WO2013023610A1 - 一种具备形状记忆性能的多层可降解支架及其制备方法 - Google Patents

一种具备形状记忆性能的多层可降解支架及其制备方法 Download PDF

Info

Publication number
WO2013023610A1
WO2013023610A1 PCT/CN2012/080228 CN2012080228W WO2013023610A1 WO 2013023610 A1 WO2013023610 A1 WO 2013023610A1 CN 2012080228 W CN2012080228 W CN 2012080228W WO 2013023610 A1 WO2013023610 A1 WO 2013023610A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
degradable
layer
shape memory
multilayer
Prior art date
Application number
PCT/CN2012/080228
Other languages
English (en)
French (fr)
Inventor
陈宝爱
孟娟
石秀凤
罗七一
Original Assignee
上海微创医疗器械(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创医疗器械(集团)有限公司 filed Critical 上海微创医疗器械(集团)有限公司
Priority to EP12824361.5A priority Critical patent/EP2745857B1/en
Publication of WO2013023610A1 publication Critical patent/WO2013023610A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials

Definitions

  • the invention relates to the field of medical instruments, in particular to a multi-layer degradable stent with shape memory property and a preparation method thereof. Background technique
  • the stent After the blood vessels of the human body are blocked or narrowed, it is necessary to implant a stent to expand the blood vessel, and the stent supports the blood vessel to restore the normal passage of blood.
  • the main clinical use is permanent metal stent, but it will interfere with the reconstruction of surgical blood supply, hinder the formation of vascular collateral circulation, and inhibit the positive remodeling of blood vessels. Therefore, the use of degradable polymer materials to prepare new temporary, degradable stents has become a research hotspot.
  • a degradable stent implanted in the human body it must have a sufficiently high support strength and a low elastic retraction. Because only the support strength is high enough, the support of the blood vessels can be achieved.
  • the initial outer diameter of the degradable stent is designed to be the same size as the outer diameter, so that the initial size can be memorized when the stent is implanted in the body in a crimped state, and the outer diameter is maintained after the balloon is expanded (ie, the initial outer diameter) Trail) without a big retraction.
  • this patent uses a single or copolymerized polymer material, and the temperature required to activate the shape memory property of the material is higher than the body temperature of the human body. The effect of the degree on human tissue makes the biosafety of the stent a problem.
  • the present invention produces a multilayer degradable stent having shape memory properties by combining a shape memory material with a material having higher strength.
  • the present invention solves the problems of retraction after stent expansion and insufficient support force without introducing excess heat.
  • the invention proposes to divide the stent structure into two or more layers, wherein one layer of the material is a degradable polymer having shape memory property at body temperature, which can effectively reduce the retraction after the stent is expanded, and does not require additional heat;
  • a layer of material is a highly degradable metal or degradable polymer that provides effective support for blood vessels.
  • the two layers of material may be the inner or outer layer of each other.
  • the stent obtained by the present invention not only shrinks after expansion, but also does not introduce external heat, and can also have a sufficiently high supporting force to support the narrow blood vessel. After the degradation time is reached, the stent can be rapidly degraded and excreted with metabolism, effectively reducing the incidence of complications such as inflammation and restenosis.
  • the multi-layer degradable stent with shape memory property of the invention wherein one layer is a shape memory layer, is made of a degradable material having shape memory property, and the other layer is a support layer, which is made of a high-strength degradable material. to make. After the stent is gripped, it is delivered to the lesion and the balloon is expanded to reach the diameter of use.
  • the shape memory performance of the inner layer of the stent is stimulated at body temperature, and the driving force for maintaining the initial shape of the stent (ie, the shape used in the blood vessel) is effectively lowered.
  • the retraction of the stent after balloon dilation is reduced.
  • the stent support layer provides effective support for the blood vessel to prevent deformation and collapse.
  • the stent body can be rapidly degraded and excreted with metabolism. No external heat is introduced during the whole process, which effectively ensures the safety during the use of the bracket.
