WO2013023504A1 - 抗交变电磁场锰铜分流器 - Google Patents

抗交变电磁场锰铜分流器 Download PDF

Info

Publication number
WO2013023504A1
WO2013023504A1 PCT/CN2012/078382 CN2012078382W WO2013023504A1 WO 2013023504 A1 WO2013023504 A1 WO 2013023504A1 CN 2012078382 W CN2012078382 W CN 2012078382W WO 2013023504 A1 WO2013023504 A1 WO 2013023504A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
manganese
electromagnetic field
line
resistor
Prior art date
Application number
PCT/CN2012/078382
Other languages
English (en)
French (fr)
Inventor
朱永虎
Original Assignee
浙江永泰隆电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45451242&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013023504(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 浙江永泰隆电子有限公司 filed Critical 浙江永泰隆电子有限公司
Priority to RU2013107723/28A priority Critical patent/RU2574317C2/ru
Priority to DE112012000136.2T priority patent/DE112012000136B4/de
Publication of WO2013023504A1 publication Critical patent/WO2013023504A1/zh
Priority to ZA2013/01523A priority patent/ZA201301523B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts

Definitions

  • the invention relates to an electrical measuring component, in particular to an anti-interchange electromagnetic field manganese copper shunt.
  • the shunt is widely used in meters for measuring large currents, and can be used for reflow, current limiting, and current sharing sampling of communication systems, electronic complete machines, and power supplies for automatic control.
  • the main component of the shunt is a low value resistor that collects the voltage across the resistor to measure the actual current.
  • the resistance of low-value resistors is required to be stable and accurate. It can be various metals or alloys. Commonly used are manganese, nickel, copper, and alloys thereof, especially manganese-copper alloy shunts. They are stable in performance, accurate in sampling, and have The reference measurement points are widely used in various high-precision instruments. Even in today's advanced active fiber DC current sensors that incorporate fiber optic technology into current sensors, manganese-copper shunts are indispensable as the base sampling component.
  • the shunt is susceptible to interference from alternating electromagnetic fields
  • most of the current shunts are used in non-precision DC current measurement.
  • the interference of the alternating electromagnetic field makes the sampling accuracy. Affected by a large impact, the error is large, and some cases may not even work properly.
  • the normal measurement error of the electric energy meter is disturbed by the alternating electromagnetic field, and the maximum error can reach 100%. For example, some tampering illegal elements interfere with the electric energy meter to work normally with the alternating electromagnetic field, thus stealing Electricity. Therefore, in the alternating electromagnetic field environment, for high-precision electricity meters, some anti-interference measures should be taken for the shunt.
  • the current sampling sensor market in the electric meter urgently needs a shunt with a simple process and strong resistance to alternating electromagnetic fields, and can meet various needs in various fields.
  • Yongtailong Electronics Co., Ltd. is very clear about this, and organized a research and development team, spending huge sums of money, after nearly two years of technical research, including day and night desk work and a large number of trials, program screening, and A large number of customer surveys have finally obtained the technical solution of the present invention.
  • the test of the shunt of the present invention is carried out under the electromagnetic intensity environment of 50mT ⁇ 100mT, and compared with other anti-interference measures, the results show that: the measures taken according to the invention not only have significant anti-interference, but also simple process, low cost, and connection structure.
  • Firm the product's working condition is highly stable, and the anti-interference ability is much higher than the current commercial products, and fully meets various requirements.
  • it has obtained nearly one billion US dollars of purchase intentions on a global scale. And some foreign companies are trying to imitate this product, trying to curb the product to the international market.
  • the present patent application aims to provide an anti-interchange electromagnetic field manganese-copper shunt with a simple structure and strong anti-interchange electromagnetic field interference capability, and the above-mentioned technology is dedicated to the world, and is patent-protected according to law, thereby promoting technological progress while making The pay and contribution of the present invention is correspondingly rewarded.
  • An anti-interchange electromagnetic field shunt comprising a manganese-copper resistor, two terminals respectively connected to two sides of the manganese-copper resistor, and two sampling points on the two sides of the manganese-copper resistor respectively Two sampling lines respectively connected to the two sampling points, a reference point on a certain one of the terminals, and a reference line connected to the reference point, one of the sampling lines spanning the manganese copper resistor The body is twisted and extended with another sampling line, and the former sampling line divides the manganese copper resistor into two areas of the same area.
  • the characteristics of this structure simple structure and outstanding effect.
  • the resistor When there is external alternating electromagnetic field interference, the resistor generates an additional induced voltage.
  • the sampling line across the resistor also generates an additional induced voltage, and is opposite to the induced voltage generated on the resistor. They cancel each other out, thus preventing sampling interference of the alternating electromagnetic field to the shunt.
  • the shape of the manganese-copper resistor is a rectangular sheet
  • two sampling points are disposed on the central axis of the manganese-copper resistor, such that the sampling line spans the manganese-copper resistor along the central axis, and accordingly divides the two into the same area.
  • the rectangular area saves the most material.
  • Two sampling points can also be set on the diagonal of the manganese-copper resistor. The sampling line spans the manganese-copper resistor along the diagonal, and is divided into two triangular regions of the same area, so that the anti-interference effect is better. some.
