WO2013018993A4 - 화학수소화물 수소발생용 금속폼 촉매 및 그 제조방법 - Google Patents

화학수소화물 수소발생용 금속폼 촉매 및 그 제조방법 Download PDF

Info

Publication number
WO2013018993A4
WO2013018993A4 PCT/KR2012/005267 KR2012005267W WO2013018993A4 WO 2013018993 A4 WO2013018993 A4 WO 2013018993A4 KR 2012005267 W KR2012005267 W KR 2012005267W WO 2013018993 A4 WO2013018993 A4 WO 2013018993A4
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
catalyst
metal foam
boron
metal
Prior art date
Application number
PCT/KR2012/005267
Other languages
English (en)
French (fr)
Other versions
WO2013018993A3 (ko
WO2013018993A2 (ko
Inventor
강신왕
김태규
Original Assignee
휴그린파워(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 휴그린파워(주) filed Critical 휴그린파워(주)
Publication of WO2013018993A2 publication Critical patent/WO2013018993A2/ko
Publication of WO2013018993A3 publication Critical patent/WO2013018993A3/ko
Publication of WO2013018993A4 publication Critical patent/WO2013018993A4/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a metal foam catalyst for generating hydrogen hydride of a chemical hydride and a method for preparing the same, and more particularly, to a nickel metal (Ni) To a metal foam catalyst for the production of a chemical hydride hydrogen by simplifying the production process of the metal foam catalyst by using the component as a catalyst precursor and a process for producing the same.
  • Ni nickel metal
  • PEMFC Polymer Electrolyte Membrane Fuel Cell
  • Polymer electrolyte fuel cells have better output characteristics, lower operating temperature, faster startup and response characteristics than other fuel cells.
  • fuel cell power sources are composed of fuel supply device, fuel cell stack, and electronic control device.
  • the most important obstacle in the development of portable fuel cell power source is to safely store and handle hydrogen, fuel of fuel cell There is a way.
  • hydrogen storage methods include high pressure hydrogen storage methods, liquefied hydrogen storage methods, metal hydrides and fuel reforming methods, these methods are difficult to apply to portable fuel cells due to storage density, stability, and recharging problems.
  • Formula 1 is a formula obtained by hydrolyzing sodium borohydride (NaBH 4 ), which is one kind of alkali boron hydride.
  • NaBH 4 sodium borohydride
  • Sodium borohydride (NaBH 4 ) is a stable material with a relatively high hydrogen content compared to other materials. Since it is an environmentally friendly and renewable fuel because it is a non-flammable alkali solution, hydrogen produced through this method has high purity and is easy to control the reaction .
  • sodium borohydride (NaBH 4 ) solution is prepared as a strong alkaline (pH 13 or higher) solution to inhibit hydrolysis in the absence of catalyst, sodium borohydride (NaBH 4 ) .
  • a noble metal catalyst such as platinum (Pt) or ruthenium (Ru) is mainly used.
  • a powdery catalyst such as cobalt (Co) or nickel (Ni) is used to replace the noble metal catalyst.
  • Co cobalt
  • Ni nickel
  • Korean Patent No. 10-0785043 discloses a cobalt-boron catalyst / carrier for hydrogen-releasing reaction using an alkali boron hydride solution and a method for preparing the same. More particularly, the present invention relates to a cobalt- Boron catalyst is supported in the support, wherein the cobalt-boron catalyst is either one or both of oxides combined with cobalt (Co) and boron (B) (except oxides in which Co and B are bonded) Boron catalyst / carrier for hydrogen-releasing reaction using a solution.
  • a cobalt solution is supported on a support using a precursor, cobalt ions of a cobalt solution are reduced using an alkali boron solution as a reducing agent, and an oxide or a boron- Boron (Co-B) catalyst having one or both of cobalt and boron bonded to each other, and drying and firing a cobalt-boron (Co-B) catalyst supported on the carrier B catalyst / carrier for a hydrogen release reaction using an alkali boron hydride solution.
  • Co-B cobalt-boron
  • a precursor aqueous solution such as an aqueous solution of cobalt chloride (CoCl 2 ) should be additionally prepared, and the amount of generated hydrogen in the cobalt-boron catalyst varies depending on the concentration of the precursor aqueous solution.
  • CoCl 2 cobalt chloride
  • Korean Patent Laid-Open No. 2011-0004172 relates to a nickel catalyst supported on a porous zirconia carrier containing a metal oxide stabilizer, a process for producing the same, and a process for producing hydrogen by autothermal reforming reaction of ethanol using the catalyst, Is used for hydrogen production by Autothermal Reforming, and the surfactant is used as a template.
  • nickel is contained in an amount of 1 to 50 parts by weight per 100 parts by weight of the metal oxide stabilized porous zirconia carrier having a pore size in the range of 0.1 nm to 500 nm, prepared by hydrothermal polymerization after hydration and condensation by a sol-
  • the present invention relates to a nickel catalyst supported on a porous zirconia carrier containing a metal oxide stabilizer, a process for producing the same, and a process for producing hydrogen by autothermal reforming reaction of ethanol using the catalyst.
  • a precursor In order to prepare a nickel catalyst, a precursor is essentially required. Therefore, a step of dispersing a metal oxide precursor, a process of preparing a precursor mixture solution, a step of uniformly arranging and gelling the precursor, and a step of supporting a solution of the precursor dissolved in nickel are required.
  • the precursor may be a metal oxide precursor of at least one metal selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), scandium (Sc) and lanthanum It is added and manufactured in a weight ratio so that there is a problem of inconvenience.
  • the present invention uses nickel-boron (Ni-B) as a non-noble metal catalyst and nickel (Ni) metal foam as a catalyst support in order to replace expensive noble metal catalysts and powdery catalysts that are self- . Further, in order to simplify the process of coating the support with nickel-boron (Ni-B) as a catalyst and to avoid the use of a precursor separately, a nickel component obtained by oxidizing nickel (Ni) metal foam is used as a precursor of the catalyst, And to provide a method for producing a metal foam catalyst for generating hydrogen from a chemical hydride which simplifies the process of producing a foam catalyst.