  • a multilayer degradable stent having shape memory properties characterized by two or more layers of degradable materials, one of which is a degradable polymer material having shape memory properties, that is, a shape memory layer, and another layer It is a degradable metal or degradable polymer material having excellent radial support ability, that is, a support layer.
  • the two layers of material may be the inner or outer layer of each other.
  • the cutting size of the stent is the size when used in a human body, that is, the first shape of the stent.
  • the stent is then crimped onto the balloon and becomes a crimped state, that is, the second shape of the stent.
  • the stent is implanted into the human body in a pressure-holding state.
  • the shape memory layer material selects a degradable polymer having a glass transition temperature (Tg) in the range of 27-37 ° C, including but not limited to polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid ( Blends, copolymers of one or more of PGA), polyorthoesters, polyanhydrides, and the like.
  • Tg glass transition temperature
  • Ways of blending include, but are not limited to, solution blending and melt blending.
  • the means of copolymerization include, but are not limited to, graft copolymerization, block copolymerization, random copolymerization, and the like.
  • the mass ratio between blends or copolymers can vary from 1:1 to 1:20 to achieve the desired Tgo for the modified material.
  • the shape memory excitation temperature of these materials is generally close to the glass transition temperature of the material.
  • the polymer material satisfying the above Tg requirements can be excited at body temperature to achieve shape memory performance.
  • Biodegradable materials of the support layer include biodegradable metal materials and biodegradable polymer materials. Among them, biodegradable metal materials include, but are not limited to, iron, magnesium or magnesium alloys.
  • Biodegradable polymer materials include, but are not limited to, L-PLA, D-PLA, Polyglycolic acid (PGA), Polytrimethylene carbonate (PTMC), Poly(dioxylene) Cyclohexanone (PPDO), polyamino acid derived carbonate (PDTE), polyorthoester (POE), etc., and copolymerization or blending materials therebetween.
  • the support layer material has a higher strength at body temperature.
  • the preparation method of the multilayer degradable stent of the present invention is achieved by the following methods, including twin-screw co-extrusion, surface coating, mold molding, tablet molding, solvent adhesion, and the like, but is not limited to the above.
  • the twin-screw extrusion refers to a tube in which each layer of the material constituting the multi-layered support is layered by co-extrusion, and the adhesion between the layers is strong, and the tube is obtained by laser cutting to obtain a multi-layered support; It is firstly prepared from the inner layer of material into a tube, and then a second layer is sequentially sprayed on the surface of the tube, and the material of the third layer is completed until the predetermined number of layers of the tube is completed, and then the prepared tube is laser-cut to obtain a multi-layered stent; Molding means that different materials are formed in a layered mold to finally obtain a multi-layered support; tablet forming means that the layers of materials are alternately arranged to obtain a sheet, and the sheet is wound to form a stent; solvent adhesion refers to each degradable material.
  • the films are separately prepared, and a complete film is obtained by solvent adhesion between the films, and the film is wound into filaments to obtain a multilayered s
  • the shape memory layer material enables the stent to have shape memory at body temperature. After the balloon is expanded, the stent is substantially not retracted and remains at the intended outer diameter.
  • the support layer material provides sufficient support strength for the stent to effectively support the vessel wall after implantation. After implantation, the multi-layered stent has a small retraction after expansion, and the stent has a high radial support force, which can effectively support the blood vessel at the lesion position. Due to the degradability of the overall scaffold, after the degradation time is reached, the scaffold can rapidly degrade and excrete with the metabolism, effectively reducing the incidence of complications such as inflammation and restenosis. In addition, since the thermal excitation temperature of the shape memory layer material shape memory property is body temperature, The entire process is done at body temperature without the need to introduce more heat, ensuring the biosafety of the stent. detailed description
  • a multilayer degradable stent having shape memory properties at body temperature is:
  • PLLA Poly L-lactic acid
  • PCL poly- ⁇ -caprolactone
  • the support layer is a PLGA9010 particle obtained by copolymerizing polylactic acid-glycolic acid having a high modulus of elasticity and support strength at a ratio of 90:10 as an outer layer of the stent.
