WO2013018474A1 - Inspection system and inspection method - Google Patents

Inspection system and inspection method Download PDF

Info

Publication number
WO2013018474A1
WO2013018474A1 PCT/JP2012/066503 JP2012066503W WO2013018474A1 WO 2013018474 A1 WO2013018474 A1 WO 2013018474A1 JP 2012066503 W JP2012066503 W JP 2012066503W WO 2013018474 A1 WO2013018474 A1 WO 2013018474A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
holder
flow path
region
rotation
Prior art date
Application number
PCT/JP2012/066503
Other languages
French (fr)
Japanese (ja)
Inventor
千里 吉村
由美子 大鹿
千恵 服部
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2013018474A1 publication Critical patent/WO2013018474A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0851Bottom walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0457Moving fluids with specific forces or mechanical means specific forces passive flow or gravitation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0325Cells for testing reactions, e.g. containing reagents
    • G01N2021/0328Arrangement of two or more cells having different functions for the measurement of reactions

Definitions

  • the present invention relates to an inspection system having a configuration in which a liquid to be inspected can be retained in an absorbance measurement tank by inertia force and optical analysis can be performed, and an inspection method using the inspection system.
  • the microchip corresponding to the inspection object receiver has a substrate surface as a flow path forming surface on which a flow path for the liquid to be inspected is formed, and is housed in a chip holder that can rotate around the main axis of the inspection apparatus.
  • the in the inspection apparatus disclosed in Patent Document 1 the microchip is stored in the chip holder so that the flow path forming surface is perpendicular to the main axis.
  • the inspection apparatus includes a light source for measuring absorbance, a detector as a light receiving unit, a rotational drive source for applying centrifugal force to a liquid in the microchip in a desired direction, and a control unit.
  • the microchip disclosed in Patent Document 2 is used as the microchip.
  • the blood in the microchip of Patent Document 2 is separated into a plasma component and a blood cell component by applying a centrifugal force in an arbitrary direction, and then mixed with a reagent. It is accommodated in a measurement area as an incident detector.
  • the measurement area is shallower than the other areas in the incident direction of the measurement light so that the absorbance can be measured even if the position of the measurement light hits a limited amount of the liquid to be inspected.
  • a wider area is desirable in the plane orthogonal to the direction.
  • the measurement area which is a relatively shallow area, has a small cross-sectional area at the connection portion with the other area, and therefore the air escape path from the measurement area to the other area is limited. For this reason, when the force of flowing the liquid to be inspected to the measurement region is weak compared to other regions, air tends to remain in the measurement region as liquid bubbles.
  • the present invention has been made in view of the above problems, and more liquid to be inspected can be retained in the measurement region of the absorbance measurement tank during measurement, and the absorbance of the liquid can be accurately measured.
  • An object is to provide an inspection system and an inspection method.
  • the inspection system has a flow path forming surface in which a recessed flow path capable of flowing the liquid to be inspected is formed, and the liquid to be inspected.
  • a measurement region having a first depth in a direction perpendicular to the flow path formation surface, and a liquid to be inspected from the flow channel toward the measurement region.
  • An absorbance measurement tank that is a recess having a passage region that passes through and gradually becomes shallower from the second depth deeper than the first depth toward the measurement region in a direction perpendicular to the flow path forming surface.
  • An inspection object receiver a holder for detachably storing the inspection object receiver, a rotation drive source for rotating the holder about a main shaft extending along the direction of gravity, and rotating the holder in the rotation direction.
  • the holder A rotation control unit that controls the rotation drive source to accelerate or decelerate an angular velocity, an angle change source that changes the angle of the holder about an axis that intersects the flow path forming surface, and an angle of the holder
  • An angle setting unit that controls the angle changing source, a light source that causes the measurement light to enter the measurement region of the inspection object receiver housed in the holder, and a measurement light that has passed through the measurement region A mounting position in which the flow path forming surface is along the direction of gravity, and the bottom surface of the measurement region is downstream of the bottom surface of the passage region in the rotation direction.
  • the inspection object receptacle is accommodated, and the angle setting unit reduces the angular velocity of the holder to stop the measurement region in the holder at a position where measurement light emitted from the light source is incident.
  • the measurement region so as to be positioned below the passage area in the direction of gravity, and sets the angle of the holder.
  • the rotation control unit of the inspection system wherein the holder is accelerated at a first angular acceleration from when the rotation is stopped until reaching a predetermined angular velocity in the rotation direction, and from the predetermined angular velocity to the rotation direction.
  • the measurement area in the holder is decelerated at the second angular acceleration until it stops at the position where the measurement light emitted from the light source enters, and the second angular acceleration is equal to or larger than the first angular acceleration.
  • the rotational drive source is controlled as described above.
  • the holder includes first and second holders that respectively accommodate a plurality of inspection object receptacles, and the rotation control unit is accommodated in the first holder.
  • the direction of rotation when guiding the measurement area of the inspection object receiver to the position where the measurement light emitted from the light source enters, and the measurement area of the inspection object receiver housed in the second holder from the light source The direction of rotation when guiding the emitted measurement light to the incident position is the same as the rotation direction.
  • the inspection system according to claim 4 is characterized in that the surface roughness of the bottom surface of the measurement region is an average roughness Ra value of 70 nm or less.
  • the inspection system according to claim 5 is characterized in that the surface roughness of the side wall surface of the measurement region is larger than the surface roughness of the bottom surface of the measurement region.
  • the inspection system according to claim 7 is characterized in that the posture regulating means is a notch provided in the outer wall surface.
  • the inspection method includes a flow path forming surface in which a concave flow path through which a liquid to be inspected can flow is formed, and is used for measuring the absorbance of the liquid to be inspected.
  • a test object receiver comprising an absorbance measurement tank that is a recess having a passage region that gradually becomes shallower from a second depth deeper than the first depth in a direction perpendicular to the first depth to the measurement region;
  • a rotation control unit for controlling the rotation drive source, an angle change source for changing the
  • the rotation control unit In order to guide the measurement light to the incident position, the rotation control unit rotates the rotation drive source so that the bottom surface of the measurement region is downstream of the bottom surface of the passage region in the rotation direction.
  • the rotation control unit decelerates the angular velocity of the holder in order to stop the measurement area in the holder at a position where measurement light emitted from the light source is incident, the measurement area is in the direction of gravity.
  • An angle setting step in which the angle setting unit controls the angle change source so that the angle setting unit is positioned below the passage region, and a measurement light from the light source to the measurement region of the inspection object receiver housed in the holder And a measurement step of receiving measurement light that has been emitted and transmitted through the measurement region.
  • the inspection system according to claim 1 is mounted on the holder in a mounting posture in which the flow path forming surface is along the direction of gravity and the bottom surface of the passage region is downstream of the bottom surface of the measurement region in the rotational direction. It has an outer wall surface that fits into the holder.
  • the liquid to be inspected that has flowed into the passage region of the absorbance measurement tank through the flow path is held in the passage region and does not easily flow into the measurement region. .
  • the inertial force generated by the deceleration acts on the liquid to be inspected in the passage region.
  • the inertial force acts on the liquid to be inspected in the passage region, the liquid to be inspected easily flows from the passage region to the measurement region on the downstream side in the direction in which the inertial force acts.
  • the inertial force acts on the liquid to be inspected, the liquid to be inspected flows vigorously to the measurement area, and the air in the measurement area can be positively moved to the passing area side.
  • the bottom surface of the passage region becomes shallower in the direction perpendicular to the flow path forming surface as it goes downward in the direction of gravity.
  • the inertial force is applied, the liquid in the passage region easily moves to the measurement region along the continuously shallow bottom surface of the passage region. As a result, more liquid to be inspected remains in the measurement region during measurement, and the absorbance of the liquid can be accurately measured.
  • the first angular acceleration of the inspection system according to claim 2 is smaller than the second angular acceleration.
  • the inertial force can be more strongly applied to the liquid to be inspected in the passage region when decelerating at the second angular acceleration.
  • the liquid to be inspected in the passage area can easily enter the measurement area.
  • the inertial force applied to the liquid to be inspected in the measurement region can be further reduced when accelerating at the first angular acceleration.
  • the liquid to be inspected in the measurement region is evenly distributed and is difficult to return to the passage region.
  • more liquid to be inspected remains in the measurement region during measurement, and the absorbance of the liquid can be accurately measured.
  • the rotation direction for the first holder guidance and the rotation direction for the second holder guidance are the same as the rotation direction during deceleration. Since the direction of rotation for rotating the first holder is the same as the direction of rotation, the inertial force is inspected in the direction of rotation in the direction of rotation when the first holder is decelerated for the measurement of the test object receptacle. Applied to the target liquid. As a result, the liquid to be inspected in the passage area easily enters the measurement area. Since the direction of rotation for rotating the second holder is the same as the direction of rotation, the second holder passes through an inertial force on the opposite side of the rotation direction during deceleration for measurement of the receiving object to be inspected. An inertial force is again applied in the rotation direction to the liquid to be inspected returned to the region. As a result, the liquid to be inspected in the passage area easily enters the measurement area.
  • the surface roughness of the bottom surface of the measurement region is an average roughness Ra value of 70 nm or less.
  • the surface roughness of the side wall surface of the measurement region is larger than the surface roughness of the bottom surface of the measurement region. Since the surface roughness of the sidewall surface of the measurement region is large, the liquid to be inspected in the measurement region is supplemented by the sidewall surface of the measurement region. As a result, the liquid to be inspected can be prevented from returning to the passage region due to the influence of the surface tension of the side wall surface of the measurement region.
  • the inspection system according to claim 6 has posture control means.
  • the posture regulation means regulates the mounting posture so that the inertial force acts on the measurement region side, and the liquid to be inspected easily flows into the measurement region. As a result, more liquid to be inspected remains in the measurement region during measurement, and the absorbance of the liquid can be accurately measured.
  • the inspection system according to claim 7 has a notch that fits into the protrusion of the holder. Compared with the case where the inspection object receptacle has a protrusion and the holder has a notch, the volume of the inspection object receptacle can be reduced. As a result, the inspection object receiver can be made compact and the cost can be further reduced.
  • the inspection method wherein a bottom surface of the measurement region is rotated from a bottom surface of the passage region in order to guide the measurement region in the holder to a position where measurement light emitted from the light source is incident.
  • a rotation step that rotates to the downstream side of the direction, and when the angular velocity of the holder is decelerated to stop the measurement region in the holder at a position where measurement light emitted from the light source enters.
  • An angle setting step of setting an angle of the holder so that the measurement region is positioned below the passage region in the direction of gravity. Since the measurement area is located below the passage area in the direction of gravity, when the rotation of the inspection apparatus is stopped, the liquid to be inspected in the passage area easily flows into the measurement area due to gravity.
  • the holder accommodates the test object receiver with the bottom surface of the passing area located downstream of the bottom surface of the measuring area, so that the inertial force is applied to the liquid during deceleration and the liquid is measured from the passing area. It becomes easy to flow into the area. The absorbance of the liquid can be accurately measured by the gravity and inertial force.
  • FIG. 3 is a top view of the inspection apparatus 30.
  • FIG. 3 is a cross-sectional view taken along line AA of the microchip 1 through which measurement light 92 is transmitted.
  • FIG. 2 is a block diagram showing an electrical configuration of a control device 200.
  • inspection apparatus 30 The flowchart which shows the process sequence according to liquid mixing program S20.
  • an inspection system including a microchip 1 according to an embodiment of the present invention, a microchip 101 having the same shape as the microchip 1, and an inspection apparatus 30 to which both the microchips 1 and 101 are detachably mounted. Will be described.
  • the vertical direction, the left-right direction, and the front-back direction in FIG. 5 represent directions in a state where the microchip 1 is mounted on the inspection device 30 and is in a predetermined initial rotation position.
  • the inspection device 30 includes a main shaft 57, a T-shaped plate 48, and holders 47L and 47R.
  • the T-shaped plate 48 has a groove 80.
  • the extending direction of the main shaft 57 parallel to the direction of gravity is defined as the vertical direction.
  • the extending direction of the groove 80 is defined as the left-right direction.
  • a direction perpendicular to the up-down direction and the left-right direction is taken as the front-rear direction. As shown in FIG.
  • the holders 47 ⁇ / b> L and 47 ⁇ / b> R of the inspection apparatus 30 rotate about the main shaft 57 as an axis.
  • centrifugal force CF is applied to both holders 47L and 47R.
  • the holder 47L existing on the left side of FIG. 4 is angle-changed in the first rotation direction LD with the axis 46L extending in the front-rear direction as an axis.
  • the holder 47R present on the right side in FIG. 4 is angle-changed to a second rotation direction RD that is the opposite direction of the first rotation direction LD, with a shaft 46R extending in the front-rear direction as an axis.
  • the microchip 1 shown in FIGS. 1 to 3 is mounted on the holders 47L and 47R of the inspection apparatus 30 and changed to various angles.
  • the directions of the three arrows shown in FIG. Represents the up-down direction, the left-right direction, and the front-rear direction of the inspection apparatus 30 in a state in which is attached and is in the predetermined initial rotation position shown in FIG.
  • the microchip 1 includes a plate member 2 and a cover member 20.
  • the plate member 2 is, for example, a transparent plate that is covered with a plurality of outer wall surfaces and has a substantially square shape when viewed from the front.
  • the thickness which is the dimension of the plate member 2 in the front-rear direction, is about 1 to 10 mm.
  • the plate member 2 is formed from, for example, a synthetic resin.
  • the plate member 2 is manufactured by, for example, injection molding.
  • the plate member 2 has a flow path forming surface 2A.
  • a predetermined flow path having a depth in the front-rear direction which is the thickness direction of the plate member 2 is formed on the flow path forming surface 2A.
  • the predetermined flow path is formed in a concave shape in order to flow a specimen and a reagent that are liquids to be examined.
  • the cover member 20 is, for example, a film having a square flexibility as viewed from the front.
  • the cover member 20 has a thickness of about 0.1 to 0.5 mm.
  • the cover member 20 has an area that can cover a predetermined flow path formed in the plate member 2.
  • the cover member 20 is stuck so as to cover the flow path forming surface 2A.
  • the cover member 20 has a vertical width and a horizontal width of about 10 to 100 mm, respectively.
  • the adhesive layer of the cover member 20 is provided on the surface of the cover member 20 so that it can adhere to the flow path forming surface 2A.
  • the cover member 20 is made of, for example, a synthetic resin.
  • the cover member 20 has a sample insertion port 3H that is an opening for loading a sample, and a reagent loading port 4H that is an opening for loading a reagent.
  • the sample inlet 3H and the reagent inlet 4H are provided in the cover member 20 in advance.
  • the cover member 20 is bonded to the plate member 2 so that the sample insertion port 3H and the reagent insertion port 4H are positioned in the formation region of the sample insertion portion 3 and the reagent insertion portion 4 of the plate member 2 described later. 1, 2, 6, and 14, the flow path of the plate member 2 inside the cover member 20 is represented by a solid line.
  • the microchip 1 has a lower surface 2B.
  • the lower surface 2 ⁇ / b> B is a surface that is parallel to the front-rear direction and the left-right direction and is below the microchip 1.
  • the notch 11 is provided at the right corner of the lower surface 2 ⁇ / b> B of the microchip 1.
  • a predetermined flow path is formed on the flow path forming surface 2A of the plate member 2 shown in FIGS.
  • the predetermined flow path includes a specimen input section 3, a reagent input section 4, a sample supply path 5, a reagent supply path 6, an absorbance measurement tank 7, a centrifuge tank 12, a first flow path 13, and a reservoir.
  • a tank 14 and a second flow path 15 are provided.
  • the sample loading unit 3 is a tank into which a sample is loaded through the sample loading port 3H.
  • the sample insertion unit 3 has a volume capable of accommodating a predetermined amount of sample.
  • the predetermined amount of specimen is about 0.01 to 1 ml of specimen.
  • the specimen is blood, for example.
  • the sample supply path 5 is connected to the lower end of the sample input unit 3.
  • the sample supply path 5 is a flow path that extends downward from the lower end of the sample input section 3, and in this embodiment, the extending direction of the sample supply path 5 is parallel to the vertical direction.
  • the width in the left-right direction of the sample supply path 5 is such that the sample in the sample input unit 3 does not flow out to the centrifuge tank 12 due to downward gravity.
  • the width is set narrower than the width in the left-right direction of the specimen insertion unit 3.
  • the width in the left-right direction of the sample supply path 5 is, for example, about 0.1 mm.
  • the centrifuge tank 12 is provided at the lower end of the sample supply path 5.
  • the centrifuge tank 12 is provided at the lower end of the sample supply path 5.
  • the centrifuge tank 12 extends from the lower end of the sample supply path 5 to the lower right.
  • the centrifuge tank 12 is a tank that is supplied from the sample supply path 5 and separates the specific gravity by applying a centrifugal force to the stored specimen.
  • the first component having a relatively low specific gravity and the second component having a relatively high specific gravity. And a tank that is centrifuged.
  • the first component is, for example, plasma.
  • the second component is, for example, a blood cell.
  • the first flow path 13 is connected to the upper left side of the centrifugal separation tank 12 when viewed from the front.
  • the second flow path 15 is connected to the upper right side of the centrifuge tank 12 as viewed from the front.
  • the first flow path 13 is connected to the upper left end of the storage tank 14.
  • the first flow path 13 is a flow path for introducing the excess liquid flowing out from the centrifugal separation tank 12 into the storage tank 14.
  • the first flow path 13 is provided to extend from the upper left end of the centrifuge tank 12 to the lower left so that the excess liquid from the centrifuge tank 12 can easily flow into the storage tank 14 by centrifugal force.
  • the storage tank 14 has a quadrangular shape.
  • the storage tank 14 is configured to prevent the excess liquid from flowing back from the storage tank 14 to the centrifuge tank 12 when flowing the liquid centrifuged in the centrifuge tank 12 to the second flow path 15. It is arranged on the right side from the lower end and has a volume enough to store the excess liquid flowing in from the first flow path 13.
  • the second flow path 15 is connected to the upper left end of the absorbance measurement tank 7.
  • the second flow path 15 is a flow path for introducing the first component separated in the centrifuge tank 12 into the absorbance measurement tank 7.
  • the upstream side of the second flow path 15 extends to the upper right so that the specimen does not flow into the absorbance measurement tank 7 when centrifugal force is applied to flow from the specimen supply path 5 to the centrifugal separation tank 12.
  • the downstream side of the second flow path 15 is located on the lower right side so that the sample can easily flow into the absorbance measurement tank 7 when a centrifugal force is applied to flow the sample from the centrifuge tank 12 to the absorbance measurement tank 7. It extends.
  • the reagent charging unit 4 is a tank in which a reagent is charged through the reagent charging port 4H.
  • the reagent loading unit 4 has a volume capable of accommodating a predetermined amount of reagent.
  • the predetermined amount of reagent is about 0.01 to 1 ml of reagent.
  • the reagent supply path 6 is a flow path extending downward from the lower end of the reagent charging unit 4.
  • the passage region 8 of the absorbance measurement tank 7 is connected to the lower end of the reagent supply path 6.
  • the width in the left-right direction of the reagent supply path 6 is compared with the width in the left-right direction of the reagent supply unit 4 to the extent that the reagent in the reagent supply unit 4 does not flow out to the passage region 8 of the absorbance measurement tank 7 due to downward gravity. And set narrower.
  • the lateral width of the reagent supply path 6 is, for example, about 0.1 mm.
  • the absorbance measuring tank 7 is a tank for measuring the absorbance of the liquid.
  • the absorbance measurement tank 7 has a rectangular shape that is long in the left-right direction.
  • the absorbance measurement tank 7 has a volume capable of retaining a predetermined amount of the sample supplied from the second flow path 15 and the reagent supplied from the reagent supply path 6.
  • the absorbance measurement tank 7 includes a passage region 8 and a measurement region 10.
  • the measurement region 10 is a region through which measurement light is transmitted in order to measure the absorbance of the specimen and the reagent. As shown in FIG. 3, the measurement region 10 has a first depth D1 in the front-rear direction, which is a direction perpendicular to the flow path forming surface 2A.
  • the first depth D1 is, for example, 1 mm.
  • the measurement region 10 is a region surrounded by the bottom surface 10A, the side wall surfaces 10B, 10C, and 10D and the cover member 20.
  • the bottom surface 10A is a surface in the direction along the flow path forming surface 2A of the measurement region 10.
  • Side wall surface 10B, 10C 10D is a surface perpendicular to the flow path forming surface 2A of the measurement region 10.
  • the bottom surface 10A is formed in a mirror surface to such an extent that the measurement light emitted from the light source of the inspection apparatus is received by the light receiving unit of the inspection apparatus.
  • the mirror surface is, for example, a surface roughness having an average roughness Ra value of 70 nm or less.
  • the surface roughness of the side wall surfaces 10B, 10C, and 10D is rougher than the surface roughness of the bottom surface 10A.
  • the passing area 8 is an area where the specimen is supplied from the second flow path 15 and the reagent is supplied from the reagent supply path 6.
  • the supplied specimen and reagent pass through the passage area 8 and go to the measurement area 10.
  • the passage region 8 is a region surrounded by the bottom surfaces 9 ⁇ / b> A and 9 ⁇ / b> B, the side wall surface, and the cover member 20.
  • the bottom surface 9A of the passage region 8 has a second depth D2 in the front-rear direction, which is a direction perpendicular to the flow path forming surface 2A.
  • the second depth D2 is 3 mm, for example.
  • the second depth D2 is deeper than the first depth D1.
  • the bottom surface 9 ⁇ / b> B is provided so that the depth becomes shallower as it approaches the measurement region 10.
  • the bottom surface 9 ⁇ / b> B connects both regions so that the specimen and the reagent flow from the passage region 8 to the measurement region 10.
  • the bottom surface 9B is provided so that the depth gradually decreases from the predetermined location 8T having the second depth D2 of the passage region 8 to the predetermined location 10T having the first depth D1.
  • the predetermined place 8T is a place located in the middle of the passage area 8.
  • the predetermined location 10T is a location located at the upper end of the measurement region 10.
  • the side wall surface is a surface perpendicular to the flow path forming surface 2 ⁇ / b> A of the passage region 8.
  • the notch portion 11 is formed so that the microchip 1 and the holders 47L and 47R are mounted in a predetermined posture so that an inertial force is applied to the front side during rotation deceleration.
  • the predetermined posture is that the flow path forming surface 2A is along the direction of gravity, the measurement region 10 is positioned below the passage region 8 in the direction of gravity, and the bottom surface 10A of the measurement region 10 is holder 47R from the bottom surface 9B of the passage region 8. It is in the state which exists in the downstream of the rotation direction.
  • the notch portion 11 is formed on the lower surface 2B of the microchip 1 so as to fit into a protruding portion 48R of a bottom surface 47RB of the holder 47R described later.
  • the notch 11 is formed in the lower right corner of the microchip 1 in FIG.
  • the notch 11 is formed in a square shape when viewed from the front.
  • the directions of the three arrows shown in FIG. 4 represent directions corresponding to the up-down direction, the left-right direction, and the front-rear direction shown in FIG.
  • the microchips 1 and 101 configured as described above are mounted with the flow path forming surface 2A along the gravity.
  • the inspection device 30 applies the centrifugal force CF to the microchips 1 and 101 by rotating the turntable 33 with the holders 47L and 47R being held at a predetermined angle under the control of the control device 200.
  • the holder 47R is provided on the right side when viewed from the front.
  • the holder 47R is a box-shaped member that is formed one size larger than the microchip 1 and is surrounded by an upper surface 47RC, a side surface, and a bottom surface 47RB as a lid.
  • the holder 47L is provided on the left side when viewed from the front. Similar to the holder 47R, the holder 47L is a box-shaped member that is formed one size larger than the microchip 101 and is surrounded by a top surface, a side surface, and a bottom surface 47LB as a lid.
  • the holders 47R and 47L hold the microchips 1 and 101 in a state where the flow path forming surface 2A of the microchip 1 and the flow path forming surface 102A of the microchip 101 are orthogonal to the upper surface of the turntable 33.
  • centrifugal force CF is applied in directions parallel to the flow path forming surfaces 2A and 102A of the microchips 1 and 101 in the holders 47R and 47L, respectively.
  • the control device 200 is connected to a spindle motor 35, a stepping motor 51, and the like, which will be described later, via a cable 96.
  • the control device 200 includes a CPU 207, a RAM 206, a ROM 205, and the like which will be described later.
  • the ROM 205 stores an inspection program 205a shown in FIG.
  • the control device 200 controls the rotation of the turntable 33 and the angle change of the holders 47L and 47R to a predetermined angle according to the inspection program 205a.
  • the rotation mechanism of the inspection apparatus 30 shown in FIG. 4 includes a main shaft motor 35, a rotational force transmission mechanism 31, and a turntable 33.
  • the spindle motor 35 is a drive source for rotating the turntable 33 and holders 47L and 47R fixed to the turntable 33 around a spindle 57 extending along the direction of gravity.
  • the spindle motor 35 is fixed inside the frame 52 of the inspection apparatus 30.
  • the main shaft motor 35 includes a rotatable shaft 36.
  • the frame 52 has a rectangular parallelepiped shape.
  • the frame 52 is provided so that driving components for driving the spindle motor 35, the stepping motor 51, and the like can be fixed.
  • the interior of the frame 52 has a volume that can accommodate the drive components.
  • the rotational force transmission mechanism 31 includes a motor pulley 37, a main shaft pulley 38, a belt 39, and a main shaft 57.
  • the rotational force transmission mechanism 31 is fixed and arranged inside the frame 52.
  • the motor pulley 37 is fixed to the shaft 36.
  • the belt 39 is stretched between the motor pulley 37 and the main shaft pulley 38.
  • the main shaft pulley 38 is fixed to the main shaft 57.
  • the main shaft 57 is rotatably supported by the frame 52 of the inspection device 30, extends upward, and is provided so as to penetrate the center portion of the upper plate 32 of the frame 52.
  • the main shaft 57 is connected to the turntable 33.
  • the turntable 33 is provided to be rotatable about the main shaft 57.
  • the angle changing mechanism of the inspection device 30 shown in FIG. 4 includes a stepping motor 51, a first power transmission mechanism 62, a second power transmission mechanism 63, and holders 47L and 47R.
  • the stepping motor 51 is a drive source for changing the angle of the holders 47L and 47R around the shafts 46L and 46R.
  • the stepping motor 51 is fixed to the frame 52.
  • the stepping motor 51 includes a rotatable shaft 58.
  • the first power transmission mechanism 62 includes a cam plate 59, a protrusion 70, a T-shaped plate 48, a guide rail 56, a bearing 41, and a second shaft 40.
  • the first power transmission mechanism 62 is fixed and arranged inside the frame 52.
  • the cam plate 59 has a disk shape when viewed from the front.
  • the cam plate 59 is fixed to the shaft 58.
  • the cam plate 59 includes a protrusion 70 protruding forward.
  • the protrusion 70 has a circular shape when viewed from the front.
  • the guide rail 56 extends in the vertical direction and is fixed to the frame 52.
  • the T-shaped plate 48 is formed to be movable in the vertical direction along the guide rail 56.
  • the T-shaped plate 48 includes a groove 80.
  • the groove part 80 is a groove
  • the state shown in FIG. 4 is a state in which the T-shaped plate 48 is lowered to the bottom.
  • the state shown in FIG. 5 is a state where the T-shaped plate 48 is raised to the top.
  • the bearing 41 is connected to the T-shaped plate 48.
  • the bearing 41 is provided at the lower end of the second shaft 40.
  • the bearing 41 holds the second shaft 40 in a rotatable manner.
  • the inside of the main shaft 57 is hollow.
  • the second shaft 40 is provided inside the main shaft 57 as an inner shaft.
