WO2013024692A1 - 撮像レンズ - Google Patents

撮像レンズ Download PDF

Info

Publication number
WO2013024692A1
WO2013024692A1 PCT/JP2012/069298 JP2012069298W WO2013024692A1 WO 2013024692 A1 WO2013024692 A1 WO 2013024692A1 JP 2012069298 W JP2012069298 W JP 2012069298W WO 2013024692 A1 WO2013024692 A1 WO 2013024692A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
refractive power
imaging
imaging lens
lens group
Prior art date
Application number
PCT/JP2012/069298
Other languages
English (en)
French (fr)
Inventor
久保田洋治
久保田賢一
平野整
Original Assignee
株式会社オプトロジック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オプトロジック filed Critical 株式会社オプトロジック
Priority to JP2013528951A priority Critical patent/JP6029111B2/ja
Publication of WO2013024692A1 publication Critical patent/WO2013024692A1/ja
Priority to US14/181,758 priority patent/US9013812B2/en
Priority to US14/547,175 priority patent/US20150070788A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only

Definitions

  • the present invention relates to an imaging lens that forms a subject image on an imaging device such as a CCD sensor or a CMOS sensor, and is suitable for being incorporated in a relatively small camera such as an in-vehicle camera, a digital still camera, a security camera, or a network camera.
  • the present invention relates to an imaging lens.
  • a plurality of cameras are attached to vehicles for the purpose of improving convenience and security.
  • the situation behind the vehicle is displayed on the monitor when the driver moves the vehicle backward, so the driver cannot see the obstacles in the shadow of the vehicle, etc. Even so, the vehicle can be moved backward safely without contact.
  • in-vehicle cameras The use of cameras attached to such vehicles, so-called in-vehicle cameras, is increasing year by year. Recently, a wide-angle vehicle-mounted camera is attached to each of four locations (back door, front grille, and side mirror) of the vehicle, and images from these vehicle-mounted cameras are processed to display a pseudo image that looks down from above the vehicle. Even the system to do has come to appear. With the expansion of the use of in-vehicle cameras, in-vehicle cameras have been required to have a capability of photographing a wider range with high resolution. For this reason, an imaging lens incorporated in a vehicle-mounted camera is required to have not only a small size but also a wide angle of view and an ability to correct various aberrations satisfactorily. However, it is difficult to reduce the size of the imaging lens while properly correcting various aberrations, and to increase the angle of view, that is, to increase the angle of view. In actual design of the imaging lens, it is important to realize these in a balanced manner.
  • an imaging lens having a wide angle of view for example, an imaging lens described in Patent Document 1 is known.
  • the imaging lens includes a meniscus negative first lens having a convex surface facing the object side, a meniscus negative second lens having a convex surface facing the object side, a diaphragm, and a biconvex lens in order from the object side.
  • a third lens having a shape, a negative fourth meniscus lens having a convex surface facing the object side, and a fifth lens having a biconvex shape are arranged.
  • the imaging lens described in Patent Document 1 although the number of lenses constituting the imaging lens is as small as five, the angle of view is wide, and in addition, aberration can be corrected relatively well.
  • the total length of the lens system is long, it does not satisfy the recent demand for downsizing, and there remains a problem in achieving both downsizing of the imaging lens and good aberration correction.
  • Such a problem is not unique to an imaging lens incorporated in an in-vehicle camera, but is common to imaging lenses incorporated in relatively small cameras such as digital still cameras, security cameras, and network cameras.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an imaging lens that is small but has a wide angle of view and can correct aberrations satisfactorily. It is in.
  • the imaging lens of the present invention is configured by arranging, in order from the object side to the image surface side, a first lens group having a negative refractive power, a stop, and a second lens group having a positive refractive power.
  • the first lens group includes a first lens having a negative refractive power with a strong concave surface facing the image surface side, and a second lens having a negative refractive power and a shape that becomes a biconcave lens in the vicinity of the optical axis. Is done.
  • the second lens group includes a biconvex third lens, a lens having a positive refractive power and a lens having a negative refractive power, and a lens group having a negative refractive power as a whole.
  • the imaging lens of the present invention satisfies the following conditional expression (1). -1.0 ⁇ F1 / F2 ⁇ -0.5 (1)
  • the negative refractive power of the first lens tends to increase.
  • the second lens having a negative refractive power is disposed on the image plane side of the first lens, an increase in the refractive power of the first lens due to the wide angle is suppressed and is generated in the first lens. An increase in lateral chromatic aberration and distortion is suppressed.
  • the negative refractive power is shared by the two lenses, the first lens and the second lens, the maximum effective diameter of the first lens can be kept small, and the imaging lens can be downsized. It is done.
  • the first lens is formed in a shape with a concave surface facing the image surface side
  • one second lens is formed in a biconcave shape with the concave surface facing the object side.
  • the field curvature to be corrected is preferably corrected by the object side surface of the second lens.
  • Conditional expression (1) is a condition for suppressing distortion aberration, chromatic aberration, and field curvature within a favorable range while reducing the size of the imaging lens. If the upper limit “ ⁇ 0.5” is exceeded, the refractive power of the second lens group becomes relatively weak with respect to the refractive power of the first lens group, which is advantageous for securing the back focus. It becomes difficult to reduce the size. Further, negative distortion increases, and axial chromatic aberration is overcorrected (the focal position of the short wavelength moves to the image plane side with respect to the focal position of the reference wavelength). The imaging surface is curved toward the image surface side, and is in a so-called overcorrected state. Therefore, it is difficult to obtain good imaging performance.
  • the refractive power of the first lens group becomes relatively stronger than the refractive power of the second lens group, which is advantageous for downsizing the imaging lens. Since the back focus is shortened, it is difficult to secure a space for placing an insert such as an infrared cut filter or a cover glass. In addition, the axial chromatic aberration is insufficiently corrected (the focal position of the short wavelength moves to the object side with respect to the focal position of the reference wavelength). The imaging surface is curved toward the object side, and is in a so-called undercorrected state. Therefore, in this case, it is difficult to obtain good imaging performance.
  • the imaging lens having the above-described configuration it is desirable to form the first lens in a meniscus shape with the concave surface facing the image surface side.
  • the shape of the first lens By making the shape of the first lens such a shape, it becomes easy to suppress negative distortion.
  • the lens group constituting the second lens group is configured by joining a lens having a positive refractive power and a lens having a negative refractive power.
  • the lens group arranged closest to the image plane is a cemented lens composed of two positive and negative lenses, so that spherical aberration and curvature of field are in a suitable range while correcting chromatic aberration satisfactorily. It becomes possible to suppress inside.
  • Conditional expression (2) is a condition for satisfactorily correcting various aberrations.
  • the refractive power of the first lens is relatively weak with respect to the refractive power of the second lens. Coma and negative distortion increase.
  • the sagittal image plane of the astigmatism is tilted toward the image plane side, increasing the astigmatism difference, making it difficult to obtain good imaging performance.
  • the refractive power of the second lens becomes relatively weak with respect to the refractive power of the first lens, which is advantageous for correction of coma aberration and downsizing of the imaging lens.
  • off-axis lateral chromatic aberration is undercorrected (short-wavelength imaging point moves closer to the optical axis than the reference wavelength imaging point), and it is difficult to obtain good imaging performance in this case as well. It becomes.
  • Conditional expression (3) is a condition for satisfactorily correcting off-axis coma and astigmatism while reducing the size of the imaging lens.
  • the refractive power of the third lens becomes relatively weak with respect to the refractive power of the entire lens system, and the positive refractive power in the entire lens system becomes weak.
  • the refractive power of the third lens becomes relatively strong with respect to the refractive power of the entire lens system. It will be difficult to ensure.
  • the astigmatic difference increases and the on-axis and off-axis chromatic aberrations are both undercorrected, making it difficult to obtain good imaging performance.
  • Conditional expression (4) is a condition for satisfactorily correcting chromatic aberration and suppressing curvature of field within a favorable range.
  • the refractive power of the lens having negative refractive power among the lens groups constituting the second lens group becomes relatively strong, and the off-axis chromatic aberration is excessively corrected.
  • spherical aberration and field curvature are overcorrected, and it is difficult to suppress these aberrations within a favorable range.
  • the value is below the lower limit “0.7”, the on-axis and off-axis chromatic aberrations are insufficiently corrected and the field curvature increases, making it difficult to obtain good imaging performance.
  • the lens group configuring the second lens group includes, in order from the object side, a fourth lens having a positive refractive power and a fifth lens having a negative refractive power.
