’-メチレン)(2,2’-ジメチルシリレン)-ビス(インデニル)ジルコニウムジクロリド2マイクロモル、ジメチルアニリニウム テトラキスペンタフルオロフェニルボレート8マイクロモルを加え、更に水素0.05MPaを導入した。撹拌しながら温度50℃で5時間重合した後、α-オレフィンオリゴマーを得た。得られた反応液は、実施例1に記載のとおりに処理した後、物性測定を行った。
 上記の実施例および比較例で得られたα-オレフィンオリゴマーの物性について第1表に示す。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 実施例1~6においては、Schulz-Flory分布に従うオリゴマー分布と比較して、三量体成分が多く、六量体以上の成分が少ないα-オレフィンオリゴマーが得られている。
 本発明によれば、Schulz-Flory分布に従わず、三量体成分が多量のα-オレフィンオリゴマーおよびその製造方法が提供される。本発明のα-オレフィンオリゴマーは、ワックス成分や潤滑油成分として有用である。

Claims (10)

  1.  下記(1)~(6)を満たすα-オレフィンオリゴマー。
    (1)三量体成分比率C3(質量%)が、S-F分布により求められる理論値よりも大きい。
    (2)六量体成分比率C6(質量%)が、S-F分布により求められる理論値よりも小さい。
    (3)100℃動粘度が20mm2/s以下である。
    (4)13C-NMRで測定されるメソトリアッド分率[mm]が40mol%以下である。
    (5)ビニリデン基を1分子当り0.2~1.0個有する。
    (6)モノマー単位の平均炭素数が6~30である。
     ここで、上記S-F分布は、二量体成分比率C2(質量%)より算出される連鎖成長確率αに基づいて算出される。
  2.  (A)下記式(I)で表されるメソ型遷移金属化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、Mは周期律表第3~10族の金属元素を示し、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、A及びA’は、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、及びスズ含有基、から選ばれる架橋基を示し、AとA’とは互いに異なる。m及びnは1以上の整数を示し、mとnとは互いに異なり、m+nは3以上である。qは1~5の整数であって〔(Mの原子価)-2〕を示し、rは0~3の整数を示し、Eは、下記式(II)で表される基であって、2つのEは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000002
    [式(II)中、R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~4のハロゲン含有炭化水素基、珪素含有基及びヘテロ原子含有基から選ばれる基を示す。波線で示される結合は架橋基-(A)m-、-(A’)n-との結合を表す。]
  3.  (A)下記式(I)で表されるメソ型遷移金属化合物、及び(B)(B-1)該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B-2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒を用いて得られる、請求項1に記載のα-オレフィンオリゴマー。
    Figure JPOXMLDOC01-appb-C000003
    [式(I)中、Mは周期律表第3~10族の金属元素を示し、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、A及びA’は、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、及びスズ含有基、から選ばれる架橋基を示し、AとA’とは互いに異なる。m及びnは1以上の整数を示し、mとnとは互いに異なり、m+nは3以上である。qは1~5の整数であって〔(Mの原子価)-2〕を示し、rは0~3の整数を示し、Eは、下記式(II)で表される基であって、2つのEは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000004
    [式(II)中、R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~4のハロゲン含有炭化水素基、珪素含有基及びヘテロ原子含有基から選ばれる基を示す。波線で示される結合は架橋基-(A)m-、-(A’)n-との結合を表す。]
  4.  (A)下記式(I)で表されるメソ型遷移金属化合物、及び(B)(B-1)該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B-2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒を用いることを特徴とするα-オレフィンオリゴマーの製造方法。
    Figure JPOXMLDOC01-appb-C000005
    [式(I)中、Mは周期律表第3~10族の金属元素を示し、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、A及びA’は、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、及びスズ含有基、から選ばれる架橋基を示し、AとA’とは互いに異なる。m及びnは1以上の整数を示し、mとnとは互いに異なり、m+nは3以上である。qは1~5の整数であって〔(Mの原子価)-2〕を示し、rは0~3の整数を示し、Eは、下記式(II)で表される基であって、2つのEは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000006
    [式(II)中、R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~4のハロゲン含有炭化水素基、珪素含有基及びヘテロ原子含有基から選ばれる基を示す。波線を有する結合は架橋基-(A)m-、-(A’)n-に結合する。]
  5.  前記重合用触媒として、少なくとも前記(A)成分及び(B)成分、並びに(C)有機アルミニウムを予め接触させたものを使用する、請求項4に記載のα-オレフィンオリゴマーの製造方法。
  6.  前記重合用触媒として、少なくとも前記(A)成分、(B)成分、(C)成分及び(D)炭素数3~18のα-オレフィンを予め接触させたものを使用する、請求項5に記載のα-オレフィンオリゴマーの製造方法。
  7.  前記式(I)において、-(A)m-で表される架橋基が下記式(IV)で表され、-(A’)n-で表される架橋基が下記式(IV’)で表される、請求項4~6のいずれかに記載のα-オレフィンオリゴマーの製造方法。
    Figure JPOXMLDOC01-appb-C000007
    [式(IV)及び(IV’)中、B及びB’は、それぞれ独立に、炭素原子、ケイ素原子、ゲルマニウム原子、またはスズ原子を表し、R3及びR4は、それぞれ独立に、水素原子、炭素数1~20の脂肪族炭化水素基、炭素数6~20の芳香族炭化水素基、炭素数1~20の酸素原子含有基、炭素数1~20のアミン含有基、または炭素数1~20のハロゲン含有基を表す。m及びnは、それぞれ独立に1以上の整数である。]
  8.  (B-2)成分のアルミノキサンが、下記式(VII)で表される鎖状アルミノキサン及び/又は下記式(VIII)で表される環状アルミノキサンである、請求項4~7のいずれかに記載のα-オレフィンオリゴマーの製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (式中、R9は炭素数1~20の炭化水素基又はハロゲン原子を示し、wは平均重合度を示し、2~50の数である。尚、各R9は互いに同一であっても異なっていてもよい。)
  9.  40~200℃の温度で反応させる、請求項4~8のいずれかに記載のα-オレフィンオリゴマーの製造方法。
  10.  常圧~10MPa(G)の範囲の水素圧で反応させる、請求項4~9のいずれかに記載のα-オレフィンオリゴマーの製造方法。
PCT/JP2012/069511 2011-08-12 2012-07-31 α-オレフィンオリゴマーおよびその製造方法 WO2013024701A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12824078.5A EP2746302A1 (en) 2011-08-12 2012-07-31 Olefin oligomer and production method thereof
CN201280039398.9A CN103717623A (zh) 2011-08-12 2012-07-31 α-烯烃低聚物及其制造方法
US14/238,165 US20140194637A1 (en) 2011-08-12 2012-07-31 A-olefin oligomer and production method thereof
CA2844806A CA2844806A1 (en) 2011-08-12 2012-07-31 A-olefin oligomer and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-176799 2011-08-12
JP2011176799 2011-08-12