  • the sampling point connected to the sampling line across the manganese copper resistor and the reference point are located on the same side of the manganese copper resistor, so that the sampling is more accurate.
  • the manganese-copper resistor In order to uniformly flow a current through the manganese-copper resistor, it is preferable to divide the manganese-copper resistor into two or more equal pieces, and the blocks are separated by an insulator, and air may be directly used as an insulator. This prevents sampling errors caused by an increase in effective resistance caused by high-frequency current flowing from the edge of the manganese-copper resistor.
  • the sampling line across the manganese-copper resistor region into two equal strands, respectively, from the both sides of the manganese-copper resistor region across the manganese-copper resistor region, and then merge into one strand and the other.
  • the root sample line is stranded and extended. Since the line taken across the manganese-copper resistor is divided into two strands, which are respectively traversed from both sides of the manganese-copper resistor, the stranding effect of the wire and the manganese-copper resistor is enhanced, and the additional voltage generated by the alternating electromagnetic field can be better. Offset to achieve better anti-alternating electromagnetic field effects.
  • the fixing of the reference line and the sampling line and the terminal can be made of a thermoplastic tube, or it can be fixed with a resin glue and then put on a thermoplastic tube, which is more stable.
  • solder bumps protruding from the surface of the wiring body are provided at the sampling point and the reference point to make the welding sample
  • the line and the reference line are added to the square, and the P" is accurately positioned, and the manganese-based resistor is equally divided into two areas of the same area by the rice line.
  • a groove for the payout line is also provided in the bump, so that when the sample line or the reference line is welded to the bump, the sample line or the reference line is more uniformly contacted with the bump to prevent the line from being blown during soldering.
  • the solder bump can be realized by thickening the material of the terminal at the soldering position, or by punching the terminal at the solder bump to a bump, or by extending the connector out of the block. .
  • the sampling line is divided into two strands that are crossed from both sides of the manganese-copper resistor, it is necessary to thicken the material of the wiring body or extend the wiring body out of one piece; for other cases, the bump can be punched out. This makes the process simpler and saves material.
  • the solder bump of the sampling line can protrude in the insulator, so that the manufacturing process of the bump can be made more concise.
  • the terminal body In order to better connect the shunt to the electric wire and to adapt to a wider range of conditions, it is preferable to extend the terminal body out of the connecting tongue and provide an anti-slip pattern on the surface of the connecting tongue so that the external electric wire and the terminal body can be more stably connected.
  • a limiting pin protruding from the surface of the terminal body is further disposed on the connecting tongue, and the limiting pin can also be obtained by punching, and the limiting pin plays a role of limiting the position of the plugging, and the limiting pin can also be used for Fixed wiring.
  • the manganese-copper shunt designed by the scheme is used to make one sampling line span the manganese-copper resistor and then twist and merge with another sampling line, and then the two sampling lines are helically stranded and extended, and the sampling line is made of manganese-copper resistor.
  • the average body is divided into two areas of the same area, which can cancel the interference of the external alternating electromagnetic field on the sampling line of the shunt according to Faraday's law of electromagnetic induction.
  • the anti-interchange electromagnetic field manganese copper shunt has a simple structure, a simple production process, and strong anti-magnetic field interference capability.
  • Figure 1 shows the manganese-copper shunt without anti-interference measures.
  • Figure 2 shows the manganese-copper shunt with conventional anti-jamming measures for stranding the sample line together with the manganese-copper resistor.
  • Figure 3-5 shows the sample line in this scheme.
  • the manganese copper resistor is divided into two rectangular manganese copper shunts of equal area. The above three shunts are tested and compared. Under the same temperature, resistance, interference source distance and interference intensity, the test results are as follows:
  • Figure 1 is a schematic diagram of a manganese copper shunt without anti-interference measures
  • Figure 2 is a schematic diagram of a manganese copper shunt using conventional anti-interference measures
  • FIG. 3 is a schematic view showing the basic structure of a shunt when the manganese wire copper resistor is horizontally divided by the sampling line of the present invention
  • Figure 4 is an A-A attempt of the shunt shown in Figure 3;
  • Figure 5 is a schematic view of the shunt shown in Figure 3 after connecting the reference line and the sampling line;
  • FIG. 6 is a schematic view showing the basic structure of a shunt when the manganese-copper resistor is obliquely symmetrically divided by the sampling line of the present invention
  • FIG. 7 is a schematic view of the shunt connected to the reference line and the sampling line shown in FIG.
  • FIG. 8 is a schematic view showing the basic structure of a shunt of a manganese-copper resistor of the present invention divided into two pieces and having a sampling line horizontally crossing the manganese-copper resistor;
  • Figure 9 is an A-A attempt of the shunt shown in Figure 8.
  • Figure 10 is a schematic view of the shunt shown in Figure 8 after connecting the reference line and the sampling line;
  • Figure 11 is a schematic view showing the basic structure of a shunt of a manganese-copper resistor according to the present invention, in which air is used as an insulator and two sample lines are horizontally crossing the manganese-copper resistor;
  • Figure 12 is a schematic view of the shunt shown in Figure 14 after the reference line and the sample line are connected.