  • the fifth lens having negative refractive power is arranged on the image plane side, and the first lens is set by making the Abbe number of the fifth lens smaller than the Abbe number of the fourth lens as shown in the conditional expression (5).
  • the lateral chromatic aberration generated in the lens is corrected satisfactorily, and the occurrence of distortion is suitably suppressed.
  • the imaging lens of the present invention it is possible to provide both a wide angle of the imaging lens and good aberration correction, and a small imaging lens in which various aberrations are favorably corrected.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 1 according to an embodiment of the present invention.
  • FIG. 3 is an aberration diagram illustrating lateral aberration of the imaging lens illustrated in FIG. 1.
  • FIG. 2 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 1. It is sectional drawing which shows schematic structure of the imaging lens which concerns on numerical example 2 about one embodiment of this invention.
  • FIG. 5 is an aberration diagram showing lateral aberration of the imaging lens shown in FIG. 4.
  • FIG. 5 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 4.
  • FIG. 8 is an aberration diagram showing lateral aberration of the imaging lens shown in FIG. 7.
  • FIG. 8 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 7.
  • FIG. 11 is an aberration diagram illustrating lateral aberration of the imaging lens illustrated in FIG. 10.
  • FIG. 11 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 10.
  • FIG. 1, FIG. 4, FIG. 7, and FIG. 10 are cross-sectional views each showing a schematic configuration of an imaging lens according to Numerical Examples 1 to 4 of the present embodiment. Since all the numerical examples have the same basic lens configuration, the lens configuration of the imaging lens according to the present embodiment will be described here with reference to the schematic cross-sectional view of the numerical example 1.
  • the imaging lens of the present embodiment has a first lens group G1 having a negative refractive power, a stop ST, and a positive refractive power in order from the object side to the image plane side.
  • the second lens group G2 is arranged.
  • the first lens group G1 includes a first lens L1 having a negative refractive power and a second lens L2 having a negative refractive power in order from the object side to the image surface side.
  • the second lens group G2 includes a third lens L3 having a positive refractive power, a fourth lens L4 having a positive refractive power, and a fifth lens L5 having a negative refractive power.
  • the fourth lens L4 and the fifth lens L5 constitute a lens group.
  • a filter 10 is disposed between the fifth lens L5 and the image plane IM. The filter 10 can be omitted.
  • the first lens L1 is formed in a meniscus shape with a strong concave surface facing the image surface side. That is, the first lens L1 is formed in a meniscus shape in which the curve on the image side surface is tighter than the curve on the object side surface.
  • the first lens L1 is not limited to a meniscus lens having a concave surface facing the image plane side, and may be a biconcave lens having a concave surface facing the image plane side.
  • the second lens L2 has a shape in which the radius of curvature of the object side surface is negative and the curvature radius of the image plane side is positive, and is formed into a shape that is a biconcave lens in the vicinity of the optical axis X.
  • an inflection point is provided on the object side surface of the second lens L2.
  • the object-side surface of the second lens L2 has a shape with a concave surface facing the object side in the vicinity of the optical axis X, and a shape with a convex surface facing the object side in the peripheral portion.
  • the object-side surface of the second lens L2 has a shape in which the negative refractive power gradually weakens from the optical axis X toward the peripheral portion. Therefore, the distortion generated in the first lens L1 is Corrected well.
  • the third lens L3 is formed in a biconvex shape
  • the fourth lens L4 is also formed in a biconvex shape
  • the fifth lens L5 is formed in a biconcave shape.
  • the fourth lens L4 and the fifth lens L5 are cemented.
  • the fourth lens L4 and the fifth lens L5 may be arranged in a separated state. By separating both lenses, it becomes easy to use different materials, for example, the material of the fourth lens L4 is glass and the material of the fifth lens L5 is plastic.
  • the shape of the fourth lens L4 is not limited to the biconvex shape, and may be a meniscus shape with a convex surface facing the object side or a meniscus shape with a concave surface facing the object side.
  • the shape of the fifth lens L5 is not limited to the biconcave shape, and may be a meniscus shape with a convex surface facing the object side or a meniscus shape with a concave surface facing the object side.
  • the lens group constituting the second lens group G2 only needs to be composed of two lenses, a lens having a positive refractive power and a lens having a negative refractive power, and the negative refractive power from the object side. And a lens having positive refractive power may be arranged.
  • the imaging lens according to the present embodiment satisfies the following conditional expressions. Thereby, according to the imaging lens according to the present embodiment, the imaging lens can be reduced in size, and at the same time, both wide angle and good aberration correction can be achieved.
  • f focal length of the entire lens system
  • F1 focal length of the first lens group
  • F2 focal length of the second lens group
  • G2 f1 focal length of the first lens
  • L1 f2 focal length of the second lens
  • the lens surface of each lens is formed as an aspheric surface as necessary.
  • the aspherical shape adopted for these lens surfaces is that the axis in the optical axis direction is Z, the height in the direction perpendicular to the optical axis is H, the conic coefficient is k, and the aspherical coefficients are A 4 , A 6 , A 8 , A When 10 , A 12 , A 14 , and A 16 , they are expressed by the following formula.
  • f is a focal length of the entire lens system
  • Fno is an F number
  • is a half angle of view in consideration of distortion.
  • i indicates a surface number counted from the object side
  • R indicates a radius of curvature
  • d indicates a distance (surface interval) between lens surfaces on the optical axis
  • Nd indicates a refractive index with respect to d-line (reference wavelength).
  • ⁇ d represents the Abbe number with respect to the d line.
  • the aspherical surface is indicated by adding a symbol of * (asterisk) after the surface number i.
  • the sum (air conversion length) of the surface interval on the optical axis from the object-side surface of the first lens L1 to the image plane IM is indicated as La.
  • F1 -1.97mm
  • F2 2.50mm
  • f1 -3.15mm
  • f2 ⁇ 7.46mm
  • f3 3.18mm
  • fp 2.28mm
  • fn -2.27mm
  • La 11.49 mm
  • FIG. 2 illustrates the lateral aberration corresponding to the ratio H of each image height to the maximum image height (hereinafter referred to as “image height ratio H”) in the tangential direction and the sagittal direction for the imaging lens of Numerical Example 1.
  • image height ratio H the ratio of each image height to the maximum image height
  • FIG. 3 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Numerical Example 1.
  • the lateral aberration diagram and the spherical aberration diagram include g-line (435.84 nm), F-line (486.13 nm), e-line (546.07 nm), d-line (587.56 nm), C-line ( The aberration amount for each wavelength of 656.27 nm is shown, and the astigmatism diagram shows the aberration amount on the sagittal image plane S and the aberration amount on the tangential image plane T (FIGS. 6, 9, and 12). The same). As shown in FIGS. 2 and 3, according to the imaging lens according to Numerical Example 1, various aberrations are favorably corrected.
  • F1 -2.11mm
  • FIG. 5 shows lateral aberration corresponding to the image height ratio H for the imaging lens of Numerical Example 2.
  • FIG. 6 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion. Each aberration DIST (%) is shown. As shown in FIGS. 5 and 6, various aberrations are also satisfactorily corrected by the imaging lens according to Numerical Example 2.
  • F1 -1.93mm
  • f2 -5.54mm
  • f3 3.14mm
  • La 11.11 mm
  • FIG. 8 shows lateral aberration corresponding to the image height ratio H for the imaging lens of Numerical Example 3
  • FIG. 9 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion. Each aberration DIST (%) is shown.
  • various aberrations are also satisfactorily corrected by the imaging lens according to Numerical Example 3 as well.
  • F1 ⁇ 2.01mm
  • f2 ⁇ 6.72mm
  • f3 3.31mm
  • La 11.77 mm
  • FIG. 11 shows transverse aberration corresponding to the image height ratio H for the imaging lens of Numerical Example 4, and FIG. 12 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion. Each aberration DIST (%) is shown. As shown in FIGS. 11 and 12, various aberrations are favorably corrected by the imaging lens according to Numerical Example 4 as well.
  • each lens is formed as an aspherical surface as necessary. However, if there is a margin in the overall length of the imaging lens and the required imaging performance, the imaging lens is configured.
  • the lens surface of all parts or all the lens surfaces may be formed as a spherical surface.
  • the imaging lens according to the above-described embodiment is applied to an imaging optical system such as an in-vehicle camera, a digital still camera, a security camera, a network camera, etc., a small camera in which various aberrations are well corrected while being wide-angle Can be provided.
  • an imaging optical system such as an in-vehicle camera, a digital still camera, a security camera, a network camera, etc.
  • the present invention can be applied to an imaging lens incorporated in a device that requires good aberration correction capability with a wide imaging range as an imaging lens, such as an in-vehicle camera or a security camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 広角でありながらも収差を良好に補正することのできる撮像レンズを提供する。この目的のため、物体側から順に、負の屈折力を有する第1レンズ群G1と、絞りSTと、正の屈折力を有する第2レンズ群G2とを配置して撮像レンズを構成する。第1レンズ群G1は、像面側に強い凹面を向けたメニスカス形状の負の第1レンズL1と、両凹形状の負の第2レンズL2とから構成する。第2レンズ群G2は、両凸形状の正の第3レンズL3と、負のレンズ群とから構成し、このうち当該レンズ群を、正の第4レンズL4と負の第5レンズL5とから構成する。当該構成において撮像レンズは、第1レンズ群G1の焦点距離をF1、第2レンズ群G2の焦点距離をF2としたとき、次の条件式を満足する。 -1.0<F1/F2<-0.5