  • the PLGA9010 particles were co-extruded by a twin-screw extruder to obtain a degradable tube with an outer diameter of 3.0 mm and a wall thickness of 0.15 mm.
  • the tube was laser-cut to obtain a double-layered support with an inner layer of PLCL material and an outer layer of PLGA material.
  • the stent was gripped onto a suitable balloon and delivered to a vascular lesion with an original inner diameter of 2.7 mm. Under the expansion of the balloon, a narrow vessel was observed to be distracted within 10 seconds, and at body temperature (37 ° C).
  • the shape memory property of the inner layer material is activated, the stent is restored to the memory of the cut shape of the outer diameter of 3.0 mm, and the shape is maintained.
  • the balloon was withdrawn and the stent did not show significant retraction and displacement.
  • the stent was not deformed, broken, or detached, and the blood vessel was effectively supported.
  • the stent began to undergo endometrialization; at 6 months, endometrialization was almost complete; after 12 months, the stent was almost completely degraded. There were no signs of inflammation and restenosis throughout the entire process from stent implantation to complete degradation.
  • Embodiment 2 Embodiment 2
  • the outer layer material of the stent is made of polyDL-lactic acid particles (PDLA) and Shape memory particles obtained by melt blending poly(p-dioxanone) (PPDO) particles.
  • the outer shape memory particles were dissolved in a cosolvent of hexafluoroisopropanol (HFIP) of PDLA and PPDO to prepare a solution.
  • the support layer material is a degradable metal magnesium alloy used as the inner layer of the stent.
  • the magnesium alloy was extruded to obtain a pipe having an outer diameter of 2.9 mm and a wall thickness of 0.1 mm, and then the outer layer material solution was sprayed on the surface of the magnesium alloy pipe by spraying. After the spraying is completed, the tube is dried in a vacuum box to fully evaporate the solvent. After complete drying, the spray can be repeated until the thickness of the coating after drying reaches 0.1 mm.
  • the resulting pipe has an outer diameter of 3.0 mm and a wall thickness of
  • the prepared tube was laser-cut to obtain a double-layered support in which the inner layer was a magnesium alloy and the outer layer was a PDLA-PPDO.
  • the prepared double-layer support has a support force of lOOKPa or more, and the elastic retraction rate after expansion is less than 5%.
  • the stent was crimped onto a suitable balloon and delivered to a narrow vessel with an original inner diameter of 2.6 mm. After reaching the lesion, under the expansion of the balloon, the narrow blood vessels were observed to be distracted within 10 seconds. At the same time, the shape memory performance of the outer layer material was activated under the excitation of body temperature (37 ° C), and the stent was restored. Cut the shape of the outer diameter of 3.0mm and keep this shape.
  • Embodiment 3 After the balloon was withdrawn, the stent was hardly retracted, and the stent was not deformed, displaced, or broken. The stent was effectively supported in the vascular lesion for about 4 months. After 12 months, the stent degradation was almost completed, and no complications such as inflammation and restenosis occurred.
  • Embodiment 3 After the balloon was withdrawn, the stent was hardly retracted, and the stent was not deformed, displaced, or broken. The stent was effectively supported in the vascular lesion for about 4 months. After 12 months, the stent degradation was almost completed, and no complications such as inflammation and restenosis occurred.
  • This embodiment is basically the same as the first embodiment except that the multi-layer bracket is realized by compressing the PLCL8218 material and the PLGA9010 material separately, and the obtained sheet is curled and spliced into a cylindrical shape, wherein PLCL8218 For the inner layer, PLGA9010 is the outer layer.
  • the cylindrical tube is cut to obtain a multilayer support.
  • the stent After 12 months, the stent was basically degraded and the vascular lesion was cured.
  • the above description of the embodiments is merely for helping to understand the core idea of the present invention. It should be noted that those skilled in the art can also make several improvements and modifications to the degradable stent of the present invention without departing from the principles of the present invention, but such improvements and modifications are also claimed in the claims of the present invention. Within the scope of protection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种具备形状记忆性能的多层可降解支架,由两层或多层可降解材料组成,其中一层为具有形状记忆性能的可降解聚合物材料,即形状记忆层,另一层为具有优良的径向支撑能力的可降解金属或可降解聚合物材料,即支撑层。该可降解支架的制备方法也被描述。这种支架不仅扩张后的回缩小,而且没有引入外部的热量,同时还能具备足够高的支撑力实现对狭窄血管的支撑作用,并能有效降低炎症和再狭窄等并发症的发生几率。