Publications (1)

Publication Number Publication Date
WO2013024701A1 true WO2013024701A1 (ja) 2013-02-21

Family

ID=47715023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069511 WO2013024701A1 (ja) 2011-08-12 2012-07-31 α-オレフィンオリゴマーおよびその製造方法

Country Status (6)

Country Link
US (1) US20140194637A1 (ja)
EP (1) EP2746302A1 (ja)
JP (1) JPWO2013024701A1 (ja)
CN (1) CN103717623A (ja)
CA (1) CA2844806A1 (ja)
WO (1) WO2013024701A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020109073A (ja) * 2018-12-28 2020-07-16 デリム インダストリアル カンパニー リミテッド 均一な構造を有するアルファオレフィンオリゴマーおよびその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007011462A1 (en) 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
WO2017034659A1 (en) 2015-08-21 2017-03-02 Exxonmobil Chemical Patents Inc. Lubricant base stock blends
US10059898B2 (en) 2015-08-21 2018-08-28 Exxonmobil Chemical Patents Inc. High-viscosity metallocene polyalpha-olefins with high electrohydrodynamic performance
US10611980B2 (en) 2015-10-15 2020-04-07 Exxonmobil Chemical Patents Inc. Lubricant containing high-viscosity metallocene polyalpha-olefins
US10351488B2 (en) 2016-08-02 2019-07-16 Exxonmobil Chemical Patents Inc. Unsaturated polyalpha-olefin materials
WO2018026406A1 (en) * 2016-08-02 2018-02-08 Exxonmobil Chemical Patents Inc. Unsaturated polyalpha-olefin materials