Description

撮像レンズ
 本発明は、CCDセンサやCMOSセンサ等の撮像素子上に被写体像を形成する撮像レンズに係り、車載カメラ、デジタルスティルカメラ、セキュリティカメラ、ネットワークカメラ等の比較的小型のカメラに組み込まれて好適な撮像レンズに関するものである。
 近年、車両には、利便性やセキュリティ性の向上を目的として複数のカメラが取り付けられている。例えば、車両後方を撮影するためのバックカメラが取り付けられた車両では、運転者が車両を後退させる際に車両後方の状況がモニタに映し出されるため、運転者は車両の影で見えない障害物等であっても接触することなく安全に車両を後退させることができる。
 こうした車両に取り付けられるカメラ、いわゆる車載カメラの用途は年々拡大している。最近では、車両の4箇所(バックドア、フロントグリル、サイドミラー)にそれぞれ広角の車載カメラを取り付け、これら車載カメラからの画像を画像処理して車両上方から見下ろしたような映像を疑似的に表示するシステムまでもが登場するに至っている。車載カメラの用途の拡大に伴い、車載カメラには、より広い範囲を高い解像度で撮影する能力が要求されるようになってきた。このため、車載カメラに組み込まれる撮像レンズには、小型であることはもちろんのこと、画角が広く、諸収差を良好に補正できる能力が必要となる。しかしながら、撮像レンズにおいて、諸収差を良好に補正しつつ小型化を図り、併せて画角の拡大、いわゆる広角化を図ることは困難である。撮像レンズの実際の設計にあたっては、これらをバランスよく実現することが重要となる。
 画角が広い撮像レンズとしては、例えば特許文献1に記載の撮像レンズが知られている。この撮像レンズは、物体側から順に、物体側に凸面を向けたメニスカス形状の負の第1レンズと、同じく物体側に凸面を向けたメニスカス形状の負の第2レンズと、絞りと、両凸形状の第3レンズと、物体側に凸面を向けたメニスカス形状の負の第4レンズと、両凸形状の第5レンズとを配置して構成される。当該構成において、第1レンズおよび第2レンズからなる前群の第2主点位置から絞りまでの距離と、当該前群の第2主点位置から第3レンズ~第5レンズからなる後群の第1主点までの距離との比率を一定の範囲内に抑制することによって、小型化とともに諸収差の良好な補正を図っている。
特開2003-307674号公報
 上記特許文献1に記載の撮像レンズによれば、撮像レンズを構成するレンズ枚数が5枚と少ないながらも画角が広く、加えて比較的良好に収差を補正することができる。しかしながら、レンズ系の全長が長いため、近年の小型化への要求を満足するものではなく、撮像レンズの小型化と良好な収差補正との両立を図る上で課題が残っていた。なお、こうした課題は車載カメラに組み込まれる撮像レンズに特有のものではなく、デジタルスティルカメラ、セキュリティカメラ、ネットワークカメラ等の比較的小型のカメラに組み込まれる撮像レンズに共通するものである。
 本発明は上記のような従来技術の問題点に鑑みてなされたものであり、その目的は、小型でありながらも画角が広く、収差を良好に補正することのできる撮像レンズを提供することにある。
 本発明の撮像レンズは、物体側から像面側に向かって順に、負の屈折力を有する第1レンズ群と、絞りと、正の屈折力を有する第2レンズ群とを配置して構成される。第1レンズ群は、像面側に強い凹面を向けた負の屈折力を有する第1レンズと、負の屈折力を有し、光軸近傍において両凹レンズとなる形状の第2レンズとから構成される。第2レンズ群は、両凸形状の第3レンズと、正の屈折力を有するレンズと負の屈折力を有するレンズとの2枚のレンズからなり、全体として負の屈折力を有するレンズ群とから構成される。当該構成において、第1レンズ群の焦点距離をF1、第2レンズ群の焦点距離をF2としたとき、本発明の撮像レンズは次の条件式(1)を満足する。
     -1.0<F1/F2<-0.5     (1)
 一般に、撮像レンズの広角化を図ろうとすると第1レンズの負の屈折力が強くなる傾向にある。本発明では第1レンズの像面側に負の屈折力を有する第2レンズが配置されることから、広角化に伴う第1レンズの屈折力の増大が抑制され、第1レンズにて発生する倍率の色収差や歪曲収差の増大が抑制される。このように本発明では第1レンズおよび第2レンズの2枚のレンズによって負の屈折力が分担される構成のため、第1レンズの最大有効径が小さく抑えられ、撮像レンズの小型化が図られる。また、このうちの第1レンズが像面側に凹面を向けた形状に形成され、一方の第2レンズが物体側に凹面を向けた両凹形状に形成されるため、第1レンズにて発生する像面湾曲が第2レンズの物体側の面によって好適に補正される。
 条件式(1)は、撮像レンズの小型化を図りつつ、歪曲収差、色収差、および像面湾曲を良好な範囲内に抑制するための条件である。上限値「-0.5」を超えると、第1レンズ群の屈折力に対して第2レンズ群の屈折力が相対的に弱くなるため、バックフォーカスの確保には有利となるものの、撮像レンズの小型化が困難となる。また、マイナスの歪曲収差が増大するとともに、軸上の色収差が補正過剰(基準波長の焦点位置に対して短波長の焦点位置が像面側に移動)となる。結像面は像面側に湾曲し、いわゆる補正過剰の状態になる。よって、良好な結像性能を得ることが困難となる。
 一方、下限値「-1.0」を下回ると、第2レンズ群の屈折力に対して第1レンズ群の屈折力が相対的に強くなるため、撮像レンズの小型化には有利となるものの、バックフォーカスが短くなるため、赤外線カットフィルタやカバーガラス等の挿入物を配置するための空間の確保が困難となる。また、軸上の色収差が補正不足(基準波長の焦点位置に対して短波長の焦点位置が物体側に移動)となる。結像面は物体側に湾曲し、いわゆる補正不足の状態になる。よって、この場合も良好な結像性能を得ることが困難となる。
 上記構成の撮像レンズにおいては、第1レンズを、像面側に凹面を向けたメニスカス形状に形成することが望ましい。第1レンズの形状をこのような形状にすることによって、マイナスの歪曲収差を抑制し易くなる。
 上記構成の撮像レンズにおいては、第2レンズ群を構成するレンズ群を、正の屈折力を有するレンズと負の屈折力を有するレンズとを接合して構成することが望ましい。本発明に係る撮像レンズにおいて最も像面側に配置されるレンズ群を正負2枚のレンズからなる接合レンズにすることにより、色収差を良好に補正しつつ、球面収差や像面湾曲を好適な範囲内に抑制することが可能となる。
 上記構成の撮像レンズにおいては、第1レンズの焦点距離をf1、第2レンズの焦点距離をf2としたとき、下記条件式(2)を満足することが望ましい。
     0.2<f1/f2<1.5       (2)
 条件式(2)は、諸収差を良好に補正するための条件である。上限値「1.5」を超えると、第2レンズの屈折力に対して第1レンズの屈折力が相対的に弱くなるため、軸外光束による画像周辺部の色収差が補正過剰になるとともに、コマ収差やマイナスの歪曲収差が増大する。また、非点収差のうちサジタル像面が像面側に倒れて非点隔差が増大し、良好な結像性能を得ることが困難となる。一方、下限値「0.2」を下回ると、第1レンズの屈折力に対して第2レンズの屈折力が相対的に弱くなるため、コマ収差の補正や撮像レンズの小型化には有利となるものの、バックフォーカスの確保が困難となる。また、軸外の倍率色収差が補正不足(基準波長の結像点に対して短波長の結像点が光軸に近づく方向に移動)となり、この場合も良好な結像性能を得ることが困難となる。
 上記構成の撮像レンズにおいては、レンズ系全体の焦点距離をf、第3レンズの焦点距離をf3としたとき、下記条件式(3)を満足することが望ましい。
     1.0<f3/f<2.5        (3)
 条件式(3)は、撮像レンズの小型化を図りつつ、軸外コマ収差および非点収差を良好に補正するための条件である。上限値「2.5」を超えると、レンズ系全体の屈折力に対して第3レンズの屈折力が相対的に弱くなり、レンズ系全体に占める正の屈折力が弱くなるため、軸上色収差の補正には有利となるものの、撮像レンズの小型化が困難となる。また、軸外光束による内方コマ収差が増大するため、良好な結像性能を得ることが困難となる。一方、下限値「1.0」を下回ると、レンズ系全体の屈折力に対して第3レンズの屈折力が相対的に強くなるため、撮像レンズの小型化には有利となるものの、バックフォーカスの確保が困難となる。また、非点隔差が増大するとともに、軸上および軸外の色収差が共に補正不足となり、良好な結像性能を得ることが困難となる。
 上記構成の撮像レンズにおいては、第2レンズ群を構成する上記レンズ群のうち、正の屈折力を有するレンズの焦点距離をfp、負の屈折力を有するレンズの焦点距離をfnとしたとき、下記条件式(4)を満足することが望ましい。
     0.7<|fp/fn|<1.5     (4)