Description

一种具备形状记忆性能的多层可降解支架及其制备方法 技术领域
本发明涉及医疗器械领域, 具体涉及一种具备形状记忆性能的多 层可降解支架及其制备方法。 背景技术
人体的血管在堵塞或狭窄后, 需要植入支架来扩张该血管, 支架 对血管起到支撑作用从而恢复血液的正常通过。 目前临床上使用的主 要是永久性金属支架, 但它会干扰外科血运的重建, 阻碍血管侧枝循 环的形成, 抑制血管正性重塑。 因此, 采用可降解高分子材料制备新 型的临时性、 可降解的支架成为了研究热点。 作为植入人体内的可降解支架, 必须具备足够高的支撑强度和低 的弹性回缩。 因为只有支撑强度足够高, 才能实现对血管的支撑作用。 同时, 支架在扩张后, 希望能够尽量不发生回缩, 以防止支架植入后 发生变形、 移位或脱落。 目前的生物可降解支架大多由高分子材料制备而成, 由于其弹性 模量较低, 对血管的支撑性能不高。 同时高分子材料扩张后容易发生 大的回缩, 导致支架植入后容易发生移位、 脱落等。 美国专利 Νο· 7,731,740 (Polymer-based stent assembly) 利用了高 分子材料的形状记忆性能来减小支架扩张后的回缩。 首先将可降解支 架的初始外径设计为与使用外径相同的尺寸, 因此当支架以压握状态 植入体内后仍能记忆初始的尺寸, 在球囊扩张后保持使用外径 (即初 始外径) 而不产生大的回缩。 但是该专利使用的是单一或共聚后的聚 合物材料, 激活材料形状记忆性能所需的温度高于人体的体温, 该温 度对人体组织造成的影响使得支架的生物安全性成为一个问题。 现有技术为了降低支架扩张后的回缩, 采用了具有形状记忆性能 的生物可降解高分子材料制备支架, 但这些材料要实现形状记忆性能 的热激发温度往往高于体温, 给支架安全性带来一定的问题。 而部分 可以在体温或体温以下实现形状记忆性能的高分子材料往往强度较 低, 难以满足支架支撑力的要求。 因此, 本领域存在对新型可降解支架的需求, 该支架能同时满足 低扩张回缩、 不易变形的要求, 并且其形状记忆性能可以在体温下被 激活, 还具备优良的力学支撑性能。 发明概述
为了解决上述技术问题, 本发明通过将形状记忆材料与强度较高 的材料相结合制备得到具有形状记忆性能的多层可降解支架。 尤其是, 本发明在不引入多余热量的情况下, 解决了支架扩张后回缩和支撑力 不足这两个问题。 本发明提出将支架结构分为两层或多层, 其中一层 材料是在体温下具备形状记忆性能的可降解聚合物, 可以有效降低支 架扩张后的回缩, 并且不需要额外的热量; 另一层材料是弹性模量较 高的可降解金属或可降解聚合物, 能够对血管提供有效的支撑。 两层 材料可以互为内层或外层。 本发明得到的支架不仅扩张后的回缩小, 而且没有引入外部的热量, 同时还能具备足够高的支撑力实现对狭窄 血管的支撑作用。 在达到降解时间后, 支架又能迅速降解并随新陈代 谢排出体外, 有效地降低了炎症和再狭窄等并发症的发生几率。 本发明的具有形状记忆性能的多层可降解支架, 其中一层为形状 记忆层, 由具备形状记忆性能的可降解材料制成, 另一层为支撑层, 由强度较高的可降解材料制成。 支架压握后输送到病变处, 通过球囊 扩张达到使用直径。 同时在体温下支架内层的形状记忆性能被激发, 产生保持支架初始形状 (即在血管中的使用形状) 的推动力, 有效降 低了球囊扩张后支架的回缩。 支架支撑层能够对血管提供有效地支撑, 防止变形坍塌。 在达到降解时间后, 支架主体能迅速降解随新陈代谢 排出体外。 整个过程中没有引入外部的热量, 有效保证了支架使用过 程中的安全性。 本发明的技术方案如下:
一种具备形状记忆性能的多层可降解支架, 其特征在于由两层或 多层可降解材料组成, 其中一层为具有形状记忆性能的可降解聚合物 材料, 即形状记忆层, 另一层为具有优良的径向支撑能力的可降解金 属或可降解聚合物材料, 即支撑层。 两层材料可以互为内层或外层。 支架的切割尺寸为在人体中使用时的尺寸, 也就是支架的第一种 形状。 然后支架被压握在球囊上, 成为压握状态, 也就是支架的第二 种形状。 支架以压握状态植入人体, 到达病变位置后, 通过球囊使支 架得到机械扩张, 同时在人体体温下, 支架形状记忆层材料的形状记 忆性能被激发, 使得支架在体温下产生对第一种形状的记忆, 支架保 持为第一种形状, 继而固定在病变处, 因此扩张后的回缩很小。 形状记忆层材料选择玻璃化转变温度(Tg)在 27-37°C范围内的可 降解高分子聚合物, 包括但不限于聚乳酸(PLA) 、 聚己内酯(PCL) 、 聚乙醇酸 (PGA) 、 聚原酸酯、 聚酸酐等之中的一种或多种材料的共 混、 共聚物。 共混的方式包括但不限于溶液共混和熔融共混。 共聚的 方式包括但不限于接枝共聚、 嵌段共聚和无规共聚等。 共混或共聚物 之间的质量比例可以从 1 : 1 到 1 :20不等以使改性后的材料达到所需的 Tgo 由于这些材料的形状记忆激发温度一般接近于材料的玻璃化转变 温度, 满足上述 Tg要求的高分子材料可以在体温下被激发实现形状记 忆性能。 支撑层的生物可降解材料包括生物可降解金属材料和生物可降解 聚合物材料。 其中生物可降解金属材料包括但不限于铁、 镁或镁合金。 生物可降解聚合物材料包括但不限于左旋聚乳酸(L-PLA) 、 右旋聚乳 酸 (D-PLA) 、 聚羟基乙酸 (PGA) 、 聚三亚甲基碳酸酯 (PTMC ) 、 聚对二氧环己酮 (PPDO ) 、 聚氨基酸衍生碳酸酯 (PDTE) 、 聚原酸 酯(POE)等以及它们之间的共聚或共混材料。 支撑层材料在体温下具 有较高的强度。 本发明的多层可降解支架的制备方法通过下列方式而实现, 所述 方式包括双螺杆共挤出, 表面喷涂, 模具成型, 压片成型以及溶剂粘 连等, 但不限于上述几种方式。 其中双螺杆挤出是指组成多层支架的 每层材料通过共挤出实现材料分层的管材, 并且层与层之间的粘合力 很强, 管材通过激光切割得到多层支架; 表面喷涂是指首先由内层的 材料制备成管材, 然后在管材表面依次喷涂第二层, 第三层的材料直 到完成预定的管材层数, 再将制备好的管材进行激光切割得到多层支 架; 模具成型是指不同的材料在分层模具中成型最终得到多层支架; 压片成型是指将各材料层交替排列得到片材, 片材卷绕后形成支架; 溶剂粘连是指将各可降解材料分别制备成薄膜, 薄膜之间通过溶剂粘 连得到完整的一张薄膜, 薄膜卷成细丝通过缠绕得到多层支架。 本发明的效果如下:
在本发明的多层可降解支架中, 形状记忆层材料能使支架在体温 下具备形状记忆。 球囊扩张后, 支架基本没有回缩, 保持在预定的使 用外径。 支撑层材料能够为支架提供足够的支撑强度, 使支架在植入 后能有效支撑血管壁。 多层支架在植入后, 扩张后的回缩很小, 支架 的径向支撑力高, 可以有效地支撑起病变位置处的血管。 由于整体支架的可降解性, 在达到降解时间后, 支架能迅速降解 并随新陈代谢排出体外, 有效地降低了炎症和再狭窄等并发症的发生 几率。 此外, 由于形状记忆层材料形状记忆性能的热激发温度就是体温, 整个过程在体温下完成, 不需要引入更多的热量, 确保了支架的生物 安全性。 具体实施方式
为了进一步理解本发明, 下面将结合实施例对本发明的优选方案 进行描述。 这些描述只是举例说明本发明的特征和优点, 而非限制本 发明的保护范围。 实施例一
一种在体温下具备形状记忆性能的多层可降解支架, 其制备方法 为:
将聚左旋乳酸 (PLLA) 与聚 ε-己内酯 (PCL) 以 82: 18的比例共 聚, 得到 Tg=30°C的 PLCL8218形状记忆粒子, 用作支架的内层。 支撑 层采用具有较高弹性模量和支撑强度的聚乳酸-乙醇酸以 90: 10 的比例 共聚得到的 PLGA9010 粒子, 作为支架的外层。 将 PLCL8218 和
PLGA9010 粒子通过双螺杆挤出机共挤出, 得到外径为 3.0mm, 壁厚 0.15mm的可降解管材, 管材通过激光切割得到内层为 PLCL材料, 外 层为 PLGA材料的双层支架。 支架压握到合适的球囊上, 输送到原始内径为 2.7mm的血管病变 处, 在球囊的扩张下, 10 秒内观察到狭窄的血管被撑开, 同时, 在体 温 (37°C ) 的激发下, 内层材料的形状记忆性能被激活, 支架恢复到 外径 3.0mm的切割形状的记忆, 并保持此形状。扩张完成后球囊回撤, 支架未表现出明显的回缩和移位。 整个实验过程中, 支架未发生变形、 断裂、 脱落等, 对血管实现了有效地支撑。 植入 4 个月后, 支架开始 内膜化; 6个月, 内膜化基本完成; 12个月后支架基本已经完全降解。 从支架植入到完全降解的整个过程中未出现炎症和再狭窄病变。 实施例二
本实施例中支架的外层材料采用的是聚 DL-乳酸粒子(PDLA)和 聚对二氧环己酮(PPDO )粒子通过熔融共混造粒得到的形状记忆粒子。 PDLA和 PPDO的质量比 w1 :w2=52:48, 得到 Tg=30°C的具备形状记忆 性能的材料。 将外层的形状记忆粒子溶解在 PDLA和 PPDO的共溶剂 六氟异丙醇 (HFIP) 中, 制备成溶液。 支撑层材料采用的是可降解金属镁合金, 作为支架的内层。 镁合 金通过挤出得到外径为 2.9mm, 壁厚为 0.1mm的管材, 然后通过喷涂 的方式将外层材料溶液喷涂在镁合金管材的表面。 喷涂完成后管材放 在真空箱中干燥, 使溶剂充分挥发。 完全干燥后可重复喷涂, 直到干 燥后的涂层厚度达到 0.1mm。 最终得到的管材外径为 3.0mm, 壁厚为
0.2mm。 将制备得到的管材进行激光切割得到内层为镁合金, 外层为 PDLA-PPDO的双层支架。 制备得到的双层支架支撑力在 lOOKPa以上,扩张后的弹性回缩率 小于 5%。将支架压握到合适的球囊上, 输送到原始内径为 2.6mm的狭 窄血管处。 到达病变处后, 在球囊的扩张下, 10 秒内观察到狭窄的血 管被撑开, 同时, 在体温 (37°C ) 的激发下, 外层材料的形状记忆性 能被激活, 支架恢复到外径 3.0mm的切割形状的记忆, 并保持此形状。 球囊回撤后, 支架几乎没有发生回缩, 整个过程支架也未发生变形、 移位、 断裂等。 支架在血管病变处能有效支撑 4个月左右, 12个月后 支架降解基本完成, 未出现炎症和再狭窄等并发症。 实施例三
本实施例与实施例一基本相同, 不同的仅仅是: 多层支架的实现 方式为将 PLCL8218材料与 PLGA9010材料分别进行压片, 将制得的 片材卷曲、悍接成圆筒状,其中 PLCL8218为内层, PLGA9010为外层。 圆筒状管材通过切割得到多层支架。 压握后的支架植入体内后, 通过球囊扩张, 支架有效地撑开了狭 窄的血管; 球囊回撤后, 由于内层材料的形状记忆性能, 支架几乎没 有回缩。 支架在 6个月内能实现对血管有效支撑。 12个月后支架基本 降解完成, 血管病变处得到治愈。 以上实施例的说明只是用于帮助理解本发明的核心思想。 应当指 出, 对于本领域的普通技术人员而言, 在不脱离本发明原理的前提下, 还可以对本发明的可降解支架进行若干改进和修饰, 但这些改进和修 饰也落入本发明权利要求请求保护的范围内。