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259207A (ja) * 1997-03-21 1998-09-29 Idemitsu Kosan Co Ltd オレフィン重合体の製造方法
JP2000095808A (ja) * 1998-07-24 2000-04-04 Idemitsu Petrochem Co Ltd プロピレン系重合体の製造方法
JP2001335607A (ja) 2000-05-30 2001-12-04 Idemitsu Petrochem Co Ltd α−オレフィン重合体の製造方法及び潤滑油
WO2003070790A1 (fr) 2002-02-21 2003-08-28 Idemitsu Petrochemical Co., Ltd. Polymere cristallin d'$g(a)-olefine d'ordre superieur et son procede de production
JP2009501836A (ja) 2005-07-19 2009-01-22 エクソンモービル・ケミカル・パテンツ・インク ポリαオレフィン組成物およびこれを生成するためのプロセス
JP2009057573A (ja) * 2008-11-06 2009-03-19 Idemitsu Kosan Co Ltd 高級α−オレフィン共重合体及びその製造方法
WO2010053022A1 (ja) 2008-11-04 2010-05-14 出光興産株式会社 α-オレフィンオリゴマーの製造方法、α-オレフィンオリゴマー、および潤滑油組成物
WO2010117028A1 (ja) 2009-04-10 2010-10-14 出光興産株式会社 αオレフィンオリゴマーおよびその製造方法
WO2012035710A1 (ja) * 2010-09-16 2012-03-22 出光興産株式会社 高粘度高級アルファオレフィン重合体及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259207A (ja) * 1997-03-21 1998-09-29 Idemitsu Kosan Co Ltd オレフィン重合体の製造方法
JP2000095808A (ja) * 1998-07-24 2000-04-04 Idemitsu Petrochem Co Ltd プロピレン系重合体の製造方法
JP2001335607A (ja) 2000-05-30 2001-12-04 Idemitsu Petrochem Co Ltd α−オレフィン重合体の製造方法及び潤滑油
WO2003070790A1 (fr) 2002-02-21 2003-08-28 Idemitsu Petrochemical Co., Ltd. Polymere cristallin d'$g(a)-olefine d'ordre superieur et son procede de production
JP2009501836A (ja) 2005-07-19 2009-01-22 エクソンモービル・ケミカル・パテンツ・インク ポリαオレフィン組成物およびこれを生成するためのプロセス
WO2010053022A1 (ja) 2008-11-04 2010-05-14 出光興産株式会社 α-オレフィンオリゴマーの製造方法、α-オレフィンオリゴマー、および潤滑油組成物
JP2009057573A (ja) * 2008-11-06 2009-03-19 Idemitsu Kosan Co Ltd 高級α−オレフィン共重合体及びその製造方法
WO2010117028A1 (ja) 2009-04-10 2010-10-14 出光興産株式会社 αオレフィンオリゴマーおよびその製造方法
WO2012035710A1 (ja) * 2010-09-16 2012-03-22 出光興産株式会社 高粘度高級アルファオレフィン重合体及びその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ADV. POLYMER. SCI, vol. 15, no. 1, 1974, pages 1 - 30
J. AM. CHEM. SOC., vol. 126, 2004, pages 10701 - 10712
J. AM. CHEM. SOC., vol. 62, no. 6, 1940, pages 1561 - 1565
MACROMOLECULES, vol. 24, 1991, pages 2334
POLYMER, vol. 30, 1989, pages 1350

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020109073A (ja) * 2018-12-28 2020-07-16 デリム インダストリアル カンパニー リミテッド 均一な構造を有するアルファオレフィンオリゴマーおよびその製造方法
US11214531B2 (en) 2018-12-28 2022-01-04 Dl Chemical Co., Ltd. Alphaolefin oligomer having uniform structure and method of preparing same
JP2022087250A (ja) * 2018-12-28 2022-06-09 ディーエル ケミカル カンパニー リミテッド 均一な構造を有するアルファオレフィンオリゴマーおよびその製造方法

Also Published As

Publication number Publication date
JPWO2013024701A1 (ja) 2015-03-05
US20140194637A1 (en) 2014-07-10
CN103717623A (zh) 2014-04-09
EP2746302A1 (en) 2014-06-25
CA2844806A1 (en) 2013-02-21

Similar Documents

Publication Publication Date Title
US7109283B2 (en) Higher α-olefin copolymers and process for preparation thereof
WO2013024701A1 (ja) α-オレフィンオリゴマーおよびその製造方法
JP3955573B2 (ja) 結晶性高級αオレフィン重合体及びその製造方法
JP5379677B2 (ja) α−オレフィン重合体及びその製造方法
US20100324242A1 (en) Highly pure, terminal-unsaturated olefin polymer and process for production thereof
US20120095273A1 (en) Alpha-olefin oligomer and method for producing same
WO2012035710A1 (ja) 高粘度高級アルファオレフィン重合体及びその製造方法
JP6329129B2 (ja) α−オレフィン重合体及び水添α−オレフィン重合体の製造方法
JP2008285443A (ja) 遷移金属化合物、それを含有するオレフィン重合触媒、それを用いたオレフィン系重合体の製造方法、並びに末端不飽和プロピレン系重合体及びその製造方法
JP5043518B2 (ja) アスファルト改質材及びアスファルト組成物
JP5231947B2 (ja) 高級α−オレフィン共重合体及びその製造方法
JP5290959B2 (ja) 酸化変性α−オレフィン系重合体及びその製造方法
JP5291012B2 (ja) プロピレン系重合体、遷移金属化合物及び触媒、該重合体からなる樹脂組成物並びに成形体
WO2013031779A1 (ja) α-オレフィン重合体の製造方法
JP2006131784A (ja) 架橋オレフィン重合体及びその製造方法
JP2004196848A (ja) ブテン系ブロック共重合体及びその製造方法
US20140114032A1 (en) Method for producing olefin polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2844806

Country of ref document: CA

Ref document number: 2013528954

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012824078

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14238165

Country of ref document: US