 条件式(4)は、色収差を良好に補正するとともに、像面湾曲を良好な範囲内に抑制するための条件である。上限値「1.5」を超えると、第2レンズ群を構成するレンズ群のうちの負の屈折力を有するレンズの屈折力が相対的に強くなり、軸外の色収差が補正過剰となる。また、球面収差や像面湾曲が補正過剰となり、これら収差を良好な範囲内に抑制することが困難となる。一方、下限値「0.7」を下回ると、軸上および軸外の色収差が補正不足となるとともに、像面湾曲が増大することとなり、良好な結像性能を得ることが困難となる。
 上記構成の撮像レンズにおいては、第2レンズ群を構成するレンズ群を、物体側から順に、正の屈折力を有する第4レンズと負の屈折力を有する第5レンズとから構成し、第4レンズのアッベ数をνdp、第5レンズのアッベ数をνdnとしたとき、下記条件式(5)を満足することが望ましい。
     νdp>νdn             (5)
 負の屈折力を有する第5レンズを像面側に配置し、条件式(5)に示されるように、第5レンズのアッベ数を第4レンズのアッベ数よりも小さくすることにより、第1レンズで発生した倍率色収差が良好に補正されるとともに、歪曲収差の発生が好適に抑制される。
 本発明の撮像レンズによれば、撮像レンズの広角化と良好な収差補正との両立が図られ、諸収差が良好に補正された小型の撮像レンズを提供することができる。
本発明の一実施の形態について、数値実施例1に係る撮像レンズの概略構成を示す断面図である。 図1に示す撮像レンズの横収差を示す収差図である。 図1に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。 本発明の一実施の形態について、数値実施例2に係る撮像レンズの概略構成を示す断面図である。 図4に示す撮像レンズの横収差を示す収差図である。 図4に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。 本発明の一実施の形態について、数値実施例3に係る撮像レンズの概略構成を示す断面図である。 図7に示す撮像レンズの横収差を示す収差図である。 図7に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。 本発明の一実施の形態について、数値実施例4に係る撮像レンズの概略構成を示す断面図である。 図10に示す撮像レンズの横収差を示す収差図である。 図10に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。
 以下、本発明を具体化した一実施の形態について、図面を参照しながら詳細に説明する。
 図1、図4、図7、および図10はそれぞれ、本実施の形態の数値実施例1~4に係る撮像レンズの概略構成を示す断面図である。いずれの数値実施例も基本的なレンズ構成は同一であるため、ここでは数値実施例1の概略断面図を参照しながら、本実施の形態に係る撮像レンズのレンズ構成について説明する。
 図1に示すように、本実施の形態の撮像レンズは、物体側から像面側に向かって順に、負の屈折力を有する第1レンズ群G1と、絞りSTと、正の屈折力を有する第2レンズ群G2とを配置して構成される。このうち第1レンズ群G1は、物体側から像面側に向かって順に、負の屈折力を有する第1レンズL1と、負の屈折力を有する第2レンズL2とから構成される。一方の第2レンズ群G2は、正の屈折力を有する第3レンズL3と、正の屈折力を有する第4レンズL4と、負の屈折力を有する第5レンズL5とから構成される。本実施の形態において第4レンズL4および第5レンズL5はレンズ群を構成する。なお、第5レンズL5と像面IMとの間には、フィルタ10が配置される。フィルタ10は割愛することも可能である。
 第1レンズL1は、像面側に強い凹面を向けたメニスカス形状に形成される。すなわち、第1レンズL1は、物体側の面のカーブよりも像面側の面のカーブの方がきついメニスカス形状に形成されている。なお、第1レンズL1は、像面側に凹面を向けたメニスカス形状のレンズに限定されるものではなく、像面側に凹面を向けた両凹レンズとしてもよい。
 第2レンズL2は、物体側の面の曲率半径が負となり、像面側の曲率半径が正となる形状であって、光軸Xの近傍において両凹レンズとなる形状に形成される。このうち第2レンズL2の物体側の面には変曲点が設けられている。すなわち、第2レンズL2の物体側の面は、光軸Xの近傍では物体側に凹面を向けた形状であり、周辺部では物体側に凸面を向けた形状になっている。このような形状により、第2レンズL2の物体側の面が、光軸Xから周辺部に向かうにつれて負の屈折力が次第に弱くなる形状となるため、第1レンズL1にて発生した歪曲収差は良好に補正される。
 第2レンズ群G2において、第3レンズL3は両凸形状に形成され、第4レンズL4は同じく両凸形状に形成され、第5レンズL5は両凹形状に形成される。このうち第4レンズL4および第5レンズL5は接合されている。なお、第4レンズL4および第5レンズL5は分離した状態で配置されてもよい。両レンズを分離することにより、例えば第4レンズL4の材料をガラスとして第5レンズL5の材料をプラスチックにする等、異種材料を使用することが容易となる。
 また、第4レンズL4の形状は両凸形状に限定されず、物体側に凸面を向けたメニスカス形状あるいは物体側に凹面を向けたメニスカス形状としてもよい。同様に、第5レンズL5の形状は両凹形状に限定されず、物体側に凸面を向けたメニスカス形状あるいは物体側に凹面を向けたメニスカス形状としてもよい。なお、第2レンズ群G2を構成するレンズ群は、正の屈折力を有するレンズと負の屈折力を有するレンズとの2枚のレンズから構成されればよく、物体側から、負の屈折力を有するレンズと正の屈折力を有するレンズとを配置して構成してもよい。
 本実施の形態に係る撮像レンズは、以下に示す各条件式を満足する。これにより、本実施の形態に係る撮像レンズによれば、撮像レンズの小型化が図られるとともに、広角化と良好な収差補正との両立が図られる。
     -1.0<F1/F2<-0.5     (1)
     0.2<f1/f2<1.5       (2)
     1.0<f3/f<2.5        (3)
     0.7<|fp/fn|<1.5     (4)
     νdp>νdn             (5)
 但し、
    f:レンズ系全体の焦点距離
   F1:第1レンズ群G1の焦点距離
   F2:第2レンズ群G2の焦点距離
   f1:第1レンズL1の焦点距離
   f2:第2レンズL2の焦点距離
   f3:第3レンズL3の焦点距離
   fp:第4レンズL4の焦点距離
   fn:第5レンズL5の焦点距離
  νdp:第4レンズL4のアッベ数
  νdn:第5レンズL5のアッベ数
 なお、上記各条件式の全てを満足する必要はなく、それぞれを単独に満足することにより、各条件式に対応する作用効果をそれぞれ得ることができる。
 本実施の形態では、必要に応じて各レンズのレンズ面を非球面で形成している。これらレンズ面に採用する非球面形状は、光軸方向の軸をZ、光軸に直交する方向の高さをH、円錐係数をk、非球面係数をA4、A6、A8、A10、A12、A14、A16としたとき、次式により表される。
Figure JPOXMLDOC01-appb-M000001
 次に、本実施の形態に係る撮像レンズの数値実施例を示す。各数値実施例において、fはレンズ系全体の焦点距離であり、FnoはFナンバーであり、ωは歪曲収差を考慮した半画角である。また、iは物体側より数えた面番号を示し、Rは曲率半径を示し、dは光軸上のレンズ面間の距離(面間隔)を示し、Ndはd線(基準波長)に対する屈折率を、νdはd線に対するアッベ数をそれぞれ示す。なお、非球面の面には、面番号iの後に*(アスタリスク)の符号を付加して示すこととする。また参考までに、第1レンズL1の物体側の面から像面IMまでの光軸上の面間隔の和(空気換算長)をLaとして示す。
数値実施例1
 基本的なレンズデータを以下に示す。
f=1.69mm、Fno=2.1、ω=83.8°
                 単位  mm
面データ
 面番号i     R      d     Nd  νd
 (物面)     ∞      ∞
   1     10.625    0.550    1.8042  46.5
   2      2.000    1.371
   3*    -4.201    0.745    1.5312  56.0
   4*    74.434    0.991
   5(絞り)   ∞    0.000
   6*     3.198    2.698    1.5312  56.0
   7*    -2.532    0.507
   8      4.706    2.021    1.7725  49.6(=νdp)
   9     -2.281    0.500    1.9229  20.9(=νdn)
   10     28.290    0.300
   11       ∞    0.500    1.5163  64.1
   12       ∞    1.476
 (像面)     ∞