  • the method for producing a metal foam catalyst for generating hydrogen of chemical hydride comprises the steps of: forming a nickel precursor on the surface of a nickel (Ni) metal foam; (Ni-B) metal foam catalyst, which is a compound in which nickel (Ni) and boron (B) are bonded to each other and supported on a nickel metal foil, And drying and calcining a nickel-boron (Ni-B) metal foam catalyst supported on a nickel (Ni) metal foam as a support.
  • nickel is used as a precursor on the surface of a nickel metal foam, so that the catalyst is prepared without using a catalyst precursor separately, thereby simplifying the process.
  • nickel metal foam is immersed in the alkaline boron hydride solution, nickel is reduced on the surface of the nickel metal foam, and the nickel-boron metal foam catalyst is obtained by washing with the distilled water, so that the metal foam catalyst can be mass- The manufacturing cost can be lowered.
  • the support of the metal foam catalyst has a wide pore structure, the catalyst can be uniformly and firmly supported, the reactant can smoothly move to the catalyst surface, and the loss of catalyst during the hydrolysis reaction can be minimized.
  • FIG. 1 is a flow chart illustrating a method for producing a metal foam catalyst for generating a hydride of chemical hydride according to the present invention.
  • FIG. 2 is a photograph of (a) a nickel metal foam and (b) a nickel-boron (Ni-B) metal foam catalyst according to the present invention.
  • FIG. 3 is a SEM (Scanning Electron Microscope) photograph of the metal foam catalyst according to the present invention.
  • FIG. 4 is a configuration diagram of an experimental apparatus for measuring the degree of hydrogen generation of the metal foam catalyst according to the present invention.
  • FIG. 5 is a graph showing cumulative comparisons of the amounts of generated hydrogen of a nickel-boron (Ni-B) metal foam catalyst and a nickel-boron (Ni-B) powder catalyst according to the present invention.
  • EDS Electronic Datapersive Spectroscopy
  • FIG. 1 is a flow chart illustrating a method for producing a metal foam catalyst for generating a hydride of chemical hydride according to the present invention.
  • the method of preparing a metal foam catalyst for generating hydrogen from a chemical hydride includes the steps of immersing a nickel metal foam in an acidic solution to form a nickel serving as a precursor on the surface of the nickel metal foam in order to use a nickel metal foam as a support, (S101), dipping the nickel metal foam in an alkaline boron hydride solution to reduce nickel formed on the surface of the nickel metal foam (s102), washing the nickel metal foam with distilled water to remove boron from the nickel and boron hydride (S103) of obtaining a nickel-boron (Ni-B) metal foam catalyst as a compound and drying and calcining a nickel-boron (Ni-B) metal foam catalyst (s104).
  • the acid solution in step (s101) for forming a nickel precursor role in the surface of the nickel metal foam soaked nickel metal foam in an acidic solution for use in a nickel metal foam as a support is nitric acid (HNO 3), hydrochloric acid (HCl ), Sulfuric acid (H 2 SO 4 ), or an acidic solution, and preferably an acidic solution of 30 wt% hydrochloric acid and 70 wt% nitric acid in a 1: 1 mass ratio is used.
  • nickel as a precursor on the surface of the nickel metal foam supported by immersing 2 g of the nickel metal foam in 20 ml of the acidic solution for 6 to 8 minutes, and the acid solution is used with a pH of 0.1 to 4, 2 < / RTI >
  • the pH of the acidic solution is more than 2 and less than 4
  • sufficient precursors are not formed on the surfaces of the nickel metal foams, and if the pH of the acidic solution is more than 0.1 and less than 1, nickel metal foams may be damaged.
  • This process increases the surface roughness of the nickel metal foam, increasing the area bonded to the nickel metal foam, which is the support, increasing the probability of the catalyst being bonded to the nickel metal foam.
  • the step (s102) of reducing the nickel formed on the surface of the nickel metal foam by immersing the nickel metal foam of the present invention in the alkaline boron hydride solution is preferably carried out by using the nickel metal foam surface (s102) when the sodium hypophosphite (NaH 2 PO 2 ) Boron (Ni-B) is formed on the surface of a nickel metal foam when sodium borohydride (NaBH 4 ) solution is used, and sodium hypophosphite (NaH 2 PO 2 ) Nickel-boron (Ni-PB) is formed on the surface of the nickel metal foam when a mixed solution of sodium borohydride and sodium borohydride (NaBH 4 ) is used.
  • the reducing agent is prepared by mixing 3 to 25 wt% of sodium borohydride (NaBH 4 ) and 1 to 5 wt% of sodium hydroxide (NaOH) with water, more preferably 5 to 20 wt% of sodium borohydride (NaBH 4 ) . If the concentration of the reducing agent is less than 5 wt%, the reduction reaction rate is lowered and the production time becomes longer. If the concentration of the reducing agent is more than 20 wt%, the surface of the catalyst may be coated as a byproduct produced by the reduction reaction.
  • the reducing solution is subjected to a reduction reaction in a nickel metal foam and a controllable container at a temperature of 10 to 30 ° C. It is preferable to carry out a reduction reaction in a container which can be controlled at 20 to 25 ⁇ , preferably until the reduction reaction is completely terminated and no bubbles are generated on the nickel metal foam surface.
  • the step (s103) of obtaining a nickel-boron (Ni-B) metal foam catalyst which is a compound of nickel and a boron hydride compound bonded with nickel by washing the nickel metal foam with distilled water, To obtain a nickel-boron (Ni-B) metal foam catalyst in which nickel of a nickel metal foam and boron of a boron hydride are combined.
  • the step (s104) of drying and calcining the nickel-boron (Ni-B) metal foam catalyst comprises contacting the nickel-boron (Ni-B) catalyst with nitrogen, argon, helium, And the nickel-boron (Ni-B) catalyst is dried at 60 to 130 ° C, preferably at 70 to 120 ° C for 10 hours. When the drying temperature is lower than 70 ° C., sufficient drying is not carried out. If the drying temperature is higher than 120 ° C., moisture in the catalyst may be rapidly evaporated and the catalyst formed on the support may be lost.