  • FIG. 13 is a schematic view showing the basic structure of a shunt of a manganese-copper resistor of the present invention which is divided into two blocks, the sample line is diagonally across the manganese-copper resistor, and has a terminal;
  • Figure 14 is an A-A attempt of the shunt shown in Figure 11;
  • Figure 15 is a schematic view of the shunt shown in Figure 11 after the reference line and the sample line are connected.
  • the manganese-copper shunt mainly includes a manganese-copper resistor 4 and a connector 1 on both sides of the manganese-copper resistor 4, and the connector 1 and the manganese-copper resistor 4 are both in a sheet shape.
  • the manganese-copper resistor 4 is made of manganese-copper alloy, and its resistance is accurately determined;
  • the connector 1 is made of copper or Made of brass material, one connecting hole 8 is provided in each of the two connecting bodies 1.
  • the two sampling points of the shunt are disposed on the connecting body 1 at the junction of the manganese-copper resistor 4 and the junction of the connecting body 1.
  • the sampling point in this embodiment is located on the central axis of the manganese-copper resistor 4.
  • the welding position bump 5 is set at the sampling point, the welding position bump 5 is rounded square shape, the connecting body 1 is punched out by a bumping point by punching, and a groove of the welding wire is punched or cut in the middle, that is, welding The wire slot, the direction of the wire groove is set according to the direction of the sampling line.
  • a connecting post 6 is arranged on the upper part of the side end of the two connecting bodies 1 for fixing the reference line and the sampling line respectively, and the same welding position bump 5 is arranged as the reference point of the manganese copper shunt in the lower part of the fixed reference line. The point is connected to the reference line 3 (as shown in FIG.
  • the wire can span the manganese copper resistor 4 to the soldering spot bump 5 on the sampling point on the other side, the wire slot of the soldering bump 5 is longitudinally disposed, and the sampling line connected to the sampling point is twisted with the former sampling line
  • the joint extends upward and passes through the terminal 6 of the connecting body 1 .
  • the stranded sampling line 2 and the reference line 3 are fixed by the thermoplastic tube 7 to the terminal 6 (see Fig. 1).
  • the sampling line 2 or the reference line 3 and the binding post 6 may be first cemented with a resin glue. Stay, and then put on the thermoplastic tube 7 to fix.
  • the manganese-copper resistor 4 is divided into two portions having the same upper and lower areas by a sampling line spanning the manganese-copper resistor 4, and the two portions have a rectangular shape.
  • Embodiment 1 The two sampling points in Embodiment 1 are placed one above the other and the other in the lower position such that the sampling line 2 is diagonally across the manganese copper resistor 4.
  • the anti-interference effect is better when the sampling line is diagonally crossed across the manganese-copper resistor.
  • Embodiment 3 For the case of Embodiment 2, the solder bump 5 of the sampling point can be formed by the structure shown in FIGS. 6-7, and the solder bump of the sampling point across the sampling line of the manganese copper resistor 4 5 is formed by extending one piece of the wiring body, and the welding position bump 5 of the other sampling point is concurrently occupied by the binding post 6, so that the production process of the shunt can be simplified a lot.
  • the sampling line spanning the manganese-copper resistor 4 is divided into two strands respectively from the both sides of the manganese-copper resistor 4 across the manganese-copper resistor, and then formed into a strand at the terminal 6, and then Another sample line is twisted and extended. This enhances the ability to withstand alternating electromagnetic fields.
  • the manganese-copper resistor 4 of the first embodiment is divided into two blocks between two terminals, and the two manganese-copper resistors are separated by an insulator 9. As shown in Figure 8-10. Such an arrangement can make the current flowing through the manganese-copper resistor 4 more uniform.
  • the manganese-copper resistor 4 can be divided into more blocks across the two terminals. For high-frequency alternating current, the more blocks are divided. More, the more uniform the current, but the more blocks will increase the manufacturing cost of the shunt.
  • the sampling line adopts a design obliquely across the manganese-copper resistor 4, since the position of the wiring body is limited, it may be difficult to provide the solder bump 5, and the steps 13-15 may be employed.
  • the structure, the insulator adopts a zigzag shape to divide the manganese copper resistor body 4 into two pieces, so that a place where the manganese copper resistor is diagonally opposite, that is, a place where the sampling line is diagonally crossed, ample land is left.
  • the square is set to be welded to the bump 5.
  • the insulator 9 is air, so that the solder bumps 5 of the sampling points can be formed by the structure shown in FIGS. 11-12, and the two terminals 1 respectively extend to the insulator 9 as a solder bump. 5.
  • Such a structure can greatly simplify the manufacturing process of the shunt.
  • the sampling line spanning the manganese-copper resistor 4 is divided into two strands respectively from the both sides of the manganese-copper resistor 4 across the manganese-copper resistor, and then at the other solder bump 5 The strand is then twisted and extended with another sample line. This not only simplifies the manufacturing process of the shunt, but also enhances the ability to resist interference from alternating electromagnetic fields.
  • Embodiment 9 In the case where the shunt is connected to an external electric wire by surface contact, the wiring body is required to have a large contact surface. As shown in Figure 13-15, the two terminals extend to form a wiring tongue, and a lateral anti-slip pattern 10 is punched out on the wiring tongue, so that when the shunt is connected to the external wiring in a plugged manner, it can be more stable; or In the case of crimping, greater friction can be created to make the connection more secure. In order to make the plugs balanced and accurate, limit pins 11 are respectively arranged above the two terminals, and the limit pins 11 are also formed by punching. The limit pin 11 can also be used as a connection hole.