非球面データ
第3面
 k=-1.751E-01,A4=6.768E-02,A6=-1.157E-02,A8=3.337E-04,A10=2.697E-04,
 A12=2.538E-04,A14=-1.105E-04,A16=1.049E-05
第4面
 k=0.000,A4=9.800E-02,A6=-2.548E-02,A8=7.400E-02,A10=-9.734E-02,
 A12=4.625E-02,A14=8.352E-03,A16=-7.932E-03
第6面
 k=0.000,A4=4.279E-03,A6=1.224E-02,A8=-1.018E-02,A10=2.640E-03
第7面
 k=0.000,A4=8.042E-03,A6=6.357E-03,A8=-2.012E-03,A10=6.520E-04
  F1=-1.97mm
  F2=2.50mm
  f1=-3.15mm
  f2=-7.46mm
  f3=3.18mm
  fp=2.28mm
  fn=-2.27mm
  La=11.49mm
 各条件式の値を以下に示す。
  F1/F2=-0.79
  f1/f2=0.42
  f3/f=1.88
  |fp/fn|=1.00
 このように、本数値実施例1に係る撮像レンズは条件式(1)~(5)を満足する。
 図2は、数値実施例1の撮像レンズについて、最大像高に対する各像高の比H(以下、「像高比H」という)に対応する横収差をタンジェンシャル方向とサジタル方向とに分けて示したものである(図5、図8、および図11において同じ)。また、図3は、数値実施例1の撮像レンズについて、球面収差(mm)、非点収差(mm)、および歪曲収差(%)をそれぞれ示したものである。これら収差図において、横収差図および球面収差図には、g線(435.84nm)、F線(486.13nm)、e線(546.07nm)、d線(587.56nm)、C線(656.27nm)の各波長に対する収差量を示し、非点収差図には、サジタル像面Sにおける収差量とタンジェンシャル像面Tにおける収差量とをそれぞれ示す(図6、図9、および図12において同じ)。図2および図3に示されるように、本数値実施例1に係る撮像レンズによれば、諸収差が良好に補正される。
数値実施例2
 基本的なレンズデータを以下に示す。
f=1.81mm、Fno=2.2、ω=71.2°
                 単位  mm
面データ
 面番号i     R      d     Nd  νd
 (物面)     ∞      ∞
   1      9.000    0.492    1.7725  49.6
   2      2.000    1.531
   3*    -4.261    0.579    1.4970  81.6
   4*    50.000    1.054
   5(絞り)   ∞    0.020
   6*     3.563    2.510    1.4970  81.6
   7*    -2.317    0.320
   8      5.374    2.211    1.8061  40.7(=νdp)
   9     -2.139    0.550    1.9229  20.9(=νdn)
   10     23.860    0.300
   11       ∞    0.500    1.5163  64.1
   12       ∞    1.709
 (像面)     ∞