  • the second shaft 40 is connected to the rack gear 43.
  • the second power transmission mechanism 63 includes a rack gear 43, a guide member 42, an upper plate 61, a pinion gear 44, an L-shaped plate 60, a gear 45, and shafts 46L and 46R.
  • the second power transmission mechanism 63 is disposed outside the frame 52.
  • the rack gear 43 is a plate-like member extending in the vertical direction. Gears are respectively carved on the left and right side ends of the rack gear 43. The gears at both end portions of the rack gear 43 mesh with a pair of pinion gears 44.
  • the guide member 42 slidably holds the rack gear 43.
  • the guide member 42 is provided extending in the vertical direction from the central opening of the upper plate 61. Therefore, when the rack gear 43 is raised, the guide member 42 protrudes from the upper plate 61.
  • the pair of L-shaped plates 60 includes a pair of gears 45.
  • the pair of gears 45 includes a pair of shafts 46L and 46R.
  • the pair of shafts 46L and 46R extend in the front-rear direction.
  • the extending direction of the pair of shafts 46L and 46R and the flow path forming surfaces 2A and 102A are orthogonal to each other.
  • the pair of gears 45 mesh with both pinion gears 44, respectively.
  • the pair of gears 45 is provided on the L-shaped plate 60 so that the angle can be changed around a pair of shafts 46L and 46R.
  • the holders 47L and 47R are fixed to the shafts 46L and 46R of the both gears 45, respectively.
  • both pinion gears 44 rotate.
  • both gears 45 rotate.
  • both the gears 45 are rotated, the holders 47L and 47R fixed to the both gears 45 change the angle around the shafts 46L and 46R of the both gears 45.
  • the shaft 46L is orthogonal to the flow path forming surface 102A of the microchip 101 held by the holder 47L.
  • the shaft 46R is orthogonal to the flow path forming surface 2A of the microchip 1 held by the holder 47R.
  • the holders 47L and 47R rotate at the same angle.
  • the bottom surface 47LB of the holder 47L is directed to the left side of the inspection apparatus 30, as shown in FIG.
  • the bottom surface 47RB of the holder 47R is directed to the right side of the inspection apparatus 30 that is opposite to the bottom surface 47LB of the holder 47L.
  • the bottom surface 47LB of the holder 47L and the bottom surface 47RB of the holder 47R are directed to the lower side of the inspection apparatus 30, as shown in FIG.
  • the insertion state of the microchip 1 is a state in which the flow path forming surface 2A faces the front side of the holder 47R and the lower surface 2B of the microchip 1 and the bottom surface 47RB of the holder 47R face each other.
  • the protrusion 48R is provided to extend upward from the bottom surface 47RB in the front-rear direction.
  • the microchip 1 is inserted downward into the holder 47R so that the lower surface 2B of the microchip 1 and the bottom surface 47RB of the holder 47R approach each other, and the notch 11 of the lower surface 2B and the protruding portion 48R of the bottom surface 47RB are fitted. To do. Thereafter, the lid 47RC of the holder 47R is closed. In this way, the microchip 1 is mounted on the holder 47R.
  • the flow path forming surface 102A of the microchip 101 faces the rear side of the holder 47L in FIG. 5, and the lower side of the microchip 101 and the bottom surface 47LB of the holder 47L in FIG. Let the state be Then, the microchip 101 is inserted into the holder 47L in a downward direction in FIG. 5 so that the lower side of the microchip 101 and the bottom surface 47LB of the holder 47L in FIG. 5 approach each other, and the lid of the holder 47L is closed. In this way, the microchip 101 is mounted on the holder 47L.
  • the inspection device 30 includes a light source 90 and a light receiving unit 91.
  • the light source 90 emits measurement light 92 on the optical path 92R.
  • the measurement light 92 is red light having a wavelength of about 650 nm, for example.
  • the light source 90 is, for example, a laser diode.
  • the light receiving unit 91 is provided on the optical path 92R of the measurement light 92 emitted from the light source 90. Specifically, the light source 90 and the light receiving unit 91 are arranged in the front-rear direction in which the incident direction of the measurement light 92 is a direction perpendicular to the flow path forming surface 2A of the microchip 1. The light receiving unit 91 receives the measurement light 92.
  • the light receiving unit 91 is, for example, a photodiode.
  • the turntable 33 rotates in the rotation direction 93.
  • the rotation direction 93 is such that the bottom surface 9B of the microchip 1 is located downstream of the bottom surface 10A in the rotation direction 93.
  • the centrifugal force CF is applied to the microchips 1 and 101 by the rotation.
  • the microchip 1 is restricted to a predetermined mounting posture by fitting the notch 11 and the protrusion 48R.
  • the predetermined mounting posture is that the flow path forming surface 2A is along the direction of gravity GF, the measurement region 10 is positioned below the passage region 8 in the direction of gravity GF, and the bottom surface 10A of the measurement region 10 is the passage region 8 when measuring absorbance.
  • the microchip 1 is arranged in such a manner that it is on the downstream side in the rotation direction 93 of the holder 47R from the bottom surface 9B.
  • the control device 200 shown in FIG. 9 includes, as components, a light source control unit 201, a rotation control unit 203, an angle setting unit 204, a ROM 205, a RAM 206, a CPU 207, an HDD 208, a display unit 209, and an operation unit. 210 and a system bus 211.
  • the system bus 211 is connected to each component of the control device 200.
  • the CPU 207 constitutes a computer together with the ROM 205 and the RAM 206.
  • the control device 200 is a personal computer, for example.
  • the control device 200 is connected to the inspection device 30 via the cable 96.
  • the cable 96 is a USB cable, for example.
  • the light source control unit 201 is connected to the light source 90. In response to a command from the CPU 207, the light source control unit 201 outputs a light emission signal to the light source 90 so that the measurement light 92 is emitted toward the light receiving unit 91.
  • the rotation control unit 203 is connected to the spindle motor 35.
  • the rotation control unit 203 outputs an angular velocity control signal to the spindle motor 35 so that the turntable 33 is rotated in the rotation direction 93 at a predetermined angular velocity in response to a command from the CPU 207 that operates according to the inspection program 205 a stored in the ROM 205. .
  • the angle setting unit 204 is connected to the stepping motor 51.
  • the angle setting unit 204 outputs an angle control signal to the stepping motor 51 so that the holders 47L and 47R are rotated to a predetermined angle ⁇ according to a command from the CPU 207 that operates according to the inspection program 205a stored in the ROM 205.
  • the ROM 205 stores an inspection program 205a for realizing processing according to a flowchart described later.
  • the inspection program 205a is executed by the CPU 207 using the RAM 206.
  • the RAM 206 functions as a temporary storage area for storing various variables to be referred to when the CPU 207 executes a program stored in the ROM 205.
  • the HDD 208 is a hard disk device that stores various data and programs.
  • the various data is, for example, the concentration of the substance to be examined.
  • the display unit 209 displays the concentration of the target substance, which is the inspection result, with reference to various data stored in the HDD 208 in response to a command from the CPU 207 that operates according to the inspection program 205 a stored in the ROM 205.
  • the display unit 209 is a liquid crystal display, for example.
  • the operation unit 210 is a device that supplies an operation signal corresponding to a user operation to the control device 200.
  • the operation unit 210 is, for example, a keyboard.
  • the user operation is, for example, an operation for starting execution of the inspection program 205a.
  • the inspection program 205a executed by the CPU 207 of the inspection apparatus 30 according to the present embodiment will be described with reference to the flowchart shown in FIG.
  • the inspection program 205a includes a liquid mixing program S20 and a measurement program S30 as subroutines.
  • the CPU 207 of the inspection apparatus 30 reads the inspection program 205a stored in the ROM 205 of the inspection apparatus 30 and starts executing it (S10).
  • the CPU 207 executes a liquid mixing program S20 described later. Specifically, the holders 47L and 47R are held at a predetermined angle ⁇ , the turntable 33 is rotated at a predetermined angular velocity, and centrifugal force CF is applied to the holders 47L and 47R (S20). As a result, the mixed liquid in which the specimen and the reagent are mixed is held in the measurement region 10 of the microchip 1.
  • the CPU 207 executes a measurement program S30 described later. Specifically, the holders 47L and 47R are alternately guided onto the optical path 92R over a plurality of times, the measurement light 92 is emitted from the light source 90, and the transmitted light is received by the light receiving unit 91 (S30). From the transmitted light, the concentration of the liquid to be inspected is calculated.
  • the CPU 207 displays the concentration of the target substance of the sample injected into the microchips 1 and 101 on the display unit 209 of the control device 200 (S40).
  • the CPU 207 ends the inspection program 205a (S50).
  • the holder 47R of the inspection apparatus 30 is set to the angle ⁇ 1.
  • the microchip 1 and the inspection apparatus 30 in a state where the angle ⁇ 1 is changed to the angle ⁇ 0 will be described.
  • the stepping motor 51 is driven so that the holder 47R rotates to the angle ⁇ 0 according to the angle control signal (S203).
  • the sample EL input from the sample input unit 3 moves in the sample input unit 3 by gravity GF.
  • the reagent M1 input from the reagent input unit 4 moves in the sample input unit 3 by gravity GF.
  • the microchip 1 and the inspection apparatus 30 in a state where application of the centrifugal force CF is started will be described.
  • the spindle motor 35 is driven to rotate the turntable 33 according to the angular velocity control signal (S204).
  • the specimen EL flows from the specimen supply path 5 to the centrifugal separation tank 12 by the centrifugal force CF.
  • the excess liquid of the sample EL flows and accumulates in the storage tank 14 via the first flow path 13.
  • the specimen EL in the centrifuge tank 12 is separated into the first component EL1 and the second component EL2 as the centrifugal force CF continues to be applied.
  • the reagent M1 flows from the reagent supply path 6 to the absorbance measurement tank 7.
  • the microchip 1 and the inspection apparatus 30 in a state where the angle ⁇ 0 is changed to the angle ⁇ 1 with the centrifugal force CF applied will be described.
  • the angle ⁇ 1 is changed to 90 °.
  • another angle for example, 80 ° is used. Also good.
  • the first component EL1 flows from the centrifugal separation tank 12 via the second flow path 15 to the absorbance measurement tank 7, and is mixed with the reagent M1 accumulated in the absorbance measurement tank 7.
  • the mixed liquid B1 of the first component EL1 of the sample EL and the reagent M1 is drawn in the direction of the centrifugal force CF of the absorbance measurement tank 7 by the centrifugal force CF.
  • the centrifugal separation tank 12 extends to the second flow path 15 side, which is the lower right side when the microchip 1 is viewed from the front, the second component EL2 having a high specific gravity stays in the centrifugal separation tank 12. Since the storage tank 14 has a volume enough to store the excess liquid flowing from the first flow path 13 on the right side from the lower end of the first flow path 13, the excess liquid in the storage tank 14 flows back to the centrifuge tank 12. None do.
  • the microchip 1 and the inspection apparatus 30 in a state where the angular velocity is decelerated will be described.
  • the CPU 207 outputs an angular velocity control signal from the rotation control unit 203 to the spindle motor 35 so as to decelerate the angular velocity of the turntable 33.
  • the spindle motor 35 is driven to reduce the angular velocity of the turntable 33 according to the angular velocity control signal (S206).
  • the liquid mixture B1 on the reagent loading unit 4 side of the absorbance measuring tank 7 is subjected to inertial force 94 on the cover member 20 side (front side) and the measurement region 10 side (rear side) when the angular velocity of the turntable 33 is reduced. Due to the gravity GF toward the lower side, it is drawn toward the measurement region 10 through the bottom surface 9B.
  • the microchip 1 and the inspection apparatus 30 in a state where the application of the centrifugal force CF has been completed will be described.
  • the CPU 207 outputs an angular velocity control signal from the rotation control unit 203 to the spindle motor 35 so as to stop the rotation of the turntable 33.
  • the spindle motor 35 is driven to stop the angular velocity of the turntable 33 according to the angular velocity control signal (S207).
  • the mixed liquid B1 is further drawn to the measurement region 10 through the bottom surface 9B by the inertial force 94 and gravity GF. Soon after the rotation stops, all of the mixed liquid B1 accumulates on the measurement region 10 side as in the state 1406.
  • the CPU 207 ends the execution of the liquid mixing program S20 (S208).
  • FIG. 12 shows a processing procedure according to the measurement program S30 in which the holders 47R and 47L are alternately guided onto the optical path 92R over a plurality of times, the measurement light 92 is emitted from the light source 90, and the transmitted light is received by the light receiving unit 91. It is a flowchart.
  • the measurement program S30 will be described with reference to FIG.
  • CPU207 starts measurement program S30, when liquid mixing program S20 mentioned above is complete
  • the CPU 207 substitutes 1 as an initial value for the algebra N.
  • the algebra N is a value indicating how many times the transmitted light of the microchips 1 and 101 is measured (S302).
  • the algebra N is stored in the RAM 206 of the control device 200.
  • the CPU 207 determines whether or not the algebra N is equal to or less than the required number Nmax of transmitted light measurement (S303).
  • the required number of measurements Nmax is stored in the ROM 205 of the control device 200 in advance.
  • the required number of measurements Nmax is a number of about 1 to 20, for example.
  • the CPU 207 controls the rotation control unit 203 so that the measurement region 10 of the microchip 1 in the holder 47R is positioned on the optical path 92R of the measurement light 92 emitted from the light source 90 of the inspection apparatus 30 according to a guidance program S304 described later.
  • An angular velocity control signal is output to the spindle motor 35.
  • the spindle motor 35 is driven to rotate the turntable 33 in the rotation direction 93 in accordance with the angular velocity control signal (S304).
  • the CPU 207 causes the light source control unit 201 to output a light emission signal to the light source 90 so that the measurement light 92 is emitted from the light source 90 to the mixed liquid B1 in the measurement region 10 of the microchip 1 located on the optical path 92R.
  • the light source 90 emits measurement light 92 according to the light emission signal.
  • the light receiving unit 91 receives the transmitted light that has passed through the measurement region 10.
  • the RAM 206 of the control device 200 stores the intensity of transmitted light received by the light receiving unit 91 (S305).
  • the CPU 207 moves the spindle from the rotation control unit 203 so that the measurement region of the microchip 101 in the holder 47L is positioned on the optical path 92R of the measurement light 92 emitted from the light source 90 of the inspection apparatus 30.
  • An angular velocity control signal is output to the motor 35.
  • the spindle motor 35 is driven so that the turntable 33 rotates by an angle of 180 degrees in the rotation direction 93 according to the angular velocity control signal (S306).
  • the CPU 207 emits light from the light source control unit 201 to the light source 90 so that the measurement light 92 is emitted from the light source 90 to the mixed liquid in the measurement region of the microchip 101 located on the optical path 92R. Output a signal.
  • the light source 90 emits measurement light 92 according to the light emission signal.
  • the light receiving unit 91 receives the transmitted light that has passed through the measurement region.
  • the RAM 206 of the control device 200 stores the intensity of transmitted light received by the light receiving unit 91 (S307).
  • the CPU 207 adds 1 to the algebra N (S308). After S308, the process returns to S303.
  • the CPU 207 calculates the absorbance from the value of the transmitted light stored in the RAM 206 of the control device 200, measures the absorbance of a plurality of test solutions having known concentrations, and uses a calibration curve between the concentration of the target substance and the absorbance. Then, the concentration of the target substance is calculated (S309).
  • the CPU 207 ends the execution of the measurement program S30 (S310).
  • a state 1501 in FIG. 15A is a cross-sectional view showing a state immediately after starting the guidance of the microchip 1 to the optical path 92R according to the process of S304. In the state 1501, since the measurement region 10 is located below the passage region 8 in the direction of gravity GF, the mixed liquid B1 stays in the measurement region 10.
  • the CPU 207 controls the spindle motor 35 from the rotation control unit 203 so that the rotation of the turntable 33 is accelerated in the rotation direction 93 at the angular acceleration ⁇ 1 [rad / s 2 ] until the predetermined maximum angular velocity ⁇ from when the rotation is stopped.
  • An angular velocity control signal is output.
  • the spindle motor 35 is driven to accelerate the rotation of the turntable 33 in the rotation direction 93 with the angular acceleration ⁇ 1 until the maximum angular velocity ⁇ is reached in accordance with the angular velocity control signal (S3042).
  • a state 1502 is a cross-sectional view showing a state of the microchip 1 during acceleration.
  • the mixed liquid B ⁇ b> 1 is drawn toward the bottom surface 9 ⁇ / b> A side of the passage region 8 through the bottom surface 9 ⁇ / b> B by the inertia force 94 a upstream in the rotation direction 93.
  • the CPU 207 outputs an angular velocity control signal from the rotation control unit 203 to the spindle motor 35 so that the turntable 33 is maintained in the state of the maximum angular velocity ⁇ [rad / s].
  • the spindle motor 35 is driven so as to maintain the rotation of the turntable 33 in the rotation direction 93 at the maximum angular velocity ⁇ in accordance with the angular velocity control signal (S3043).
  • a state 1503 is a cross-sectional view showing a state of the microchip 1 rotating at the maximum angular velocity ⁇ . In the state 1503, the mixed liquid B1 is temporarily drawn toward the passing region 8 side.
  • the CPU 207 outputs an angular velocity control signal from the rotation control unit 203 to the spindle motor 35 so that the rotation of the turntable 33 is decelerated in the rotation direction 93 at the angular acceleration ⁇ 2 [rad / s 2 ] from the maximum angular velocity ⁇ to the stop of rotation.
  • the spindle motor 35 is driven to reduce the rotation of the turntable 33 in the rotation direction 93 at the angular acceleration ⁇ 2 from the maximum angular velocity ⁇ to the stoppage of rotation in accordance with the angular velocity control signal (S3044).
  • a state 1504 is a cross-sectional view showing the state of the microchip 1 during deceleration.
  • the mixed liquid B ⁇ b> 1 passes through the bottom surface 9 ⁇ / b> A from the bottom surface 9 ⁇ / b> A of the passage region 8 by the gravity GF from the passage region 8 to the measurement region 10 and the inertia force 94 b downstream in the rotation direction 93. Attracted vigorously.
  • a state 1505 is a cross-sectional view showing the state of S3045 of the microchip 1 that has stopped. In the state 1505, the mixed liquid B1 stays on the bottom surface 9B of the passage region 8 and the measurement region 10 soon after the execution of the guidance program S304 is finished.
  • State 1506 is a cross-sectional view showing the state of the microchip 1 from which the measurement light 92 is emitted.
  • the measurement light 92 is emitted from the light source 90 to the mixed liquid B1 in the measurement region 10 of the microchip 1, and the transmitted light is received by the light receiving unit 91 (S305).
  • the liquid mixture B1 can be stored in the measurement region 10 of the microchip 1 during the measurement of transmitted light by the inertial force 94b downstream in the rotation direction 93. As a result, the absorbance of the mixed liquid B1 can be accurately measured.
  • the sample has been described as blood, but is not limited thereto.
  • the specimen may be a reagent such as serum, plasma, or drug, or a mixed liquid of reagent and blood, and can be appropriately selected by a user according to a desired test.
  • the absorbance measurement tank 7 has a rectangular shape that is long in the left-right direction, but is not limited thereto, and may be a curved shape such as a polygonal shape or a circle.
  • the bottom surface 9 ⁇ / b> B of the passage area 8 is provided from the predetermined place 8 ⁇ / b> T to the predetermined place 10 ⁇ / b> T located in the intermediate portion of the passage area 8.
  • 10T may be provided. That is, the entire depth of the passing region 8 may be provided so as to become shallower as the measuring region 10 is approached. Further, the bottom surface 9B of the passing region 8 linearly becomes shallower in the front-rear direction as it approaches the measurement region 10, that is, the lower side.
  • the present invention is not limited to this, and when the liquid flows from the passage region 8 toward the measurement region 10 by applying an inertial force, the liquid is continuously shallow in the front-rear direction so as not to remain in the passage region 8.
  • Other shapes may be used as long as they are.
  • the surface roughness of each surface of the measurement region 10 is defined, but the surface roughness of each surface of the measurement region 10 may be in a range in which liquid flows into the measurement region 10 due to inertial force. .
  • the measurement region 10 includes the side wall surfaces 10B, 10C, and 10D perpendicular to the flow path forming surface 2A, but may be a surface that intersects instead of a vertical surface.
  • the taper is formed from the bottom surface 10A in the direction along the flow path forming surface 2A of the measurement region 10 toward the flow path forming surface 2A, the surface roughness of the surfaces 10B, 10C, and 10D can be increased during injection molding. Rough and easy to process.
  • the cutout portion 11 is provided at the right corner of the bottom surface 2B of the microchip 1.
  • a posture regulating means capable of regulating the orientation of the microchip 1 to a predetermined posture
  • it is in another form.
  • a protrusion may be provided on the outer wall surface of the microchip
  • a notch may be provided on the inner wall surface on the holder side.
  • there may be two or more notches.
  • the notch part may be extended and provided upward from the lower end of one side surface among the side surfaces perpendicular to the flow path forming surface 2A of the microchip.
  • the reagent supply path 6 and the passage area 8 are directly connected, but a measuring unit and a surplus tank are provided between the reagent supply path 6 and the passage area 8. May be.
  • the measuring unit is a tank for measuring a predetermined amount of reagent.
  • the measuring unit has a volume capable of measuring a predetermined amount of the reagent.
  • the surplus tank is a tank for storing the surplus liquid measured by the measuring unit.
  • the surplus tank has a volume capable of storing a predetermined amount of surplus liquid flowing out by measuring a predetermined amount by the measuring unit.
  • the second flow path 15 and the reagent supply path 6 are connected to the upper end of the passage area 8.
  • the second flow path and the reagent supply path need only be connected to one of the end portions of the passage region.
  • the sample loading unit 3 is provided on the left side and the reagent loading unit 4 is provided on the right side as viewed from the front, but the sample loading unit 3 on the right side and the reagent loading unit 4 on the left side, You may arrange
  • the thicknesses of the sample loading unit 3 and the reagent loading unit 4 are constant, but the sample loading unit 3 and the reagent loading unit 4 are close to the sample supply path 5 and the reagent supply path 6. Accordingly, it may be formed in a shape in which the thickness in the front-rear direction is reduced. By reducing the thickness of the sample supply path 5 and the reagent supply path 6 in the front-rear direction, it is possible to accurately measure a smaller amount of sample and reagent.
  • both the microchips 1 and 101 have one sample EL input portion, but there may be two or more sample input portions in each of the microchips 1 and 101.
  • the specimen EL of the microchip 101 is mixed with one reagent M1, but may be mixed with a plurality of reagents.
  • the material of the plate member 2 and the cover member 20 is not particularly limited, and polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS) , Polypropylene (PP), polyethylene (PE), polyethylene naphthalate (PEN), polyarylate resin (PAR), acrylonitrile / butadiene / styrene resin (ABS), vinyl chloride resin (PVC), polymethylpentene resin (PMP), Organic materials such as polybutadiene resin (PBD), biodegradable polymer (BP), cycloolefin polymer (COP), and polydimethylsiloxane (PDMS) can be used.
  • an inorganic material such as silicon, glass, or quartz may be used.
  • the plate member 2 was a substantially square transparent plate, but if it has an area that can form a flow path on the flow path forming surface, a polygon such as an octagon, Alternatively, the shape may be chamfered such as a circle or an ellipse.
  • the holders 47L and 47R may be formed so as to be accommodated in accordance with the shapes of the various plate members.
  • the plate member 2 may not be transparent as long as it is a member that can transmit measurement light.
  • the cover member 20 may be not only a flexible film but also a sheet-like substance having higher rigidity than the film.
  • substrate which has the hardness comparable as the board member 2 and consists of a homogeneous material may be sufficient.
  • the substrate is known, for example, described in JP-A-2006-234600.
  • the plate member 2 is manufactured by injection molding, but may be manufactured by other various resin molding methods such as vacuum molding, or mechanical cutting.
  • step S304 for guiding the holder 47R onto the optical path 92R in the rotation direction 93 is performed.
  • a motor that can control the rotation stop position which is different from the spindle motor 35, is used.
  • the holder 47R may be controlled to stop on the optical path 92R.
  • it is desirable that the angular acceleration at the start of the liquid mixing program S20 is smaller than the angular acceleration at the end of the liquid mixing program S20. Thereby, inertia force can be given comparatively strongly downstream in the direction of rotation.
  • the light source 90 is a laser diode, but any light source capable of emitting directional light such as an LED may be used.
  • control device 200 is provided as a separate configuration connected to the drive mechanism of the inspection device 30 via the cable 96, but is incorporated into the drive mechanism and provided integrally therewith. Also good.
  • the holder 47 includes the holder 47L and the holder 47R, but there may be one holder 47 or three or more holders 47.
  • the angular acceleration ⁇ 1 is smaller than the angular acceleration ⁇ 2.
  • the angular acceleration ⁇ 1 is It may be larger than the angular acceleration ⁇ 2.
  • the measurement light emitted from the light source is arranged so that the incident direction of the measurement light is perpendicular to the flow path forming surface, but the flow path forming surface is limited to the arrangement perpendicular to the incident direction. Absent. For example, if the light source enters measurement liquid into the liquid mixture in the measurement region and the light receiving unit can receive transmitted light, the angle formed between the flow path forming surface and the incident direction is an acute angle or an obtuse angle. May be.
  • the turntable 33 has a disk shape, but may have various shapes such as a polygonal shape as long as the turntable 33 is provided to be rotatable about the vertical direction.
  • the extending direction of the pair of shafts 46L and 46R and the flow path forming surfaces 2A and 102A are orthogonal to each other, but the flow path forming surface is limited to an arrangement orthogonal to the rotation axis. There is no.
  • the direction of the centrifugal force CF can be switched to a desired direction when the angle is changed to a predetermined angle around the pair of shafts 46L, 46R, the flow path forming surfaces 2A, 102A and the pair of shafts 46L,
  • the angle formed by the extending direction of 46R may be an acute angle or an obtuse angle.
  • the centrifugal force CF is applied in a direction parallel to the flow path forming surfaces 2A and 102A of the microchips 1 and 101 in the holders 47L and 47R, but the flow path forming surface is in the direction of the centrifugal force CF. It is not limited to arrangement
  • the centrifugal acceleration of the inspection apparatus 30 is 500 G [m / s 2 ], but may be any centrifugal acceleration that allows the specimen or the mixed liquid to move through a predetermined flow path or tank. Further, the centrifugal acceleration of the centrifugal force CF may be a value of about 100 G to 5000 G [m / s 2 ], for example.
  • the flow path forming surfaces 2A and 102A in the present embodiment are examples of the flow path forming surfaces in the present invention.
  • the predetermined channel in the present embodiment is an example of the channel in the present invention.
  • the microchips 1 and 101 in the present embodiment are an example of a test object receptacle in the present invention.
  • the specimen EL, the reagent M1, or the mixed liquid B1 in the present embodiment is an example of a liquid to be inspected in the present invention.
  • the absorbance measurement tank 7 in the present embodiment is an example of the absorbance measurement tank in the present invention.
  • the first depth D1 and the second depth D2 in the present embodiment are examples of the first depth and the second depth in the present invention in order.
  • the passage region 8 and the measurement region 10 in this embodiment are examples of the passage region and the measurement region in the present invention in order.
  • the rotation direction 93 in the present embodiment is an example of the rotation direction in the present invention.
  • the front-rear direction in the present embodiment is an example of a direction perpendicular to the flow path forming surface in the present invention.
  • the optical path 92R in the present embodiment is an example of the position where the measurement light in the present invention is incident.
  • the main shaft 57 in the present embodiment is an example of the main shaft in the present invention.
  • the notch 11 in the present embodiment is an example of the notch and the posture regulating means in the present invention.
  • the side wall surfaces 10B, 10C, and 10D of the measurement region 10 in the present embodiment are examples of the side wall surfaces of the measurement region in the present invention.
  • the bottom surface 9 ⁇ / b> B and the bottom surface 10 ⁇ / b> A in this embodiment are examples of the bottom surface of the passing region and the bottom surface of the measurement region in the present invention in order.
  • the measurement light 92, the light source 90, the light receiving unit 91, and the inspection device 30 in this embodiment are examples of the measurement light, the light source, the light receiving unit, and the inspection device in the present invention in order.
  • the holders 47L and 47R in the present embodiment are examples of the holder in the present invention.
  • the spindle motor 35, the rotation control unit 203, the stepping motor 51, and the angle setting unit 204 in the present embodiment are examples of the rotation drive source, the rotation control unit, the angle change source, and the angle setting unit in the present invention in order.
  • the angle ⁇ in the present embodiment is an example of the angle in the present invention.
  • the axes of the shafts 46L and 46R in the present embodiment are examples of the axes in the present invention.
  • the angular acceleration ⁇ 1, the maximum angular velocity ⁇ , and the angular acceleration ⁇ 2 in this embodiment are examples of the first angular acceleration, the predetermined angular velocity, and the second angular acceleration in the present invention in order.
  • the holder 47R and the holder 47L in the present embodiment are examples of the first holder and the second holder in the present invention in order.
  • S3042 in the present embodiment is an example of a rotation step in the present invention.
  • S3044 in this embodiment is an example of an angle setting step in the present invention.
  • S305 in the present embodiment is an example of a measurement step in the present invention.