Abstract

一种抗交变电磁场锰铜分流器,属于仪表领域,涉及电流表中的分流器。它主要包括锰铜电阻体、分别与该锰铜电阻体两侧连接的两个接线体、分别位于该锰铜电阻体两侧的位于接线体上的两个采样点、与该两个采样点分别连接的两根采样线、位于其中一个所述接线体上的一个基准点、与该基准点连接的基准线。其中的一根采样线跨过所述锰铜电阻体后与另外一根采样线绞合延伸,并且前者采样线把锰铜电阻体分成两块面积相同的区域。该抗交变电磁场锰铜分流器,利用法拉第电磁感应定律,在外部交变电磁场干扰时,跨过锰铜电阻体的采样线上产生感应电压,与锰铜电阻上产生的感应电压相抵消,从而防止交变电磁场对分流器的干扰。本发明结构简单,容易实施。

Description

抗交变电磁场锰铜分流器
技术领域
本发明涉及电器测量元件, 尤其是一种抗交变电磁场锰铜分流器。
背景技术
分流器广泛运用于测量大电流的仪表中, 可用于对通讯系统、 电子整机、 自动化控制的 电源等的回流、 限流、 均流取样检测。 分流器的主要器件是一个低值电阻, 采集该电阻两端 的电压, 可测得实际的电流。 低值电阻的阻值要求稳定、 精确, 可以是各种金属或合金, 常用的有锰、 镍、 铜, 及其合金等, 尤其是锰铜合金的分流器, 性能稳定、 采样精确, 并且 具有基准测量点, 广泛应用于各种高精度仪器仪表中。 即使在当今先进的将光纤技术结合到 电流传感器中的有源式光纤直流电流传感器, 也离不开锰铜分流器作为基础采样元件。
但是, 由于分流器易受到交变电磁场的干扰, 目前分流器还多数应用于非精密的直流电 流测量中, 在强交变电磁场环境和交流电流测量中, 交变电磁场的干扰使其采样的精度受到 较大的影响, 误差较大, 有些情况甚至无法正常工作。 经试验测算利用交变电磁场干扰电能 表正常计量误差, 随着交变电磁场的强弱而变化, 最大误差可达 100%, 如一些窃电不法分子 用交变电磁场干扰电能表正常工作, 从而窃电。所以在交变电磁场环境中, 对于高精度电表, 需要对分流器采取一些抗干扰措施。 如今有利用集成芯片对采样后的数据做修正的措施, 以 及给分流器加屏蔽罩和如图 5所示的将采样线连同分流器绞合的方法等防止交变电磁干扰的 措施。 但是, 后期对数据进行修正, 不如对分流器直接采取防干扰措施强, 但加屏蔽成本高, 并且安装麻烦、易损坏,而如图 5所示的将采样线连同分流器绞合的防止交变电磁干扰的措施, 效果并不理想。
发明内容
综上所述, 电表中的电流采样传感器市场急需一种工艺简单、 抗交变电磁场干扰能力强 的分流器, 且能够满足各领域各种需求的情况。 作为业内谙熟市场需求的供应商, 永泰隆电 子有限公司对此十分明了, 并组织研发队伍, 斥巨资, 历经近两年的技术攻关, 包括夜以继 日的伏案工作和大量的试验、 方案筛选, 以及大量的客户调查, 终于得到了本发明的技术方 案。
对本发明的分流器在 50mT~ 100 mT电磁强度环境下进行的测试, 并与其它抗干扰措施对 比, 结果显示: 按照本发明采取的措施不仅抗干扰显著, 并且工艺简单, 成本低, 而且连接 结构牢固, 产品的工作状态高度稳定, 抗干扰能力远远高于目前市售产品, 且完全达到各种 要求。 尤其是经一些客户使用后, 已经在全球范围内得到近十亿美元的采购意向。 并且有外 企正试图仿造本产品, 妄图遏制本产品走向国际市场。 本专利申请旨在提供一种结构简单, 抗交变电磁场干扰能力强的抗交变电磁场锰铜分流 器, 将上述技术奉献于世, 并依法得到专利保护, 从而在推进技术进步的同时, 使本发明的 付出和贡献得到相应的回报。
按照本发明的抗交变电磁场锰铜分流器的技术方案是:
一种抗交变电磁场分流器, 包括锰铜电阻体、 分别与该锰铜电阻体两侧连接的两个接线 体、 分别位于该锰铜电阻体两侧的位于接线体上的两个采样点、 与该两个采样点分别连接的 两根采样线、 位于某个所述接线体上的一个基准点、 与该基准点连接的基准线, 其中的一根 采样线跨过所述锰铜电阻体后与另外一根采样线绞合延伸, 并且前者采样线把锰铜电阻体分 成两块面积相同的区域。 这种结构的特点: 结构简单、 效果卓著。 当有外部交变电磁场干扰 时, 电阻体会产生额外的感应电压, 但上述结构中, 跨过电阻体的采样线同样产生额外的感 应电压, 并且与电阻体上产生的感应电压方向相反, 两者相互抵消, 从而防止了交变电磁场 对分流器的采样干扰。
对于锰铜电阻体形状为矩形片状时, 优选两个采样点设置在锰铜电阻体的中轴线上, 这 样采样线沿中轴线跨过锰铜电阻体, 相应地将其分成两块面积相同的矩形区域, 这样最节省 材料。 两个采样点也可以设置在锰铜电阻体的对角线上, 采样线沿对角线跨过锰铜电阻体, 相应地将其分成两块面积相同的三角形区域, 这样抗干扰效果更好一些。