非球面データ
第3面
 k=-1.006E-01,A4=1.202E-01,A6=-3.649E-02,A8=1.036E-02,A10=-1.036E-03
第4面
 k=0.000,A4=1.589E-01,A6=-9.360E-03,A8=-7.936E-03,A10=6.558E-03,
 A12=9.546E-03,A14=4.096E-03,A16=-3.543E-03
第6面
 k=0.000,A4=1.114E-02,A6=1.291E-02,A8=-1.037E-02,A10=3.039E-03
第7面
 k=0.000,A4=4.497E-03,A6=1.453E-02,A8=-6.108E-03,A10=1.583E-03
  F1=-2.11mm
  F2=2.55mm
  f1=-3.43mm
  f2=-7.87mm
  f3=3.29mm
  fp=2.19mm
  fn=-2.11mm
  La=11.61mm
 各条件式の値を以下に示す。
  F1/F2=-0.83
  f1/f2=0.44
  f3/f=1.82
  |fp/fn|=1.04
 このように、本数値実施例2に係る撮像レンズは条件式(1)~(5)を満足する。
 図5は、数値実施例2の撮像レンズについて、像高比Hに対応する横収差を示したものであり、図6は、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら図5および図6に示されるように、本数値実施例2に係る撮像レンズによっても諸収差が良好に補正される。
数値実施例3
 基本的なレンズデータを以下に示す。
f=1.81mm、Fno=2.2、ω=73.8°
                 単位  mm
面データ
 面番号i     R      d     Nd  νd
 (物面)     ∞      ∞
   1      6.435    0.550    1.8042  46.5
   2      1.898    1.236
   3*    -3.007    0.516    1.5312  56.0
   4*    150.000    1.000
   5(絞り)   ∞    0.000
   6*     3.259    2.600    1.5312  56.0
   7*    -2.466    0.320
   8      4.347    2.211    1.7725  49.6(=νdp)
   9     -2.201    0.550    1.9229  20.9(=νdn)
   10     18.103    0.150
   11       ∞    0.500    1.5163  64.1
   12       ∞    1.644
 (像面)     ∞