Abstract

The present invention enables a liquid to be inspected to be stored in a measurement region of an absorbance measurement tank during measurement and enables the absorbance of the liquid to be accurately measured. An inspection object acceptor (1) is provided with an absorbance measurement tank (7), the absorbance measurement tank (7) comprises a passage region (8) which has a second depth (D2) in the direction perpendicular to a flow path forming surface and through which a liquid to be inspected (EL) passes, a measurement region (10) which has a first depth (D1) shallower than the second depth in the perpendicular direction and through which measurement light passes in order to measure the absorbance of the liquid to be inspected (EL), and a bottom surface (9B) which connects both the regions (8, 10) such that the liquid to be inspected (EL) flows from the passage region (8) into the measurement region (10), the flow path forming surface (2A) is parallel to the direction of gravity force (GF), the bottom surface (9B) of the passage region (8) is located on the downstream side in a rotation direction (93) from the bottom surface (10A) of the measurement region (10), and the inspection object acceptor has an outer wall surface (2B) that fits in a holder (47R) of an inspection device (30) so as to be mounted in the holder (47R).

Description

検査システム、及び検査方法Inspection system and inspection method
 本発明は、慣性力により検査対象の液体を吸光度測定槽に留め、光学分析をすることができる構成を有する検査システム、及びその検査システムを用いた検査方法に関する。 The present invention relates to an inspection system having a configuration in which a liquid to be inspected can be retained in an absorbance measurement tank by inertia force and optical analysis can be performed, and an inspection method using the inspection system.
 検査対象受体に相当するマイクロチップは、検査対象の液体が流れる流路が形成された流路形成面としての基板表面を有し、検査装置の主軸の回りに回転可能なチップホルダに収納される。特許文献1に開示された検査装置においては、マイクロチップを流路形成面が主軸に対して垂直になるように、チップホルダに収納される。 The microchip corresponding to the inspection object receiver has a substrate surface as a flow path forming surface on which a flow path for the liquid to be inspected is formed, and is housed in a chip holder that can rotate around the main axis of the inspection apparatus. The In the inspection apparatus disclosed in Patent Document 1, the microchip is stored in the chip holder so that the flow path forming surface is perpendicular to the main axis.
 検査装置は、吸光度を測定するための光源及び受光部としての検出器、マイクロチップ内の液体に対して所望の方向へ遠心力を付与するための回転駆動源及び制御部を備える。 The inspection apparatus includes a light source for measuring absorbance, a detector as a light receiving unit, a rotational drive source for applying centrifugal force to a liquid in the microchip in a desired direction, and a control unit.
 マイクロチップとしては、例えば特許文献2に開示されたマイクロチップが用いられる。特許文献2のマイクロチップ内の血液は、遠心力を任意の方向へ付与することにより、血漿成分と血球成分とに分離された後、試薬と混合され、流路の末端側にあり測定光が入射する検出部としての測定領域に収容される。 As the microchip, for example, the microchip disclosed in Patent Document 2 is used. The blood in the microchip of Patent Document 2 is separated into a plasma component and a blood cell component by applying a centrifugal force in an arbitrary direction, and then mixed with a reagent. It is accommodated in a measurement area as an incident detector.
特開2008-8875号公報JP 2008-8875 A 特開2009―128229号公報JP 2009-128229 A
 測定領域は、限られた量の検査対象の液体に対して測定光の当たる位置がずれたとしても吸光度を測定可能なよう、他の領域よりも測定光の入射方向において浅く、測定光の入射方向に直交する面において広い方が望ましい。この場合、比較的浅い領域である測定領域は他の領域との接続部分の断面積が小さいため、測定領域から他の領域への空気の逃げ道が限られている。このため、他の領域と比較して、検査対象の液体を測定領域へ流す力が弱いと、空気が液体の気泡として測定領域内に残りやすい。 The measurement area is shallower than the other areas in the incident direction of the measurement light so that the absorbance can be measured even if the position of the measurement light hits a limited amount of the liquid to be inspected. A wider area is desirable in the plane orthogonal to the direction. In this case, the measurement area, which is a relatively shallow area, has a small cross-sectional area at the connection portion with the other area, and therefore the air escape path from the measurement area to the other area is limited. For this reason, when the force of flowing the liquid to be inspected to the measurement region is weak compared to other regions, air tends to remain in the measurement region as liquid bubbles.
 したがって、吸光度測定時に、測定領域の測定光の当たる位置によっては測定可能な十分な量の検査対象の液体が満たされておらず、液体の吸光度を正確に測定することができないという問題点があった。 Therefore, at the time of absorbance measurement, there is a problem that a sufficient amount of the liquid to be inspected is not filled depending on the position where the measurement light hits the measurement area, and the liquid absorbance cannot be measured accurately. It was.
 本発明は、上記の問題点に鑑みてなされたものであり、測定中により多くの検査対象の液体を吸光度測定槽の測定領域に留めることができ、液体の吸光度を正確に測定することができる検査システム、及び検査方法を提供することを目的とする。 The present invention has been made in view of the above problems, and more liquid to be inspected can be retained in the measurement region of the absorbance measurement tank during measurement, and the absorbance of the liquid can be accurately measured. An object is to provide an inspection system and an inspection method.
 上記目的を達成するために、請求項1に記載の検査システムは、検査対象の液体が流動可能な凹所状の流路が形成された流路形成面を内部に有するとともに、検査対象の液体の吸光度を測定するために前記測定光が透過し、前記流路形成面に垂直な方向に第1の深さを有する測定領域と、検査対象の液体が前記流路から前記測定領域に向かって通過し、前記流路形成面に垂直な方向において前記第1の深さより深い第2の深さから前記測定領域に向かうにつれ、徐々に浅くなる通過領域と、を有する凹所である吸光度測定槽を備える検査対象受体と、前記検査対象受体を着脱可能に収納するホルダと、重力の方向に沿って延びる主軸を中心に前記ホルダを回転させる回転駆動源と、前記ホルダを回転方向に回転させるとともに、前記ホルダの角速度を加速または減速するために前記回転駆動源を制御する回転制御部と、前記流路形成面と交差する軸線を中心として前記ホルダの角度を変更する角度変更源と、前記ホルダの角度を設定するために前記角度変更源を制御する角度設定部と、を備え、前記ホルダに収納された前記検査対象受体の前記測定領域に測定光を入射させる光源と、前記測定領域を透過した測定光を受光する受光部と、を備え、前記ホルダは、前記流路形成面が重力の方向に沿うとともに、前記測定領域の底面が、前記通過領域の底面より前記回転方向の下流側にある装着姿勢で、前記検査対象受体を収納し、前記角度設定部は、前記ホルダ内の前記測定領域を前記光源から出射される測定光が入射する位置に停止するために前記ホルダの角速度を減速する際に、前記測定領域が重力の方向において前記通過領域より下方に位置するように、前記ホルダの角度を設定することを特徴とする。 In order to achieve the above object, the inspection system according to claim 1 has a flow path forming surface in which a recessed flow path capable of flowing the liquid to be inspected is formed, and the liquid to be inspected. A measurement region having a first depth in a direction perpendicular to the flow path formation surface, and a liquid to be inspected from the flow channel toward the measurement region. An absorbance measurement tank that is a recess having a passage region that passes through and gradually becomes shallower from the second depth deeper than the first depth toward the measurement region in a direction perpendicular to the flow path forming surface. An inspection object receiver, a holder for detachably storing the inspection object receiver, a rotation drive source for rotating the holder about a main shaft extending along the direction of gravity, and rotating the holder in the rotation direction. And the holder A rotation control unit that controls the rotation drive source to accelerate or decelerate an angular velocity, an angle change source that changes the angle of the holder about an axis that intersects the flow path forming surface, and an angle of the holder An angle setting unit that controls the angle changing source, a light source that causes the measurement light to enter the measurement region of the inspection object receiver housed in the holder, and a measurement light that has passed through the measurement region A mounting position in which the flow path forming surface is along the direction of gravity, and the bottom surface of the measurement region is downstream of the bottom surface of the passage region in the rotation direction. The inspection object receptacle is accommodated, and the angle setting unit reduces the angular velocity of the holder to stop the measurement region in the holder at a position where measurement light emitted from the light source is incident. In The measurement region so as to be positioned below the passage area in the direction of gravity, and sets the angle of the holder.
 請求項2に記載の検査システムの前記回転制御部は、前記ホルダが、回転停止時から前記回転方向に所定の角速度に達するまで第1角加速度で加速され、前記所定の角速度から前記回転方向に前記ホルダ内の前記測定領域を前記光源から出射される測定光が入射する位置に停止するまで第2角加速度で減速され、前記第2角加速度は、前記第1角加速度と同等、又は大きくなるよう前記回転駆動源を制御することを特徴とする。 The rotation control unit of the inspection system according to claim 2, wherein the holder is accelerated at a first angular acceleration from when the rotation is stopped until reaching a predetermined angular velocity in the rotation direction, and from the predetermined angular velocity to the rotation direction. The measurement area in the holder is decelerated at the second angular acceleration until it stops at the position where the measurement light emitted from the light source enters, and the second angular acceleration is equal to or larger than the first angular acceleration. The rotational drive source is controlled as described above.
 請求項3に記載の検査システムは、前記ホルダが、複数の検査対象受体をそれぞれ収納する第1および第2のホルダ、を備え、前記回転制御部は、前記第1のホルダに収納された検査対象受体の測定領域を前記光源から出射される測定光が入射する位置に誘導する際の回転の向きと、前記第2のホルダに収納された検査対象受体の測定領域を前記光源から出射される測定光が入射する位置に誘導する際の回転の向きと、は前記回転方向と同一とすることを特徴とする。 The inspection system according to claim 3, wherein the holder includes first and second holders that respectively accommodate a plurality of inspection object receptacles, and the rotation control unit is accommodated in the first holder. The direction of rotation when guiding the measurement area of the inspection object receiver to the position where the measurement light emitted from the light source enters, and the measurement area of the inspection object receiver housed in the second holder from the light source The direction of rotation when guiding the emitted measurement light to the incident position is the same as the rotation direction.
 請求項4に記載の検査システムは、前記測定領域の底面の面粗度は、平均粗さRa値で、70nm以下であることを特徴とする。 The inspection system according to claim 4 is characterized in that the surface roughness of the bottom surface of the measurement region is an average roughness Ra value of 70 nm or less.
 請求項5に記載の検査システムは、前記測定領域の側壁面の面粗度が、前記測定領域の底面の面粗度より大きいことを特徴とする。 The inspection system according to claim 5 is characterized in that the surface roughness of the side wall surface of the measurement region is larger than the surface roughness of the bottom surface of the measurement region.
 請求項6に記載の検査システムは、前記検査対象受体が前記ホルダに装着される姿勢を前記装着姿勢に規制する姿勢規制手段を備え、前記姿勢規制手段が、前記外壁面に設けられることを特徴とする。 The inspection system according to claim 6, further comprising: posture restriction means for restricting a posture in which the inspection subject receiver is attached to the holder to the attachment posture, and the posture restriction means is provided on the outer wall surface. Features.
 請求項7に記載の検査システムは、姿勢規制手段が、前記外壁面に設けられた切欠部であることを特徴とする。 The inspection system according to claim 7 is characterized in that the posture regulating means is a notch provided in the outer wall surface.
 請求項8に記載の検査方法は、検査対象の液体が流動可能な凹所状の流路が形成された流路形成面を内部に有するとともに、検査対象の液体の吸光度を測定するために前記測定光が透過し、前記流路形成面に垂直な方向に第1の深さを有する測定領域と、検査対象の液体が前記流路から前記測定領域に向かって通過し、前記流路形成面に垂直な方向において前記第1の深さより深い第2の深さから前記測定領域に向かうにつれ、徐々に浅くなる通過領域と、を有する凹所である吸光度測定槽を備える検査対象受体と、前記検査対象受体を着脱可能に収納するホルダと、重力の方向に沿って延びる主軸を中心に前記ホルダを回転させる回転駆動源と、前記ホルダを回転方向に回転させるとともに、前記ホルダの角速度を加速または減速するために前記回転駆動源を制御する回転制御部と、前記流路形成面と交差する軸線を中心として前記ホルダの角度を変更する角度変更源と、前記ホルダの角度を設定するために前記角度変更源を制御する角度設定部と、を備え、前記ホルダに収納された前記検査対象受体の前記測定領域に測定光を入射させる光源と、前記測定領域を透過した測定光を受光する受光部と、を備える検査システムを用いて、前記流路形成面が重力の方向に沿う方向に延びるように前記ホルダに前記検査対象受体を収納した状態で、前記ホルダ内の前記測定領域を前記光源から出射される測定光が入射する位置に誘導するために、前記測定領域の底面が、前記通過領域の底面より回転方向の下流側になるように前記回転制御部が前記回転駆動源を回転させる回転ステップと、前記ホルダ内の前記測定領域を前記光源から出射される測定光が入射する位置に停止するために前記回転制御部が前記ホルダの角速度を減速させる際に、前記測定領域が重力の方向において前記通過領域より下方に位置するように、前記角度設定部が前記角度変更源を制御する角度設定ステップと、前記光源から前記ホルダに収納された前記検査対象受体の前記測定領域に測定光を出射させ、前記測定領域を透過した測定光を受光する測定ステップと、を実行することを特徴とする。 The inspection method according to claim 8 includes a flow path forming surface in which a concave flow path through which a liquid to be inspected can flow is formed, and is used for measuring the absorbance of the liquid to be inspected. A measurement region that transmits measurement light and has a first depth in a direction perpendicular to the flow channel formation surface, and a liquid to be inspected passes from the flow channel toward the measurement region, and the flow channel formation surface A test object receiver comprising an absorbance measurement tank that is a recess having a passage region that gradually becomes shallower from a second depth deeper than the first depth in a direction perpendicular to the first depth to the measurement region; A holder for detachably storing the test object receptacle, a rotational drive source for rotating the holder about a main axis extending in the direction of gravity, a rotation of the holder in the rotational direction, and an angular velocity of the holder To accelerate or decelerate A rotation control unit for controlling the rotation drive source, an angle change source for changing the angle of the holder about an axis intersecting the flow path forming surface, and the angle change source for setting the angle of the holder An angle setting unit that controls the light source, a light source that makes the measurement light incident on the measurement region of the inspection object receiver housed in the holder, and a light receiving unit that receives the measurement light transmitted through the measurement region, The measurement area in the holder is emitted from the light source in a state in which the inspection target receptacle is housed in the holder so that the flow path forming surface extends in a direction along the direction of gravity. In order to guide the measurement light to the incident position, the rotation control unit rotates the rotation drive source so that the bottom surface of the measurement region is downstream of the bottom surface of the passage region in the rotation direction. When the rotation control unit decelerates the angular velocity of the holder in order to stop the measurement area in the holder at a position where measurement light emitted from the light source is incident, the measurement area is in the direction of gravity. An angle setting step in which the angle setting unit controls the angle change source so that the angle setting unit is positioned below the passage region, and a measurement light from the light source to the measurement region of the inspection object receiver housed in the holder And a measurement step of receiving measurement light that has been emitted and transmitted through the measurement region.
 請求項1に記載の検査システムは、流路形成面が重力の方向に沿い、通過領域の底面が測定領域の底面より回転方向の下流側にある装着姿勢で、ホルダに装着されるように、ホルダに嵌合する外壁面を有する。縦型の検査装置に装着される検査対象受体において、流路を通って吸光度測定槽の通過領域に流れ込んだ検査対象の液体は、通過領域に保持され、測定領域に容易に流れることがない。この状態において、ホルダの角速度が減速されると、この減速に伴って発生する慣性力が通過領域にある検査対象の液体に作用する。慣性力が通過領域内の検査対象の液体に働くことにより、検査対象の液体は、通過領域から慣性力の働く方向の下流側にある測定領域に流れやすくなる。また、慣性力が検査対象の液体に働くことにより、測定領域へ検査対象の液体が勢いよく流れ、測定領域内の空気を積極的に通過領域側に移動させることができる。その結果、測定中により多くの検査対象の液体が測定領域に留まり、その液体の吸光度を正確に測定することができる。また、通過領域の底面は、重力の方向において下方に向かうにつれ、流路形成面に垂直な方向において浅くなっている。慣性力を付与した時に、通過領域内の液体が、通過領域の連続的に浅い底面を伝って、測定領域へ移動しやすくなる。その結果、測定中により多くの検査対象
の液体が測定領域に留まり、その液体の吸光度を正確に測定することができる。
The inspection system according to claim 1 is mounted on the holder in a mounting posture in which the flow path forming surface is along the direction of gravity and the bottom surface of the passage region is downstream of the bottom surface of the measurement region in the rotational direction. It has an outer wall surface that fits into the holder. In the inspection target receptacle attached to the vertical inspection apparatus, the liquid to be inspected that has flowed into the passage region of the absorbance measurement tank through the flow path is held in the passage region and does not easily flow into the measurement region. . In this state, when the angular velocity of the holder is decelerated, the inertial force generated by the deceleration acts on the liquid to be inspected in the passage region. Since the inertial force acts on the liquid to be inspected in the passage region, the liquid to be inspected easily flows from the passage region to the measurement region on the downstream side in the direction in which the inertial force acts. In addition, when the inertial force acts on the liquid to be inspected, the liquid to be inspected flows vigorously to the measurement area, and the air in the measurement area can be positively moved to the passing area side. As a result, more liquid to be inspected remains in the measurement region during measurement, and the absorbance of the liquid can be accurately measured. Further, the bottom surface of the passage region becomes shallower in the direction perpendicular to the flow path forming surface as it goes downward in the direction of gravity. When the inertial force is applied, the liquid in the passage region easily moves to the measurement region along the continuously shallow bottom surface of the passage region. As a result, more liquid to be inspected remains in the measurement region during measurement, and the absorbance of the liquid can be accurately measured.
 請求項2に記載の検査システムの第1角加速度は、第2角加速度より小さい。これにより、第1角加速度が第2角加速度より大きい場合と比較して、第2角加速度での減速時に、慣性力をより強く通過領域内の検査対象の液体に付与することができる。その結果、通過領域内の検査対象の液体が勢いよく測定領域に入りやすくなる。また、第1角加速度が第2角加速度より大きい場合と比較して、第1角加速度での加速時に、測定領域内の検査対象の液体にかかる慣性力をより弱くすることができる。その結果、測定領域内の検査対象の液体が、均一に分布し、通過領域に戻りにくくなる。その結果、測定中により多くの検査対象の液体が測定領域に留まり、その液体の吸光度を正確に測定することができる。 The first angular acceleration of the inspection system according to claim 2 is smaller than the second angular acceleration. Thereby, as compared with the case where the first angular acceleration is larger than the second angular acceleration, the inertial force can be more strongly applied to the liquid to be inspected in the passage region when decelerating at the second angular acceleration. As a result, the liquid to be inspected in the passage area can easily enter the measurement area. Further, as compared with the case where the first angular acceleration is larger than the second angular acceleration, the inertial force applied to the liquid to be inspected in the measurement region can be further reduced when accelerating at the first angular acceleration. As a result, the liquid to be inspected in the measurement region is evenly distributed and is difficult to return to the passage region. As a result, more liquid to be inspected remains in the measurement region during measurement, and the absorbance of the liquid can be accurately measured.
 請求項3に記載の検査システムによれば、第1のホルダ誘導のための回転の向きと、第2のホルダ誘導のための回転の向きと、が減速時の回転方向と同一である。第1のホルダ誘導のための回転の向きと回転方向とが同一であるため、第1のホルダの検査対象受体の測定のための減速時に、前記回転方向に慣性力が通過領域内の検査対象の液体に付与される。その結果、通過領域内の検査対象の液体が、測定領域に入りやすくなる。第2のホルダ誘導のための回転の向きと回転方向とが同一であるため、第2のホルダの検査対象受体の測定のための減速時に、前記回転方向とは反対側に慣性力により通過領域内に戻された検査対象の液体に前記回転方向に再び慣性力が付与される。その結果、通過領域内の検査対象の液体が、測定領域に入りやすくなる。 According to the inspection system of the third aspect, the rotation direction for the first holder guidance and the rotation direction for the second holder guidance are the same as the rotation direction during deceleration. Since the direction of rotation for rotating the first holder is the same as the direction of rotation, the inertial force is inspected in the direction of rotation in the direction of rotation when the first holder is decelerated for the measurement of the test object receptacle. Applied to the target liquid. As a result, the liquid to be inspected in the passage area easily enters the measurement area. Since the direction of rotation for rotating the second holder is the same as the direction of rotation, the second holder passes through an inertial force on the opposite side of the rotation direction during deceleration for measurement of the receiving object to be inspected. An inertial force is again applied in the rotation direction to the liquid to be inspected returned to the region. As a result, the liquid to be inspected in the passage area easily enters the measurement area.
 請求項4に記載の検査システムは、測定領域の底面の面粗度が、平均粗さRa値で、70nm以下である。これにより、測定光が測定領域に入射した際に、測定光が散乱し、受光部にて透過光が正確に受光されなくなることを防ぐことができる。 In the inspection system according to claim 4, the surface roughness of the bottom surface of the measurement region is an average roughness Ra value of 70 nm or less. Thereby, when the measurement light enters the measurement region, it is possible to prevent the measurement light from being scattered and the transmitted light from being accurately received by the light receiving unit.
 請求項5に記載の検査システムは、測定領域の側壁面の面粗度は、前記測定領域の底面の面粗度より大きい。測定領域の側壁面の面粗度が大きいため、測定領域内の検査対象の液体が測定領域の側壁面に補足される。その結果、測定領域の側壁面の表面張力の影響により検査対象の液体が、通過領域に戻ることを防ぐことができる。 In the inspection system according to claim 5, the surface roughness of the side wall surface of the measurement region is larger than the surface roughness of the bottom surface of the measurement region. Since the surface roughness of the sidewall surface of the measurement region is large, the liquid to be inspected in the measurement region is supplemented by the sidewall surface of the measurement region. As a result, the liquid to be inspected can be prevented from returning to the passage region due to the influence of the surface tension of the side wall surface of the measurement region.
 請求項6に記載の検査システムは、姿勢規制手段を有する。姿勢規制手段により、慣性力が測定領域側に働くように装着姿勢が規制され、検査対象の液体が測定領域に流れやすくなる。その結果、測定中により多くの検査対象の液体が測定領域に留まり、その液体の吸光度を正確に測定することができる。 The inspection system according to claim 6 has posture control means. The posture regulation means regulates the mounting posture so that the inertial force acts on the measurement region side, and the liquid to be inspected easily flows into the measurement region. As a result, more liquid to be inspected remains in the measurement region during measurement, and the absorbance of the liquid can be accurately measured.
 請求項7に記載の検査システムは、ホルダの突出部に嵌合する切欠部を有する。検査対象受体に突出部がありホルダに切欠部があった場合と比較して、検査対象受体の体積を小さくすることができる。その結果、検査対象受体をコンパクトにすることができ、更にコストを低減できる。 The inspection system according to claim 7 has a notch that fits into the protrusion of the holder. Compared with the case where the inspection object receptacle has a protrusion and the holder has a notch, the volume of the inspection object receptacle can be reduced. As a result, the inspection object receiver can be made compact and the cost can be further reduced.
 請求項8に記載の検査方法は、前記ホルダ内の前記測定領域を前記光源から出射される測定光が入射する位置に誘導するために、前記測定領域の底面が、前記通過領域の底面より回転方向の下流側になるように回転する回転ステップと、前記ホルダ内の前記測定領域を前記光源から出射される測定光が入射する位置に停止するために前記ホルダの角速度を減速する際に、前記角度設定部を前記測定領域が重力の方向において前記通過領域より下方に位置するように、前記ホルダの角度を設定する角度設定ステップと、を行う。重力の方向において測定領域が通過領域より下方に位置するために、検査装置の回転を停止させると、通過領域にある検査対象の液体が、重力により測定領域に流れやすくなる。さらに、ホルダは、通過領域の底面が測定領域の底面より回転方向の下流側にある状態で、検査対象受体を収納するため、減速時に、慣性力が液体にかかり、液体が通過領域から測定領
域へ流れ込みやすくなる。上記重力及び慣性力により、液体の吸光度を正確に測定することができる。
The inspection method according to claim 8, wherein a bottom surface of the measurement region is rotated from a bottom surface of the passage region in order to guide the measurement region in the holder to a position where measurement light emitted from the light source is incident. A rotation step that rotates to the downstream side of the direction, and when the angular velocity of the holder is decelerated to stop the measurement region in the holder at a position where measurement light emitted from the light source enters. An angle setting step of setting an angle of the holder so that the measurement region is positioned below the passage region in the direction of gravity. Since the measurement area is located below the passage area in the direction of gravity, when the rotation of the inspection apparatus is stopped, the liquid to be inspected in the passage area easily flows into the measurement area due to gravity. In addition, the holder accommodates the test object receiver with the bottom surface of the passing area located downstream of the bottom surface of the measuring area, so that the inertial force is applied to the liquid during deceleration and the liquid is measured from the passing area. It becomes easy to flow into the area. The absorbance of the liquid can be accurately measured by the gravity and inertial force.
本発明の実施形態におけるマイクロチップ1を示す斜視図。The perspective view which shows the microchip 1 in embodiment of this invention. マイクロチップ1の平面図。The top view of the microchip 1. FIG. A-A線に従うマイクロチップ1の断面図。Sectional drawing of the microchip 1 in accordance with an AA line. マイクロチップ1、101が装着された検査装置30の正面図。The front view of the test | inspection apparatus 30 with which the microchips 1 and 101 were mounted | worn. マイクロチップ1、101がホルダ47L、47Rに装着される様子を示す検査装置30の正面図。The front view of the test | inspection apparatus 30 which shows a mode that the microchips 1 and 101 are mounted | worn with the holders 47L and 47R. マイクロチップ1がホルダ47Rに装着される様子を示す斜視図。The perspective view which shows a mode that the microchip 1 is mounted | worn with the holder 47R. 検査装置30の上面図。FIG. 3 is a top view of the inspection apparatus 30. 測定光92が透過されるマイクロチップ1のA-A線に従う断面図。FIG. 3 is a cross-sectional view taken along line AA of the microchip 1 through which measurement light 92 is transmitted. 制御装置200の電気的構成を示すブロック図。FIG. 2 is a block diagram showing an electrical configuration of a control device 200. 検査装置30の検査プログラム205aに従う処理手順を示すフローチャート。The flowchart which shows the process sequence according to the test | inspection program 205a of the test | inspection apparatus 30. 液体混合プログラムS20に従う処理手順を示すフローチャート。The flowchart which shows the process sequence according to liquid mixing program S20. 測定プログラムS30に従う処理手順を示すフローチャート。The flowchart which shows the process sequence according to measurement program S30. 誘導プログラムS304に従う処理手順を示すフローチャート。The flowchart which shows the process sequence according to guidance program S304. 液体混合プログラムS20に従う処理時のマイクロチップ1の様子を示す正面図。The front view which shows the mode of the microchip 1 at the time of the process according to liquid mixing program S20. 誘導プログラムS304及びS305に従う処理時のマイクロチップ1のA-A線に従う断面図。Sectional drawing according to the AA line of the microchip 1 at the time of the process according to guidance program S304 and S305.
 (実施形態)
 以下、本発明の実施形態に係るマイクロチップ1と、マイクロチップ1と同一の形状を有するマイクロチップ101と、両マイクロチップ1、101が着脱可能に装着される検査装置30と、を備える検査システムについて説明する。
(Embodiment)
Hereinafter, an inspection system including a microchip 1 according to an embodiment of the present invention, a microchip 101 having the same shape as the microchip 1, and an inspection apparatus 30 to which both the microchips 1 and 101 are detachably mounted. Will be described.
 検査装置30の方向について、図5の上下方向、左右方向、及び前後方向は、検査装置30にマイクロチップ1が装着されて所定の初期回転位置にある状態の方向を表す。検査装置30は、主軸57と、T型プレート48と、ホルダ47L、47Rと、を含む。T型プレート48は、溝部80を有する。重力の方向と平行な主軸57の延設方向を上下方向とする。溝部80の延設方向を左右方向とする。上下方向と左右方向とに垂直な方向を前後方向とする。図4に示すように、検査装置30のホルダ47L、47Rは、主軸57を軸線として、回転する。この回転により、遠心力CFが両ホルダ47L、47Rに付与される。図4の左側に存在するホルダ47Lは、前後方向に延びる軸46Lを軸線として第1の回動方向LDに角度変更される。同様に、図4の右側に存在するホルダ47Rは、前後方向に延びる軸46Rを軸線として第1の回動方向LDの反対方向である第2の回動方向RDに角度変更される。 Regarding the direction of the inspection device 30, the vertical direction, the left-right direction, and the front-back direction in FIG. 5 represent directions in a state where the microchip 1 is mounted on the inspection device 30 and is in a predetermined initial rotation position. The inspection device 30 includes a main shaft 57, a T-shaped plate 48, and holders 47L and 47R. The T-shaped plate 48 has a groove 80. The extending direction of the main shaft 57 parallel to the direction of gravity is defined as the vertical direction. The extending direction of the groove 80 is defined as the left-right direction. A direction perpendicular to the up-down direction and the left-right direction is taken as the front-rear direction. As shown in FIG. 4, the holders 47 </ b> L and 47 </ b> R of the inspection apparatus 30 rotate about the main shaft 57 as an axis. By this rotation, centrifugal force CF is applied to both holders 47L and 47R. The holder 47L existing on the left side of FIG. 4 is angle-changed in the first rotation direction LD with the axis 46L extending in the front-rear direction as an axis. Similarly, the holder 47R present on the right side in FIG. 4 is angle-changed to a second rotation direction RD that is the opposite direction of the first rotation direction LD, with a shaft 46R extending in the front-rear direction as an axis.