优选的是, 让与跨过锰铜电阻体的采样线连接的采样点和所述基准点位于所述锰铜电阻 体同侧, 这样采样更准确。
为了使电流均匀流过锰铜电阻体, 优选的是, 将锰铜电阻体分成相等的两块或多块, 各 块之间用绝缘体隔开, 也可以直接用空气作绝缘体。 这样可以防止高频电流从锰铜电阻体的 边缘流过造成的有效电阻增加而产生的采样误差。
为了增强抗干扰效果, 优选将跨过锰铜电阻体区域的采样线分成相等的两股分别从锰铜 电阻体区域的两侧跨过锰铜电阻体区域, 而后合再并成一股与另外一根采样线绞合延伸。 由 于将跨过锰铜电阻体的采用线分成两股分别从锰铜电阻体两侧跨过, 使得采用线和锰铜电阻 体的绞合效果增强, 交变电磁场产生的附加电压能够更好地抵消, 达到更好的抗交变电磁场 的效果。
为了便于固定所述采样线和基准线, 优选在两个接线体上各设置一个接线柱, 分别用于 固定基准线和采样线。
基准线和采样线与接线柱的固定可以采用热塑管, 也可以先用树脂胶固定, 再套上热塑 管, 这样更稳固。
作为优选方案, 在采样点和基准点处设有突出于接线体表面的焊接位凸点, 使焊接采样 线和基准线吏加方使、 吏加牢固, 并且 P」以准确定位, 吏好的用米样线将锰锏电阻体平均分 成两块面积相同的区域。在凸点中还设置放线的凹槽, 这样将采样线或基准线焊到凸点上时, 使采样线或基准线与凸点更均匀地接触, 防止焊接时将线烧断。
焊接位凸点可以通过在焊接位处增厚接线体的材料来实现, 也可以通过将焊接位凸点处 的接线体冲出一个凸点来实现, 还可以通过将接线体延伸出一块来实现。 对于采样线分成两 股从锰铜电阻体两侧跨过的情况,需要通过增厚接线体的材料或将接线体延伸出一块来实现; 对于其它的情况就可以通过冲出凸点的方式来实现, 这样工艺更简单, 并且节省材料。
对于采用空气作为绝缘体将锰铜电阻体分成两块的情况, 优选的是, 采样线的焊接位凸 点可以突出于绝缘体内, 这样可以使凸点的制作工艺更加简洁。
为了使分流器更好地与电线连接, 以及适应更广泛的情况, 优选将所述接线体延伸出连 接舌, 并在连接舌表面设置防滑纹, 使外接电线与接线体能够更稳固地连接。 在连接舌上面 还设置有突出于接线体表面的限位销, 该限位销也可以通过冲压得到, 限位销对于插接的情 况起到限位的作用, 而且限位销也可以用于固定接线。
采用本方案设计的锰铜分流器, 让一根采样线跨过锰铜电阻体后与另一根采样线绞合并 定位, 再把两根采样线螺旋绞合延伸, 同时采样线把锰铜电阻体平均分为两块面积相同的区 域, 这样可根据法拉第电磁感应定律, 抵消外部交变电磁场对分流器采样线的干扰。 在采样 点和基准点设置焊接位凸点, 能使焊接定位更加准确, 采样线连接更加牢固, 同时在连接体 上设置接线柱, 并通过树脂胶和热塑管把采样线、 基准线固定在接线柱上, 使其牢固, 不易 脱落, 延长分流器的使用寿命。 并且这种抗交变电磁场锰铜分流器, 结构简单, 生产工艺简 单, 抗磁场干扰能力强。
图 1是没有采取抗干扰措施的锰铜分流器, 图 2是采取常规的将采样线连同锰铜电阻体绞 合的抗干扰措施的锰铜分流器, 图 3-5是本方案中采样线将锰铜电阻体平分为两个面积相等的 矩形的锰铜分流器。 现对上述三个分流器进行测试对比, 在同样的温度、 阻值、 干扰源距离、 干扰强度下, 测试结果如下:
Figure imgf000005_0001
在分流器外加 1.0mm厚屏蔽罩 交变电磁场 lOOmT精度误差% 50mT精度误差%
图 1分流器 19% 3.8%
图 2分流器 10.2% 1.7%
图 3-5分流器 0.0% 0.0% 上述试验结果表明: 本方案的抗交变电磁场锰铜分流器明显削弱了交变电磁场的干扰。 可见, 本方案从技术上解决了分流器的交变电磁场干扰问题。
附图说明
图 1为没有采取抗干扰措施的锰铜分流器示意图;
图 2为采用常规抗干扰措施的锰铜分流器示意图;
图 3为本发明的采样线把锰铜电阻体水平平分时的分流器的基本结构示意图;
图 4为图 3所示分流器的 A-A试图;
图 5为图 3所示分流器连接基准线和采样线后的示意图;
图 6为本发明的采样线把锰铜电阻体斜对称平分时的分流器的基本结构示意图; 图 7为图 6所示分流器连接基准线和采样线后的示意图;
图 8为本发明的锰铜电阻体分成两块的、采样线水平跨过锰铜电阻体的分流器的基本结构 示意图;
图 9为图 8所示分流器的 A-A试图;
图 10为图 8所示分流器连接基准线和采样线后的示意图;
图 11为本发明的锰铜电阻体由空气作为绝缘体分成两块的、 采样线水平跨过锰铜电阻体 的分流器的基本结构示意图;