  • the calcination of the nickel-boron (Ni-B) catalyst is preferably carried out at 200 to 300 ° C. for 2 hours, and if the calcination temperature is lower than 200 ° C., the calcination is not sufficiently carried out. If the calcination temperature is higher than 300 ° C., The resulting catalyst may be damaged.
  • the weight of the nickel (Ni) catalyst relative to the weight of the total catalyst is preferably 1 to 3 wt%.
  • the weight ratio of the nickel (Ni) catalyst is less than 1 wt%, the effect of catalyst development is insufficient.
  • the weight ratio of nickel (Ni) catalyst is more than 3 wt%, the bonding force between the catalyst and the nickel metal foam surface deteriorates.
  • the metal foam catalyst according to the present invention is characterized by being a pore structure composed of at least one of a plurality of holes, an open elliptical shape, a crescent shape, a twig shape, a dumbbell shape, a cross shape or an arch shape. Further, the metal foam catalyst according to the present invention is characterized in that it is connected to at least one of the shapes described above. The metal foam catalyst is characterized in that any one of nickel, boron or nickel-boron is bonded to the surface of the metal foam to form a metal foam catalyst.
  • FIG. 2 is a photograph of (a) a nickel metal foam and (b) a nickel-boron (Ni-B) metal foam catalyst according to the present invention.
  • the nickel metal foam is 2 cm in width and 2 cm in length before the catalyst is formed, and the size and shape of the nickel metal foam can easily be changed according to the experimenter or the experimental conditions.
  • the nickel metal foam has a pore structure composed of at least one of a plurality of holes, an open elliptical shape, a crescent shape, a twig shape, a dumbbell shape, a cross shape or an arch shape so that the catalyst can be supported uniformly and firmly.
  • a nickel-boron (Ni-B) metal foam catalyst is prepared by (a) immersing a nickel metal foil in an acidic solution to form a nickel serving as a precursor on the surface of the nickel metal foil and then nickel metal foams in an alkaline borohydrate solution
  • a nickel-boron (Ni-B) metal foam catalyst is formed by reducing nickel formed on the surface of a refractory nickel metal foam, and then bonding the nickel supported on the nickel metal foam with the boron of the boron hydride.
  • the nickel metal foam as a support has a plurality of holes, an open oval shape, a crescent shape, a twig shape, a dumbbell shape, a cross shape Or an arch shape, it is possible to carry the catalyst uniformly and firmly.
  • the nickel-boron (Ni-B) catalyst is uniformly formed on the surface of the nickel metal foam, the reaction can smoothly move to the catalyst surface, and the loss of the catalyst is minimized while the hydrolysis reaction proceeds.
  • FIG. 4 is a configuration diagram of an experimental apparatus for measuring the degree of hydrogen generation of the metal foam catalyst according to the present invention.
  • the metal foam catalyst 402 according to the present invention is placed inside the scalpel cylinder 406 and a solution of sodium borohydride (NaBH 4 ) in the syringe pump 401 is supplied to the scalpel cylinder 406.
  • the metal foam catalyst 402 and the sodium borohydride (NaBH 4 ) solution meet in the scalpel cylinder 406 to generate hydrogen, and the generated hydrogen is supplied to the hydrogen storage separator 404 through the hydrogen supply pipe 403 .
  • a thermocouple 407 is provided inside the scalpel cylinder 406 to measure and record the temperature inside the scalpel cylinder 406 while the hydrogen generation reaction proceeds and the solution 408 contained in the beaker outside the scalpel cylinder 406, The temperature of the sodium borohydride (NaBH 4 ) solution is kept constant.
  • FIG. 5 is a graph showing cumulative comparisons of the amounts of generated hydrogen of a nickel-boron (Ni-B) metal foam catalyst and a nickel-boron (Ni-B) powder catalyst according to the present invention.
  • the amount of generated hydrogen (501) of the nickel-boron (Ni-B) metal foam catalyst according to the present invention was about 30 minutes after the start of the experiment, (Ni-B) powder catalyst 502 starts to increase in amount of hydrogen more than the hydrogen generation amount 502 of the nickel-boron (Ni-B) powder catalyst.
  • the accumulation was stopped and the hydrogen generation amount 501 of the nickel-boron (Ni-B) metal foam catalyst was accumulated for about 90 minutes after the start of the experiment and accumulated. Therefore, the hydrogen generation amount 501 of the nickel-boron (Ni-B) metal foam catalyst according to the present invention is larger than the hydrogen generation amount 502 of the conventional nickel-boron (Ni-B) Hydrogen is generated.
  • FIG. 6 is an EDS (Energy Dispersive Spectroscopy) elemental analysis graph of a nickel-boron (Ni-B) metal foam catalyst formed on the surface of a metal foam according to the present invention.
  • the graph shows the amount of nickel (Ni) depending on the energy level. When the energy level is about 1 KeV, the amount of nickel is 300, 700 and the amount of nickel is about 400 when the energy level is about 7.5. Therefore, it can be confirmed that a nickel (Ni) catalyst is formed on the surface of the nickel-boron (Ni-B) metal foam catalyst according to the present invention.
  • B Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 화학수소화물 수소발생용 금속폼 촉매 제조방법에 관한 것으로서, 더욱 상세하게는 금속폼 촉매를 제조하는데 있어서 특정물질을 만들어내기 이전에 선행하는 물질인 촉매 전구체를 별도로 사용하지 않고 니켈 금속폼의 니켈(Ni) 성분을 촉매 전구체로 사용함으로써, 금속폼 촉매 제조과정을 단순화한 화학수소화물 수소발생용 금속폼 촉매 및 그 제조방법에 관한 것이다. 본 발명은 니켈 금속폼을 지지체로 사용하기 위해 니켈 금속폼을 산성 용액에 담가 니켈 금속폼의 표면에 전구체 역할을 하는 니켈을 형성하는 단계, 니켈 금속폼을 알칼리성 붕소수소화물 용액에 담가 니켈 금속폼의 표면에 형성된 니켈을 환원시키는 단계, 니켈 금속폼을 증류수로 세척하여 니켈과 상기 붕소수소화물의 붕소를 결합한 화합물인 니켈-붕소(Ni-B) 금속폼 촉매를 얻는 단계와 니켈-붕소(Ni-B) 금속폼 촉매를 건조 및 하소하는 단계를 포함한다. 또한, 본 발명은 금속폼의 구조가 다수개의 홀들, 개구된 타원 형상, 초승달 형상, 나뭇가지 형상, 아령 형상, 십자형상 또는 아치 형상 중 어느 하나 이상으로 이루어진 세공 구조로 이루어져 촉매와의 접합 면적이 넓고, 촉매가 균일하게 형성되는 것을 특징으로 한다. 나아가, 본 발명은 금속폼 촉매가 위에서 설명한 형상들 중 어느 하나 이상으로 이음 연결되는 것을 특징으로 한다. 따라서 본 발명은 촉매 전구체를 별도로 사용하지 않아 제조 과정이 단순하고 대량 생산이 용이하기 때문에 제조 가격 단가를 낮출 수 있다. 또한, 금속폼 지지체가 넓은 세공구조를 가지기 때문에 촉매를 균일하고 견고하게 담지할 수 있어 반응물이 촉매 표면까지 원활히 이동하고, 가수분해 반응이 진행되는 동안 촉매의 유실이 최소화되는 장점을 가진다.