Claims

1. 一种具备形状记忆性能的多层可降解支架, 其特征在于由两层 或多层可降解材料组成, 其中一层为具有形状记忆性能的可降解聚合 物材料, 即形状记忆层, 另一层为具有优良的径向支撑能力的可降解 金属或可降解聚合物材料, 即支撑层。
2. 权利要求 1的多层可降解支架, 其中形状记忆层和支撑层互为 内层或外层。
3. 权利要求 1或 2的多层可降解支架, 其中形状记忆层材料为玻 璃化转变温度 (Tg) 在 27-37°C范围内的可降解高分子聚合物。
4. 权利要求 3的多层可降解支架, 其中可降解高分子聚合物选自 聚乳酸 (PLA) 、 聚己内酯 (PCL) 、 聚乙醇酸 (PGA) 、 聚原酸酯和 聚酸酐中的一种或多种材料的共混、 共聚物。
5. 权利要求 4的多层可降解支架, 其中共混的方式选自溶液共混 和熔融共混。
6. 权利要求 4的多层可降解支架,其中共聚的方式选自接枝共聚、 嵌段共聚和无规共聚。
7. 权利要求 4-6任一项的多层可降解支架, 其中共混或共聚物之 间的质量比例为 1 : 1到 1 :20, 以使改性后的材料达到所需的 Tg。
8. 权利要求 1的多层可降解支架, 其中生物可降解金属材料选自 铁、 镁或镁合金。
9. 权利要求 1的多层可降解支架, 其中生物可降解聚合物材料选 自左旋聚乳酸(L-PLA)、右旋聚乳酸(D-PLA)、聚羟基乙酸(PGA)、 聚三亚甲基碳酸酯 (PTMC) 、 聚对二氧环己酮 (PPDO ) 、 聚氨基酸 衍生碳酸酯 (PDTE) 、 聚原酸酯 (POE) , 以及它们之间的共聚或共 混材料。
10. 前述权利要求任一项的多层可降解支架的制备方法, 其通过 选自双螺杆共挤出, 表面喷涂, 模具成型, 压片成型以及溶剂粘连方 式而实现, 其中双螺杆挤出是指组成多层支架的每层材料通过共挤出 实现材料分层的管材, 并且层与层之间的粘合力很强, 管材通过激光 切割得到多层支架; 表面喷涂是指首先由内层的材料制备成管材, 然 后在管材表面依次喷涂第二层、 第三层的材料直到完成预定的管材层 数, 再将制备好的管材进行激光切割得到多层支架; 模具成型是指不 同的材料在分层模具中成型最终得到多层支架; 压片成型是指将各材 料层交替排列得到片材, 片材卷绕后形成支架; 溶剂粘连是指将各可 降解材料分别制备成薄膜, 薄膜之间通过溶剂粘连得到完整的一张薄 膜, 薄膜卷成细丝通过缠绕得到多层支架。
PCT/CN2012/080228 2011-08-17 2012-08-16 一种具备形状记忆性能的多层可降解支架及其制备方法 WO2013023610A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12824361.5A EP2745857B1 (en) 2011-08-17 2012-08-16 Multilayer degradable stent with shape memory property and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110236013.5A CN102247623B (zh) 2011-08-17 2011-08-17 一种具备形状记忆性能的多层可降解支架及其制备方法
CN201110236013.5 2011-08-17

Publications (1)

Publication Number Publication Date
WO2013023610A1 true WO2013023610A1 (zh) 2013-02-21

Family

ID=44975420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080228 WO2013023610A1 (zh) 2011-08-17 2012-08-16 一种具备形状记忆性能的多层可降解支架及其制备方法

Country Status (3)