图 12为图 14所示分流器连接基准线和采样线后的示意图。
图 13为本发明的锰铜电阻体分成两块的、 采样线斜跨过锰铜电阻体, 且具有接线舌的分 流器的基本结构示意图;
图 14为图 11所示分流器的 A-A试图;
图 15为图 11所示分流器连接基准线和采样线后的示意图。
具体实施方式
下面通过实施例结合附图对本发明作进一步的描述。
实施例 1 :
如图 3-5所示, 锰铜分流器主要包括锰铜电阻体 4和锰铜电阻体 4两侧的连接体 1, 连接体 1 和锰铜电阻体 4皆为片状。锰铜电阻体 4采 锰铜合金, 其阻值精确测定; 连接体 1采用紫铜或 黄铜材料制成, 两片连接体 1中各设一个连接孔 8。分流器的两个采样点设在锰铜电阻体 4两侧 的和连接体 1交界处的连接体 1上, 本实施例中的采样点位于锰铜电阻体 4的中轴线上。采样点 处设置焊接位凸点 5, 焊接位凸点 5为圆角方形, 采用冲压法将连接体 1冲出一个凸点得到,且 中间冲压出或切出一条焊线的凹槽, 即焊线槽, 焊线槽的方向根据采样线的走向设置。 两片 连接体 1的侧端上部各设一个接线柱 6, 分别用于固定基准线和采样线, 固定基准线的接线柱 下部设置同样的焊接位凸点 5作为锰铜分流器的基准点, 该点与基准线 3连接 (如图 1 ), 与基 准点同侧的采样点上的焊接位凸点 5的焊线槽横向设置, 与该采样点连接的采样线 2也横向设 置, 该采样线可跨过锰铜电阻体 4至另一侧的采样点上的焊接位凸点 5, 该焊接位凸点 5的焊线 槽纵向设置, 与该采样点连接的采样线与前者采样线绞合向上延伸, 并经过所在连接体 1的接 线柱 6。绞合的采样线 2以及基准线 3利用热塑管 7与所在接线柱 6固定(如图 1 ),当然为了稳固, 可以先用树脂胶将采样线 2或基准线 3与接线柱 6胶固住, 再套上热塑管 7固定。 本实施例中跨 过锰铜电阻体 4的采样线将锰铜电阻体 4分成上下面积相等的两部分, 两部分的形状为矩形。
实施例 2:
将在实施例 1中的两个采样点, 一个设置在靠上的位置, 另一个设置在靠下的位置, 这样 采样线 2斜跨过锰铜电阻体 4。 采样线斜斜跨过锰铜电阻体时抗干扰效果会更好一些。
实施例 3: 对于实施例 2的情形, 采样点的焊接位凸点 5, 可以由图 6-7所示的结构形成, 跨过锰铜电阻体 4的采样线的采样点的焊接位凸点 5由接线体延伸一块形成, 并且另一个采样 点的焊接位凸点 5由接线柱 6兼任, 这样分流器的生产工艺可以简化许多。
实施例 4:
对于实施例 3的情形,将跨过锰铜电阻体 4的采样线分成两股分别从锰铜电阻体 4的两侧跨 过锰铜电阻体, 然后在接线柱 6处和成一股, 再与另外一根采样线绞合延伸。 这样可以使抗交 变电磁场干扰的能力增强。
实施例 5:
将实施例 1中的锰铜电阻体 4分成两块跨接在两个接线体间,两块锰铜电阻体间用绝缘体 9 隔开。 如图 8-10所示。 这样的设置可以使流过锰铜电阻体 4的电流更均匀, 当然, 锰铜电阻体 4可以分成更多块跨接在两个接线体间, 对于高频交流电流来说, 分的块越多, 电流越均匀, 但是分得块多会使分流器的制作成本增加。
实施例 6:
对于实施例 5的情形, 当采样线采用斜跨过锰铜电阻体 4的设计时, 由于接线体的位置有 限, 有可能造成设置焊接位凸点 5困难, 这时可采用图 13-15的结构, 绝缘体采用 Z字形将锰铜 电阻体 4分成两块, 这样可在锰铜电阻体对角的地方, 即采样线斜跨的地方, 留出较宽裕的地 方设置焊接位凸点 5。
实施例 7:
对于实施例 5的情形, 绝缘体 9为空气, 这样采样点的焊接位凸点 5, 可以由图 11-12所示 的结构形成, 两个接线体 1分别向绝缘体 9延伸一块作为焊接位凸点 5。这样的结构可以使分流 器的制作工艺大大简化。
实施例 8:
对于实施例 7的情形,将跨过锰铜电阻体 4的采样线分成两股分别从锰铜电阻体 4的两侧跨 过锰铜电阻体, 然后在另一个焊接位凸点 5处和成一股, 再与另外一根采样线绞合延伸。 这样 不仅使分流器的制作工艺简化, 而且使抗交变电磁场干扰的能力增强。
实施例 9: 对于通过面接触使分流器与外接电线连接的情形, 需要接线体有较大的接触面。 如图 13-15 所示, 两个接线体延伸形成接线舌, 并且在接线舌上冲压出横向的防滑纹 10, 这样当分流器 以插接的形式与外接线连接时, 可以更加稳固; 或者对于压接的情形, 可以形成更大的摩擦 力, 使连接更加牢靠。 为了使插接均衡、 准确, 在两个接线舌上方分别设置限位销 11, 限位 销 11也通过冲压形成。 限位销 11还可以作为连接孔来使用。