Description

화학수소화물 수소발생용 금속폼 촉매 및 그 제조방법
본 발명은 화학수소화물 수소발생용 금속폼 촉매 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 특정물질을 만들어내기 이전에 선행하는 물질인 촉매 전구체를 별도로 사용하지 않고 니켈 금속폼의 니켈(Ni) 성분을 촉매 전구체로 사용함으로써, 금속폼 촉매의 제조과정을 단순화한 화학수소화물 수소발생용 금속폼 촉매 및 그 제조방법에 관한 것이다.
최근 휴대용 기기의 동력원인 고분자 전해질 연료전지(PEMFC: Polymer Electrolyte Membrane Fuel Cell, Proton Exchange Membrane Fuel Cell)가 기존의 2차 전지 대체 가능성이 가장 큰 물질로 주목받고 있다. 고분자 전해질 연료전지는 다른 연료전지에 비해 출력 특성이 좋고 작동 온도가 낮으며 빠른 시동 및 응답 특성이 있다.
일반적으로 연료전지 동력원의 구성요소는 연료 공급 장치, 연료 전지 스택 및 전자 제어장치의 3가지로 이루어져 있는데 휴대용 연료전지 동력원의 개발에 있어 가장 주요한 걸림돌은 연료전지의 연료인 수소를 안전하게 저장하고 취급하는 방법에 있다.
수소를 저장하는 방법으로는 고압 수소 저장 방법, 액화 수소 저장 방법, 금속 수소화물 및 연료 개질 방법이 있지만 이러한 방법들은 저장 밀도, 안정성, 재충전의 문제로 인해 휴대용 연료전지에 적용하기 어렵다.
기존의 수소 저장 방법의 대안 방안으로 알칼리 붕소수소화물을 가수분해하여 수소를 발생시키는 방법이 있다.
화학식 1
Figure PCTKR2012005267-appb-C000001
화학식 1은 알칼리 붕소수소화물의 한 종류인 수소화붕소나트륨(NaBH4)을 가수분해한 식이다. 수소화붕소나트륨(NaBH4)은 타 물질에 비해 상대적으로 높은 수소 함량을 가지는 안정한 물질이며, 불연성의 알칼리 용액으로 친환경적이고 재생 가능한 연료이므로 이 방식을 통해 생성된 수소는 순도가 높고 반응 제어가 용이하다. 그러나 수소화붕소나트륨(NaBH4) 수용액은 촉매가 없는 상태에서 스스로 가수분해되는 것을 억제하기 위해 강알칼리성(pH 13 이상) 용액으로 제조되기 때문에 수소화붕소나트륨(NaBH4)은 촉매 반응을 통해서만 수소를 발생할 수 있다. 수소화붕소나트륨(NaBH4) 수용액에서 수소를 발생시키려 할 경우에는, 백금(Pt)이나 루테늄(Ru)과 같은 귀금속 촉매를 주로 사용한다. 그러나 귀금속 촉매는 경제성이 떨어지므로 귀금속 촉매를 대체하기 위해 코발트(Co)나 니켈(Ni)과 같은 분말형태의 촉매를 사용하지만, 분말형태의 촉매를 연속 반응 시스템에 적용할 경우 촉매가 유실되거나 촉매의 점성이 커서 스스로 뭉쳐버리는 문제점이 발생한다.
이를 보완하기 위해 무전해 도금법, 화학적 환원법 등을 사용하여 금속폼과 같은 구조물에 촉매를 코팅하는 방식을 사용하지만, 제조과정이 복잡해짐에 따라 대량생산에 부적합하거나 공정 단가가 상승하는 문제가 있다.
한국등록특허 제10-0785043호는 ‘알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 코발트-붕소 촉매/담지체 및 그 제조방법’에 관한 것으로, 더욱 상세하게는 코발트(Co)와 붕소(B)가 결합한 산화물 또는 코발트(Co)와 붕소(B)가 결합한 화합물(Co와 B가 결합한 산화물을 제외한다) 중 어느 하나 또는 둘인 코발트-붕소 촉매가 담지체 내에 담지된 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 코발트-붕소 촉매/담지체에 관한 기술이다. 이와 같은 일반적인 촉매 제조방법은 전구체를 이용하여 담지체 내에 코발트 용액을 담지시키고, 환원제로 알칼리 붕소용액을 이용하여 코발트 용액의 코발트 이온을 환원하여, 상기 담지체에 담지된 코발트와 붕소가 결합한 산화물 또는 코발트와 붕소가 결합한 화합물 중 어느 하나 또는 둘인 코발트-붕소(Co-B) 촉매를 얻는 단계 및 상기 담지체에 담지된 코발트-붕소(Co-B) 촉매를 건조 및 소성하는 단계를 포함하는 것을 특징으로 하는 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용 Co-B 촉매/담지체의 제조 방법이다.
위와 같이 일반적인 촉매/ 담지체 제조는 염화코발트(CoCl2)수용액과 같은 전구체 수용액을 추가로 제조해야하고 전구체 수용액은 그 농도에 따라 코발트-붕소 촉매의 수소 발생량이 달라진다.
한국공개특허 제2011-0004172호는 ‘금속산화물 안정화제를 포함한 다공성 지르코니아 담체에 담지된 니켈 촉매, 그 제조방법 및 상기 촉매를 이용한 에탄올의 자열개질반응에 의한 수소 제조방법’에 관한 것으로, 더욱 상세하게는 에탄올 자열개질반응(Autothermal Reforming)에 의한 수소제조에 사용되며, 계면활성제를 주형으로 한다. 지르코늄 전구체 1 몰에 대하여 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 스칸듐(Sc) 및 란타늄(La)으로 이루어진 군으로부터 선택된 1종 이상 금속의 금속산화물 전구체가 0.01 내지 0.5 몰의 범위를 갖도록 첨가된다. 또한, 졸-겔법에 의해 수화 및 축합한 후 수열중합법에 의해 제조되어 0.1nm에서 500nm 범위의 기공크기를 갖는 금속산화물 안정화 다공성 지르코니아 담체 100중량부에 대해 1 내지 50중량부 범위의 니켈이 담지된 것을 특징으로 하는 ‘금속산화물 안정화제를 포함한 다공성 지르코니아 담체에 담지된 니켈촉매, 그 제조방법 및 상기 촉매를 이용한 에탄올의 자열개질반응에 의한 수소 제조방법’에 관한 것이다.
니켈 촉매를 제조하기 위해서는 필수적으로 전구체가 필요하므로 금속산화물 전구체를 분산하는 과정, 전구체 혼합용액 제조과정, 전구체를 균일하게 배열 및 겔화시키는 단계, 전구체를 용해한 용액을 니켈에 담지하는 단계가 요구된다. 또한, 전구체는 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 스칸듐(Sc) 및 란타늄(La)으로 이루어진 군으로부터 선택된 1종 이상 금속의 금속산화물 전구체가 일정 범위와 중량비를 갖도록 첨가 및 제조되므로 이에 따른 번거로움의 문제가 있다.