非球面データ
第3面
 k=0.000,A4=1.234E-01,A6=-3.962E-02,A8=9.652E-03,A10=-1.037E-03
第4面
 k=0.000,A4=1.506E-01,A6=-1.162E-03,A8=-5.841E-03,A10=3.129E-03,
 A12=6.550E-03,A14=3.767E-03,A16=-1.680E-03
第6面
 k=0.000,A4=1.086E-02,A6=1.191E-02,A8=-1.117E-02,A10=2.390E-03
第7面
 k=0.000,A4=5.589E-03,A6=1.365E-02,A8=-6.439E-03,A10=1.599E-03
  F1=-1.93mm
  F2=2.35mm
  f1=-3.54mm
  f2=-5.54mm
  f3=3.14mm
  fp=2.22mm
  fn=-2.10mm
  La=11.11mm
 各条件式の値を以下に示す。
  F1/F2=-0.82
  f1/f2=0.64
  f3/f=1.73
  |fp/fn|=1.06
 このように、本数値実施例3に係る撮像レンズは条件式(1)~(5)を満足する。
 図8は、数値実施例3の撮像レンズについて、像高比Hに対応する横収差を示したものであり、図9は、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら図8および図9に示されるように、本数値実施例3に係る撮像レンズによっても諸収差が良好に補正される。
数値実施例4
 基本的なレンズデータを以下に示す。
f=1.81mm、Fno=2.2、ω=74.9°
                 単位  mm
面データ
 面番号i     R      d     Nd  νd
 (物面)     ∞      ∞
   1      9.109    0.906    1.8042  46.5
   2      2.000    1.351
   3*    -3.422    0.513    1.4970  81.6
   4*    150.000    1.021
   5(絞り)   ∞    0.020
   6*     3.505    2.574    1.4970  81.6
   7*    -2.342    0.320
   8      4.709    2.211    1.8061  40.7(=νdp)
   9     -2.204    0.550    1.9229  20.9(=νdn)
   10     17.911    0.300
   11       ∞    0.500    1.5163  64.1
   12       ∞    1.677
 (像面)     ∞

非球面データ
第3面
 k=8.758E-02,A4=1.226E-01,A6=-3.857E-02,A8=9.747E-03,A10=-1.055E-03
第4面
 k=0.000,A4=1.552E-01,A6=-4.032E-03,A8=-7.084E-03,A10=3.828E-03,
 A12=7.414E-03,A14=3.805E-03,A16=-2.501E-03
第6面
 k=0.000,A4=1.009E-02,A6=1.286E-02,A8=-1.063E-02,A10=2.381E-03
第7面
 k=0.000,A4=4.848E-03,A6=1.354E-02,A8=-6.414E-03,A10=1.593E-03
  F1=-2.01mm
  F2=2.47mm
  f1=-3.38mm
  f2=-6.72mm
  f3=3.31mm
  fp=2.17mm
  fn=-2.10mm
  La=11.77mm
 各条件式の値を以下に示す。
  F1/F2=-0.81
  f1/f2=0.50
  f3/f=1.83
  |fp/fn|=1.03
 このように、本数値実施例4に係る撮像レンズは条件式(1)~(5)を満足する。
 図11は、数値実施例4の撮像レンズについて、像高比Hに対応する横収差を示したものであり、図12は、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら図11および図12に示されるように、本数値実施例4に係る撮像レンズによっても諸収差が良好に補正される。
 なお、上記各数値実施例では、必要に応じて各レンズの面を非球面で形成したが、撮像レンズの全長や要求される結像性能に余裕があるのであれば、撮像レンズを構成する一部のレンズ面あるいは全てのレンズ面を球面で形成するようにしてもよい。
 したがって、上記実施の形態に係る撮像レンズを、車載カメラ、デジタルスティルカメラ、セキュリティカメラ、ネットワークカメラ等の撮像光学系に適用した場合、広角でありながらも諸収差が良好に補正された小型のカメラを提供することができる。
 本発明は、撮像レンズとして広い撮影範囲とともに良好な収差補正能力が要求される機器、例えば車載カメラやセキュリティカメラ等に組み込まれる撮像レンズに適用することができる。
 G1  第1レンズ群
 G2  第2レンズ群
 ST  絞り
 L1  第1レンズ
 L2  第2レンズ
 L3  第3レンズ
 L4  第4レンズ
 L5  第5レンズ
 10  フィルタ

Claims (6)

  1.  物体側から像面側に向かって順に、負の屈折力を有する第1レンズ群と、絞りと、正の屈折力を有する第2レンズ群とを配置して構成され、
     前記第1レンズ群は、像面側に強い凹面を向けた負の屈折力を有する第1レンズと、負の屈折力を有し、光軸近傍において両凹レンズとなる形状の第2レンズとから構成され、
     前記第2レンズ群は、両凸形状の第3レンズと、正の屈折力を有するレンズと負の屈折力を有するレンズとの2枚のレンズからなり、全体として負の屈折力を有するレンズ群とから構成され、
     前記第1レンズ群の焦点距離をF1、前記第2レンズ群の焦点距離をF2としたとき、
         -1.0<F1/F2<-0.5
    を満足する撮像レンズ。
  2.  前記第1レンズは、像面側に凹面を向けたメニスカス形状に形成される、
    請求項1に記載の撮像レンズ。
  3.  前記第2レンズ群を構成する前記レンズ群は、正の屈折力を有するレンズと負の屈折力を有するレンズとが接合されて構成される、
    請求項1または2に記載の撮像レンズ。
  4.  前記第1レンズの焦点距離をf1、前記第2レンズの焦点距離をf2としたとき、
         0.2<f1/f2<1.5
    を満足する請求項1~3のいずれか一項に記載の撮像レンズ。
  5.  レンズ系全体の焦点距離をf、前記第3レンズの焦点距離をf3としたとき、
         1.0<f3/f<2.5
    を満足する請求項1~4のいずれか一項に記載の撮像レンズ。
  6.  前記第2レンズ群を構成する前記レンズ群のうち、正の屈折力を有するレンズの焦点距離をfp、負の屈折力を有するレンズの焦点距離をfnとしたとき、
         0.7<|fp/fn|<1.5
    を満足する請求項1~5のいずれか一項に記載の撮像レンズ。
PCT/JP2012/069298 2011-08-18 2012-07-30 撮像レンズ WO2013024692A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013528951A JP6029111B2 (ja) 2011-08-18 2012-07-30 撮像レンズ
US14/181,758 US9013812B2 (en) 2011-08-18 2014-02-17 Imaging lens
US14/547,175 US20150070788A1 (en) 2011-08-18 2014-11-19 Imaging lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-179176 2011-08-18
JP2011179176 2011-08-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/181,758 Continuation US9013812B2 (en) 2011-08-18 2014-02-17 Imaging lens

Publications (1)

Publication Number Publication Date
WO2013024692A1 true WO2013024692A1 (ja) 2013-02-21

Family

ID=47715014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069298 WO2013024692A1 (ja) 2011-08-18 2012-07-30 撮像レンズ

Country Status (3)