Claims

WO 2013/023504 权 利 要 求 书 PCT/CN2012/078382
1. 一种抗交变电磁场分流器, 它主要包括锰铜电阻体、 分别与该锰铜电阻体两侧连接的 两个接线体、 分别位于该锰铜电阻体两侧的位于接线体上的两个采样点、 与该两个采样点分 别连接的两根采样线、 位于某个所述接线体上的一个基准点、 与该基准点连接的基准线, 其 特征是其中的一根采样线跨过所述锰铜电阻体后与另外一根采样线绞合延伸, 并且前者采样 线把锰铜电阻体分成两块面积相同的区域。
2. 根据权利要求 1所述的抗交变电磁场分流器, 其特征是与跨过锰铜电阻体的采样线连 接的采样点和所述基准点位于所述锰铜电阻体同侧。
3. 根据权利要求 1或 2所述的抗交变电磁场分流器, 其特征是所述两块区域由绝缘体隔 开。
4. 根据权利要求 3所述的抗交变电磁场分流器, 其特征是所述绝缘体是空气。
5. 根据权利要求 1、 2、 4中任一项所述的抗交变电磁场分流器, 其特征是所述跨过锰铜 电阻体区域的采样线分成相等的两股分别从锰铜电阻体区域的两侧跨过锰铜电阻体区域, 而 后合再并成一股与另外一根采样线绞合延伸。
6. 根据权利要求 3所述的抗交变电磁场分流器, 其特征是所述跨过锰铜电阻体区域的采 样线分成相等的两股分别从锰铜电阻体区域的两侧跨过锰铜电阻体区域, 而后再合并成一股 与另外一根采样线绞合延伸。
7. 根据权利要求 1、 2、 4、 6中任一项所述的抗交变电磁场分流器, 其特征是在所述接线 体上分别设置用于固定基准线和采样线的接线柱, 且所述基准线和采样线通过热塑管固定在 所述接线柱上。
8. 根据权利要求 1、 2、 4、 6中任一项所述的抗交变电磁场分流器, 其特征是在所述接线 体上分别设置用于固定基准线和采样线的接线柱, 且所述基准线和采样线通过树脂胶并热塑 管固定在所述接线柱上。
9. 根据权利要求 3所述的抗交变电磁场分流器, 其特征是在所述接线体上分别设置用于 固定基准线和采样线的接线柱, 且所述基准线和采样线通过热塑管固定在所述接线柱上。
10.根据权利要求 3所述的抗交变电磁场分流器, 其特征是在所述接线体上分别设置用于 固定基准线和采样线的接线柱, 且所述基准线和采样线通过树脂胶并热塑管固定在所述接线 柱上。
11.根据权利要求 5所述的抗交变电磁场分流器, 其特征是在所述接线体上分别设置用于 固定基准线和采样线的接线柱, 且所述基准线和采样线通过热塑管固定在所述接线柱上。
12.根据权利要求 5所述的抗交变电磁 分流器, 其特征是在所述接线体上分别设置用于 固定基准线和采样线的接线柱, 且所述基准线和采样线通过树脂胶并热塑管固定在所述接线 柱上。
13.根据权利要求 1、 2、 4、 6、 9-12中任一项所述的抗交变电磁场分流器, 其特征是所述 采样点和基准点处设有焊接位凸点, 且凸点中间设置焊线的凹槽。
14.根据权利要求 3所述的抗交变电磁场分流器, 其特征是所述采样点和基准点处设有突 出于接线体表面的焊接位凸点, 且凸点中间设置焊线的凹槽。
15.根据权利要求根据权利要求 7所述的抗交变电磁场分流器, 其特征是所述采样点和基 准点处设有突出于接线体表面的焊接位凸点, 且凸点中间设置焊线的凹槽。
16.根据权利要求 8所述的抗交变电磁场分流器, 其特征是所述采样点和基准点处设有突 出于接线体表面的焊接位凸点, 且凸点中间设置焊线的凹槽。
17.根据权利要求 4所述的抗交变电磁场分流器, 其特征是所述采样点设有焊接位凸点, 且凸点伸于空气绝缘体内。
18.根据权利要求 4所述的抗交变电磁场分流器, 其特征是所述采样点和基准点处设有焊 接位凸点, 其中, 采样点处的焊接位凸点伸于空气绝缘体内, 基准点处的焊接位凸点为突出 于接线体表面的焊接位凸点。
19.根据权利要求 1、 2、 4、 6、 9-12、 15-18中任一项所述的抗交变电磁场分流器, 其特 征是所述接线体延伸出连接舌, 且该连接舌表面设有防滑纹, 在连接舌上面还设置有突出于 接线体表面的限位销。
20.根据权利要求 3所述的抗交变电磁场分流器, 其特征是所述接线体延伸出连接舌, 且 该连接舌表面设有防滑纹, 在连接舌上面还设置有突出于接线体表面的限位销限位销。
21.根据权利要求 5所述的抗交变电磁场分流器, 其特征是所述接线体延伸出连接舌, 且 该连接舌表面设有防滑纹, 在连接舌上面还设置有突出于接线体表面的限位销限位销。
22.根据权利要求 7所述的抗交变电磁场分流器, 其特征是所述接线体延伸出连接舌, 且 该连接舌表面设有防滑纹, 在连接舌上面还设置有突出于接线体表面的限位销限位销。
23.根据权利要求 8所述的抗交变电磁场分流器, 其特征是所述接线体延伸出连接舌, 且 该连接舌表面设有防滑纹, 在连接舌上面还设置有突出于接线体表面的限位销限位销。
24.根据权利要求 13所述的抗交变电磁场分流器, 其特征是所述接线体延伸出连接舌,且 该连接舌表面设有防滑纹, 在连接舌上面还设置有突出于接线体表面的限位销限位销。
25.—种抗交变电磁场分流器, 它主要包括锰铜电阻体、 分别与该锰铜电阻体两侧连接的 两个接线体、 分别位于该锰铜电阻体两侧的位于接线体上的两个采样点、 与该两个采样点分 别连接的两根采样线、 位于某个所述接线体上的一个基准点、 与该基准点连接的基准线, 其 特征是, 锰铜电阻体分成相等的两块以上, 并且各块之间用绝缘体隔开; 而且其中的一根采 样线跨过所述锰铜电阻体后与另外一根采样线绞合延伸。
26. 根据权利要求 25所述的抗交变电磁场分流器, 其特征是所述绝缘体为空气。
PCT/CN2012/078382 2011-08-12 2012-07-09 抗交变电磁场锰铜分流器 WO2013023504A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2013107723/28A RU2574317C2 (ru) 2011-08-12 2012-07-09 Противодействующий переменному электромагнитному полю медно-марганцевый шунт
DE112012000136.2T DE112012000136B4 (de) 2011-08-12 2012-07-09 Mangan-Kupfer-Shunt gegen elektromagnetische Wechselfelder
ZA2013/01523A ZA201301523B (en) 2011-08-12 2013-02-28 Anti-alternating electromagnetic field management-copper shunt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110231609 CN102323459B (zh) 2011-08-12 2011-08-12 抗交变磁场锰铜分流器
CN201110231609.6 2011-08-12

Publications (1)

Publication Number Publication Date
WO2013023504A1 true WO2013023504A1 (zh) 2013-02-21

Family

ID=45451242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078382 WO2013023504A1 (zh) 2011-08-12 2012-07-09 抗交变电磁场锰铜分流器

Country Status (4)

Country Link
CN (1) CN102323459B (zh)
DE (1) DE112012000136B4 (zh)
WO (1) WO2013023504A1 (zh)
ZA (1) ZA201301523B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687142A (zh) * 2021-08-26 2021-11-23 国网江西省电力有限公司供电服务管理中心 一种基于分流器的直流电能计量模块
CN116449064A (zh) * 2023-03-12 2023-07-18 深圳市开步电子有限公司 分流器、用电设备及其储能设备