 図1~図3に示すマイクロチップ1は検査装置30のホルダ47L、47Rに装着されて種々の角度に変更されるが、図1に示す3つの矢印の方向は、検査装置30にマイクロチップ1が装着されて図5に示す所定の初期回転位置にある状態における、検査装置30の上下方向、左右方向、及び前後方向を表す。 The microchip 1 shown in FIGS. 1 to 3 is mounted on the holders 47L and 47R of the inspection apparatus 30 and changed to various angles. The directions of the three arrows shown in FIG. Represents the up-down direction, the left-right direction, and the front-rear direction of the inspection apparatus 30 in a state in which is attached and is in the predetermined initial rotation position shown in FIG.
 (マイクロチップ1の詳細な構成)
 図1に示すように、マイクロチップ1は、板部材2と、カバー部材20と、を備える。
(Detailed configuration of microchip 1)
As shown in FIG. 1, the microchip 1 includes a plate member 2 and a cover member 20.
 板部材2は、例えば複数の外壁面によって覆われ、前から見て略正方形状の透明な板である。板部材2の前後方向の寸法である厚みは、約1~10mm程度である。板部材2の上下方向の寸法である縦幅、及び、左右方向の寸法である横幅は、それぞれ約10~100mm程度である。板部材2は、例えば合成樹脂から形成される。板部材2は、例えば射出成形にて製造される。板部材2は、流路形成面2Aを有する。 The plate member 2 is, for example, a transparent plate that is covered with a plurality of outer wall surfaces and has a substantially square shape when viewed from the front. The thickness, which is the dimension of the plate member 2 in the front-rear direction, is about 1 to 10 mm. The vertical width, which is the vertical dimension of the plate member 2, and the horizontal width, which is the horizontal dimension, are each about 10 to 100 mm. The plate member 2 is formed from, for example, a synthetic resin. The plate member 2 is manufactured by, for example, injection molding. The plate member 2 has a flow path forming surface 2A.
 流路形成面2Aには、板部材2の厚み方向である前後方向に深さを有する所定の流路が形成されている。所定の流路は、検査対象の液体である検体及び試薬を流すために凹所状に形成される。 A predetermined flow path having a depth in the front-rear direction which is the thickness direction of the plate member 2 is formed on the flow path forming surface 2A. The predetermined flow path is formed in a concave shape in order to flow a specimen and a reagent that are liquids to be examined.
 カバー部材20は、例えば前から見て正方形の可撓性を有すフィルムである。カバー部材20の厚みは、約0.1~0.5mm程度である。カバー部材20は、板部材2に形成された所定の流路を覆うことが可能な程度の面積を有する。カバー部材20は、流路形成面2Aを覆うように貼られている。カバー部材20の縦幅、及び横幅は、それぞれ約10~100mm程度である。カバー部材20の接着層は、流路形成面2Aに接着可能なようカバー部材20の表面に設けられる。カバー部材20は、例えば合成樹脂からなる。カバー部材20は、検体を投入するための開口である検体投入口3H、及び試薬を投入するための開口である試薬投入口4Hを有する。検体投入口3H、及び試薬投入口4Hは、予めカバー部材20に穿孔されて設けられている。検体投入口3H、及び試薬投入口4Hが後述する板部材2の検体投入部3、及び試薬投入部4の形成領域内に位置するように、カバー部材20は板部材2に張り合わされる。なお、図1、図2、図6、図14において、カバー部材20の内部の板部材2の流路は、実線で表す。 The cover member 20 is, for example, a film having a square flexibility as viewed from the front. The cover member 20 has a thickness of about 0.1 to 0.5 mm. The cover member 20 has an area that can cover a predetermined flow path formed in the plate member 2. The cover member 20 is stuck so as to cover the flow path forming surface 2A. The cover member 20 has a vertical width and a horizontal width of about 10 to 100 mm, respectively. The adhesive layer of the cover member 20 is provided on the surface of the cover member 20 so that it can adhere to the flow path forming surface 2A. The cover member 20 is made of, for example, a synthetic resin. The cover member 20 has a sample insertion port 3H that is an opening for loading a sample, and a reagent loading port 4H that is an opening for loading a reagent. The sample inlet 3H and the reagent inlet 4H are provided in the cover member 20 in advance. The cover member 20 is bonded to the plate member 2 so that the sample insertion port 3H and the reagent insertion port 4H are positioned in the formation region of the sample insertion portion 3 and the reagent insertion portion 4 of the plate member 2 described later. 1, 2, 6, and 14, the flow path of the plate member 2 inside the cover member 20 is represented by a solid line.
 マイクロチップ1は、下面2Bを備える。下面2Bは、前後方向、及び左右方向に平行、かつマイクロチップ1の下側にある面である。切欠部11は、マイクロチップ1の下面2Bの右角部に設けられる。 The microchip 1 has a lower surface 2B. The lower surface 2 </ b> B is a surface that is parallel to the front-rear direction and the left-right direction and is below the microchip 1. The notch 11 is provided at the right corner of the lower surface 2 </ b> B of the microchip 1.
 図2、及び図3に示す板部材2の流路形成面2Aには、所定の流路が形成されている。所定の流路は、検体投入部3と、試薬投入部4と、検体供給路5と、試薬供給路6と、吸光度測定槽7と、遠心分離槽12と、第1流路13と、貯留槽14と、第2流路15と、を備える。 A predetermined flow path is formed on the flow path forming surface 2A of the plate member 2 shown in FIGS. The predetermined flow path includes a specimen input section 3, a reagent input section 4, a sample supply path 5, a reagent supply path 6, an absorbance measurement tank 7, a centrifuge tank 12, a first flow path 13, and a reservoir. A tank 14 and a second flow path 15 are provided.
 検体投入部3は、検体投入口3Hを介して、検体が投入される槽である。検体投入部3は、所定量の検体を収容可能な容積を有する。所定量の検体とは、約0.01~1ml程度の検体である。検体は、例えば血液である。検体供給路5は、検体投入部3の下端に接続される。 The sample loading unit 3 is a tank into which a sample is loaded through the sample loading port 3H. The sample insertion unit 3 has a volume capable of accommodating a predetermined amount of sample. The predetermined amount of specimen is about 0.01 to 1 ml of specimen. The specimen is blood, for example. The sample supply path 5 is connected to the lower end of the sample input unit 3.
 検体供給路5は、検体投入部3の下端から下向きに延びる流路であり、本実施形態では、検体供給路5の延設方向は上下方向に平行である。検体供給路5の左右方向の幅は、検体投入部3内の検体が、下向きにかかる重力により遠心分離槽12に流出しない程度に、
検体投入部3の左右方向の幅と比較して狭く設定される。検体供給路5の左右方向の幅は、例えば0.1mm程度である。遠心分離槽12は、検体供給路5の下端に設けられる。
The sample supply path 5 is a flow path that extends downward from the lower end of the sample input section 3, and in this embodiment, the extending direction of the sample supply path 5 is parallel to the vertical direction. The width in the left-right direction of the sample supply path 5 is such that the sample in the sample input unit 3 does not flow out to the centrifuge tank 12 due to downward gravity.
The width is set narrower than the width in the left-right direction of the specimen insertion unit 3. The width in the left-right direction of the sample supply path 5 is, for example, about 0.1 mm. The centrifuge tank 12 is provided at the lower end of the sample supply path 5.
 遠心分離槽12は、検体供給路5の下端に設けられる。遠心分離槽12は、検体供給路5の下端から右下に延びて設けられる。遠心分離槽12は、検体供給路5から供給され、貯められた検体が遠心力を付与することにより、比重分離する槽で、比較的比重の低い第1成分と比較的比重の高い第2成分とに遠心分離される槽である。第1成分は、例えば血漿である。第2成分は、例えば血球である。第1流路13は、前から見て遠心分離槽12の左上側に接続される。第2流路15は、前から見て遠心分離槽12の右上側に接続される。 The centrifuge tank 12 is provided at the lower end of the sample supply path 5. The centrifuge tank 12 extends from the lower end of the sample supply path 5 to the lower right. The centrifuge tank 12 is a tank that is supplied from the sample supply path 5 and separates the specific gravity by applying a centrifugal force to the stored specimen. The first component having a relatively low specific gravity and the second component having a relatively high specific gravity. And a tank that is centrifuged. The first component is, for example, plasma. The second component is, for example, a blood cell. The first flow path 13 is connected to the upper left side of the centrifugal separation tank 12 when viewed from the front. The second flow path 15 is connected to the upper right side of the centrifuge tank 12 as viewed from the front.
 第1流路13は、貯留槽14の左上端に接続される。第1流路13は、遠心分離槽12から流れ出た余剰液を貯留槽14に導入するための流路である。第1流路13は、遠心分離槽12からの余剰液が遠心力により貯留槽14に流れやすいように、遠心分離槽12の左上端から左下に延びて設けられる。 The first flow path 13 is connected to the upper left end of the storage tank 14. The first flow path 13 is a flow path for introducing the excess liquid flowing out from the centrifugal separation tank 12 into the storage tank 14. The first flow path 13 is provided to extend from the upper left end of the centrifuge tank 12 to the lower left so that the excess liquid from the centrifuge tank 12 can easily flow into the storage tank 14 by centrifugal force.
 貯留槽14は、四角形状を有する。貯留槽14は、遠心分離槽12内にて遠心分離された液体を第2流路15に流す際に、余剰液が貯留槽14から遠心分離槽12に逆流しないよう、第1流路13の下端から右側に配置され、第1流路13から流入した余剰液を貯留可能な程度の容積を有する。 The storage tank 14 has a quadrangular shape. The storage tank 14 is configured to prevent the excess liquid from flowing back from the storage tank 14 to the centrifuge tank 12 when flowing the liquid centrifuged in the centrifuge tank 12 to the second flow path 15. It is arranged on the right side from the lower end and has a volume enough to store the excess liquid flowing in from the first flow path 13.
 第2流路15は、吸光度測定槽7の左上端に接続される。第2流路15は、遠心分離槽12にて分離された第1成分を吸光度測定槽7に導入するための流路である。第2流路15の上流側は、検体供給路5から遠心分離槽12に流すために遠心力を付与した際に検体が吸光度測定槽7に流出しないように、右上に延びている。さらに、第2流路15の下流側は、遠心分離槽12から吸光度測定槽7に検体を流すために遠心力を付与した際に、検体が吸光度測定槽7に流れやすいように、右下に延びている。 The second flow path 15 is connected to the upper left end of the absorbance measurement tank 7. The second flow path 15 is a flow path for introducing the first component separated in the centrifuge tank 12 into the absorbance measurement tank 7. The upstream side of the second flow path 15 extends to the upper right so that the specimen does not flow into the absorbance measurement tank 7 when centrifugal force is applied to flow from the specimen supply path 5 to the centrifugal separation tank 12. Further, the downstream side of the second flow path 15 is located on the lower right side so that the sample can easily flow into the absorbance measurement tank 7 when a centrifugal force is applied to flow the sample from the centrifuge tank 12 to the absorbance measurement tank 7. It extends.
 試薬投入部4は、試薬投入口4Hを介して、試薬が投入される槽である。試薬投入部4は、所定量の試薬を収容可能な容積を有する。所定量の試薬とは、約0.01~1ml程度の試薬である。検体投入部3、及び試薬投入部4について、マイクロチップ1を前から見た場合、左側に検体投入部3が、右側に試薬投入部4が形成される。試薬供給路6は、試薬投入部4の下端に接続される。 The reagent charging unit 4 is a tank in which a reagent is charged through the reagent charging port 4H. The reagent loading unit 4 has a volume capable of accommodating a predetermined amount of reagent. The predetermined amount of reagent is about 0.01 to 1 ml of reagent. When the microchip 1 is viewed from the front with respect to the sample loading unit 3 and the reagent loading unit 4, the sample loading unit 3 is formed on the left side and the reagent loading unit 4 is formed on the right side. The reagent supply path 6 is connected to the lower end of the reagent charging unit 4.
 試薬供給路6は、試薬投入部4の下端から下向きに延びる流路である。吸光度測定槽7の通過領域8は、試薬供給路6の下端に接続される。試薬供給路6の左右方向の幅は、試薬投入部4内の試薬が、下向きにかかる重力により吸光度測定槽7の通過領域8に流出しない程度に、試薬投入部4の左右方向の幅と比較して狭く設定される。試薬供給路6の左右方向の幅は、例えば0.1mm程度である。 The reagent supply path 6 is a flow path extending downward from the lower end of the reagent charging unit 4. The passage region 8 of the absorbance measurement tank 7 is connected to the lower end of the reagent supply path 6. The width in the left-right direction of the reagent supply path 6 is compared with the width in the left-right direction of the reagent supply unit 4 to the extent that the reagent in the reagent supply unit 4 does not flow out to the passage region 8 of the absorbance measurement tank 7 due to downward gravity. And set narrower. The lateral width of the reagent supply path 6 is, for example, about 0.1 mm.
 吸光度測定槽7は、液体の吸光度を測定するための槽である。吸光度測定槽7は、左右方向に長い四角形状を有する。吸光度測定槽7は、第2流路15から供給される検体、及び試薬供給路6から供給される試薬を所定量滞留可能な容積を有する。吸光度測定槽7は、通過領域8と、測定領域10と、を備える。 The absorbance measuring tank 7 is a tank for measuring the absorbance of the liquid. The absorbance measurement tank 7 has a rectangular shape that is long in the left-right direction. The absorbance measurement tank 7 has a volume capable of retaining a predetermined amount of the sample supplied from the second flow path 15 and the reagent supplied from the reagent supply path 6. The absorbance measurement tank 7 includes a passage region 8 and a measurement region 10.
 測定領域10は、検体及び試薬の吸光度を測定するために測定光が透過する領域である。図3に示すように、測定領域10は、流路形成面2Aに垂直な方向である前後方向に第1の深さD1を有す。第1の深さD1は、例えば1mmである。測定領域10は、底面10A、側壁面10B、10C、10D、及びカバー部材20で囲まれる領域である。底面10Aは、測定領域10の流路形成面2Aに沿う方向の面である。側壁面10B、10C
、10Dは、測定領域10の流路形成面2Aに垂直な面である。底面10Aは、検査装置の光源から出射された測定光が検査装置の受光部に受光される程度に鏡面に形成される。鏡面とは、例えば面粗度が平均粗さRa値で、70nm以下の値である。側壁面10B、10C、10Dの面粗度は、底面10Aの面粗度より粗い。
The measurement region 10 is a region through which measurement light is transmitted in order to measure the absorbance of the specimen and the reagent. As shown in FIG. 3, the measurement region 10 has a first depth D1 in the front-rear direction, which is a direction perpendicular to the flow path forming surface 2A. The first depth D1 is, for example, 1 mm. The measurement region 10 is a region surrounded by the bottom surface 10A, the side wall surfaces 10B, 10C, and 10D and the cover member 20. The bottom surface 10A is a surface in the direction along the flow path forming surface 2A of the measurement region 10. Side wall surface 10B, 10C
10D is a surface perpendicular to the flow path forming surface 2A of the measurement region 10. The bottom surface 10A is formed in a mirror surface to such an extent that the measurement light emitted from the light source of the inspection apparatus is received by the light receiving unit of the inspection apparatus. The mirror surface is, for example, a surface roughness having an average roughness Ra value of 70 nm or less. The surface roughness of the side wall surfaces 10B, 10C, and 10D is rougher than the surface roughness of the bottom surface 10A.
 通過領域8は、検体が第2流路15から供給され、試薬が試薬供給路6から供給される領域である。供給された検体及び試薬は、通過領域8を通過し、測定領域10へ向かう。図3に示すように、通過領域8は、底面9A、9B、側壁面、及びカバー部材20で囲まれる領域である。通過領域8の底面9Aは、流路形成面2Aに垂直な方向である前後方向に第2の深さD2を有す。第2の深さD2は、例えば3mmである。第2の深さD2は、第1の深さD1より深い。底面9Bは、測定領域10に近づくにつれ深さが浅くなるよう設けられる。底面9Bは、通過領域8から測定領域10に検体及び試薬が流れ込むように、両領域を連結する。底面9Bは、通過領域8の第2の深さD2を有する所定箇所8Tから、第1の深さD1を有する所定箇所10Tへ深さが徐々に浅くなるよう設けられる。所定箇所8Tは、通過領域8の中間に位置する箇所である。所定箇所10Tは、測定領域10の上端に位置する箇所である。側壁面は、通過領域8の流路形成面2Aに垂直な面である。 The passing area 8 is an area where the specimen is supplied from the second flow path 15 and the reagent is supplied from the reagent supply path 6. The supplied specimen and reagent pass through the passage area 8 and go to the measurement area 10. As shown in FIG. 3, the passage region 8 is a region surrounded by the bottom surfaces 9 </ b> A and 9 </ b> B, the side wall surface, and the cover member 20. The bottom surface 9A of the passage region 8 has a second depth D2 in the front-rear direction, which is a direction perpendicular to the flow path forming surface 2A. The second depth D2 is 3 mm, for example. The second depth D2 is deeper than the first depth D1. The bottom surface 9 </ b> B is provided so that the depth becomes shallower as it approaches the measurement region 10. The bottom surface 9 </ b> B connects both regions so that the specimen and the reagent flow from the passage region 8 to the measurement region 10. The bottom surface 9B is provided so that the depth gradually decreases from the predetermined location 8T having the second depth D2 of the passage region 8 to the predetermined location 10T having the first depth D1. The predetermined place 8T is a place located in the middle of the passage area 8. The predetermined location 10T is a location located at the upper end of the measurement region 10. The side wall surface is a surface perpendicular to the flow path forming surface 2 </ b> A of the passage region 8.
 切欠部11は、マイクロチップ1とホルダ47L、47Rとが回転減速時に慣性力が前側に付与されるような所定の姿勢で装着されるために形成される。所定の姿勢は、流路形成面2Aが重力の方向に沿い、測定領域10が重力の方向において通過領域8より下方に位置し、測定領域10の底面10Aが通過領域8の底面9Bよりホルダ47Rの回転方向の下流側にある状態である。切欠部11は、後述するホルダ47Rの底面47RBの突出部48Rに嵌合するようマイクロチップ1の下面2Bに形成される。切欠部11は、図2においてマイクロチップ1の右下角部に形成される。切欠部11は、前から見て正方形に形成される。 The notch portion 11 is formed so that the microchip 1 and the holders 47L and 47R are mounted in a predetermined posture so that an inertial force is applied to the front side during rotation deceleration. The predetermined posture is that the flow path forming surface 2A is along the direction of gravity, the measurement region 10 is positioned below the passage region 8 in the direction of gravity, and the bottom surface 10A of the measurement region 10 is holder 47R from the bottom surface 9B of the passage region 8. It is in the state which exists in the downstream of the rotation direction. The notch portion 11 is formed on the lower surface 2B of the microchip 1 so as to fit into a protruding portion 48R of a bottom surface 47RB of the holder 47R described later. The notch 11 is formed in the lower right corner of the microchip 1 in FIG. The notch 11 is formed in a square shape when viewed from the front.
 (検査装置30の詳細な構成)
 図4に示す3つの矢印の方向は、図1に示す上下方向、左右方向、及び前後方向に相当する方向を表す。
(Detailed configuration of the inspection apparatus 30)
The directions of the three arrows shown in FIG. 4 represent directions corresponding to the up-down direction, the left-right direction, and the front-rear direction shown in FIG.
 図4に示す検査装置30は、ターンテーブル33と、ホルダ47L、47Rと、制御装置200と、を含む。上記のように構成されたマイクロチップ1、101を流路形成面2Aが重力に沿う状態で装着される。検査装置30は、制御装置200の制御により、ホルダ47L、47Rを所定の角度に保持した状態で、ターンテーブル33を回転させて遠心力CFをマイクロチップ1、101に付与する。 4 includes a turntable 33, holders 47L and 47R, and a control device 200. The inspection device 30 shown in FIG. The microchips 1 and 101 configured as described above are mounted with the flow path forming surface 2A along the gravity. The inspection device 30 applies the centrifugal force CF to the microchips 1 and 101 by rotating the turntable 33 with the holders 47L and 47R being held at a predetermined angle under the control of the control device 200.
 ホルダ47Rは、前から見て右側に設けられる。ホルダ47Rは、マイクロチップ1より1回り大きく形成され、蓋としての上面47RC、側面、及び底面47RBで囲まれた箱状の部材である。 The holder 47R is provided on the right side when viewed from the front. The holder 47R is a box-shaped member that is formed one size larger than the microchip 1 and is surrounded by an upper surface 47RC, a side surface, and a bottom surface 47RB as a lid.
 ホルダ47Lは、前から見て左側に設けられる。ホルダ47Rと同様に、ホルダ47Lは、マイクロチップ101より1回り大きく形成され、蓋としての上面、側面、及び底面47LBで囲まれた箱状の部材である。 The holder 47L is provided on the left side when viewed from the front. Similar to the holder 47R, the holder 47L is a box-shaped member that is formed one size larger than the microchip 101 and is surrounded by a top surface, a side surface, and a bottom surface 47LB as a lid.
 ホルダ47R、47Lは、マイクロチップ1の流路形成面2A、及びマイクロチップ101の流路形成面102Aがターンテーブル33の上面と直交する状態でマイクロチップ1、101を保持する。ターンテーブル33を回転させると、遠心力CFが、ホルダ47R、47L内のマイクロチップ1、101の流路形成面2A、102Aに平行な方向にそれぞれ付与される。 The holders 47R and 47L hold the microchips 1 and 101 in a state where the flow path forming surface 2A of the microchip 1 and the flow path forming surface 102A of the microchip 101 are orthogonal to the upper surface of the turntable 33. When the turntable 33 is rotated, centrifugal force CF is applied in directions parallel to the flow path forming surfaces 2A and 102A of the microchips 1 and 101 in the holders 47R and 47L, respectively.
 制御装置200は、後述する主軸モータ35、ステッピングモータ51等とケーブル96を介して接続される。制御装置200は、後述するCPU207、RAM206、ROM205等を備える。ROM205は、後述する図9に示す検査プログラム205aを記憶する。制御装置200は、検査プログラム205aに従って、ターンテーブル33の回転、及びホルダ47L、47Rの所定角度への角度変更等を制御する。 The control device 200 is connected to a spindle motor 35, a stepping motor 51, and the like, which will be described later, via a cable 96. The control device 200 includes a CPU 207, a RAM 206, a ROM 205, and the like which will be described later. The ROM 205 stores an inspection program 205a shown in FIG. The control device 200 controls the rotation of the turntable 33 and the angle change of the holders 47L and 47R to a predetermined angle according to the inspection program 205a.
 (検査装置30の回転機構)
 図4に示す検査装置30の回転機構は、主軸モータ35と、回転力伝達機構31と、ターンテーブル33と、を含む。
(Rotation mechanism of inspection device 30)
The rotation mechanism of the inspection apparatus 30 shown in FIG. 4 includes a main shaft motor 35, a rotational force transmission mechanism 31, and a turntable 33.
 主軸モータ35は、重力の方向に沿って延びる主軸57を中心にターンテーブル33及びターンテーブル33に固定されたホルダ47L、47Rを回転させるための駆動源である。主軸モータ35は、検査装置30のフレーム52の内部に固定されている。主軸モータ35は、回転可能な軸36を備える。 The spindle motor 35 is a drive source for rotating the turntable 33 and holders 47L and 47R fixed to the turntable 33 around a spindle 57 extending along the direction of gravity. The spindle motor 35 is fixed inside the frame 52 of the inspection apparatus 30. The main shaft motor 35 includes a rotatable shaft 36.
 フレーム52は、直方体形状である。フレーム52は、主軸モータ35、ステッピングモータ51等を駆動させる駆動部品を固定可能に設けられる。フレーム52の内部は、前記駆動部品を収納可能な程度の体積を有する。 The frame 52 has a rectangular parallelepiped shape. The frame 52 is provided so that driving components for driving the spindle motor 35, the stepping motor 51, and the like can be fixed. The interior of the frame 52 has a volume that can accommodate the drive components.
 回転力伝達機構31は、モータプーリ37と、主軸プーリ38と、ベルト39と、主軸57と、を備える。回転力伝達機構31は、フレーム52の内部に固定されて配置される。 The rotational force transmission mechanism 31 includes a motor pulley 37, a main shaft pulley 38, a belt 39, and a main shaft 57. The rotational force transmission mechanism 31 is fixed and arranged inside the frame 52.
 モータプーリ37は、軸36に固定される。ベルト39は、モータプーリ37及び主軸プーリ38間に掛け渡されている。主軸プーリ38は、主軸57に固定される。 The motor pulley 37 is fixed to the shaft 36. The belt 39 is stretched between the motor pulley 37 and the main shaft pulley 38. The main shaft pulley 38 is fixed to the main shaft 57.
 主軸57は、検査装置30のフレーム52に回転可能に支持され、上方に延設されてフレーム52の上板32の中央部を突き抜けて設けられる。主軸57は、ターンテーブル33と接続される。ターンテーブル33は、主軸57を中心に回転可能に設けられる。 The main shaft 57 is rotatably supported by the frame 52 of the inspection device 30, extends upward, and is provided so as to penetrate the center portion of the upper plate 32 of the frame 52. The main shaft 57 is connected to the turntable 33. The turntable 33 is provided to be rotatable about the main shaft 57.
 検査装置30の回転機構の動作について説明する。主軸モータ35の軸36が回転されると、モータプーリ37、ベルト39及び主軸プーリ38を介して駆動力が主軸57に伝達されてターンテーブル33が回転する。ターンテーブル33が回転すると、遠心力CFがターンテーブル33に固定されたホルダ47L、47Rに付与される。 The operation of the rotation mechanism of the inspection device 30 will be described. When the shaft 36 of the main shaft motor 35 is rotated, the driving force is transmitted to the main shaft 57 via the motor pulley 37, the belt 39 and the main shaft pulley 38, and the turntable 33 rotates. When the turntable 33 rotates, centrifugal force CF is applied to the holders 47L and 47R fixed to the turntable 33.
 (検査装置30の角度変更機構)
 図4に示す検査装置30の角度変更機構は、ステッピングモータ51と、第1回動力伝達機構62と、第2回動力伝達機構63と、ホルダ47L、47Rと、を含む。
(An angle changing mechanism of the inspection device 30)
The angle changing mechanism of the inspection device 30 shown in FIG. 4 includes a stepping motor 51, a first power transmission mechanism 62, a second power transmission mechanism 63, and holders 47L and 47R.
 ステッピングモータ51は、ホルダ47L、47Rを軸46L、46Rを中心として角度変更させるための駆動源である。ステッピングモータ51は、フレーム52に固定される。ステッピングモータ51は、回転可能な軸58を備える。 The stepping motor 51 is a drive source for changing the angle of the holders 47L and 47R around the shafts 46L and 46R. The stepping motor 51 is fixed to the frame 52. The stepping motor 51 includes a rotatable shaft 58.
 第1回動力伝達機構62は、カム板59と、突起70と、T型プレート48と、ガイドレール56と、軸受41と、第2軸40と、を含む。第1回動力伝達機構62は、フレーム52の内部に固定されて配置される。 The first power transmission mechanism 62 includes a cam plate 59, a protrusion 70, a T-shaped plate 48, a guide rail 56, a bearing 41, and a second shaft 40. The first power transmission mechanism 62 is fixed and arranged inside the frame 52.
 カム板59は、前から見て円盤状である。カム板59は、軸58に固定される。カム板59は、前方に突出した突起70を備える。突起70は、前から見て円形状である。 The cam plate 59 has a disk shape when viewed from the front. The cam plate 59 is fixed to the shaft 58. The cam plate 59 includes a protrusion 70 protruding forward. The protrusion 70 has a circular shape when viewed from the front.
 ガイドレール56は、上下方向に延びてフレーム52に固定される。T型プレート48は、ガイドレール56に沿って、上下方向に移動可能に形成される。T型プレート48は、溝部80を備える。溝部80は、左右方向に延びる溝であり、突起70が嵌合するように形成される。図4に示す状態が、T型プレート48が1番下まで下がった状態である。図5に示す状態が、T型プレート48が1番上まで上がった状態である。 The guide rail 56 extends in the vertical direction and is fixed to the frame 52. The T-shaped plate 48 is formed to be movable in the vertical direction along the guide rail 56. The T-shaped plate 48 includes a groove 80. The groove part 80 is a groove | channel extended in the left-right direction, and is formed so that the protrusion 70 may fit. The state shown in FIG. 4 is a state in which the T-shaped plate 48 is lowered to the bottom. The state shown in FIG. 5 is a state where the T-shaped plate 48 is raised to the top.
 軸受41は、T型プレート48に接続される。軸受41は、第2軸40の下端部に備えられる。軸受41は、第2軸40を回動可能に保持する。 The bearing 41 is connected to the T-shaped plate 48. The bearing 41 is provided at the lower end of the second shaft 40. The bearing 41 holds the second shaft 40 in a rotatable manner.
 主軸57の内部は中空になっている。第2軸40は、主軸57の内部に、内軸として設けられる。第2軸40は、ラックギア43に接続される。 The inside of the main shaft 57 is hollow. The second shaft 40 is provided inside the main shaft 57 as an inner shaft. The second shaft 40 is connected to the rack gear 43.
 第2回動力伝達機構63は、ラックギア43と、ガイド部材42と、上部プレート61と、ピニオンギア44と、L型プレート60と、ギア45と、軸46L、46Rと、を含む。第2回動力伝達機構63は、フレーム52の外部に配置される。 The second power transmission mechanism 63 includes a rack gear 43, a guide member 42, an upper plate 61, a pinion gear 44, an L-shaped plate 60, a gear 45, and shafts 46L and 46R. The second power transmission mechanism 63 is disposed outside the frame 52.
 ラックギア43は、上下方向に延びる板状の部材である。ギアが、ラックギア43の左右の側端部に各々刻まれている。ラックギア43の両側端部のギアは、1対のピニオンギア44に噛合している。 The rack gear 43 is a plate-like member extending in the vertical direction. Gears are respectively carved on the left and right side ends of the rack gear 43. The gears at both end portions of the rack gear 43 mesh with a pair of pinion gears 44.
 ガイド部材42は、ラックギア43を摺動可能に保持する。ガイド部材42は、上部プレート61の中央の開口部から上下方向に延びて設けられる。従って、ラックギア43が上昇した場合には、ガイド部材42は、上部プレート61から突出する。 The guide member 42 slidably holds the rack gear 43. The guide member 42 is provided extending in the vertical direction from the central opening of the upper plate 61. Therefore, when the rack gear 43 is raised, the guide member 42 protrudes from the upper plate 61.
 1対のL型プレート60は、1対のギア45を備える。1対のギア45は、1対の軸46L、46Rを備える。 The pair of L-shaped plates 60 includes a pair of gears 45. The pair of gears 45 includes a pair of shafts 46L and 46R.
 1対の軸46L、46Rは前後方向に延びる。マイクロチップ1、101がホルダ47R、47Lに収納された場合に、1対の軸46L、46Rの延長方向と、流路形成面2A、102Aと、は直交する。一対のギア45は、両ピニオンギア44にそれぞれ噛合している。一対のギア45は、L型プレート60に1対の軸46L、46Rを中心として角度変更可能に設けられる。 The pair of shafts 46L and 46R extend in the front-rear direction. When the microchips 1 and 101 are stored in the holders 47R and 47L, the extending direction of the pair of shafts 46L and 46R and the flow path forming surfaces 2A and 102A are orthogonal to each other. The pair of gears 45 mesh with both pinion gears 44, respectively. The pair of gears 45 is provided on the L-shaped plate 60 so that the angle can be changed around a pair of shafts 46L and 46R.
 ホルダ47L,47Rは、両ギア45の軸46L、46Rにそれぞれ固定される。 The holders 47L and 47R are fixed to the shafts 46L and 46R of the both gears 45, respectively.
 検査装置30の角度変更機構の動作について説明する。ステッピングモータ51の軸58が回転すると、カム板59が回転する。カム板59が回転すると、カム板59に備えられた突起70が軸58を中心に回転する。突起70が軸58を中心に回転すると、突起70が溝部80内を左右方向に摺動しながら、上下方向に移動する。突起70が上下方向に移動すると、T型プレート48がガイドレール56に沿って上下方向に移動する。T型プレート48が上下方向に移動すると、軸受41に支持された第2軸40が上下動する。第2軸40が上下動すると、ラックギア43が上下動する。ラックギア43が上下動すると、両ピニオンギア44が回転する。両ピニオンギア44が回転すると、両ギア45が回転する。両ギア45が回転すると、両ギア45に固定されたホルダ47L,47Rが、両ギア45の軸46L、46Rを中心にして角度変更する。 The operation of the angle changing mechanism of the inspection device 30 will be described. When the shaft 58 of the stepping motor 51 rotates, the cam plate 59 rotates. When the cam plate 59 rotates, the protrusion 70 provided on the cam plate 59 rotates about the shaft 58. When the protrusion 70 rotates about the shaft 58, the protrusion 70 moves in the vertical direction while sliding in the groove 80 in the horizontal direction. When the protrusion 70 moves in the vertical direction, the T-shaped plate 48 moves in the vertical direction along the guide rail 56. When the T-shaped plate 48 moves in the vertical direction, the second shaft 40 supported by the bearing 41 moves up and down. When the second shaft 40 moves up and down, the rack gear 43 moves up and down. When the rack gear 43 moves up and down, both pinion gears 44 rotate. When both pinion gears 44 rotate, both gears 45 rotate. When both the gears 45 are rotated, the holders 47L and 47R fixed to the both gears 45 change the angle around the shafts 46L and 46R of the both gears 45.