Country Link
US (2) US9013812B2 (ja)
JP (1) JP6029111B2 (ja)
WO (1) WO2013024692A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2821833A1 (en) * 2013-07-02 2015-01-07 Ability Opto-Electronics Technology Co., Ltd. An ultra-wide-angle imaging lens assembly with five lenses
CN104459946A (zh) * 2013-09-16 2015-03-25 今国光学工业股份有限公司 五片式广角镜头
CN104570293B (zh) * 2013-10-14 2017-08-29 大立光电股份有限公司 光学影像拾取系统、取像装置以及可携装置
TWI645215B (zh) * 2017-06-01 2018-12-21 新鉅科技股份有限公司 五片式廣角鏡片組
TWI664441B (zh) * 2015-12-22 2019-07-01 揚明光學股份有限公司 廣角鏡頭
CN110221400A (zh) * 2019-05-02 2019-09-10 瑞声声学科技(深圳)有限公司 一种摄像光学镜头
CN112147832A (zh) * 2019-06-28 2020-12-29 精工爱普生株式会社 投射光学系统和投影仪
CN112147833A (zh) * 2019-06-28 2020-12-29 精工爱普生株式会社 投射光学系统和投影仪

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461728B (zh) * 2011-09-02 2014-11-21 Largan Precision Co Ltd 影像鏡組
JP6204676B2 (ja) * 2013-03-29 2017-09-27 キヤノン株式会社 撮像レンズ及びそれを有する撮像装置
TWI566003B (zh) 2015-10-12 2017-01-11 大立光電股份有限公司 攝影用光學鏡片組、取像裝置及電子裝置
TWI588518B (zh) * 2016-01-22 2017-06-21 大立光電股份有限公司 成像系統鏡組、取像裝置及電子裝置
CN105572847B (zh) * 2016-03-02 2018-08-17 浙江舜宇光学有限公司 超广角摄像镜头
CN107300750B (zh) * 2017-04-28 2020-02-04 玉晶光电(厦门)有限公司 光学成像镜头
TWI633361B (zh) 2017-11-15 2018-08-21 大立光電股份有限公司 光學取像鏡組、取像裝置及電子裝置
TWI685689B (zh) * 2018-03-14 2020-02-21 先進光電科技股份有限公司 光學成像系統(二)
JP7285091B2 (ja) * 2019-02-27 2023-06-01 株式会社タムロン 結像光学系及び撮像装置
CN112485884B (zh) 2019-09-11 2022-08-23 信泰光学(深圳)有限公司 广角镜头

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1039206A (ja) * 1996-07-22 1998-02-13 Fuji Photo Optical Co Ltd 結像レンズ
JP2006284620A (ja) * 2005-03-31 2006-10-19 Nidec Nissin Corp 広角レンズおよび接合レンズ
JP2007233152A (ja) * 2006-03-02 2007-09-13 Alps Electric Co Ltd 光学装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3244606B2 (ja) * 1995-01-31 2002-01-07 三菱電機株式会社 レトロフォーカス型レンズ
US6476974B1 (en) * 2001-02-28 2002-11-05 Corning Precision Lens Incorporated Projection lenses for use with reflective pixelized panels
JP2003307674A (ja) 2002-04-18 2003-10-31 Kyocera Corp 超広角レンズ
US6989941B2 (en) * 2003-10-08 2006-01-24 Fujinon Corporation Two-group zoom lens
US7633688B2 (en) * 2005-06-01 2009-12-15 Olympus Imaging Corp. Image forming optical system
CN102455488B (zh) * 2010-10-29 2014-07-09 鸿富锦精密工业(深圳)有限公司 超广角镜头

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1039206A (ja) * 1996-07-22 1998-02-13 Fuji Photo Optical Co Ltd 結像レンズ
JP2006284620A (ja) * 2005-03-31 2006-10-19 Nidec Nissin Corp 広角レンズおよび接合レンズ
JP2007233152A (ja) * 2006-03-02 2007-09-13 Alps Electric Co Ltd 光学装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2821833A1 (en) * 2013-07-02 2015-01-07 Ability Opto-Electronics Technology Co., Ltd. An ultra-wide-angle imaging lens assembly with five lenses
CN104280862A (zh) * 2013-07-02 2015-01-14 先进光电科技股份有限公司 超广角五片式成像镜头组
CN104459946A (zh) * 2013-09-16 2015-03-25 今国光学工业股份有限公司 五片式广角镜头
CN104570293B (zh) * 2013-10-14 2017-08-29 大立光电股份有限公司 光学影像拾取系统、取像装置以及可携装置
TWI664441B (zh) * 2015-12-22 2019-07-01 揚明光學股份有限公司 廣角鏡頭
TWI645215B (zh) * 2017-06-01 2018-12-21 新鉅科技股份有限公司 五片式廣角鏡片組
CN110221400A (zh) * 2019-05-02 2019-09-10 瑞声声学科技(深圳)有限公司 一种摄像光学镜头
CN112147832A (zh) * 2019-06-28 2020-12-29 精工爱普生株式会社 投射光学系统和投影仪
CN112147833A (zh) * 2019-06-28 2020-12-29 精工爱普生株式会社 投射光学系统和投影仪
CN112147832B (zh) * 2019-06-28 2022-04-12 精工爱普生株式会社 投射光学系统和投影仪

Also Published As

Publication number Publication date
US9013812B2 (en) 2015-04-21
US20140160582A1 (en) 2014-06-12
JP6029111B2 (ja) 2016-11-24
JPWO2013024692A1 (ja) 2015-03-05
US20150070788A1 (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP6029111B2 (ja) 撮像レンズ
JP7347991B2 (ja) 撮像レンズ
JP6048882B2 (ja) 撮像レンズ
JP6128673B2 (ja) 撮像レンズ
JP5651861B2 (ja) 撮像レンズ
JP5201690B2 (ja) 撮像レンズ
JP5371148B2 (ja) 撮像レンズ
JP4847172B2 (ja) 撮像レンズ
JP6501810B2 (ja) 撮像レンズ
US10107993B2 (en) Wide-angle optical system and image pickup apparatus using the same
JP5761602B2 (ja) 撮像レンズ
JP6684033B2 (ja) 撮像レンズ
JP2007206516A (ja) 撮像レンズ
US9389398B2 (en) Imaging lens, and imaging apparatus including the imaging lens
JP5568732B2 (ja) 撮像レンズ
JP5688562B2 (ja) 撮像レンズ
US20140146403A1 (en) Imaging lens, and imaging apparatus including the imaging lens
WO2013018748A1 (ja) 撮像レンズ
JP5839357B2 (ja) 撮像レンズ
JP5548845B2 (ja) 撮像レンズ
JP5308915B2 (ja) 撮像レンズ
WO2012005070A1 (ja) 撮像レンズ
JP4383758B2 (ja) テレコンバータ
JP4376054B2 (ja) レトロフォーカスレンズ
JP5187951B2 (ja) 撮像レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823656

Country of ref document: EP

Kind code of ref document: A1