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323459B (zh) * 2011-08-12 2013-10-23 桐乡市伟达电子有限公司 抗交变磁场锰铜分流器
CN102707115A (zh) * 2012-06-05 2012-10-03 江苏林洋电子股份有限公司 抗交变磁场干扰分流器
CN102854347A (zh) * 2012-08-09 2013-01-02 俞敏 电能表及其电流采样装置
CN102854368A (zh) * 2012-09-27 2013-01-02 杭州炬华科技股份有限公司 一种抗外界磁场干扰的锰铜电流采样器件
CN103257260B (zh) * 2012-10-24 2017-02-08 惠州市惠之声实业有限公司 一种抗交变磁场干扰的方法及取样电阻
CN202903841U (zh) * 2012-11-26 2013-04-24 厦门宏发电力电器有限公司 一种抗交变磁场干扰的电子式电能表
CN103913609B (zh) * 2012-12-31 2018-02-16 深圳赫美集团股份有限公司 不受交变外磁场影响的测量仪表及其实现方法
CN103063891B (zh) * 2013-01-10 2014-11-26 浙江力辉电器有限公司 抗干扰的智能电表以及智能电表的抗干扰方法
CN103076475B (zh) * 2013-01-10 2015-01-07 浙江力辉电器有限公司 抗干扰的锰铜分流器
CN103176019A (zh) * 2013-03-23 2013-06-26 桐乡市伟达电子有限公司 高精度分流器
CN104122426A (zh) * 2014-07-25 2014-10-29 桐乡市伟达电子有限公司 一种高精度采样分流器及其制备方法
JP2016206138A (ja) * 2015-04-28 2016-12-08 Koa株式会社 電流検出装置
CN109613468A (zh) * 2018-12-29 2019-04-12 杭州明特科技有限公司 基于磁场影响量的计量补偿方法/系统、介质及处理设备
CN110836988A (zh) * 2019-11-25 2020-02-25 新沂市鑫洋电子有限公司 一种抗工磁干扰的锰铜分流器及其应用
CN110836997A (zh) * 2019-11-26 2020-02-25 新沂市鑫洋电子有限公司 一种电磁兼容性良好的锰铜分流器及其应用
RU197196U1 (ru) * 2019-12-11 2020-04-10 Общество с ограниченной ответственностью "МИРТЕК" Измерительный шунт
CN114778916A (zh) * 2022-03-25 2022-07-22 桐乡市伟达电子有限公司 抗磁场分流器、其电力仪表及其抗磁场分流器制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884615A1 (fr) * 2005-04-13 2006-10-20 Valeo Electronique Sys Liaison Dispositif de mesure du courant, notamment d'une batterie
CN200976020Y (zh) * 2006-10-20 2007-11-14 深圳长城开发科技股份有限公司 一种分流器
CN201429643Y (zh) * 2009-07-06 2010-03-24 山东山大奥太电气有限公司 一种新型分流器
CN102323459A (zh) * 2011-08-12 2012-01-18 桐乡市伟达电子有限公司 抗交变磁场锰铜分流器
CN202177647U (zh) * 2011-08-12 2012-03-28 桐乡市伟达电子有限公司 抗交变磁场锰铜分流器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH659895A5 (de) 1983-06-09 1987-02-27 Landis & Gyr Ag Anordnung zum messen eines stromes.
CN101165496B (zh) * 2006-10-20 2012-02-22 深圳长城开发科技股份有限公司 一种分流器
CN101097232B (zh) * 2007-03-30 2013-01-09 桐乡市伟达电子有限公司 分流器的形成方法
CN201555873U (zh) * 2009-09-11 2010-08-18 朱卫明 一种多用途锰铜分流器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884615A1 (fr) * 2005-04-13 2006-10-20 Valeo Electronique Sys Liaison Dispositif de mesure du courant, notamment d'une batterie
CN200976020Y (zh) * 2006-10-20 2007-11-14 深圳长城开发科技股份有限公司 一种分流器
CN201429643Y (zh) * 2009-07-06 2010-03-24 山东山大奥太电气有限公司 一种新型分流器
CN102323459A (zh) * 2011-08-12 2012-01-18 桐乡市伟达电子有限公司 抗交变磁场锰铜分流器
CN202177647U (zh) * 2011-08-12 2012-03-28 桐乡市伟达电子有限公司 抗交变磁场锰铜分流器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687142A (zh) * 2021-08-26 2021-11-23 国网江西省电力有限公司供电服务管理中心 一种基于分流器的直流电能计量模块
CN113687142B (zh) * 2021-08-26 2023-06-23 国网江西省电力有限公司供电服务管理中心 一种基于分流器的直流电能计量模块
CN116449064A (zh) * 2023-03-12 2023-07-18 深圳市开步电子有限公司 分流器、用电设备及其储能设备
CN116449064B (zh) * 2023-03-12 2023-10-31 深圳市开步电子有限公司 分流器、用电设备及其储能设备

Also Published As

Publication number Publication date
DE112012000136T5 (de) 2013-06-27
ZA201301523B (en) 2014-06-25
RU2013107723A (ru) 2014-08-27
CN102323459B (zh) 2013-10-23
CN102323459A (zh) 2012-01-18
DE112012000136B4 (de) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2013023504A1 (zh) 抗交变电磁场锰铜分流器
EP2924448B1 (en) Electronic electric meter resistant to alternating magnetic field interferences
JP5616431B2 (ja) 電流から発生する磁界を検知して電流量を推定する方法
CN104136926B (zh) 电流传感器
JP6019373B2 (ja) 電流センサ
WO2023179181A1 (zh) 抗磁场分流器、电力仪表及抗磁场分流器的制造方法
KR101208734B1 (ko) 접촉면에 전도성 금속이 도금된 클램프씨티 센서
US8878559B2 (en) IC current measuring apparatus and IC current measuring adapter
CN103630716A (zh) 一种抗干扰分流器及其电子式电能表
CN209821257U (zh) 一种能抗干扰的分流器及其继电器和电子式电能表
CN111190036A (zh) 分流器引线结构、其电力仪表及分流器引线结构制造方法
US20140292343A1 (en) Electromagnetic relay
KR101731000B1 (ko) 회로 기판 검사용 프로브 유닛 및 회로 기판 검사 장치
CN217238183U (zh) 抗磁场分流器及其电力仪表
CN105353184B (zh) 一种分流片、继电器及电子式电能表
JP6076709B2 (ja) 導通検査装置および導通検査方法
CN205210141U (zh) 分流片、继电器及电子式电能表
US11561245B2 (en) Sensor apparatuses with a bypass current path and associated production methods
CN201535784U (zh) 一种老化测试基板
CN106154013B (zh) 一种复合型罗氏线圈积分电阻及其制造方法
JP2003270267A (ja) プローブユニット、プローブカード、測定装置及びプローブカードの製造方法
RU121397U1 (ru) Измерительный шунт (варианты)
NO317284B1 (no) Maleapparat for elektrisitetsmaler
RU197196U1 (ru) Измерительный шунт
CN108363025A (zh) 磁场传感器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013107723

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120001362

Country of ref document: DE

Ref document number: 112012000136

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823298

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12823298

Country of ref document: EP

Kind code of ref document: A1