본 발명은 고가의 귀금속 촉매 및 점성이 커서 스스로 뭉쳐버리는 분말 형태의 촉매를 대체하기 위해 비귀금속 촉매로 니켈-붕소(Ni-B)를 사용하고 촉매의 지지체로 니켈(Ni) 금속폼을 사용한다. 또한, 촉매인 니켈-붕소(Ni-B)를 지지체에 코팅하는 공정을 단순화하고, 전구체를 따로 사용하지 않기 위해, 니켈(Ni) 금속폼을 산화시켜 얻은 니켈성분을 촉매의 전구체로 사용하여 금속폼 촉매 제조과정을 단순화한 화학수소화물 수소발생용 금속폼 촉매 제조방법을 제공하는 것을 목적으로 한다.
목적을 효과적으로 달성하기 위하여, 본 발명에 의한 화학수소화물 수소발생용 금속폼 촉매 제조방법은, 니켈(Ni) 금속폼 표면에 니켈전구체를 형성하는 단계, 알칼리 붕소수소화물 용액을 사용하여 니켈(Ni) 금속폼 표면에 형성된 니켈(Ni)을 환원시키는 단계, 지지체인 니켈(Ni) 금속폼에 담지된 니켈(Ni)과 붕소(B)를 결합한 화합물인 니켈-붕소(Ni-B) 금속폼 촉매를 얻는 단계와 지지체인 니켈(Ni) 금속폼에 담지된 니켈-붕소(Ni-B) 금속폼 촉매를 건조 및 하소하는 단계를 포함하는 것을 특징으로 한다.
본 발명에 의하면 니켈 금속폼의 표면에 전구체 역할을 하는 니켈을 형성함으로써 촉매 전구체를 별도로 사용하지 않아 전구체를 추가로 제조할 필요 없이 촉매가 제조되므로 과정이 단순하다. 또한, 니켈 금속폼을 알칼리성 붕소수소화물 용액에 담가 니켈 금속폼 표면에 니켈을 환원시키고 증류수로 세척하여 니켈-붕소 금속폼 촉매를 얻으므로 단순한 제조 과정에 따른 금속폼 촉매의 효율적인 대량 생산이 가능하고 제조 단가를 낮출 수 있다. 또한, 금속폼 촉매의 지지체는 넓은 세공구조를 가지기 때문에 촉매를 균일하고 견고하게 담지할 수 있어 반응물이 촉매 표면까지 원활히 이동하고, 가수분해 반응이 진행되는 동안 촉매의 유실이 최소화되는 효과가 있다.
도 1은 본 발명에 따른 화학수소화물 수소발생용 금속폼 촉매 제조방법을 설명하는 순서도이다.
도 2는 본 발명에 따른 (a) 니켈 금속폼과 (b) 니켈-붕소(Ni-B) 금속폼 촉매의 사진이다.
도 3은 본 발명에 따른 금속폼 촉매의 SEM(Scanning Electron Microscope) 사진을 나타낸 것이다.
도 4는 본 발명에 따른 금속폼 촉매의 수소 발생 정도를 측정하기 위한 실험 장치의 구성도이다.
도 5는 본 발명에 따른 니켈-붕소(Ni-B) 금속폼 촉매와 니켈-붕소(Ni-B) 분말 촉매의 수소발생량을 누적하여 비교한 그래프이다.
도 6은 본 발명에 따른 금속폼의 표면에 형성된 니켈-붕소(Ni-B) 금속폼 촉매의 EDS(Energy Dispersive Spectroscopy) 원소분석 그래프이다.
이하, 첨부된 도면을 참조하여 기술되는 바람직한 실시 예를 통하여 본 발명을 당업자가 용이하게 재현할 수 있도록 상세히 기술하기로 한다.
도 1은 본 발명에 따른 화학수소화물 수소발생용 금속폼 촉매 제조방법을 설명하는 순서도이다.
도시된 바와 같이 화학수소화물 수소발생용 금속폼 촉매 제조방법은 다음과 같은, 니켈 금속폼을 지지체로 사용하기 위해 니켈 금속폼을 산성 용액에 담가 니켈 금속폼의 표면에 전구체 역할을 하는 니켈을 형성하는 단계(s101), 니켈 금속폼을 알칼리성 붕소수소화물 용액에 담가 니켈 금속폼의 표면에 형성된 니켈을 환원시키는 단계(s102), 니켈 금속폼을 증류수로 세척하여 니켈과 붕소수소화물의 붕소를 결합한 화합물인 니켈-붕소(Ni-B) 금속폼 촉매를 얻는 단계(s103)와 니켈-붕소(Ni-B) 금속폼 촉매를 건조 및 하소하는 단계(s104)로 이루어진다.
이때, 니켈 금속폼을 지지체로 사용하기 위해 니켈 금속폼을 산성 용액에 담가 니켈 금속폼의 표면에 전구체 역할을 하는 니켈을 형성하는 단계(s101)에서 산성용액은 질산(HNO3), 염산(HCl), 황산(H2SO4), 또는 산성용액의 혼합용액을 사용하고 바람직하게는 30wt%의 염산과 70wt%의 질산이 1:1 질량비로 혼합된 산성용액을 사용한다. 또한, 산성용액 20ml에 니켈 금속폼 2g을 6~8분 동안 담가 지지체인 니켈 금속폼의 표면에 전구체인 니켈을 형성하는 것이 바람직하고 산성용액은 pH가 0.1~4인 것을 사용하며 pH가 1~2인 것이 바람직하다. 산성용액의 pH가 2 초과, 4 미만일 경우, 니켈 금속폼 표면에 충분한 전구체가 형성되지 않으며, 산성용액의 pH가 0.1 초과, 1 미만일 경우, 니켈 금속폼이 손상될 수 있기 때문이다. 이 과정을 통해 니켈 금속폼의 표면 거칠기를 증가시켜, 촉매가 지지체인 니켈 금속폼에 접합 되는 면적을 증가시켜 촉매가 니켈 금속폼에 접합 될 확률을 증가시킨다.
본 발명의 니켈 금속폼을 알칼리성 붕소수소화물 용액에 담가 니켈 금속폼의 표면에 형성된 니켈을 환원시키는 단계(s102)는 환원과정에서 차아인산나트륨(NaH2PO2) 용액을 사용할 때 니켈 금속폼 표면에 니켈-인(Ni-P)이 형성되고, 수산화붕소나트륨(NaBH4) 용액을 사용할 때 니켈 금속폼 표면에 니켈-붕소(Ni-B)가 형성되며, 차아인산나트륨(NaH2PO2)과 수산화붕소나트륨(NaBH4)의 혼합 용액을 사용할 때 니켈 금속폼 표면에 니켈-인-붕소(Ni-P-B)가 형성된다. 환원제로는 수산화붕소나트륨(NaBH4) 3~25wt%, 수산화나트륨(NaOH) 1~5wt%를 물과 혼합하여 제조하고, 더욱 바람직하게는 수산화붕소나트륨(NaBH4)을 5~20wt%의 농도로 20ml 사용한다. 환원제의 농도가 5wt%미만인 경우, 환원반응속도가 낮아져 제조시간이 길어지고, 환원제의 농도가 20wt%이상인 경우, 환원반응이 진행되면서 생성되는 부산물로 촉매의 표면이 도포 될 수 있기 때문이다. 또한, 환원용액은 니켈 금속폼과 10~30℃의 온도로 제어가능한 용기 내에서 환원반응을 한다. 바람직하게는 20~25℃로 제어할 수 있는 용기 내에서 환원반응하는 것이 좋고 환원반응이 완전히 종결되어 니켈 금속폼 표면에서 거품이 발생하지 않을 때까지 실시한다.
니켈 금속폼을 증류수로 세척하여 니켈과 붕소수소화물의 붕소를 결합한 화합물인 니켈-붕소(Ni-B) 금속폼 촉매를 얻는 단계(s103)는 증류수로 니켈 금속품 표면의 화학반응으로 생성된 거품을 세척하고 니켈 금속폼의 니켈과 붕소수소화물의 붕소를 결합한 니켈-붕소(Ni-B) 금속폼 촉매를 얻는다.
니켈-붕소(Ni-B) 금속폼 촉매를 건조 및 하소하는 단계(s104)는 니켈-붕소(Ni-B) 촉매를 질소(N), 아르곤(Ar), 헬륨(He) 또는 수소(H) 중 어느 하나 이상의 기체 내에서 건조 및 하소하고, 니켈-붕소(Ni-B) 촉매를 60~130℃에서 건조하며 바람직하게는 70~120℃에서 10 시간 동안 건조한다. 건조 온도가 70℃ 미만일 경우, 충분한 건조가 이루어지지 않고, 120℃를 초과할 경우, 촉매 내 수분이 급격히 증발되면서 지지체에 형성된 촉매가 손실될 수 있기 때문이다. 니켈-붕소(Ni-B) 촉매의 하소는 200~300℃에서 2시간 동안 실시하는 것이 바람직하며 이는 하소 온도가 200℃ 미만일 경우 하소가 충분히 이루어지지 않으며, 300℃를 초과할 경우, 지지체에 담지된 촉매가 손상될 수 있기 때문이다.
또한, 전체 촉매 중량 대비 니켈(Ni) 촉매의 중량은 1~3wt%로 하는 것이 바람직하다. 니켈(Ni) 촉매의 무게 비율이 1wt% 미만일 경우, 촉매 발현 효과가 충분하지 못하며, 3wt% 초과일 경우, 촉매와 니켈 금속폼 표면의 결합력이 떨어져 촉매의 내구성이 저하되기 때문이다.
본 발명에 따른 금속폼 촉매는 다수개의 홀들, 개구된 타원 형상, 초승달 형상, 나뭇가지 형상, 아령 형상, 십자 형상 또는 아치 형상 중 어느 하나 이상으로 이루어진 세공 구조인 것을 특징으로 한다. 나아가, 본 발명에 따른 금속폼 촉매는 위에서 설명한 형상들 중 어느 하나 이상으로 이루어져 이음 연결되는 것을 특징으로 한다. 또한, 금속폼 촉매는 금속폼의 표면에 니켈, 붕소 또는 니켈-붕소 중 어느 하나가 결합되어 금속폼 촉매가 형성되는 것을 특징으로 한다.
도 2는 본 발명에 따른 (a) 니켈 금속폼과 (b) 니켈-붕소(Ni-B) 금속폼 촉매의 사진이다. 도 2에 도시된 바와 같이, (a) 니켈 금속폼은 촉매가 형성되기 전의 모습으로 가로 2cm, 세로 2cm 사이즈이며, 니켈 금속폼의 크기나 모양은 실험자 또는 실험상황에 따라 용이하게 달라질 수 있다. 니켈 금속폼은 다수개의 홀들, 개구된 타원 형상, 초승달 형상, 나뭇가지 형상, 아령 형상, 십자형상 또는 아치 형상 중 어느 하나 이상으로 이루어진 세공 구조로 이루어져 있어 촉매를 균일하고 견고하게 담지할 수 있다. (b) 니켈-붕소(Ni-B) 금속폼 촉매는 (a) 니켈 금속폼을 산성용액에 담가 니켈 금속폼의 표면에 전구체 역할을 하는 니켈을 형성하고 다시 니켈 금속폼을 알칼리성 붕소수화물 용액에 담가 니켈 금속폼 표면에 형성된 니켈을 환원시킨 후 니켈 금속폼에 담지된 니켈과 붕소수소화물의 붕소를 결합한 화합물인 니켈-붕소(Ni-B) 금속폼 촉매를 형성한 모습의 사진이다. 니켈-붕소(Ni-B) 금속폼의 표면에 고르게 촉매가 형성된 것을 통해, 니켈 금속폼의 넓은 세공구조로 인해 니켈-붕소(Ni-B) 금속폼에 촉매가 균일하고 견고하게 담지되었음을 알 수 있다.
도 3은 본 발명에 따른 금속폼 촉매의 SEM(Scanning Electron Microscope) 사진을 나타낸 것이다. 도 3을 통해 금속폼 촉매의 표면 형상을 보면, 본 발명에 따른 금속폼 촉매의 경우, 지지체인 니켈 금속폼이 다수개의 홀들, 개구된 타원 형상, 초승달 형상, 나뭇가지 형상, 아령 형상, 십자형상 또는 아치 형상 중 어느 하나 이상으로 이루어진 세공 구조를 가지기 때문에 촉매를 균일하고 견고하게 담지할 수 있다. 따라서, 니켈 금속폼 표면에 니켈-붕소(Ni-B) 촉매가 균일하게 형성되고 반응물이 원활하게 촉매 표면까지 이동할 수 있으며 가수분해 반응이 진행되는 동안, 촉매의 유실이 최소화된다.
도 4는 본 발명에 따른 금속폼 촉매의 수소 발생 정도를 측정하기 위한 실험 장치의 구성도이다. 본 발명에 따른 금속폼 촉매(402)를 메스실린더(406)의 내부에 넣고 실린지 펌프(Syringe pump)(401) 내부의 수소화붕소나트륨(NaBH4)용액을 메스실린더(406)에 공급한다. 메스실린더(406) 내에서 금속폼 촉매(402)와 수소화붕소나트륨(NaBH4)용액이 만나 수소를 발생시키고, 발생된 수소는 수소 공급관(403)을 통해 수소 보관부(Separator)(404)에 저장된다. 금속폼 촉매(402)와 수소화붕소나트륨(NaBH4)용액이 만나 발생한, 수소의 방출량을 측정하기 위해 수소 보관부(Separator)(404)에 저장된 수소를 유량계(Flow meter)(405)로 보내어 측정한다. 또한, 메스실린더(406) 내부에 열전대(407)를 설치하여 수소발생 반응이 진행되는 동안 메스실린더(406) 내부의 온도를 측정 및 기록하고 메스실린더(406) 외부의 비커에 담긴 용액(408)을 통해 수소화붕소나트륨(NaBH4) 용액의 온도를 일정하게 유지한다.
도 5는 본 발명에 따른 니켈-붕소(Ni-B) 금속폼 촉매와 니켈-붕소(Ni-B) 분말 촉매의 수소발생량을 누적하여 비교한 그래프이다. 도 4에서 보인 실험 장치를 통해 수소 발생량을 비교 실험한 결과, 본 발명에 따른 니켈-붕소(Ni-B) 금속폼 촉매의 수소 발생량(501)은 실험 시작 후, 약 30분 경부터 니켈-붕소(Ni-B) 분말 촉매의 수소 발생량(502)보다 수소 발생량이 많아지기 시작하여 점점 그 차가 커지고 실험 시작 후, 약 60분이 지나자 니켈-붕소(Ni-B) 분말 촉매의 수소 발생량(502)은 누적이 멈추고 니켈-붕소(Ni-B) 금속폼 촉매의 수소 발생량(501)은 실험 시작 후, 약 90분 경까지 지속되어 누적됨을 확인할 수 있다. 따라서, 본 발명에 따른 니켈-붕소(Ni-B) 금속폼 촉매의 수소 발생량(501)이 기존의 니켈-붕소(Ni-B) 분말 촉매의 수소 발생량(502)보다 많아 빠른 시간 내에 많은 양의 수소를 발생함을 알 수 있다.
도 6은 본 발명에 따른 금속폼의 표면에 형성된 니켈-붕소(Ni-B) 금속폼 촉매의 EDS(Energy Dispersive Spectroscopy) 원소분석 그래프이다. 그래프를 보면 에너지 레벨에 따른 니켈(Ni)의 양을 확인할 수 있다. 에너지 레벨이 약 1KeV일 때 니켈의 양은 300, 700이고 에너지 레벨이 약 7.5일 때 니켈의 양은 400 정도임을 보인다. 따라서, 본 발명에 따른 니켈-붕소(Ni-B) 금속폼 촉매의 표면에 니켈(Ni) 촉매가 형성되었음을 확인할 수 있다.(붕소(B)는 에너지 레벨이 낮아서 나타나지 않는다.)
본 발명 명세서 전반에 걸쳐 사용되는 용어들은 본 발명 실시 예에서의 기능을 고려하여 정의된 용어들로서, 사용자 또는 운용자의 의도, 관례 등에 따라 충분히 변형될 수 있는 사항이므로, 이 용어들의 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명은 첨부된 도면에 의해 참조 되는 바람직한 실시 예를 중심으로 기술되었지만, 이러한 기재로부터 후술하는 특허청구범위에 의해 포괄되는 범위 내에서 본 발명의 범주를 벗어남이 없이 다양한 변형이 가능하다는 것은 명백하다.

Claims (11)

  1. 니켈 금속폼을 지지체로 사용하기 위해 상기 니켈 금속폼을 산성 용액에 담가 상기 니켈 금속폼의 표면에 전구체 역할을 하는 니켈을 형성하는 단계;
    상기 니켈 금속폼을 알칼리성 붕소수소화물 용액에 담가 상기 니켈 금속폼의 표면에 형성된 니켈을 환원시키는 단계;
    상기 니켈 금속폼을 증류수로 세척하여 상기 니켈과 상기 붕소수소화물의 붕소를 결합한 화합물인 니켈-붕소(Ni-B) 금속폼 촉매를 얻는 단계 및
    상기 니켈-붕소(Ni-B) 금속폼 촉매를 건조 및 하소하는 단계
    를 포함하는 화학수소화물 수소발생용 금속폼 촉매 제조방법.
  2. 제 1항에 있어서,
    상기 니켈 금속폼을 지지체로 사용하기 위해 상기 산성 용액에 담가 상기 니켈 금속폼의 표면에 전구체 역할을 하는 상기 니켈을 형성하는 단계는,
    상기 산성용액으로 pH가 0.1~4인 산성용액을 사용하는 것을 특징으로 하는 화학수소화물 수소발생용 금속폼 촉매 제조방법.
  3. 제 2항에 있어서,
    상기 산성용액은,
    질산(HNO3), 염산(HCl), 황산(H2SO4) 또는 상기 산성용액의 혼합용액을 사용하고 이 과정을 통해 상기 니켈 금속폼의 표면 거칠기를 증가시켜 상기 촉매가 지지체인 상기 니켈 금속폼에 접합 되는 면적을 증가시켜 상기 촉매가 상기 니켈 금속폼에 접합 될 확률을 증가시키는 것을 특징으로 하는 화학수소화물 수소발생용 금속폼 촉매 제조방법.
  4. 제 1항에 있어서,
    상기 니켈 금속폼을 알칼리 붕소수소화물 용액에 담가 상기 니켈 금속폼 표면에 형성된 니켈을 환원시키는 단계는,
    상기 니켈을 환원시키는 환원용액으로 차아인산나트륨(NaH2PO2) 용액, 수산화붕소나트륨(NaBH4) 용액, 차아인산나트륨(NaH2PO2)과 수산화붕소나트륨(NaBH4)의 혼합 용액을 포함하는 것을 특징으로 하는 화학수소화물 수소발생용 금속폼 촉매 제조방법.
  5. 제 4항에 있어서,
    상기 니켈 금속폼은,
    상기 환원 용액으로 상기 차아인산나트륨(NaH2PO2) 용액을 사용할 때 표면에 니켈-인(Ni-P)이 형성되고;
    상기 환원 용액으로 상기 수산화붕소나트륨(NaBH4) 용액을 사용할 때 표면에 니켈-붕소(Ni-B)가 형성되며;
    상기 환원 용액으로 상기 차아인산나트륨(NaH2PO2)과 수산화붕소나트륨(NaBH4)의 혼합 용액을 사용할 때 표면에 니켈-인-붕소(Ni-P-B)가 형성되는 것을 특징으로 하는 화학수소화물 수소발생용 금속폼 촉매 제조방법.
  6. 제 4항에 있어서,
    상기 환원용액은,
    수산화붕소나트륨(NaBH4) 3~25wt%, 수산화나트륨(NaOH) 1~5wt%를 물과 혼합하여 제조하고, 상기 니켈 금속폼과 10~30℃의 온도에서 환원 반응을 일으키는 것을 특징으로 하는 화학수소화물 수소발생용 금속폼 촉매 제조방법.
  7. 제 1항에 있어서,
    상기 니켈-붕소(Ni-B) 금속폼 촉매를 건조 및 하소하는 단계는,
    상기 니켈-붕소(Ni-B) 금속폼 촉매를 질소(N), 아르곤(Ar), 헬륨(He) 또는 수소(H) 기체 중 어느 하나 이상의 기체 내에서 건조 및 하소하는 것을 특징으로 하는 화학수소화물 수소발생용 금속폼 촉매 제조방법.
  8. 제 7항에 있어서,
    상기 니켈-붕소(Ni-B) 금속폼 촉매를 건조 및 하소하는 단계는,
    상기 니켈-붕소(Ni-B) 금속폼 촉매를 60~130℃에서 건조하고 200~300℃에서 하소하는 것을 특징으로 하는 화학수소화물 수소발생용 금속폼 촉매 제조방법.
  9. 금속폼 촉매는 다수개의 홀들, 개구된 타원 형상, 초승달 형상, 나뭇가지 형상, 아령 형상, 십자 형상 또는 아치 형상 중 어느 하나 이상으로 이루어진 세공 구조인 것을 특징으로 하는 화학수소화물 수소 발생용 금속폼 촉매.
  10. 금속폼 촉매는 다수개의 홀들, 개구된 타원 형상, 초승달 형상, 나뭇가지 형상, 아령 형상, 십자 형상 또는 아치 형상 중 어느 하나 이상으로 이루어져 이음 연결되는 것을 특징으로 하는 화학수소화물 수소 발생용 금속폼 촉매.
  11. 제 9항 내지 제10항 중 어느 한 항에 있어서,
    상기 금속폼 촉매는, 금속폼 표면에 니켈, 붕소 또는 니켈-붕소 중 어느 하나가 결합되어 금속폼 촉매가 형성되는 것을 특징으로 하는 화학수소화물 수소 발생용 금속폼 촉매.
PCT/KR2012/005267 2011-07-29 2012-07-03 화학수소화물 수소발생용 금속폼 촉매 및 그 제조방법 WO2013018993A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0075707 2011-07-29
KR1020110075707A KR101099875B1 (ko) 2011-07-29 2011-07-29 화학수소화물 수소발생용 금속폼 촉매 및 그 제조방법

Publications (3)

Publication Number Publication Date
WO2013018993A2 WO2013018993A2 (ko) 2013-02-07
WO2013018993A3 WO2013018993A3 (ko) 2013-04-04
WO2013018993A4 true WO2013018993A4 (ko) 2013-06-20

Family

ID=45507118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005267 WO2013018993A2 (ko) 2011-07-29 2012-07-03 화학수소화물 수소발생용 금속폼 촉매 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR101099875B1 (ko)
WO (1) WO2013018993A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101398296B1 (ko) 2013-01-16 2014-05-27 주식회사 알란텀 니켈 메탈폼 플레이트의 제조방법
CN112044459B (zh) * 2020-09-10 2022-02-18 中山大学 类石榴状多孔镍基磷化物纳米结构材料及其制备方法与应用
CN112827492B (zh) * 2021-01-07 2023-11-10 苏州大学 一种用于催化氨硼烷水解的催化剂的制备方法
CN113171776A (zh) * 2021-04-29 2021-07-27 苏州西热节能环保技术有限公司 用于硼氢化钠溶液水解制氢的负载型催化剂、制备方法及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060095407A (ko) * 2005-02-28 2006-08-31 (주)덕양에너젠 알칼리붕소 수소화물의 수소발생을 위한 페이스트 형태의촉매극 개발
US20090196821A1 (en) 2008-02-06 2009-08-06 University Of Delaware Plated cobalt-boron catalyst on high surface area templates for hydrogen generation from sodium borohydride

Also Published As

Publication number Publication date
KR101099875B1 (ko) 2011-12-28
WO2013018993A3 (ko) 2013-04-04
WO2013018993A2 (ko) 2013-02-07

Similar Documents

Publication Publication Date Title
KR100956669B1 (ko) 수소발생재료 및 수소발생장치
US11697108B2 (en) Systems and methods for processing ammonia
Bozbag et al. Supercritical fluids in fuel cell research and development
Wang et al. Freestanding non‐precious metal electrocatalysts for oxygen evolution and reduction reactions
US8084167B2 (en) Nanocomposite for fuel cell, method of preparing the nanocomposite, and fuel cell including the nanocomposite
CN110467182A (zh) 一种基于反应模板的多级孔碳基材料及其制备方法和应用
WO2013018993A4 (ko) 화학수소화물 수소발생용 금속폼 촉매 및 그 제조방법
JPWO2009031578A1 (ja) 水素発生材料組成物、水素発生材料成形体及び水素の製造方法
Wang et al. Preparation of bush-like Ru/NiO-Ni foam catalyst and its performance in hydrogen production from sodium borohydride alcoholysis
Chen et al. Preparation of porous PVDF-NiB capsules as catalytic adsorbents for hydrogen generation from sodium borohydride
JP2008021609A (ja) 直接型メタノール燃料電池及び触媒
JP2019220463A (ja) 電気化学セル用電解質及び電気化学セル
Ashok et al. Preparation of nanoparticles via cellulose-assisted combustion synthesis
CN110102325B (zh) 多孔纳米片结构铜镍氮化物材料及其制备方法和应用
Zhao et al. Low-dimensional heteroatom-doped carbon nanomaterials prepared with thermally removable templates for the electrocatalytic reduction of oxygen
KR100785043B1 (ko) 알칼리 붕소수소화물 용액을 이용한 수소 방출 반응용코발트-붕소 촉매/담지체 및 그 제조 방법
CN101175688A (zh) 氢产生材料及氢产生装置
CN102125836A (zh) 一种用于硼氢化物水解制氢的整体催化剂及其制备方法
US11866328B1 (en) Systems and methods for processing ammonia
KR20110081377A (ko) 알칼리 붕소수소화물 가수분해 반응용 촉매 및 그 제조 방법
You et al. Hollow Raspberry-like CoS x/C Sub-Microspheres as a Highly Active Air Cathode Catalyst for Rechargeable Zinc-Air Batteries
KR101382471B1 (ko) 수소 제조용 촉매 어셈블리 및 그 제조방법
JP6963648B2 (ja) 電気化学セル用触媒層の製造方法、及び触媒層
Ke et al. Self-supported MoO2/MoSi2 ceramic electrode for high current density hydrogen evolution reaction
CN113774420A (zh) 自支撑镍-氧化镱复合电极及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820478

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820478

Country of ref document: EP

Kind code of ref document: A2