 ホルダ47Lは、左側のギア45の軸46Lを中心として、角度α0=0°からα1=90°まで回転する。軸46Lは、ホルダ47Lに保持されたマイクロチップ101の流路形成面102Aに直交する。ホルダ47Lの角度α=0°からα=90°への角度変更方向を第1の回動方向LDとする。同様に、ホルダ47Rは、右側のギア45の軸46Rを中心として、角度α=0°からα=90°まで回転する。軸46Rは、ホルダ47Rに保持されたマイクロチップ1の流路形成面2Aに直交する。ホルダ47Rの角度α0=0°からα1=90°への角度変更方向を第2の回動方向RDとする。 The holder 47L rotates around an axis 46L of the left gear 45 from an angle α0 = 0 ° to α1 = 90 °. The shaft 46L is orthogonal to the flow path forming surface 102A of the microchip 101 held by the holder 47L. The angle changing direction from the angle α = 0 ° to α = 90 ° of the holder 47L is defined as a first rotation direction LD. Similarly, the holder 47R rotates from the angle α = 0 ° to α = 90 ° around the shaft 46R of the right gear 45. The shaft 46R is orthogonal to the flow path forming surface 2A of the microchip 1 held by the holder 47R. The angle changing direction from the angle α0 = 0 ° to α1 = 90 ° of the holder 47R is defined as a second rotation direction RD.
 さらに、ホルダ47L、47Rは、同一の角度で回転する。角度α0=0°の状態では、図4に示すように、ホルダ47Lの底面47LBが検査装置30の左側に向けられる。同様に、角度α0=0°の状態では、ホルダ47Rの底面47RBがホルダ47Lの底面47LBとは反対側である検査装置30の右側に向けられる。角度α1=90°の状態では、図5に示すように、ホルダ47Lの底面47LB及びホルダ47Rの底面47RBが検査装置30の下側に向けられる。 Furthermore, the holders 47L and 47R rotate at the same angle. In the state where the angle α0 = 0 °, the bottom surface 47LB of the holder 47L is directed to the left side of the inspection apparatus 30, as shown in FIG. Similarly, in a state where the angle α0 = 0 °, the bottom surface 47RB of the holder 47R is directed to the right side of the inspection apparatus 30 that is opposite to the bottom surface 47LB of the holder 47L. In the state where the angle α1 = 90 °, the bottom surface 47LB of the holder 47L and the bottom surface 47RB of the holder 47R are directed to the lower side of the inspection apparatus 30, as shown in FIG.
 (マイクロチップ1、101のホルダ47R、47Lへの装着方法)
 図5、及び図6のマイクロチップ1,101においては、検体及び試薬が予め投入され、カバー部材20が予め貼られている。
(Mounting method of the microchips 1 and 101 to the holders 47R and 47L)
In the microchips 1 and 101 of FIGS. 5 and 6, the specimen and the reagent are input in advance, and the cover member 20 is attached in advance.
 図6に示すように、マイクロチップ1の挿入状態は、流路形成面2Aがホルダ47Rの前側に向き、マイクロチップ1の下面2Bとホルダ47Rの底面47RBとを対向させた状態とする。突出部48Rは、前後方向に渡って底面47RBから上向きに延びて設けられる。そして、マイクロチップ1は、マイクロチップ1の下面2Bとホルダ47Rの底面47RBとが近づくように、下向きにホルダ47Rに挿入され、下面2Bの切欠部11と底面47RBの突出部48Rとが嵌合する。その後、ホルダ47Rの蓋47RCが閉じられる。このようにして、マイクロチップ1が、ホルダ47Rへ装着される。 As shown in FIG. 6, the insertion state of the microchip 1 is a state in which the flow path forming surface 2A faces the front side of the holder 47R and the lower surface 2B of the microchip 1 and the bottom surface 47RB of the holder 47R face each other. The protrusion 48R is provided to extend upward from the bottom surface 47RB in the front-rear direction. Then, the microchip 1 is inserted downward into the holder 47R so that the lower surface 2B of the microchip 1 and the bottom surface 47RB of the holder 47R approach each other, and the notch 11 of the lower surface 2B and the protruding portion 48R of the bottom surface 47RB are fitted. To do. Thereafter, the lid 47RC of the holder 47R is closed. In this way, the microchip 1 is mounted on the holder 47R.
 同様に、マイクロチップ101の挿入状態は、マイクロチップ101の流路形成面102Aが図5のホルダ47Lの後側に向き、マイクロチップ101の下側と図5のホルダ47Lの底面47LBとを対向させた状態とする。そして、マイクロチップ101は、マイクロチップ101の下側と図5のホルダ47Lの底面47LBとが近づくように、図5の下向きにホルダ47Lに挿入され、ホルダ47Lの蓋が閉じられる。このようにして、マイクロチップ101が、ホルダ47Lへ装着される。 Similarly, in the inserted state of the microchip 101, the flow path forming surface 102A of the microchip 101 faces the rear side of the holder 47L in FIG. 5, and the lower side of the microchip 101 and the bottom surface 47LB of the holder 47L in FIG. Let the state be Then, the microchip 101 is inserted into the holder 47L in a downward direction in FIG. 5 so that the lower side of the microchip 101 and the bottom surface 47LB of the holder 47L in FIG. 5 approach each other, and the lid of the holder 47L is closed. In this way, the microchip 101 is mounted on the holder 47L.
 図7に示すように、検査装置30は、光源90と、受光部91と、を備える。 As shown in FIG. 7, the inspection device 30 includes a light source 90 and a light receiving unit 91.
 光源90は、光路92R上に測定光92を出射する。測定光92は、例えば波長650nm程度の赤色光である。光源90は、例えばレーザダイオードである。 The light source 90 emits measurement light 92 on the optical path 92R. The measurement light 92 is red light having a wavelength of about 650 nm, for example. The light source 90 is, for example, a laser diode.
 受光部91は、光源90が出射する測定光92の光路92R上に設けられる。具体的には、光源90及び受光部91は、測定光92の入射方向がマイクロチップ1の流路形成面2Aと垂直な方向である前後方向に配置される。受光部91は、測定光92を受光する。受光部91は、例えばフォトダイオードである。 The light receiving unit 91 is provided on the optical path 92R of the measurement light 92 emitted from the light source 90. Specifically, the light source 90 and the light receiving unit 91 are arranged in the front-rear direction in which the incident direction of the measurement light 92 is a direction perpendicular to the flow path forming surface 2A of the microchip 1. The light receiving unit 91 receives the measurement light 92. The light receiving unit 91 is, for example, a photodiode.
 図7、及び図8に示すように、ターンテーブル33は、回転方向93へ回転する。回転方向93は、マイクロチップ1の底面9Bが底面10Aより回転方向93の下流側になるような向きである。回転により、遠心力CFが、マイクロチップ1,101に付与される。 7 and 8, the turntable 33 rotates in the rotation direction 93. The rotation direction 93 is such that the bottom surface 9B of the microchip 1 is located downstream of the bottom surface 10A in the rotation direction 93. The centrifugal force CF is applied to the microchips 1 and 101 by the rotation.
 図8に示すように、マイクロチップ1は、切欠部11と突出部48Rとの嵌合により、所定の装着姿勢に規制される。所定の装着姿勢は、流路形成面2Aが重力GFの方向に沿い、吸光度測定時に測定領域10が重力GFの方向において通過領域8より下方に位置し、測定領域10の底面10Aが通過領域8の底面9Bよりホルダ47Rの回転方向93の下流側にあるよう、マイクロチップ1が配置される姿勢である。 As shown in FIG. 8, the microchip 1 is restricted to a predetermined mounting posture by fitting the notch 11 and the protrusion 48R. The predetermined mounting posture is that the flow path forming surface 2A is along the direction of gravity GF, the measurement region 10 is positioned below the passage region 8 in the direction of gravity GF, and the bottom surface 10A of the measurement region 10 is the passage region 8 when measuring absorbance. The microchip 1 is arranged in such a manner that it is on the downstream side in the rotation direction 93 of the holder 47R from the bottom surface 9B.
 図7、及び図8に示すように、ホルダ47Rは、マイクロチップ1の測定領域10が測定光92の光路92R上を透過するように角度変更駆動される。具体的には、透過光測定時には、ホルダ47Rは、角度α1=90°となるように角度変更駆動される。ホルダ47Lについても同様である。 As shown in FIGS. 7 and 8, the holder 47R is driven to change the angle so that the measurement region 10 of the microchip 1 transmits on the optical path 92R of the measurement light 92. Specifically, when measuring transmitted light, the holder 47R is driven to change the angle so that the angle α1 = 90 °. The same applies to the holder 47L.
 (制御装置200の電気的構成)
 図9に示す制御装置200は、構成部分として、光源制御部201と、回転制御部203と、角度設定部204と、ROM205と、RAM206と、CPU207と、HDD208と、表示部209と、操作部210と、システムバス211と、を備える。システムバス211は、制御装置200の各構成部分に接続される。CPU207は、ROM205及びRAM206と共に、コンピュータを構成する。制御装置200は、例えばパーソナルコンピュータである。制御装置200は、ケーブル96を介して検査装置30と接続される。ケーブル96は、例えばUSBケーブルである。
(Electrical configuration of the control device 200)
The control device 200 shown in FIG. 9 includes, as components, a light source control unit 201, a rotation control unit 203, an angle setting unit 204, a ROM 205, a RAM 206, a CPU 207, an HDD 208, a display unit 209, and an operation unit. 210 and a system bus 211. The system bus 211 is connected to each component of the control device 200. The CPU 207 constitutes a computer together with the ROM 205 and the RAM 206. The control device 200 is a personal computer, for example. The control device 200 is connected to the inspection device 30 via the cable 96. The cable 96 is a USB cable, for example.
 光源制御部201は、光源90に接続される。光源制御部201は、CPU207からの指令により、測定光92を受光部91へ向けて出射するよう光出射信号を光源90へ出力する。 The light source control unit 201 is connected to the light source 90. In response to a command from the CPU 207, the light source control unit 201 outputs a light emission signal to the light source 90 so that the measurement light 92 is emitted toward the light receiving unit 91.
 回転制御部203は、主軸モータ35に接続される。回転制御部203は、ROM205に記憶される検査プログラム205aに従って動作するCPU207からの指令により、ターンテーブル33が所定の角速度で回転方向93へ回転されるように角速度制御信号を主軸モータ35に出力する。 The rotation control unit 203 is connected to the spindle motor 35. The rotation control unit 203 outputs an angular velocity control signal to the spindle motor 35 so that the turntable 33 is rotated in the rotation direction 93 at a predetermined angular velocity in response to a command from the CPU 207 that operates according to the inspection program 205 a stored in the ROM 205. .
 角度設定部204は、ステッピングモータ51に接続される。角度設定部204は、ROM205に記憶される検査プログラム205aに従って動作するCPU207からの指令により、ホルダ47L、47Rが所定の角度αに回転されるように角度制御信号をステッピングモータ51に出力する。 The angle setting unit 204 is connected to the stepping motor 51. The angle setting unit 204 outputs an angle control signal to the stepping motor 51 so that the holders 47L and 47R are rotated to a predetermined angle α according to a command from the CPU 207 that operates according to the inspection program 205a stored in the ROM 205.
 ROM205は、後述するフローチャートに従った処理を実現するための検査プログラム205aを記憶する。検査プログラム205aは、CPU207によりRAM206を用いて実行される。 The ROM 205 stores an inspection program 205a for realizing processing according to a flowchart described later. The inspection program 205a is executed by the CPU 207 using the RAM 206.
 RAM206は、CPU207がROM205に記憶されるプログラムを実行する際に参照する各種変数などを記憶しておく一時記憶領域として機能する。 The RAM 206 functions as a temporary storage area for storing various variables to be referred to when the CPU 207 executes a program stored in the ROM 205.
 HDD208は、各種データ及びプログラムを記憶するハードディスク装置である。各種データは、例えば検査対象の物質の濃度等である。 The HDD 208 is a hard disk device that stores various data and programs. The various data is, for example, the concentration of the substance to be examined.
 表示部209は、ROM205に記憶された検査プログラム205aに従って動作するCPU207からの指令により、HDD208に記憶された各種データを参照して検査結果である対象物質の濃度を表示する。表示部209は、例えば液晶ディスプレイである。 The display unit 209 displays the concentration of the target substance, which is the inspection result, with reference to various data stored in the HDD 208 in response to a command from the CPU 207 that operates according to the inspection program 205 a stored in the ROM 205. The display unit 209 is a liquid crystal display, for example.
 操作部210は、ユーザの操作に応じた操作信号を制御装置200に供給する装置である。操作部210は、例えばキーボードである。ユーザの操作とは、例えば検査プログラム205aの実行を開始させる操作である。 The operation unit 210 is a device that supplies an operation signal corresponding to a user operation to the control device 200. The operation unit 210 is, for example, a keyboard. The user operation is, for example, an operation for starting execution of the inspection program 205a.
 (検査プログラム205aに従う処理)
 図10に示すフローチャートを参照して、本実施形態の検査装置30のCPU207が実行する検査プログラム205aについて説明する。検査プログラム205aは、サブルーチンとして、液体混合プログラムS20と、測定プログラムS30とを含む。
(Processing according to inspection program 205a)
The inspection program 205a executed by the CPU 207 of the inspection apparatus 30 according to the present embodiment will be described with reference to the flowchart shown in FIG. The inspection program 205a includes a liquid mixing program S20 and a measurement program S30 as subroutines.
 検査装置30のCPU207は、操作部210が操作されると、検査装置30のROM205に記憶された検査プログラム205aを読み出してその実行を開始する(S10)。 When the operation unit 210 is operated, the CPU 207 of the inspection apparatus 30 reads the inspection program 205a stored in the ROM 205 of the inspection apparatus 30 and starts executing it (S10).
 CPU207は、後述する液体混合プログラムS20を実行する。具体的には、ホルダ47L、47Rが所定の角度αに保持され、ターンテーブル33が所定の角速度で回転されて、ホルダ47L、47Rに遠心力CFが付与される(S20)。その結果、検体と試薬とが混合された混合液体が、マイクロチップ1の測定領域10に保持される。 The CPU 207 executes a liquid mixing program S20 described later. Specifically, the holders 47L and 47R are held at a predetermined angle α, the turntable 33 is rotated at a predetermined angular velocity, and centrifugal force CF is applied to the holders 47L and 47R (S20). As a result, the mixed liquid in which the specimen and the reagent are mixed is held in the measurement region 10 of the microchip 1.
 CPU207は、後述する測定プログラムS30を実行する。具体的には、複数回にわたって、ホルダ47L、47Rが交互に光路92R上へ誘導され、測定光92が光源90から出射され、受光部91によって透過光が受光される(S30)。透過光から、検査対象の液体の濃度が算出される。 The CPU 207 executes a measurement program S30 described later. Specifically, the holders 47L and 47R are alternately guided onto the optical path 92R over a plurality of times, the measurement light 92 is emitted from the light source 90, and the transmitted light is received by the light receiving unit 91 (S30). From the transmitted light, the concentration of the liquid to be inspected is calculated.
 CPU207は、マイクロチップ1、101に注入された検体の対象物質の濃度が、制御装置200の表示部209に表示させる(S40)。 The CPU 207 displays the concentration of the target substance of the sample injected into the microchips 1 and 101 on the display unit 209 of the control device 200 (S40).
 CPU207は、検査プログラム205aを終了する(S50)。 The CPU 207 ends the inspection program 205a (S50).
 (液体混合プログラムS20の詳細なフローチャート)
 液体混合プログラムS20について、図11、図14を用いて説明する。
(Detailed flowchart of the liquid mixing program S20)
The liquid mixing program S20 will be described with reference to FIGS.
 図14に示す3つの矢印の方向は、検査装置30にマイクロチップ1,101が装着されて図5に示す所定の初期回転位置にある状態における、上下方向、左右方向、及び前後方向を表す。 14 indicate the up-down direction, the left-right direction, and the front-rear direction in a state where the microchips 1 and 101 are mounted on the inspection apparatus 30 and are in the predetermined initial rotation position shown in FIG.
 マイクロチップ1、101がホルダ47R、47Lに装着され、操作部210が操作されると、液体混合プログラムS20の実行を開始する(S201)。 When the microchips 1 and 101 are mounted on the holders 47R and 47L and the operation unit 210 is operated, the execution of the liquid mixing program S20 is started (S201).
 S202において、検査装置30のホルダ47Rは角度α1に設定される。角度α1の状態は、遠心力CFを付与する前に、検査装置30が所定の初期回転位置(α1=90°)にある状態におけるマイクロチップ1の平面図である。下向きにかかる重力GFにより検体EL、及び試薬M1が流れない程度に検体供給路5及び試薬供給路6のそれぞれの左右方向の幅が狭く設定されているために、状態1401に示すように、遠心力CFを付与する前の状態では、検体投入部3内の検体EL、及び試薬投入部4内の試薬M1は、検体供給路5及び試薬供給路6を流れない(S202)。 In S202, the holder 47R of the inspection apparatus 30 is set to the angle α1. The state of the angle α1 is a plan view of the microchip 1 in a state where the inspection apparatus 30 is at a predetermined initial rotation position (α1 = 90 °) before the centrifugal force CF is applied. Since the lateral widths of the specimen supply path 5 and the reagent supply path 6 are set so narrow that the specimen EL and the reagent M1 do not flow due to the downward gravity GF, as shown in the state 1401, the centrifugation is performed. In a state before the force CF is applied, the sample EL in the sample loading unit 3 and the reagent M1 in the reagent loading unit 4 do not flow through the sample supply channel 5 and the reagent supply channel 6 (S202).
 角度α1から角度α0へ変更した状態のマイクロチップ1及び検査装置30について説明する。図4に示す検査装置30の状態となるよう(α0=0°)、CPU207は、ホルダ47Rが角度α0に回転されるように、角度設定部204からステッピングモータ35へ角度制御信号を出力させる。ステッピングモータ51は、角度制御信号に従い、ホルダ47Rが角度α0に回転するよう駆動する(S203)。 The microchip 1 and the inspection apparatus 30 in a state where the angle α1 is changed to the angle α0 will be described. The CPU 207 outputs an angle control signal from the angle setting unit 204 to the stepping motor 35 so that the holder 47R is rotated to the angle α0 so as to be in the state of the inspection apparatus 30 shown in FIG. 4 (α0 = 0 °). The stepping motor 51 is driven so that the holder 47R rotates to the angle α0 according to the angle control signal (S203).
 状態1402は、角度αがα0=0°の状態にあるマイクロチップ1の平面図である。処理S203により、検体投入部3から投入された検体ELは、重力GFにより、検体投入部3内を移動する。同様に、試薬投入部4から投入された試薬M1は、重力GFにより、検体投入部3内を移動する。 State 1402 is a plan view of the microchip 1 in a state where the angle α is α0 = 0 °. In step S203, the sample EL input from the sample input unit 3 moves in the sample input unit 3 by gravity GF. Similarly, the reagent M1 input from the reagent input unit 4 moves in the sample input unit 3 by gravity GF.
 遠心力CFの付与が開始された状態のマイクロチップ1及び検査装置30について説明する。CPU207は、マイクロチップ1への遠心力CFの遠心加速度が500G〔m/s〕(重力加速度G=9.8m/s)となるように、回転制御部203から主軸モータ35へ角速度制御信号を出力させる。主軸モータ35は、角速度制御信号に従い、ターンテーブル33が回転するよう駆動する(S204)。 The microchip 1 and the inspection apparatus 30 in a state where application of the centrifugal force CF is started will be described. The CPU 207 controls the angular velocity from the rotation control unit 203 to the spindle motor 35 so that the centrifugal acceleration of the centrifugal force CF to the microchip 1 becomes 500 G [m / s 2 ] (gravity acceleration G = 9.8 m / s 2 ). Output a signal. The spindle motor 35 is driven to rotate the turntable 33 according to the angular velocity control signal (S204).
 状態1403は、遠心力CFの向きに対する角度αがα0=0°の状態にあるマイクロチップ1の平面図である。処理S204により、遠心力CFにより、検体ELが検体供給路5から遠心分離槽12に流れる。流れる検体ELが遠心分離槽12の容積を超えると、検体ELの余剰液が第1流路13を経由して、貯留槽14に流れ溜まる。遠心分離槽12内の検体ELは、遠心力CFが付与され続けると、第1成分EL1と、第2成分EL2と、に分離される。また、試薬M1が、試薬供給路6から吸光度測定槽7に流れる。 State 1403 is a plan view of the microchip 1 in a state where the angle α with respect to the direction of the centrifugal force CF is α0 = 0 °. By processing S204, the specimen EL flows from the specimen supply path 5 to the centrifugal separation tank 12 by the centrifugal force CF. When the flowing sample EL exceeds the volume of the centrifuge tank 12, the excess liquid of the sample EL flows and accumulates in the storage tank 14 via the first flow path 13. The specimen EL in the centrifuge tank 12 is separated into the first component EL1 and the second component EL2 as the centrifugal force CF continues to be applied. The reagent M1 flows from the reagent supply path 6 to the absorbance measurement tank 7.
 遠心力CFを付与した状態で、角度α0から角度α1へ変更した状態のマイクロチップ1及び検査装置30について説明する。CPU207は、ホルダ47Rが角度α1=90°に回転されるように、角度設定部204からステッピングモータ35へ角度制御信号を出力させる。ステッピングモータ51は、角度制御信号に従い、ホルダ47Rが角度α1=90°に回転するよう駆動する(S205)。なお、本実施形態においては、角度α1=90°に変更したが、測定領域10が通過領域8より重力GFの方向において下方に位置する状態であれば、他の角度、例えば80°であってもよい。 The microchip 1 and the inspection apparatus 30 in a state where the angle α0 is changed to the angle α1 with the centrifugal force CF applied will be described. The CPU 207 causes the angle setting unit 204 to output an angle control signal to the stepping motor 35 so that the holder 47R is rotated at an angle α1 = 90 °. The stepping motor 51 drives the holder 47R to rotate at an angle α1 = 90 ° according to the angle control signal (S205). In the present embodiment, the angle α1 is changed to 90 °. However, if the measurement region 10 is located below the passage region 8 in the direction of the gravity GF, another angle, for example, 80 ° is used. Also good.
 状態1404は、遠心力CFの向きに対する角度αがα1=90°の状態にあるマイクロチップ1の平面図である。処理S205により、第1成分EL1は、遠心分離槽12から第2流路15を経由して吸光度測定槽7へ流れ、吸光度測定槽7に溜まった試薬M1と混合される。検体ELの第1成分EL1と試薬M1との混合液体B1は、遠心力CFにより、吸光度測定槽7の遠心力CFの向かう方向に引き寄せられる。遠心分離槽12がマイクロチップ1を前から見て右下側である第2流路15側に延びているため、比重の重い第2成分EL2は、遠心分離槽12に滞留する。貯留槽14は第1流路13の下端から右側に第1流路13から流れた余剰液を貯留可能な程度の容積を有するため、貯留槽14内の余剰液は、遠心分離槽12に逆流することはない。 State 1404 is a plan view of the microchip 1 in a state where the angle α with respect to the direction of the centrifugal force CF is α1 = 90 °. Through the processing S205, the first component EL1 flows from the centrifugal separation tank 12 via the second flow path 15 to the absorbance measurement tank 7, and is mixed with the reagent M1 accumulated in the absorbance measurement tank 7. The mixed liquid B1 of the first component EL1 of the sample EL and the reagent M1 is drawn in the direction of the centrifugal force CF of the absorbance measurement tank 7 by the centrifugal force CF. Since the centrifugal separation tank 12 extends to the second flow path 15 side, which is the lower right side when the microchip 1 is viewed from the front, the second component EL2 having a high specific gravity stays in the centrifugal separation tank 12. Since the storage tank 14 has a volume enough to store the excess liquid flowing from the first flow path 13 on the right side from the lower end of the first flow path 13, the excess liquid in the storage tank 14 flows back to the centrifuge tank 12. Never do.
 角速度が減速される状態のマイクロチップ1及び検査装置30について説明する。CPU207は、ターンテーブル33の角速度を減速させるように、回転制御部203から主軸モータ35へ角速度制御信号を出力させる。主軸モータ35は、角速度制御信号に従い、ターンテーブル33の角速度が減速するよう駆動する(S206)。 The microchip 1 and the inspection apparatus 30 in a state where the angular velocity is decelerated will be described. The CPU 207 outputs an angular velocity control signal from the rotation control unit 203 to the spindle motor 35 so as to decelerate the angular velocity of the turntable 33. The spindle motor 35 is driven to reduce the angular velocity of the turntable 33 according to the angular velocity control signal (S206).
 状態1405は、ターンテーブル33の角速度が減速され、角度αがα1=90°の状態にあるマイクロチップ1の平面図、及びA―A線に従う断面図である。処理S206により、吸光度測定槽7の試薬投入部4側にある混合液体B1は、ターンテーブル33の角速度が減速されることによるカバー部材20側(前側)への慣性力94及び測定領域10側(下側)への重力GFにより、底面9Bを通って、測定領域10側に引き寄せられる。 State 1405 is a plan view of the microchip 1 in which the angular velocity of the turntable 33 is decelerated and the angle α is α1 = 90 °, and a cross-sectional view taken along line AA. By the process S206, the liquid mixture B1 on the reagent loading unit 4 side of the absorbance measuring tank 7 is subjected to inertial force 94 on the cover member 20 side (front side) and the measurement region 10 side (rear side) when the angular velocity of the turntable 33 is reduced. Due to the gravity GF toward the lower side, it is drawn toward the measurement region 10 through the bottom surface 9B.
 遠心力CFの付与が終了した状態のマイクロチップ1及び検査装置30について説明する。CPU207は、ターンテーブル33の回転を停止するように、回転制御部203から主軸モータ35へ角速度制御信号を出力させる。主軸モータ35は、角速度制御信号に従い、ターンテーブル33の角速度が停止するよう駆動する(S207)。 The microchip 1 and the inspection apparatus 30 in a state where the application of the centrifugal force CF has been completed will be described. The CPU 207 outputs an angular velocity control signal from the rotation control unit 203 to the spindle motor 35 so as to stop the rotation of the turntable 33. The spindle motor 35 is driven to stop the angular velocity of the turntable 33 according to the angular velocity control signal (S207).
 状態1406は、ターンテーブル33の回転が停止し、角度αがα1=90°の状態にあるマイクロチップ1の平面図である。この処理S207により、混合液体B1は、慣性力94及び重力GFにより、底面9Bを通って、測定領域10にさらに引き寄せられる。回転が停止してまもなく、状態1406のように、すべての混合液体B1は、測定領域10側に溜まる。 State 1406 is a plan view of the microchip 1 in a state where the rotation of the turntable 33 is stopped and the angle α is α1 = 90 °. By this process S207, the mixed liquid B1 is further drawn to the measurement region 10 through the bottom surface 9B by the inertial force 94 and gravity GF. Soon after the rotation stops, all of the mixed liquid B1 accumulates on the measurement region 10 side as in the state 1406.
 CPU207は、液体混合プログラムS20の実行を終了する(S208)。 The CPU 207 ends the execution of the liquid mixing program S20 (S208).
 (測定プログラムS30の詳細なフローチャート)
 図12は、複数回にわたって、ホルダ47R、47Lが交互に光路92R上へ誘導され、光源90から測定光92が出射され、受光部91によって透過光が受光される測定プログラムS30に従う処理手順を示すフローチャートである。測定プログラムS30について、図12を用いて説明する。
(Detailed flowchart of measurement program S30)
FIG. 12 shows a processing procedure according to the measurement program S30 in which the holders 47R and 47L are alternately guided onto the optical path 92R over a plurality of times, the measurement light 92 is emitted from the light source 90, and the transmitted light is received by the light receiving unit 91. It is a flowchart. The measurement program S30 will be described with reference to FIG.
 CPU207は、前述した液体混合プログラムS20が終了すると、測定プログラムS30を開始する(S301)。 CPU207 starts measurement program S30, when liquid mixing program S20 mentioned above is complete | finished (S301).
 CPU207は、代数Nに初期値である1を代入する。代数Nは、マイクロチップ1、101の透過光を何回測定したかを示す値である(S302)。代数Nは、制御装置200のRAM206に記憶される。 The CPU 207 substitutes 1 as an initial value for the algebra N. The algebra N is a value indicating how many times the transmitted light of the microchips 1 and 101 is measured (S302). The algebra N is stored in the RAM 206 of the control device 200.
 CPU207は、代数Nが透過光の測定必要回数Nmax以下か否かを判断する(S303)。測定必要回数Nmaxは、予め制御装置200のROM205に記憶されている。測定必要回数Nmaxは、例えば1~20程度の数である。代数Nが透過光の測定必要回数Nmax以下である場合(Yes)、S304へ進む。代数Nが透過光の測定必要回数Nmaxより大きい場合(No)、S309へ進む。 The CPU 207 determines whether or not the algebra N is equal to or less than the required number Nmax of transmitted light measurement (S303). The required number of measurements Nmax is stored in the ROM 205 of the control device 200 in advance. The required number of measurements Nmax is a number of about 1 to 20, for example. When the algebra N is equal to or less than the required number Nmax of transmitted light measurement (Yes), the process proceeds to S304. When the algebra N is larger than the required number Nmax of transmitted light measurement (No), the process proceeds to S309.
 CPU207は、後述する誘導プログラムS304に従って、ホルダ47R内のマイクロチップ1の測定領域10が検査装置30の光源90から出射される測定光92の光路92R上に位置するように、回転制御部203から主軸モータ35へ角速度制御信号を出力させる。主軸モータ35は、角速度制御信号に従い、回転方向93にターンテーブル33が回転するよう駆動する(S304)。 The CPU 207 controls the rotation control unit 203 so that the measurement region 10 of the microchip 1 in the holder 47R is positioned on the optical path 92R of the measurement light 92 emitted from the light source 90 of the inspection apparatus 30 according to a guidance program S304 described later. An angular velocity control signal is output to the spindle motor 35. The spindle motor 35 is driven to rotate the turntable 33 in the rotation direction 93 in accordance with the angular velocity control signal (S304).
 CPU207は、光路92R上に位置するマイクロチップ1の測定領域10内の混合液体B1に光源90から測定光92が出射されるように、光源制御部201から光源90へ光出射信号を出力させる。光源90は、光出射信号に従い、測定光92を出射する。受光部91は、測定領域10を通過した透過光を受光する。制御装置200のRAM206は、受光部91にて受光された透過光の強度を記憶する(S305)。 The CPU 207 causes the light source control unit 201 to output a light emission signal to the light source 90 so that the measurement light 92 is emitted from the light source 90 to the mixed liquid B1 in the measurement region 10 of the microchip 1 located on the optical path 92R. The light source 90 emits measurement light 92 according to the light emission signal. The light receiving unit 91 receives the transmitted light that has passed through the measurement region 10. The RAM 206 of the control device 200 stores the intensity of transmitted light received by the light receiving unit 91 (S305).
 誘導プログラムS304と同様に、CPU207は、ホルダ47L内のマイクロチップ101の測定領域が検査装置30の光源90から出射される測定光92の光路92R上に位置するように、回転制御部203から主軸モータ35へ角速度制御信号を出力させる。主軸モータ35は、角速度制御信号に従い、回転方向93に180度の角度だけターンテーブル33が回転するよう駆動する(S306)。 Similar to the guidance program S304, the CPU 207 moves the spindle from the rotation control unit 203 so that the measurement region of the microchip 101 in the holder 47L is positioned on the optical path 92R of the measurement light 92 emitted from the light source 90 of the inspection apparatus 30. An angular velocity control signal is output to the motor 35. The spindle motor 35 is driven so that the turntable 33 rotates by an angle of 180 degrees in the rotation direction 93 according to the angular velocity control signal (S306).
 マイクロチップ1と同様に、CPU207は、光路92R上に位置するマイクロチップ101の測定領域内の混合液体に光源90から測定光92が出射されるように、光源制御部201から光源90へ光出射信号を出力させる。光源90は、光出射信号に従い、測定光92を出射する。受光部91は、測定領域を通過した透過光を受光する。制御装置200のRAM206は、受光部91にて受光された透過光の強度を記憶する(S307)。 Similar to the microchip 1, the CPU 207 emits light from the light source control unit 201 to the light source 90 so that the measurement light 92 is emitted from the light source 90 to the mixed liquid in the measurement region of the microchip 101 located on the optical path 92R. Output a signal. The light source 90 emits measurement light 92 according to the light emission signal. The light receiving unit 91 receives the transmitted light that has passed through the measurement region. The RAM 206 of the control device 200 stores the intensity of transmitted light received by the light receiving unit 91 (S307).
 CPU207は、代数Nに1を加える(S308)。S308後、処理はS303へ戻る。 The CPU 207 adds 1 to the algebra N (S308). After S308, the process returns to S303.
 CPU207は、制御装置200のRAM206に記憶された透過光の値から吸光度を算出し、既知の濃度をもつ複数の検査液の吸光度を測定して、対象物質の濃度と吸光度との検量線を用いて、対象物質の濃度を算出する(S309)。 The CPU 207 calculates the absorbance from the value of the transmitted light stored in the RAM 206 of the control device 200, measures the absorbance of a plurality of test solutions having known concentrations, and uses a calibration curve between the concentration of the target substance and the absorbance. Then, the concentration of the target substance is calculated (S309).
 CPU207は、測定プログラムS30の実行を終了する(S310)。 The CPU 207 ends the execution of the measurement program S30 (S310).
 (誘導プログラムS304の詳細なフローチャート)
 誘導プログラムS304について、図13、及び図15を用いて説明する。
(Detailed flowchart of guidance program S304)
The guidance program S304 will be described with reference to FIGS.
 CPU207は、前述した測定プログラムS30のS303が終了すると、誘導プログラムS304を開始する(S3041)。図15(a)状態1501は、S304の処理に従ってマイクロチップ1の光路92Rへの誘導を開始した直後の状態を示す断面図である。状態1501では、重力GFの方向において測定領域10が通過領域8より下方に位置しているため、混合液体B1は、測定領域10に滞留している。 CPU207 starts guidance program S304, when S303 of measurement program S30 mentioned above is completed (S3041). A state 1501 in FIG. 15A is a cross-sectional view showing a state immediately after starting the guidance of the microchip 1 to the optical path 92R according to the process of S304. In the state 1501, since the measurement region 10 is located below the passage region 8 in the direction of gravity GF, the mixed liquid B1 stays in the measurement region 10.
 CPU207は、回転停止時から予め定められた最大角速度ωになるまで角加速度β1〔rad/s〕で回転方向93へターンテーブル33の回転が加速されるよう、回転制御部203から主軸モータ35へ角速度制御信号を出力させる。主軸モータ35は、角速度制御信号に従い、最大角速度ωになるまで角加速度β1で回転方向93へターンテーブル33の回転が加速するよう駆動する(S3042)。状態1502は、加速中のマイクロチップ1の状態を示す断面図である。状態1502では、混合液体B1は、回転方向93の上流側への慣性力94aにより、底面9Bを通って、通過領域8の底面9A側に引き寄せられる。 The CPU 207 controls the spindle motor 35 from the rotation control unit 203 so that the rotation of the turntable 33 is accelerated in the rotation direction 93 at the angular acceleration β1 [rad / s 2 ] until the predetermined maximum angular velocity ω from when the rotation is stopped. An angular velocity control signal is output. The spindle motor 35 is driven to accelerate the rotation of the turntable 33 in the rotation direction 93 with the angular acceleration β1 until the maximum angular velocity ω is reached in accordance with the angular velocity control signal (S3042). A state 1502 is a cross-sectional view showing a state of the microchip 1 during acceleration. In the state 1502, the mixed liquid B <b> 1 is drawn toward the bottom surface 9 </ b> A side of the passage region 8 through the bottom surface 9 </ b> B by the inertia force 94 a upstream in the rotation direction 93.
 CPU207は、ターンテーブル33が最大角速度ω〔rad/s〕の状態で維持されるよう、回転制御部203から主軸モータ35へ角速度制御信号を出力させる。主軸モータ35は、角速度制御信号に従い、最大角速度ωで回転方向93へターンテーブル33の回転が維持されるように駆動する(S3043)。状態1503は、最大角速度ωで回転しているマイクロチップ1の状態を示す断面図である。状態1503では、混合液体B1が、一時的に通過領域8側に引き寄せられる。 The CPU 207 outputs an angular velocity control signal from the rotation control unit 203 to the spindle motor 35 so that the turntable 33 is maintained in the state of the maximum angular velocity ω [rad / s]. The spindle motor 35 is driven so as to maintain the rotation of the turntable 33 in the rotation direction 93 at the maximum angular velocity ω in accordance with the angular velocity control signal (S3043). A state 1503 is a cross-sectional view showing a state of the microchip 1 rotating at the maximum angular velocity ω. In the state 1503, the mixed liquid B1 is temporarily drawn toward the passing region 8 side.
 CPU207は、最大角速度ωから回転停止時まで角加速度β2〔rad/s〕で回転方向93へターンテーブル33の回転が減速されるよう、回転制御部203から主軸モータ35へ角速度制御信号を出力させる。主軸モータ35は、角速度制御信号に従い、最大角速度ωから回転停止時まで角加速度β2で回転方向93へターンテーブル33の回転が減速されるよう駆動する(S3044)。状態1504は、減速中のマイクロチップ1の状態を示す断面図である。状態1504では、混合液体B1は、通過領域8から測定領域10への重力GF及び回転方向93の下流側への慣性力94bにより、通過領域8の底面9Aから底面9Bを通って、測定領域10に勢いよく引き寄せられる。 The CPU 207 outputs an angular velocity control signal from the rotation control unit 203 to the spindle motor 35 so that the rotation of the turntable 33 is decelerated in the rotation direction 93 at the angular acceleration β2 [rad / s 2 ] from the maximum angular velocity ω to the stop of rotation. Let The spindle motor 35 is driven to reduce the rotation of the turntable 33 in the rotation direction 93 at the angular acceleration β2 from the maximum angular velocity ω to the stoppage of rotation in accordance with the angular velocity control signal (S3044). A state 1504 is a cross-sectional view showing the state of the microchip 1 during deceleration. In the state 1504, the mixed liquid B <b> 1 passes through the bottom surface 9 </ b> A from the bottom surface 9 </ b> A of the passage region 8 by the gravity GF from the passage region 8 to the measurement region 10 and the inertia force 94 b downstream in the rotation direction 93. Attracted vigorously.
 CPU207は、誘導プログラムS304の実行を終了する(S3045)。状態1505は、停止したマイクロチップ1のS3045の状態を示す断面図である。状態1505では、誘導プログラムS304の実行を終了してまもなく、混合液体B1は、通過領域8の底面9B及び測定領域10に滞留する。 CPU207 complete | finishes execution of guidance program S304 (S3045). A state 1505 is a cross-sectional view showing the state of S3045 of the microchip 1 that has stopped. In the state 1505, the mixed liquid B1 stays on the bottom surface 9B of the passage region 8 and the measurement region 10 soon after the execution of the guidance program S304 is finished.
 状態1506は、測定光92が出射されたマイクロチップ1の状態を示す断面図である。状態1506では、マイクロチップ1の測定領域10の混合液体B1に、光源90から測定光92が出射され、受光部91により透過光が受光される(S305)。 State 1506 is a cross-sectional view showing the state of the microchip 1 from which the measurement light 92 is emitted. In the state 1506, the measurement light 92 is emitted from the light source 90 to the mixed liquid B1 in the measurement region 10 of the microchip 1, and the transmitted light is received by the light receiving unit 91 (S305).
 このように、回転方向93の下流側への慣性力94bにより、透過光測定時に、マイクロチップ1の測定領域10に、混合液体B1を溜めることができる。その結果、混合液体B1の吸光度を正確に測定することができる。 As described above, the liquid mixture B1 can be stored in the measurement region 10 of the microchip 1 during the measurement of transmitted light by the inertial force 94b downstream in the rotation direction 93. As a result, the absorbance of the mixed liquid B1 can be accurately measured.
 (マイクロチップの流路及び槽に関する変形例)
 なお、本実施形態では、検体は、血液として説明したが、これに限ることはない。具体的には、検体は、血清、血漿、薬剤等の試薬、又は試薬と血液との混合液体等であってもよく、所望の検査に応じて利用者によって適宜選択可能である。
(Modified example of microchip channel and tank)
In the present embodiment, the sample has been described as blood, but is not limited thereto. Specifically, the specimen may be a reagent such as serum, plasma, or drug, or a mixed liquid of reagent and blood, and can be appropriately selected by a user according to a desired test.
 本実施形態においては、吸光度測定槽7は、左右方向に長い四角形状であったが、これに限らず、多角形状、円等の曲線形状であってもよい。 In the present embodiment, the absorbance measurement tank 7 has a rectangular shape that is long in the left-right direction, but is not limited thereto, and may be a curved shape such as a polygonal shape or a circle.
 本実施形態においては、通過領域8の底面9Bは、通過領域8の中間部分に位置する所定箇所8Tから所定箇所10Tに設けられていたが、これに限らず、通過領域8の上端から所定箇所10Tに設けられていてもよい。即ち、通過領域8全体の深さが、測定領域10に近づくにつれ浅くなるよう設けられていてもよい。また、通過領域8の底面9Bは、測定領域10、即ち下方に近づくにつれ直線的に前後方向に浅くなっていた。しかしながら、これに限らず、慣性力の付与により、通過領域8から測定領域10へ向かって液体が流れる際に、液体が通過領域8に残留しないように下方に向かって連続的に前後方向に浅くなっていれば他の形状であってもよい。 In the present embodiment, the bottom surface 9 </ b> B of the passage area 8 is provided from the predetermined place 8 </ b> T to the predetermined place 10 </ b> T located in the intermediate portion of the passage area 8. 10T may be provided. That is, the entire depth of the passing region 8 may be provided so as to become shallower as the measuring region 10 is approached. Further, the bottom surface 9B of the passing region 8 linearly becomes shallower in the front-rear direction as it approaches the measurement region 10, that is, the lower side. However, the present invention is not limited to this, and when the liquid flows from the passage region 8 toward the measurement region 10 by applying an inertial force, the liquid is continuously shallow in the front-rear direction so as not to remain in the passage region 8. Other shapes may be used as long as they are.
 本実施形態においては、測定領域10の各面の面粗度について規定されていたが、測定領域10の各面の面粗度は、慣性力により液体が測定領域10に流れる範囲であればよい。 In the present embodiment, the surface roughness of each surface of the measurement region 10 is defined, but the surface roughness of each surface of the measurement region 10 may be in a range in which liquid flows into the measurement region 10 due to inertial force. .
 本実施形態においては、測定領域10は、流路形成面2Aに垂直な側壁面10B、10C、10Dを備えるが、垂直な面ではなく、交差する面であってもよい。特に、測定領域10の流路形成面2Aに沿う方向の底面10Aから流路形成面2Aに向かってテーパー状に形成されていれば、射出成型時に、面10B、10C、10Dの面粗度を粗く加工しやすい。 In the present embodiment, the measurement region 10 includes the side wall surfaces 10B, 10C, and 10D perpendicular to the flow path forming surface 2A, but may be a surface that intersects instead of a vertical surface. In particular, if the taper is formed from the bottom surface 10A in the direction along the flow path forming surface 2A of the measurement region 10 toward the flow path forming surface 2A, the surface roughness of the surfaces 10B, 10C, and 10D can be increased during injection molding. Rough and easy to process.
 本実施形態においては、切欠部11はマイクロチップ1の底面2Bの右角部に設けられたが、マイクロチップ1の向きを所定の姿勢に規制可能な姿勢規制手段であるならば、他の形態であってもよい。例えば、マイクロチップの外壁面に突出部を有し、ホルダ側の内壁面に切欠部を有していてもよい。また、切欠部は、2つ以上あってもよい。また、切欠部は、マイクロチップの流路形成面2Aと垂直な側面のうち一つの側面の下端から、上向きに延設されて設けられていてもよい。 In the present embodiment, the cutout portion 11 is provided at the right corner of the bottom surface 2B of the microchip 1. However, as long as it is a posture regulating means capable of regulating the orientation of the microchip 1 to a predetermined posture, it is in another form. There may be. For example, a protrusion may be provided on the outer wall surface of the microchip, and a notch may be provided on the inner wall surface on the holder side. Further, there may be two or more notches. Moreover, the notch part may be extended and provided upward from the lower end of one side surface among the side surfaces perpendicular to the flow path forming surface 2A of the microchip.
 本実施形態に係るマイクロチップ1においては、試薬供給路6と通過領域8とが、直接接続されたが、試薬供給路6と通過領域8との間に、計量部及び余剰槽が設けられていてもよい。計量部は、試薬を所定量計量するための槽である。計量部は、試薬を所定量計量可能な容積を有する。余剰槽は、計量部にて計り取られた余剰液を貯めるための槽である。余剰槽は、計量部で所定量計量して流れ出た所定量の余剰液を溜めることが可能な容積を有する。試薬供給路6と通過領域8との間に、計量部及び余剰槽が設けられていることにより、検体と混合される試薬の量を計量することができる。その結果、予めマイクロチップ1、101に注入する試薬を計量しなくても、所定の角度にホルダを回転させるだけで、検体及び試薬を適切な量で混合することができる。 In the microchip 1 according to the present embodiment, the reagent supply path 6 and the passage area 8 are directly connected, but a measuring unit and a surplus tank are provided between the reagent supply path 6 and the passage area 8. May be. The measuring unit is a tank for measuring a predetermined amount of reagent. The measuring unit has a volume capable of measuring a predetermined amount of the reagent. The surplus tank is a tank for storing the surplus liquid measured by the measuring unit. The surplus tank has a volume capable of storing a predetermined amount of surplus liquid flowing out by measuring a predetermined amount by the measuring unit. By providing a measuring section and a surplus tank between the reagent supply path 6 and the passage area 8, the amount of the reagent mixed with the sample can be measured. As a result, even if the reagent to be injected into the microchips 1 and 101 is not measured in advance, the sample and the reagent can be mixed in an appropriate amount by simply rotating the holder at a predetermined angle.
 本実施形態に係るマイクロチップ1においては、第2流路15及び試薬供給路6が通過領域8の上端に接続された。しかしながら、第2流路及び試薬供給路は通過領域の端部のいずれかに接続されていればよい。 In the microchip 1 according to the present embodiment, the second flow path 15 and the reagent supply path 6 are connected to the upper end of the passage area 8. However, the second flow path and the reagent supply path need only be connected to one of the end portions of the passage region.
 本実施形態に係るマイクロチップ1においては、前から見て、左側に検体投入部3、右側に試薬投入部4が設けられたが、右側に検体投入部3、左側に試薬投入部4、即ち流路及び槽を本実施形態と反対の位置に配置しても良い。 In the microchip 1 according to the present embodiment, the sample loading unit 3 is provided on the left side and the reagent loading unit 4 is provided on the right side as viewed from the front, but the sample loading unit 3 on the right side and the reagent loading unit 4 on the left side, You may arrange | position a flow path and a tank in the position opposite to this embodiment.
 本実施形態においては、検体投入部3、及び試薬投入部4は前後方向の厚みが一定であったが、検体投入部3、試薬投入部4は、検体供給路5、試薬供給路6に近づくにつれ、前後方向の厚みを薄くなる形状に形成されてもよい。検体供給路5、及び試薬供給路6の前後方向の厚みを薄くすることで、より微量の検体及び試薬を精度よく計量することができる。 In the present embodiment, the thicknesses of the sample loading unit 3 and the reagent loading unit 4 are constant, but the sample loading unit 3 and the reagent loading unit 4 are close to the sample supply path 5 and the reagent supply path 6. Accordingly, it may be formed in a shape in which the thickness in the front-rear direction is reduced. By reducing the thickness of the sample supply path 5 and the reagent supply path 6 in the front-rear direction, it is possible to accurately measure a smaller amount of sample and reagent.
 本実施形態においては、マイクロチップ1、101共に、検体ELの検体投入部は1つあったが、それぞれのマイクロチップ1、101内に検体投入部は、2つ以上あっても構わない。本実施形態においては、マイクロチップ101の検体ELは、1つの試薬M1と混合されたが、複数の試薬と混合させてもよい。 In the present embodiment, both the microchips 1 and 101 have one sample EL input portion, but there may be two or more sample input portions in each of the microchips 1 and 101. In the present embodiment, the specimen EL of the microchip 101 is mixed with one reagent M1, but may be mixed with a plurality of reagents.
 (マイクロチップの流路及び槽以外の変形例)
 本実施形態においては、板部材2及びカバー部材20の材質は特に制限されず、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリスチレン(PS)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアリレート樹脂(PAR)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS)、塩化ビニル樹脂(PVC)、ポリメチルペンテン樹脂(PMP)、ポリブタジエン樹脂(PBD)、生分解性ポリマー(BP)、シクロオレフィンポリマー(COP)、ポリジメチルシロキサン(PDMS)などの有機材料を用いることができる。また、シリコン、ガラス、石英等の無機材料を用いても良い。
(Modifications other than microchip channel and tank)
In the present embodiment, the material of the plate member 2 and the cover member 20 is not particularly limited, and polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS) , Polypropylene (PP), polyethylene (PE), polyethylene naphthalate (PEN), polyarylate resin (PAR), acrylonitrile / butadiene / styrene resin (ABS), vinyl chloride resin (PVC), polymethylpentene resin (PMP), Organic materials such as polybutadiene resin (PBD), biodegradable polymer (BP), cycloolefin polymer (COP), and polydimethylsiloxane (PDMS) can be used. In addition, an inorganic material such as silicon, glass, or quartz may be used.
 本実施形態においては、板部材2は、略正方形状の透明な板であったが、流路形成面に流路が形成できる程度の面積を有していれば、八角形等の多角形、又は円形、楕円形等の面取りされている形であってもよい。ホルダ47L、47Rは、前記種々の板部材の形状に合わせて収納可能に形成されていればよい。板部材2は、測定光が透過可能な部材であれば、透明でなくてもよい。 In the present embodiment, the plate member 2 was a substantially square transparent plate, but if it has an area that can form a flow path on the flow path forming surface, a polygon such as an octagon, Alternatively, the shape may be chamfered such as a circle or an ellipse. The holders 47L and 47R may be formed so as to be accommodated in accordance with the shapes of the various plate members. The plate member 2 may not be transparent as long as it is a member that can transmit measurement light.
 本実施形態においては、カバー部材20は、可撓性のフィルムだけではなく、フィルムよりも剛性の高いシート状の物質であっても構わない。また、板部材2と同程度以上の硬度を有し、同質の材料からなる基板であってもよい。基板は、例えば特開2006-234600号公報に記載されて公知である。 In the present embodiment, the cover member 20 may be not only a flexible film but also a sheet-like substance having higher rigidity than the film. Moreover, the board | substrate which has the hardness comparable as the board member 2 and consists of a homogeneous material may be sufficient. The substrate is known, for example, described in JP-A-2006-234600.
 本実施形態においては、板部材2は射出成形にて製造したが、真空成形等の他の各種樹脂成形法、または機械切削等により製造してもよい。 In the present embodiment, the plate member 2 is manufactured by injection molding, but may be manufactured by other various resin molding methods such as vacuum molding, or mechanical cutting.
 (検査装置の変形例)
 本実施形態においては、液体混合プログラムS20終了後に、ホルダ47Rを光路92R上へ回転方向93に誘導する工程S304を行ったが、主軸モータ35とは異なる、回転停止位置を制御可能なモータを用いて液体混合プログラムS20終了時に、ホルダ47Rが光路92R上で止まるよう制御してもよい。この際、液体混合プログラムS20開始時の角加速度が、液体混合プログラムS20終了時の角加速度より小さいことが望ましい。これにより、慣性力を回転方向の下流側に比較的強く付与することができる。
(Modification of inspection device)
In the present embodiment, after the liquid mixing program S20 is completed, step S304 for guiding the holder 47R onto the optical path 92R in the rotation direction 93 is performed. However, a motor that can control the rotation stop position, which is different from the spindle motor 35, is used. Thus, at the end of the liquid mixing program S20, the holder 47R may be controlled to stop on the optical path 92R. At this time, it is desirable that the angular acceleration at the start of the liquid mixing program S20 is smaller than the angular acceleration at the end of the liquid mixing program S20. Thereby, inertia force can be given comparatively strongly downstream in the direction of rotation.
 なお本実施形態において、光源90はレーザダイオードであったが、LED等指向性のある光を出射可能な光源であればよい。 In the present embodiment, the light source 90 is a laser diode, but any light source capable of emitting directional light such as an LED may be used.
 本実施形態においては、制御装置200は、検査装置30の駆動機構とケーブル96を介して接続される別体の構成として設けられたが、駆動機構の内部に組み込まれて一体に設けられていてもよい。 In the present embodiment, the control device 200 is provided as a separate configuration connected to the drive mechanism of the inspection device 30 via the cable 96, but is incorporated into the drive mechanism and provided integrally therewith. Also good.
 本実施形態においては、ホルダ47は、ホルダ47Lと、ホルダ47Rと、を備えていたが、ホルダ47は1つ、又は3つ以上あっても構わない。 In the present embodiment, the holder 47 includes the holder 47L and the holder 47R, but there may be one holder 47 or three or more holders 47.
 本実施形態においては、角加速度β1は、角加速度β2より小さい。しかしながら、底面10Aが底面9Bより回転方向93の下流側にあり、底面9Bを伝って、測定領域10に流出可能な程度の慣性力を混合液体に付与することができるならば、角加速度β1は角加速度β2より大きくてもよい。 In the present embodiment, the angular acceleration β1 is smaller than the angular acceleration β2. However, if the bottom surface 10A is downstream of the bottom surface 9B in the rotation direction 93 and the inertial force that can flow out to the measurement region 10 through the bottom surface 9B can be applied to the mixed liquid, the angular acceleration β1 is It may be larger than the angular acceleration β2.
 本実施形態においては、光源から出射される測定光の入射方向と流路形成面とが垂直になるよう配置されたが、流路形成面は入射方向と垂直になる配置に限定されることはない。例えば、光源が測定領域内の混合液体に測定光を入射し、受光部が透過光を受光することが可能であるならば、流路形成面と入射方向とのなす角度が鋭角又は鈍角であってもよい。 In the present embodiment, the measurement light emitted from the light source is arranged so that the incident direction of the measurement light is perpendicular to the flow path forming surface, but the flow path forming surface is limited to the arrangement perpendicular to the incident direction. Absent. For example, if the light source enters measurement liquid into the liquid mixture in the measurement region and the light receiving unit can receive transmitted light, the angle formed between the flow path forming surface and the incident direction is an acute angle or an obtuse angle. May be.
 本実施形態においては、ターンテーブル33は、円盤状であったが、上下方向を軸として回転可能に設けられていれば多角形状等種々の形状であっても構わない。 In the present embodiment, the turntable 33 has a disk shape, but may have various shapes such as a polygonal shape as long as the turntable 33 is provided to be rotatable about the vertical direction.
 本実施形態においては、1対の軸46L、46Rの延長方向と、流路形成面2A、102Aと、は直交していたが、流路形成面は回転軸と直交する配置に限定されることはない。例えば、1対の軸46L、46Rを中心として所定の角度に変更した際に遠心力CFの向きを所望の方向に切り替えられるのであれば、流路形成面2A、102Aと1対の軸46L、46Rの延長方向とのなす角度が鋭角又は鈍角であってもよい。 In the present embodiment, the extending direction of the pair of shafts 46L and 46R and the flow path forming surfaces 2A and 102A are orthogonal to each other, but the flow path forming surface is limited to an arrangement orthogonal to the rotation axis. There is no. For example, if the direction of the centrifugal force CF can be switched to a desired direction when the angle is changed to a predetermined angle around the pair of shafts 46L, 46R, the flow path forming surfaces 2A, 102A and the pair of shafts 46L, The angle formed by the extending direction of 46R may be an acute angle or an obtuse angle.
 本実施形態においては、ホルダ47L、47R内のマイクロチップ1、101の流路形成面2A、102Aに平行な方向にそれぞれ遠心力CFが付与されたが、流路形成面は遠心力CFの方向と平行な配置に限定されることはない。例えば、遠心力CFを付与することで各種流路及び槽内で所望の方向にマイクロチップ内の液体を流動させることができるのであれば、流路形成面は遠心力CFの方向と交差する関係に配置されてもよい。 In the present embodiment, the centrifugal force CF is applied in a direction parallel to the flow path forming surfaces 2A and 102A of the microchips 1 and 101 in the holders 47L and 47R, but the flow path forming surface is in the direction of the centrifugal force CF. It is not limited to arrangement | positioning parallel to. For example, if the liquid in the microchip can be made to flow in a desired direction in various flow paths and tanks by applying the centrifugal force CF, the flow path forming surface intersects with the direction of the centrifugal force CF. May be arranged.
 本実施形態においては、検査装置30の遠心加速度は、500G〔m/s〕であったが、所定の流路又は槽を検体又は混合液体が移動可能な程度の遠心加速度であればよい。また、遠心力CFの遠心加速度は、例えば100G~5000G〔m/s〕程度の値であればよい。 In the present embodiment, the centrifugal acceleration of the inspection apparatus 30 is 500 G [m / s 2 ], but may be any centrifugal acceleration that allows the specimen or the mixed liquid to move through a predetermined flow path or tank. Further, the centrifugal acceleration of the centrifugal force CF may be a value of about 100 G to 5000 G [m / s 2 ], for example.
 上述した説明では、実施形態および変形例について別々の例として説明したが、これに限ることはない。即ち、それぞれを組み合わせた構成として、実施形態および一部の変形例を適宜組み合わせて利用してもよい。 In the above description, the embodiment and the modification have been described as separate examples, but the present invention is not limited to this. That is, as a configuration in which the components are combined, the embodiment and some of the modifications may be combined as appropriate.
 上述した実施形態は本発明の一例であり、本発明は上述の実施形態に限定されることはない。このため、上述した実施形態以外であっても、本発明の技術的思想を逸脱しない範囲であれば、必要に応じて種々の変更が可能であることは勿論である。 The above-described embodiment is an example of the present invention, and the present invention is not limited to the above-described embodiment. For this reason, it is a matter of course that various modifications can be made as needed within the scope not departing from the technical idea of the present invention other than the embodiment described above.
 (発明と実施形態との対応)
 本実施形態における流路形成面2A、102Aは、本発明における流路形成面の一例である。本実施形態における所定の流路は、本発明における流路の一例である。本実施形態におけるマイクロチップ1、101は、本発明における検査対象受体の一例である。本実施形態における検体EL、試薬M1、又は混合液体B1は、本発明における検査対象の液体の一例である。本実施形態における吸光度測定槽7は、本発明における吸光度測定槽の一例である。本実施形態における第1の深さD1、及び第2の深さD2は、順に本発明における第1の深さ、及び第2の深さの一例である。本実施形態における通過領域8、及び測定領域10は、順に本発明における通過領域、及び測定領域の一例である。本実施形態における回転方向93は、本発明における回転方向の一例である。本実施形態における前後方向は、本発明における流路形成面に垂直な方向の一例である。本実施形態における光路92Rは、本発明における測定光が入射する位置の一例である。本実施形態における主軸57は、本発明における主軸の一例である。
(Correspondence between Invention and Embodiment)
The flow path forming surfaces 2A and 102A in the present embodiment are examples of the flow path forming surfaces in the present invention. The predetermined channel in the present embodiment is an example of the channel in the present invention. The microchips 1 and 101 in the present embodiment are an example of a test object receptacle in the present invention. The specimen EL, the reagent M1, or the mixed liquid B1 in the present embodiment is an example of a liquid to be inspected in the present invention. The absorbance measurement tank 7 in the present embodiment is an example of the absorbance measurement tank in the present invention. The first depth D1 and the second depth D2 in the present embodiment are examples of the first depth and the second depth in the present invention in order. The passage region 8 and the measurement region 10 in this embodiment are examples of the passage region and the measurement region in the present invention in order. The rotation direction 93 in the present embodiment is an example of the rotation direction in the present invention. The front-rear direction in the present embodiment is an example of a direction perpendicular to the flow path forming surface in the present invention. The optical path 92R in the present embodiment is an example of the position where the measurement light in the present invention is incident. The main shaft 57 in the present embodiment is an example of the main shaft in the present invention.
 本実施形態における切欠部11は、本発明における切欠部、及び姿勢規制手段の一例である。 The notch 11 in the present embodiment is an example of the notch and the posture regulating means in the present invention.
 本実施形態における測定領域10の側壁面10B、10C、10Dは、本発明における測定領域の側壁面の一例である。本実施形態における底面9B、及び底面10Aは、順に本発明における通過領域の底面、及び測定領域の底面の一例である。 The side wall surfaces 10B, 10C, and 10D of the measurement region 10 in the present embodiment are examples of the side wall surfaces of the measurement region in the present invention. The bottom surface 9 </ b> B and the bottom surface 10 </ b> A in this embodiment are examples of the bottom surface of the passing region and the bottom surface of the measurement region in the present invention in order.
 本実施形態における測定光92、光源90、受光部91及び検査装置30は、順に本発明における測定光、光源、受光部、及び検査装置の一例である。本実施形態におけるホルダ47L、47Rは、本発明におけるホルダの一例である。本実施形態における主軸モータ35、回転制御部203、ステッピングモータ51、及び角度設定部204は、順に本発明における回転駆動源、回転制御部、角度変更源、及び角度設定部の一例である。本実施形態における角度αは、本発明における角度の一例である。本実施形態における軸46L、46Rの軸線は、本発明における軸線の一例である。 The measurement light 92, the light source 90, the light receiving unit 91, and the inspection device 30 in this embodiment are examples of the measurement light, the light source, the light receiving unit, and the inspection device in the present invention in order. The holders 47L and 47R in the present embodiment are examples of the holder in the present invention. The spindle motor 35, the rotation control unit 203, the stepping motor 51, and the angle setting unit 204 in the present embodiment are examples of the rotation drive source, the rotation control unit, the angle change source, and the angle setting unit in the present invention in order. The angle α in the present embodiment is an example of the angle in the present invention. The axes of the shafts 46L and 46R in the present embodiment are examples of the axes in the present invention.
 本実施形態における角加速度β1、最大角速度ω、及び角加速度β2は、順に本発明における第1角加速度、所定の角速度、及び第2角加速度の一例である。 The angular acceleration β1, the maximum angular velocity ω, and the angular acceleration β2 in this embodiment are examples of the first angular acceleration, the predetermined angular velocity, and the second angular acceleration in the present invention in order.
 本実施形態におけるホルダ47R、及びホルダ47Lは、順に本発明における第1のホルダ、及び第2のホルダの一例である。 The holder 47R and the holder 47L in the present embodiment are examples of the first holder and the second holder in the present invention in order.
 本実施形態におけるS3042は、本発明における回転ステップの一例である。本実施形態におけるS3044は、本発明における角度設定ステップの一例である。本実施形態におけるS305は、本発明における測定ステップの一例である。 S3042 in the present embodiment is an example of a rotation step in the present invention. S3044 in this embodiment is an example of an angle setting step in the present invention. S305 in the present embodiment is an example of a measurement step in the present invention.
1 マイクロチップ
2 板部材
2A 流路形成面
3 試薬投入部
4 検体投入部
5 試薬供給路
6 検体供給路
8 通過領域
10 測定領域
11 切欠部
EL 検体
M1 試薬
B1 混合液体
20 カバー部材
30 検査装置
35 主軸モータ
51 ステッピングモータ
90 光源
91 受光部
DESCRIPTION OF SYMBOLS 1 Microchip 2 Plate member 2A Flow path formation surface 3 Reagent input part 4 Sample input part 5 Reagent supply path 6 Sample supply path 8 Passage area 10 Measurement area 11 Notch part EL Sample M1 Reagent B1 Mixed liquid 20 Cover member 30 Inspection apparatus 35 Spindle motor 51 Stepping motor 90 Light source 91 Light receiver

Claims (8)

  1.  検査対象の液体が流動可能な凹所状の流路が形成された流路形成面を内部に有するとともに、
     検査対象の液体の吸光度を測定するために前記測定光が透過し、前記流路形成面に垂直な方向に第1の深さを有する測定領域と、
     検査対象の液体が前記流路から前記測定領域に向かって通過し、前記流路形成面に垂直な方向において前記第1の深さより深い第2の深さから前記測定領域に向かうにつれ、徐々に浅くなる通過領域と、を有する凹所である吸光度測定槽を備える検査対象受体と、
     前記検査対象受体を着脱可能に収納するホルダと、
     重力の方向に沿って延びる主軸を中心に前記ホルダを回転させる回転駆動源と、
     前記ホルダを回転方向に回転させるとともに、前記ホルダの角速度を加速または減速するために前記回転駆動源を制御する回転制御部と、
     前記流路形成面と交差する軸線を中心として前記ホルダの角度を変更する角度変更源と、
     前記ホルダの角度を設定するために前記角度変更源を制御する角度設定部と、を備え、
     前記ホルダに収納された前記検査対象受体の前記測定領域に測定光を入射させる光源と、
     前記測定領域を透過した測定光を受光する受光部と、を備え、
     前記ホルダは、
     前記流路形成面が重力の方向に沿うとともに、
     前記測定領域の底面が、前記通過領域の底面より前記回転方向の下流側にある装着姿勢で、前記検査対象受体を収納し、
     前記角度設定部は、
     前記ホルダ内の前記測定領域を前記光源から出射される測定光が入射する位置に停止するために前記ホルダの角速度を減速する際に、前記測定領域が重力の方向において前記通過領域より下方に位置するように、前記ホルダの角度を設定することを特徴とする検査システム。
    While having a flow path forming surface formed with a concave flow path through which the liquid to be inspected can flow,
    A measurement region that transmits the measurement light to measure the absorbance of the liquid to be inspected and has a first depth in a direction perpendicular to the flow path forming surface;
    As the liquid to be inspected passes from the flow path toward the measurement area and gradually moves from the second depth deeper than the first depth to the measurement area in a direction perpendicular to the flow path forming surface, the liquid gradually increases. A receptor to be inspected comprising an absorbance measurement tank that is a recess having a shallow passage region;
    A holder for detachably storing the test object receptacle;
    A rotational drive source for rotating the holder around a main axis extending along the direction of gravity;
    A rotation control unit that rotates the holder in a rotation direction and controls the rotation drive source to accelerate or decelerate an angular velocity of the holder;
    An angle changing source for changing the angle of the holder around an axis intersecting the flow path forming surface;
    An angle setting unit that controls the angle change source to set the angle of the holder,
    A light source for allowing measurement light to enter the measurement region of the inspection object receiver housed in the holder;
    A light receiving portion for receiving the measurement light transmitted through the measurement region,
    The holder is
    While the flow path forming surface is along the direction of gravity,
    In the mounting posture in which the bottom surface of the measurement region is located downstream of the bottom surface of the passage region in the rotation direction, the inspection object receptacle is stored,
    The angle setting unit includes:
    When the angular velocity of the holder is decelerated to stop the measurement area in the holder at a position where measurement light emitted from the light source is incident, the measurement area is positioned below the passage area in the direction of gravity. The inspection system is characterized in that the angle of the holder is set.
  2.  前記回転制御部は、
     前記ホルダが、回転停止時から前記回転方向に所定の角速度に達するまで第1角加速度で加速され、前記所定の角速度から前記回転方向に前記ホルダ内の前記測定領域を前記光源から出射される測定光が入射する位置に停止するまで第2角加速度で減速され、
     前記第2角加速度は、前記第1角加速度と同等、又は大きくなるよう前記回転駆動源を制御することを特徴とする請求項1に記載の検査システム。
    The rotation control unit
    Measurement in which the holder is accelerated at the first angular acceleration from when the rotation is stopped until reaching a predetermined angular velocity in the rotational direction, and the measurement region in the holder is emitted from the light source in the rotational direction from the predetermined angular velocity. It is decelerated at the second angular acceleration until it stops at the position where light enters,
    The inspection system according to claim 1, wherein the rotation drive source is controlled so that the second angular acceleration is equal to or greater than the first angular acceleration.
  3.  前記ホルダは、複数の検査対象受体をそれぞれ収納する第1および第2のホルダを備え、
     前記回転制御部は、
     前記第1のホルダに収納された検査対象受体の測定領域を前記光源から出射される測定光が入射する位置に誘導する際の回転の向きと、
     前記第2のホルダに収納された検査対象受体の測定領域を前記光源から出射される測定光が入射する位置に誘導する際の回転の向きと、
     は前記回転方向と同一とすることを特徴とする請求項1に記載の検査システム。
    The holder includes first and second holders that respectively accommodate a plurality of test target receptacles,
    The rotation control unit
    The direction of rotation when guiding the measurement region of the test object receptacle stored in the first holder to the position where the measurement light emitted from the light source is incident;
    The direction of rotation when guiding the measurement region of the test object receiver stored in the second holder to the position where the measurement light emitted from the light source is incident;
    The inspection system according to claim 1, wherein is the same as the rotation direction.
  4.  前記測定領域の底面は、面粗度が平均粗さRa値で、70nm以下であることを特徴とする請求項1に記載の検査システム。 The inspection system according to claim 1, wherein the bottom surface of the measurement region has an average roughness Ra value of 70 nm or less.
  5.  前記測定領域の側壁面の面粗度は、前記測定領域の底面の面粗度より大きいことを特徴
    とする請求項4に記載の検査システム。
    The inspection system according to claim 4, wherein the surface roughness of the side wall surface of the measurement region is larger than the surface roughness of the bottom surface of the measurement region.
  6.  前記検査対象受体は、前記検査対象受体が前記ホルダに装着される姿勢を、前記所定の装着姿勢に規制する姿勢規制手段を備えることを特徴とする請求項1~5のいずれかに記載の検査システム。 6. The inspection object receiver includes posture restriction means for restricting a posture in which the inspection object receiver is mounted on the holder to the predetermined mounting position. Inspection system.
  7.  前記姿勢規制手段は、切欠部であることを特徴とする請求項6に記載の検査システム。 The inspection system according to claim 6, wherein the posture regulating means is a notch.
  8.  検査対象の液体が流動可能な凹所状の流路が形成された流路形成面を内部に有するとともに、
     検査対象の液体の吸光度を測定するために前記測定光が透過し、前記流路形成面に垂直な方向に第1の深さを有する測定領域と、
     検査対象の液体が前記流路から前記測定領域に向かって通過し、前記流路形成面に垂直な方向において前記第1の深さより深い第2の深さから前記測定領域に向かうにつれ、徐々に浅くなる通過領域と、を有する凹所である吸光度測定槽を備える検査対象受体と、
     前記検査対象受体を着脱可能に収納するホルダと、
     重力の方向に沿って延びる主軸を中心に前記ホルダを回転させる回転駆動源と、
     前記ホルダを回転方向に回転させるとともに、前記ホルダの角速度を加速または減速するために前記回転駆動源を制御する回転制御部と、
     前記流路形成面と交差する軸線を中心として前記ホルダの角度を変更する角度変更源と、
     前記ホルダの角度を設定するために前記角度変更源を制御する角度設定部と、を備え、
     前記ホルダに収納された前記検査対象受体の前記測定領域に測定光を入射させる光源と、
     前記測定領域を透過した測定光を受光する受光部と、を備える検査システムを用いて、
     前記流路形成面が重力の方向に沿う方向に延びるように前記ホルダに前記検査対象受体を収納した状態で、前記ホルダ内の前記測定領域を前記光源から出射される測定光が入射する位置に誘導するために、前記測定領域の底面が、前記通過領域の底面より回転方向の下流側になるように前記回転制御部が前記回転駆動源を回転させる回転ステップと、
     前記ホルダ内の前記測定領域を前記光源から出射される測定光が入射する位置に停止するために前記回転制御部が前記ホルダの角速度を減速させる際に、前記測定領域が重力の方向において前記通過領域より下方に位置するように、前記角度設定部が前記角度変更源を制御する角度設定ステップと、
     前記光源から前記ホルダに収納された前記検査対象受体の前記測定領域に測定光を出射させ、前記測定領域を透過した測定光を受光する測定ステップと、
     を実行することを特徴とする検査方法。
    While having a flow path forming surface formed with a concave flow path through which the liquid to be inspected can flow,
    A measurement region that transmits the measurement light to measure the absorbance of the liquid to be inspected and has a first depth in a direction perpendicular to the flow path forming surface;
    As the liquid to be inspected passes from the flow path toward the measurement area and gradually moves from the second depth deeper than the first depth to the measurement area in a direction perpendicular to the flow path forming surface, the liquid gradually increases. A receptor to be inspected comprising an absorbance measurement tank that is a recess having a shallow passage region;
    A holder for detachably storing the test object receptacle;
    A rotational drive source for rotating the holder around a main axis extending along the direction of gravity;
    A rotation control unit that rotates the holder in a rotation direction and controls the rotation drive source to accelerate or decelerate an angular velocity of the holder;
    An angle changing source for changing the angle of the holder around an axis intersecting the flow path forming surface;
    An angle setting unit that controls the angle change source to set the angle of the holder,
    A light source for allowing measurement light to enter the measurement region of the inspection object receiver housed in the holder;
    Using an inspection system including a light receiving unit that receives measurement light transmitted through the measurement region,
    A position where measurement light emitted from the light source enters the measurement region in the holder in a state where the inspection target receptacle is housed in the holder so that the flow path forming surface extends in a direction along the direction of gravity. The rotation control unit rotates the rotation drive source so that the bottom surface of the measurement region is downstream of the bottom surface of the passage region in the rotation direction;
    When the rotation control unit decelerates the angular velocity of the holder to stop the measurement region in the holder at a position where measurement light emitted from the light source is incident, the measurement region passes in the direction of gravity. An angle setting step in which the angle setting unit controls the angle change source so as to be positioned below an area; and
    A measurement step of emitting measurement light from the light source to the measurement region of the inspection object receiver housed in the holder, and receiving the measurement light transmitted through the measurement region;
    The inspection method characterized by performing.
PCT/JP2012/066503 2011-07-29 2012-06-28 Inspection system and inspection method WO2013018474A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011166436A JP5278510B2 (en) 2011-07-29 2011-07-29 Inspection system and inspection method
JP2011-166436 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013018474A1 true WO2013018474A1 (en) 2013-02-07

Family

ID=47629008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066503 WO2013018474A1 (en) 2011-07-29 2012-06-28 Inspection system and inspection method

Country Status (2)

Country Link
JP (1) JP5278510B2 (en)
WO (1) WO2013018474A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090236A (en) * 2015-11-10 2017-05-25 ブラザー工業株式会社 Inspection method, inspection system, and inspection device
CN111122893A (en) * 2018-10-31 2020-05-08 天亮医疗器材股份有限公司 Detection cassette, detection method and detection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031643A (en) * 2013-08-06 2015-02-16 ブラザー工業株式会社 Inspection chip
JP6164186B2 (en) * 2014-09-30 2017-07-19 ブラザー工業株式会社 Inspection device, inspection program, inspection method
WO2020009023A1 (en) * 2018-07-02 2020-01-09 Phcホールディングス株式会社 Sample analysis substrate and sample analysis method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425058A (en) * 1987-07-01 1989-01-27 Miles Inc Method for separation, weighing, dilution and distribution of liquid, assembly therefor and system for chemical analysis
JP2006337221A (en) * 2005-06-03 2006-12-14 Sharp Corp Electrochemical detector
JP2010066195A (en) * 2008-09-12 2010-03-25 Seiko Epson Corp Biological sample reaction chip, centrifugal apparatus for filling biological sample reaction chip with reaction liquid, and method for filling biological sample reaction chip with reaction liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425058A (en) * 1987-07-01 1989-01-27 Miles Inc Method for separation, weighing, dilution and distribution of liquid, assembly therefor and system for chemical analysis
JP2006337221A (en) * 2005-06-03 2006-12-14 Sharp Corp Electrochemical detector
JP2010066195A (en) * 2008-09-12 2010-03-25 Seiko Epson Corp Biological sample reaction chip, centrifugal apparatus for filling biological sample reaction chip with reaction liquid, and method for filling biological sample reaction chip with reaction liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090236A (en) * 2015-11-10 2017-05-25 ブラザー工業株式会社 Inspection method, inspection system, and inspection device
CN111122893A (en) * 2018-10-31 2020-05-08 天亮医疗器材股份有限公司 Detection cassette, detection method and detection device
CN111122893B (en) * 2018-10-31 2024-04-12 天亮医疗器材股份有限公司 Detection cassette, detection method and detection device

Also Published As

Publication number Publication date
JP2013029444A (en) 2013-02-07
JP5278510B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
WO2013018474A1 (en) Inspection system and inspection method
JP6011156B2 (en) Inspection chip
JP5998760B2 (en) Reagent container and test chip
JP5413429B2 (en) Inspection system and inspection method
JP2011237325A (en) Inspection object acceptor
WO2012165006A1 (en) Inspection object acceptor, liquid mixing system provided with inspection object acceptor, and liquid mixing method using liquid mixing system
JP6028624B2 (en) Inspection chip and inspection system
WO2015080193A1 (en) Inspection chip
JP5958330B2 (en) Inspection chip
JP5900269B2 (en) Inspection chip
WO2014061635A1 (en) Inspection device, inspection system, inspection method, and computer program
WO2015080192A1 (en) Inspection chip
JP5958451B2 (en) Inspection chip, liquid feeding method, and liquid feeding program
JP2015105891A (en) Inspection chip
WO2014061636A1 (en) Inspection chip
JP5915686B2 (en) Inspection chip
JP5958331B2 (en) Inspection chip and inspection system
WO2014133126A1 (en) Test chip
JP2013079811A (en) Inspection device and inspection method
JP6146388B2 (en) Inspection device and inspection program
JP2015105886A (en) Inspection device
JP2017090236A (en) Inspection method, inspection system, and inspection device
JP2017067567A (en) Inspection chip and inspection system
JP2015118042A (en) Inspection device, inspection method and computer program
WO2016017401A1 (en) Inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819633

Country of ref document: EP

Kind code of ref document: A1