Country Link
EP (1) EP2745857B1 (zh)
CN (1) CN102247623B (zh)
WO (1) WO2013023610A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247623B (zh) * 2011-08-17 2014-07-23 上海微创医疗器械(集团)有限公司 一种具备形状记忆性能的多层可降解支架及其制备方法
CN102626528A (zh) * 2012-04-16 2012-08-08 上海交通大学 一种渐张式血管支架
CN103046158B (zh) * 2012-12-04 2015-02-25 四川大学 纺丝液、核壳纳米纤维及其制备方法和用途
CN105477690B (zh) * 2014-09-17 2019-02-15 上海微创医疗器械(集团)有限公司 一种多层可降解管材、支架及其制备方法
CN105903073B (zh) * 2016-06-21 2019-04-05 吴亚乐 一种可吸收形状记忆神经套管及其制备工艺
CN107185053A (zh) * 2017-05-22 2017-09-22 湖北中创医疗用品有限公司 一种降解速率可控的肠胃吻合支架及其制备方法
CN109401233B (zh) * 2017-08-18 2020-10-09 山东贝隆新材料科技有限公司 一种具有形状记忆功能的复合材料、制备方法及应用
CN109422927B (zh) * 2017-08-18 2022-07-29 山东贝隆新材料科技有限公司 一种具有形状记忆功能的软硬一体化复合材料、制备方法及应用
CN108295316B (zh) * 2018-03-08 2021-03-26 戴庆涛 一种肠道支架及其制作方法
CN109350770A (zh) * 2018-12-11 2019-02-19 上海七木医疗器械有限公司 一种分层降解聚合物支架的制备方法
CN111839809B (zh) * 2019-04-22 2022-12-27 诺一迈尔(苏州)医学科技有限公司 器官修复用管状修复件及其制备方法
CN115227483B (zh) * 2022-06-11 2024-04-26 北京航空航天大学 微创植入自贴合可降解前房药物缓释系统及其用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1386478A (zh) * 2001-05-23 2002-12-25 中国科学院化学研究所 组织工程用复合结构细胞支架及其制法和用途
CN1857742A (zh) * 2005-04-30 2006-11-08 中国科学院金属研究所 可控降解速率的生物医用植入材料及其应用
CN101219069A (zh) * 2008-01-25 2008-07-16 中国人民武装警察部队医学院附属医院 用于骨软骨修复的双层复合支架
US20090012607A1 (en) * 2007-07-06 2009-01-08 Korea Institute Of Science And Technology Method for the preparation of tube-type porous biodegradable scaffold having double-layered structure for vascular graft
KR20090010607A (ko) * 2007-07-24 2009-01-30 (주)씨네이처 콜라겐을 함유한 관절연골 치료용 이중 지지체
US7731740B2 (en) 2004-04-02 2010-06-08 Arterial Remodelling Technologies, Inc. Polymer-based stent assembly
CN102247623A (zh) * 2011-08-17 2011-11-23 微创医疗器械(上海)有限公司 一种具备形状记忆性能的多层可降解支架及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443458A (en) * 1992-12-22 1995-08-22 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method of manufacture
CN1253217C (zh) * 2004-05-13 2006-04-26 哈尔滨工业大学 聚l-乳酸在制备做为医用形状记忆材料中的用途
JP2006130064A (ja) * 2004-11-05 2006-05-25 National Cardiovascular Center ステントデリバリシステム
DE102007034364A1 (de) * 2007-07-24 2009-01-29 Biotronik Vi Patent Ag Degradierbarer Metallstent mit wirkstoffhaltiger Beschichtung
CN101159972B (zh) * 2007-09-12 2011-04-20 华为技术有限公司 业务处理方法和处理系统以及业务控制点
CN101214396A (zh) * 2008-01-03 2008-07-09 乐普(北京)医疗器械股份有限公司 可控降解的镁合金涂层支架及其制备方法
CN101496910B (zh) * 2009-03-10 2017-06-23 成都西南交大研究院有限公司 一种可降解的血管支架
CN101554488B (zh) * 2009-05-22 2012-10-03 西南交通大学 生物降解的形状记忆管状支撑支架的制备方法和使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1386478A (zh) * 2001-05-23 2002-12-25 中国科学院化学研究所 组织工程用复合结构细胞支架及其制法和用途
US7731740B2 (en) 2004-04-02 2010-06-08 Arterial Remodelling Technologies, Inc. Polymer-based stent assembly
CN1857742A (zh) * 2005-04-30 2006-11-08 中国科学院金属研究所 可控降解速率的生物医用植入材料及其应用
US20090012607A1 (en) * 2007-07-06 2009-01-08 Korea Institute Of Science And Technology Method for the preparation of tube-type porous biodegradable scaffold having double-layered structure for vascular graft
KR20090010607A (ko) * 2007-07-24 2009-01-30 (주)씨네이처 콜라겐을 함유한 관절연골 치료용 이중 지지체
CN101219069A (zh) * 2008-01-25 2008-07-16 中国人民武装警察部队医学院附属医院 用于骨软骨修复的双层复合支架
CN102247623A (zh) * 2011-08-17 2011-11-23 微创医疗器械(上海)有限公司 一种具备形状记忆性能的多层可降解支架及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2745857A4 *

Also Published As

Publication number Publication date
CN102247623B (zh) 2014-07-23
CN102247623A (zh) 2011-11-23
EP2745857A1 (en) 2014-06-25
EP2745857B1 (en) 2019-08-07
EP2745857A4 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
WO2013023610A1 (zh) 一种具备形状记忆性能的多层可降解支架及其制备方法
US9561611B2 (en) Multilayer bioabsorbable scaffolds and methods of fabricating
JP2006527628A (ja) ポリマー材のステントおよび製造方法
US9808362B2 (en) Stent fabricated from polymer composite toughened by a dispersed phase
EP3043753B1 (en) Braided scaffolds
EP2763712B1 (en) Rubber toughened bioresorbable polymer peripheral scaffold
CN105477690B (zh) 一种多层可降解管材、支架及其制备方法
EP2731557B1 (en) Methods of manufacture of bioresorbable and durable stents with grooved lumenal surfaces for enhanced re-endothelialization
ES2634698T3 (es) Prótesis endovasculares y recubrimientos degradables poliméricos que liberan fármacos
JP2009507528A (ja) 繊維で強化された複合ステント
CN107073179B (zh) 用于生物可再吸收血管支架结构的聚交酯和聚已内酯共聚物和共混物
US20120059451A1 (en) Method of Manufacturing a Polymeric Stent Having Reduced Recoil
CN112370634A (zh) 一种复合管及其制备方法和应用
US10099431B2 (en) Method to increase radial strength of a bioresorbable scaffold
WO2013029571A1 (en) Self-expandable biodegradable stent made of clad radiopaque fibers covered with biodegradable elastic foil and therapeutic agent and method of preparation thereof
JP2013042915A (ja) 薬剤を含有する生体吸収性ポリマーステント及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE