WO2013018205A1 - 運動装置、モータ制御装置およびモータ制御方法 - Google Patents

運動装置、モータ制御装置およびモータ制御方法 Download PDF

Info

Publication number
WO2013018205A1
WO2013018205A1 PCT/JP2011/067738 JP2011067738W WO2013018205A1 WO 2013018205 A1 WO2013018205 A1 WO 2013018205A1 JP 2011067738 W JP2011067738 W JP 2011067738W WO 2013018205 A1 WO2013018205 A1 WO 2013018205A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
drive
user
movable
motor
Prior art date
Application number
PCT/JP2011/067738
Other languages
English (en)
French (fr)
Inventor
北澤 隆
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2011/067738 priority Critical patent/WO2013018205A1/ja
Priority to JP2013526686A priority patent/JP5871001B2/ja
Priority to CN201180072744.9A priority patent/CN103733155B/zh
Publication of WO2013018205A1 publication Critical patent/WO2013018205A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/005Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
    • A63B21/0058Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using motors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0274Stretching or bending or torsioning apparatus for exercising for the upper limbs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00178Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices for active exercising, the apparatus being also usable for passive exercising
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4041Interfaces with the user related to strength training; Details thereof characterised by the movements of the interface
    • A63B21/4047Pivoting movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/03508For a single arm or leg
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/12Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for upper limbs or related muscles, e.g. chest, upper back or shoulder muscles
    • A63B23/1209Involving a bending of elbow and shoulder joints simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0119Support for the device
    • A61H2201/0138Support for the device incorporated in furniture
    • A61H2201/0149Seat or chair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • A61H2201/1215Rotary drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • A61H2201/123Linear drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1635Hand or arm, e.g. handle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/1664Movement of interface, i.e. force application means linear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/1676Pivoting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5023Interfaces to the user
    • A61H2201/5043Displays
    • A61H2201/5046Touch screens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5069Angle sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2203/00Additional characteristics concerning the patient
    • A61H2203/04Position of the patient
    • A61H2203/0425Sitting on the buttocks
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/0054Features for injury prevention on an apparatus, e.g. shock absorbers
    • A63B2071/0081Stopping the operation of the apparatus
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4027Specific exercise interfaces
    • A63B21/4033Handles, pedals, bars or platforms
    • A63B21/4035Handles, pedals, bars or platforms for operation by hand
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2208/00Characteristics or parameters related to the user or player
    • A63B2208/02Characteristics or parameters related to the user or player posture
    • A63B2208/0228Sitting on the buttocks
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/10Positions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/54Torque
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/805Optical or opto-electronic sensors

Definitions

  • the present invention relates to a motion device, a motor control device, and a motor control method.
  • an exercise apparatus including a movable unit, a drive unit for moving the movable unit, and a control unit that controls driving of the drive unit.
  • Such an exercise device is disclosed, for example, in Japanese Patent No. 4,061,432.
  • Japanese Patent No. 4061432 includes an arm (movable portion) attached to the user's limb, an actuator (driving portion) for applying a driving force for moving the arm to the arm, and a control portion for controlling the driving of the actuator
  • an exercise therapy device exercise device
  • the arm attached to the user's limb is moved in a predetermined movement pattern by driving the actuator with a preset drive pattern.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to provide an exercise capable of applying a load via a movable portion without performing a complicated setting operation.
  • An apparatus, a motor control apparatus, and a motor control method are provided.
  • the exercise apparatus includes a movable part configured to be movable by the application of external force by the user's movement and a movable part separately from movement by the user's external force
  • a drive unit for applying a driving force for moving the movable portion to the movable unit, a position detection unit for detecting the current drive position of the drive unit corresponding to the current position of the movable unit, and a control unit for controlling the drive of the drive unit
  • the control unit drives the drive unit according to a first control method that causes the movable unit to stay at the current position based on the current drive position of the drive unit detected by the position detection unit.
  • a motor control apparatus is a motor control device for applying a driving force for moving a movable part separately from movement by an external force to a movable part configured to be movable by application of an external force.
  • the motor control unit controls the movement of the motor based on the current drive position of the motor detected by the position detection unit that detects the current drive position of the motor corresponding to the current position of the movable unit. Drive the drive to keep the part in its current position.
  • a motor control method is a movable motor that applies a driving force for moving a movable part configured to be movable by application of an external force separately from movement by an external force to the movable part. Detecting the current drive position corresponding to the current position of the unit, and controlling the drive of the motor to keep the movable portion at the current position based on the detected current drive position of the motor Equipped with
  • FIG. 10 is a flowchart for describing a processing flow of a motor control unit when a user exercises a training exercise using the exercise apparatus according to the first to third embodiments of the present invention.
  • FIG. 10 is a flowchart for describing a processing flow of a motor control unit when a user performs a rehabilitation exercise using the exercise apparatus according to the first to third embodiments of the present invention. It is a figure which shows the whole structure of the exercise
  • the exercise apparatus 100 includes a movable mechanism unit 10 and a movable mechanism control unit 20 having a motor control unit 24 that controls a rotary motor 13 described later of the movable mechanism unit 10.
  • the rotary motor 13 is an example of the “drive unit” in the present invention and an example of the “motor” in the present invention.
  • the motor control unit 24 is an example of the “control unit” in the present invention.
  • the movable mechanism control unit 20 is an example of the “motor control device” in the present invention.
  • the movable mechanism unit 10 and the movable mechanism control unit 20 are output by a motor control current output by a motor control unit 24 of the movable mechanism control unit 20 described later and an encoder 17 (see FIG. 2) of the rotary motor 13 described later. Are connected to each other via a cable for transmitting position feedback and the like.
  • the encoder 17 is an example of the “position detection unit” in the present invention.
  • the movable mechanism unit 10 is configured to include a seat 11, an arm 12, a rotary motor 13, and a reduction gear 14.
  • the arm 12 is an example of the “movable portion” in the present invention.
  • the arm 12 is configured to be movable by the application of external force by the motion of the user.
  • the motion is a motion of holding and moving the arm 12 in a state where the user is sitting on the seat 11 (a motion of rotating the arm 12 with the arm rotation shaft 15 as a rotation axis).
  • the rotary motor 13 is configured to be able to move the arm 12 separately from the movement by the external force of the user. Specifically, based on the motor control current input from the movable mechanism control unit 20, the rotary motor 13 is rotationally driven with the motor rotary shaft 16 as a rotary shaft, and the driving force due to the rotation is motor rotary shaft 16 It is configured to be able to be applied to the arm 12 via the reduction gear 14 and the arm pivot shaft 15.
  • the rotary motor 13 applies an external force to the arm 12 while sitting on the seat 11 and opposes the direction of the external force applied to the arm 12 by the user. It is possible to apply a directional load via the arm 12 and to allow a user to apply an auxiliary force in the direction along the direction of the external force applied to the arm 12 via the arm 12 It is done.
  • the user can perform a training exercise or a rehabilitation exercise by applying an external force to the arm 12 and moving the arm 12 while sitting on the seat 11.
  • the rotary motor 13 is provided with an encoder 17 (see FIG. 2) for detecting the current driving position (rotational position) of the rotary motor 13 corresponding to the current position of the arm 12. ing.
  • the encoder 17 is configured to output the detected current drive position of the rotary motor 13 to the movable mechanism control unit 20 as position feedback.
  • the encoder 17 may be an incremental encoder or an absolute encoder.
  • the reduction gear 14 has a timing belt mechanism that rotates the arm rotation shaft 15 and the motor rotation shaft 16 in conjunction with each other.
  • the reduction gear 14 reduces the rotational speed of the arm rotational shaft 15 with respect to the rotational speed of the motor rotational shaft 16 to increase the torque (driving force) generated by the rotational motor 13 and increase the torque.
  • the torque is transmitted to the arm 12 via the motor rotation shaft 16, the reduction gear 14 and the arm rotation shaft 15.
  • the movable mechanism control unit 20 is configured to include a setting input unit 21, a state display unit 22, a pattern command generation unit 23, and a motor control unit 24.
  • the setting input unit 21 is an input device used when setting how the user operates the movable mechanism unit 10.
  • the setting input unit 21 includes, for example, a display unit capable of touch panel operation, a button switch capable of pressing operation, and a rotary switch capable of rotating operation.
  • the user operates the setting input unit 21 to select whether to use the movable mechanism unit 10 for training exercise or for rehabilitation exercise, or the intensity of the training exercise or rehabilitation exercise It is possible to set and so on. That is, the user operates the setting input unit 21 to select whether to drive the rotary motor 13 by the training control method described later or to drive the rotary motor 13 by the assist control method, or via the arm 12 It is possible to set the magnitude of the load or assisting force to be given to the user.
  • the state display unit 22 is configured to be able to display a driving state including the driving force of the rotary motor 13. Specifically, the state display unit 22 is configured to be able to display the size of the load given to the user via the arm 12 of the movable mechanism unit 10 in the form of a graph. Further, the pattern command generation unit 23 changes the target drive position given to the rotary motor 13 when driving the rotary motor 13 with a preset drive pattern (for example, when driving the rotary motor 13 by an assist control method described later) Are configured to generate a pattern of (hereinafter referred to as a pattern command).
  • the motor control unit 24 controls the drive of the rotary motor 13 (movement of the arm 12) by outputting the motor control current generated by the current generation unit 30 (see FIG. 2) described later to the rotary motor 13. It is configured.
  • the motor control current is generated based on a torque command (target drive torque) given to the rotary motor 13.
  • the motor control unit 24 determines the position from the encoder 17 Based on the feedback, it is configured to generate a motor control current that causes the rotary motor 13 to stay at the current drive position.
  • the motor control unit 24 determines the pattern command from the pattern command generation unit 23. A motor control current is generated to drive the rotary motor 13 with a preset drive pattern.
  • the motor control unit 24 is configured to compensate the torque command given to the rotary motor 13 based on the external force applied to the arm 12 by the user's exercise (training exercise or rehab exercise). There is. That is, the motor control unit 24 is configured to generate a compensation torque for compensating the torque command according to the direction and the magnitude of the external force due to the motion of the user.
  • the motor control unit 24 uses the arm 12 according to the user's training exercise. By negatively feeding back the applied external force, the torque command given to the rotary motor 13 is compensated.
  • the motor control unit 24 applies a load in the direction opposite to the direction of the external force applied to the arm 12 to the user via the arm 12. Is configured.
  • the magnitude of the load is determined according to the strength of the training set by the user operating the setting input unit 21 and the magnitude of the external force applied to the arm 12 by the user at the time of the training exercise.
  • a control method of the rotary motor 13 for applying a load to the user at the time of such training exercise will be referred to as a training control method.
  • the “training control method” is an example of the “first control method” in the present invention.
  • the motor control unit 24 is added to the arm 12 by the user's rehabilitation exercise when the user operates the setting input unit 21 and selects to use the movable mechanism unit 10 for rehabilitation exercise.
  • the torque command given to the rotary motor 13 is compensated by positively feeding back the external force.
  • motor control unit 24 applies the assisting force in the direction along the direction of the external force applied to arm 12 by the user to the user via arm 12. Is configured as.
  • the magnitude of the assisting force is determined according to the strength of the rehabilitation set by the user operating the setting input unit 21 and the magnitude of the external force applied to the arm 12 by the user at the time of the rehabilitation exercise.
  • assist control method a control method of the rotary motor 13 for applying the assisting force to the user at the time of such rehabilitation exercise.
  • the “assist control method” is an example of the “second control method” in the present invention.
  • the motor control unit 24 is configured to fix the target position of the rotary motor 13 when an emergency occurs. Specifically, the motor control unit 24 fixes the target drive position of the rotary motor 13 when the user operates the setting input unit 21 and performs an operation to stop the arm 12 in an emergency (an emergency stop operation). Thus, the arm 12 is configured to stop at the current position and to be in an immovable state. In addition, the motor control unit 24 performs predetermined two cases described later (when the difference between the target drive position of the rotary motor 13 and the current drive position becomes abnormal, and the compensation torque adjustment unit 35 (see FIG. 2) Also, when the torque input to the motor becomes abnormal), by fixing the target drive position of the rotary motor 13, the arm 12 is configured to be stopped at the current position to make it impossible to move. There is.
  • the setting input unit 21 is operated by the user.
  • the operation (return operation) for returning the arm 12 currently stopped to the initial position is performed, the arm 12 is returned to the initial position at a predetermined speed (the speed at which the user does not get injured) Is configured to drive the rotary motor 13.
  • the motor control unit 24 includes a speed calculation unit 25, a state switching unit 26, a position command switching unit 27, a speed command generation unit 28, a torque command generation unit 29, and a current generation unit 30. And a compensation torque generation unit 31.
  • the compensation torque generation unit 31 is an example of the “compensation force generation unit” in the present invention.
  • the speed calculation unit 25 is configured by a differentiator or the like.
  • the speed calculation unit 25 is configured to generate speed feedback (current drive speed of the rotary motor 13) by differentiating position feedback (current drive position of the rotary motor 13) from the encoder 17. .
  • the speed calculation unit 25 is configured to output the speed feedback generated in this manner to the torque command generation unit 29 and the disturbance observer 32 described later.
  • the state switching unit 26 is selected by the user when the user operates the setting input unit 21 to select whether to use the movable mechanism unit 10 for training exercise or for rehabilitation exercise. Accordingly, the state of the position command switching unit 27 and the state of the code switching unit 34 described later of the compensation torque generation unit 31 are switched.
  • the state switching unit 26 uses position feedback from the encoder 17 as a position command (target drive position of the rotary motor 13).
  • the position command switching unit 27 is configured to be switched to the first state (see r1 in FIG. 2) so as to be input to the speed command generation unit 28.
  • the state switching unit 26 switches the state of the code switching unit 34 so as to negatively feed back torque caused by the external force of the user and output the torque to the compensation torque adjustment unit 35 (details will be described later). It is configured.
  • the state switching unit 26 sets the pattern command from the pattern command generation unit 23 as the position command (target drive position of the rotary motor 13).
  • the position command switching unit 27 is configured to be switched to the second state (see r2 in FIG. 2) so as to be input to the speed command generation unit 28.
  • the state switching unit 26 switches the state of the code switching unit 34 so that the torque resulting from the external force of the user is positively fed back and output to the compensation torque adjusting unit 35 (details will be described later). It is configured.
  • the state switching unit 26 fixes the target drive position of the rotary motor 13 when an emergency stop operation for stopping the movable mechanism 10 is performed by the operation of the setting input unit 21 by the user.
  • the position command switching unit 27 is configured to be switched to the third state (refer to r ⁇ in FIG. 2) so that the command is input to the speed command generation unit 28. Further, in addition to the case where the user performs an emergency stop operation, the state switching unit 26 also makes a difference between the target drive position of the rotary motor 13 and the current drive position when abnormal (position command and position feedback).
  • the position command switching unit 27 is not limited to the third one, even when the difference between the two becomes equal to or greater than a predetermined threshold) and the torque input to the compensation torque adjustment unit 35 becomes abnormal (the details will be described later). It is configured to switch to the state of.
  • the speed command generation unit 28 is a control system that performs P control.
  • the speed command generation unit 28 determines the position of the proportional element based on the difference between the input position command (target drive position of the rotary motor 13) and the position feedback (current drive position of the rotary motor 13 detected by the encoder 17). By multiplying the proportional gain Kp, a speed command (target driving speed of the rotary motor 13) is generated.
  • the speed command generation unit 28 is configured to output the generated speed command to the torque command generation unit 29.
  • the torque command generation unit 29 is a control system that performs PI control.
  • the torque command generation unit 29 uses the speed proportional gain Kv of the proportional element and the integral element as the difference between the input speed command (target drive speed of the rotary motor 13) and the speed feedback (current drive speed of the rotary motor 13).
  • the torque command (the target driving torque of the rotary motor 13) is generated by multiplying the integration time constant Ti by
  • the torque command generation unit 29 is configured to output the generated torque command to the current generation unit 30.
  • the current generator 30 is a control system that performs PI control.
  • the current generation unit 30 receives the current torque gain (the torque command generated by the torque command generation unit 29 plus the compensation torque generated by the compensation torque generation unit 31), the current proportional gain Ki of the proportional element
  • the motor control current (a current command corresponding to the target drive torque of the rotary motor 13) is generated by multiplying the integral time constant Tii of the integral element by.
  • the current generator 30 is configured to output the generated motor control current to the rotary motor 13 of the movable mechanism 10.
  • the compensation torque generation unit 31 is configured to generate a compensation torque for compensating the torque command output by the torque command generation unit 29.
  • the compensation torque generation unit 31 is configured to include the disturbance observer 32, the no-load torque setting unit 33, the sign switching unit 34, and the compensation torque adjustment unit 35.
  • the disturbance observer 32 estimates a disturbance torque (a torque caused by an external force or the like applied to the arm 12 by the motion of the user) applied to the rotary motor 13 in addition to the driving torque caused by the motor control current from the motor control unit 24.
  • the disturbance observer 32 calculates the torque command (target drive torque of the rotary motor 13) generated by the torque command generation unit 29 and the speed feedback (current drive of the rotation motor 13) generated by the speed calculation unit 25.
  • the disturbance torque applied to the rotary motor 13 is estimated on the basis of the speed.
  • the no-load torque setting unit 33 is a torque (hereinafter referred to as no-load torque) that needs to be applied in advance to the rotary motor 13 in order not to move the arm 12 by an external force (for example, gravity) other than the external force of the user. It is provided to set and save.
  • the no-load torque is measured at an early stage before the user performs an exercise (training exercise or rehab exercise) using the arm 12.
  • the external force of the user among the disturbance torques applied to the rotary motor 13 by subtracting the no-load torque set in the no-load torque setting unit 33 from the disturbance torque estimated by the disturbance observer 32 The torque resulting from is calculated.
  • the code switching unit 34 negatively feedbacks the torque resulting from the external force of the user calculated as described above and outputs the torque to the compensation torque adjustment unit 35 (a first state of the position command switching unit 27 (r1 in FIG. (See corresponding)) and positive feedback to be output to the compensation torque adjustment unit 35 (corresponding to the second state (see r2 in FIG. 2) of the position command switching unit 27) by the user (training control) It is provided to switch according to whether to drive the rotary motor 13 by a method or to select whether to drive the rotary motor 13 by an assist control method.
  • the code switching unit 34 negatively feeds back the torque resulting from the external force of the user, and the compensation torque adjusting unit 35
  • the torque resulting from the external force of the user is positively fed back and output to the compensation torque adjustment unit 35, It is comprised so that the code
  • the compensation torque adjustment unit 35 is provided to adjust the magnitude of the compensation torque. Specifically, the compensation torque adjustment unit 35 sets the size of the torque (torque resulting from the external force of the user) input through the code switching unit 34 by the user operating the setting input unit 21 and setting the training. It is configured to adjust according to the intensity of exercise or rehabilitation exercise. Further, when the torque input through the code switching unit 34 is abnormal, the compensation torque adjustment unit 35 is configured to adjust the abnormal torque within the range of a predetermined limit value. When the torque input to the compensation torque adjustment unit 35 is abnormal, for example, the speed feedback output from the speed command generation unit 28 largely fluctuates due to the transient response, or the response gain of the disturbance observer 32 is correctly set.
  • the torque input to the compensation torque adjustment unit 35 becomes excessively large due to the fact that the torque is not generated. Besides, assuming that the torque input to the compensation torque adjustment unit 35 is abnormal, the compensation torque adjustment is caused due to the abrupt change in the magnitude of the external force applied to the arm 12 due to the user's injury or the like. It is conceivable that the torque input to the unit 35 changes rapidly.
  • the compensation torque adjustment unit 35 is configured to output the adjusted torque as a compensation torque to the current generation unit 30.
  • the compensation torque adjustment unit 35 is configured to include an averaging filter, a smoothing filter, and the like.
  • This smoothing filter may be a first-order lag filter such as a low pass filter, or may be a filter of another order.
  • the compensation torque output from the compensation torque adjustment unit 35 is averaged and smoothed, so that the output of the compensation torque is suppressed from being dispersed or discontinuous.
  • the processing flow is started when the user operates the setting input unit 21 and selects to use the movable mechanism unit 10 for training exercise.
  • step S1 the state switching unit 26 switches the position command switching unit 27 to the first state (see r1 in FIG. 2).
  • the position feedback from the encoder 17 is input to the speed command generation unit 28 as a position command.
  • negative feedback of the torque (torque calculated by the estimation result of the disturbance observer 32 and the no-load torque set in the no-load torque setting unit 33) caused by the external force applied to the arm 12 by the user Not only the state of the position command switching unit 27 but also the state of the sign switching unit 34 can be switched by the state switching unit 26 so that the compensation torque adjustment unit 35 is input.
  • step S2 a load opposite to the movement direction of the user and in accordance with the external force of the user is applied to the user via the arm 12, so the user holds and moves the arm 12. Enables training exercises to be performed. Then, the process proceeds to step S2.
  • step S2 it is determined whether the user operates the setting input unit 21 to perform an emergency stop operation of the arm 12. If it is determined in step S2 that the user has not performed an emergency stop operation, the process proceeds to step S3.
  • step S3 it is determined whether the torque input to the compensation torque adjustment unit 35 is abnormal.
  • the compensation torque is caused by the fact that the velocity feedback output from the velocity command generation unit 28 largely fluctuates due to the transient response or the response gain of the disturbance observer 32 is not set correctly.
  • the torque input to the adjustment unit 35 becomes excessively large, it is determined that the torque input to the compensation torque adjustment unit 35 is abnormal.
  • step S3 when the torque input to the compensation torque adjustment unit 35 is rapidly changed due to the abrupt change in the magnitude of the external force applied to the arm 12 due to the user's injury or the like. Also, it is determined that the torque input to the guarantee torque adjustment unit 35 is abnormal.
  • step S3 determines the torque input to the compensation torque adjustment unit 35 is not abnormal.
  • step S4 it is determined whether or not the difference between the target drive position of the rotary motor 13 and the current drive position is abnormal (whether the difference between the position command and the position feedback is not less than a predetermined threshold) Be done. If it is determined in step S4 that the difference between the target position of the rotary motor 13 and the current position is not abnormal, the process returns to step S2. If it is determined in step S4 that the difference between the target position of the rotary motor 13 and the current position is abnormal, the process proceeds to step S5.
  • step S5 Even when it is determined that the emergency stop operation has been performed by the user in step S2, the process proceeds to step S5. In addition, when it is determined in step S3 that the torque input to the compensation torque adjustment unit 35 is abnormal, the process also proceeds to step S5.
  • step S5 the state switching unit 26 switches the position command switching unit 27 to the third state (see r ⁇ in FIG. 2).
  • the target drive position of the rotary motor 13 is fixed, and the arm 12 of the movable mechanism 10 is stopped at the current position. Then, the process proceeds to step S6.
  • step S6 it is determined whether or not the user operates the setting input unit 21 to perform a reset operation of the arm 12 (operation of returning the currently stopped arm 12 to the initial position). The determination in step S6 is repeated until it is determined that the reset operation has been performed by the user. When it is determined in step S6 that the reset operation has been performed by the user, the process proceeds to step S7.
  • step S7 processing for gradually returning the arm 12 to the initial position is performed. That is, processing is performed to drive the rotary motor 13 so as to return the arm 12 to the initial position at a speed that does not cause a user injury. Then, the process ends.
  • This processing flow is started when the user operates the setting input unit 21 and selects to use the movable mechanism unit 10 for rehabilitation exercise.
  • step S11 the state switching unit 26 switches the position command switching unit 27 to the second state (see r2 in FIG. 2).
  • the pattern command from the pattern command generation unit 23 is input to the speed command generation unit 28 as a position command.
  • positive feedback of the torque (torque calculated by the estimation result of the disturbance observer 32 and the no-load torque set in the no-load torque setting unit 33) caused by the external force applied to the arm 12 by the user Not only the state of the position command switching unit 27 but also the state of the sign switching unit 34 can be switched by the state switching unit 26 so that the compensation torque adjustment unit 35 is input.
  • step S12 the process proceeds to step S12.
  • step S12 it is determined whether the user operates the setting input unit 21 to perform an emergency stop operation of the movable mechanism 10. If it is determined in step S12 that the user has not performed an emergency stop operation, the process proceeds to step S13.
  • step S13 it is determined whether the torque input to the compensation torque adjustment unit 35 is abnormal. If it is determined in step S13 that the torque input to the compensation torque adjustment unit 35 is abnormal, the process proceeds to step S14.
  • step S14 the state switching unit 26 switches the position command switching unit 27 to the first state (see r1 in FIG. 2).
  • the motor control unit 24 performs control such that the arm 12 moving in a predetermined movement pattern remains at the current position. Then, the process proceeds to step S15.
  • step S13 also when it is judged in the said step S13 that the torque input into the compensation torque adjustment part 35 is not abnormal, it progresses to step S15.
  • step S15 it is determined whether the difference between the target drive position of the rotary motor 13 and the current drive position is abnormal. If it is determined in step S15 that the difference between the target position of the rotary motor 13 and the current position is not abnormal, the process returns to step S12. If it is determined in step S15 that the difference between the target position of the rotary motor 13 and the current position is abnormal, the process proceeds to step S16.
  • step S12 Even when it is determined that the emergency stop operation has been performed by the user in step S12, the process proceeds to step S16. In addition, if it is determined in step S13 that the torque input to the compensation torque adjustment unit 35 is abnormal, the process proceeds to step S16.
  • step S16 the state switching unit 26 switches the position command switching unit 27 to the third state (see r ⁇ in FIG. 2).
  • the target drive position of the rotary motor 13 is fixed, and the arm 12 of the movable mechanism 10 is stopped at the current position. Then, the process proceeds to step S17.
  • step S17 it is determined whether the user operates the setting input unit 21 to reset the arm 12. The determination in step S17 is repeated until it is determined that the reset operation has been performed by the user. When it is determined in step S17 that the reset operation has been performed by the user, the process proceeds to step S18.
  • step S18 processing for gradually returning the arm 12 to the initial position is performed. That is, processing is performed to drive the rotary motor 13 so as to return the arm 12 to the initial position at a speed that does not cause a user injury. Then, the process ends.
  • the arm 12 is kept at the current position based on the current drive position (position feedback) of the rotary motor 13 detected by the encoder 17.
  • the motor control unit 24 is configured to drive 13.
  • the user simply applies an external force to the arm 12 without performing a complicated setting operation such as setting in advance a drive pattern of the rotary motor 13 for moving the arm 12 in a predetermined movement pattern.
  • a load in the direction opposite to the direction of the external force can be applied to the user via the arm 12.
  • the motor control unit 24 is configured to drive the rotary motor 13 with the position (position feedback) as the target drive position (position command). This makes it possible to easily control the arm 12 to stay at the current position by using the detection result (position feedback) of the encoder 17.
  • the load of the size according to the external force of the user is the arm in the direction opposite to the direction of the external force of the user.
  • the motor control unit 24 is configured to be provided to the user via 12. Thereby, an appropriate load according to the physical strength of the user can be given to the user via the arm 12.
  • the driving force applied to the arm 12 by the rotary motor 13 is included within the range of the predetermined limit value.
  • the motor control unit 24 is configured to compensate. Thereby, it can be suppressed that the magnitude of the load given to the user via the arm 12 becomes larger than necessary.
  • the disturbance observer 32 for estimating the disturbance applied to the arm 12 is provided, and from the estimation result by the disturbance observer 32, the arm 12 is not applied with the external force of the user.
  • the motor control unit 24 is configured to calculate the external force of the user by subtracting the applied disturbance (no-load torque).
  • the user is considered by considering the disturbance (no load torque) applied to the arm 12 in the state where the external force of the user is not applied.
  • the external force of can be calculated accurately.
  • the rotation is performed by the assist control method of applying the assisting force in the direction along the external force applied by the user to the user via the arm 12
  • the motor control unit 24 is configured to be able to drive the motor 13.
  • the driving force applied to the arm 12 by the rotary motor 13 is included within the range of the predetermined limit value.
  • the motor control unit 24 is configured to compensate. As a result, the magnitude of the assisting force provided to the user via the arm 12 can be suppressed from becoming larger than necessary.
  • the rotary motor 13 when the rotary motor 13 is driven by the training control method, the rotary motor is detected based on the current drive position (position feedback) of the rotary motor 13 detected by the encoder 17.
  • the motor control is performed so as to drive the rotary motor 13 with a preset drive pattern (pattern command generated by the pattern command generation unit 23).
  • the unit 24 is configured.
  • a user who is required to perform a rehabilitation exercise can not easily move the arm 12 because a large external force can not be applied to the arm 12, and it may be difficult to obtain a sufficient rehabilitation effect.
  • the rotary motor 13 at the time of assist control, the rotary motor 13 is driven with a drive pattern (pattern command generated by the pattern command generation unit 23) set in advance, so that the user can easily obtain a rehabilitation effect. can do.
  • the rotary motor 13 when the rotary motor 13 is driven by the training control method, the rotary motor 13 is driven by the driving force compensated by negatively feeding back the external force of the user.
  • the motor control unit 24 is configured to drive the rotary motor 13 with the driving force compensated by positively feeding back the external force of the user.
  • the motor control unit 24 is configured to fix the target drive position of the rotary motor 13 when an emergency occurs. Thereby, since the arm 12 can be stopped when an emergency occurs, the safety of the user when the emergency occurs can be secured.
  • the motor control unit 24 is configured to fix the target drive position of the rotary motor 13 when the user performs an emergency stop operation. Thereby, for example, when it is necessary to stop the arm 12 due to user's fatigue or the like, the arm 12 can be easily stopped by performing the emergency stop operation.
  • the motor control unit 24 is configured to fix the target drive position of the rotary motor 13 when the estimation result by the disturbance observer 32 becomes abnormal.
  • the estimation result of the disturbance observer 32 because the speed feedback output from the speed command generation unit 28 largely fluctuates due to the transient response or the response gain of the disturbance observer 32 is not set correctly.
  • the arm 12 can be stopped. Also, stop the arm 12 even if the estimation result of the disturbance observer 32 becomes abnormal due to the abrupt change in the magnitude of the external force applied to the arm 12 due to the user's injury or the like. Can.
  • the motor control unit 24 is configured to fix the target drive position of the rotary motor 13.
  • the arm 12 is moved at a predetermined speed (the extent to which the user is not injured.
  • the motor control unit 24 is configured to drive the rotary motor 13 so as to return to the initial position at or below the speed of. Thereby, it is possible to prevent the stopped arm 12 from moving until the user performs a reset operation.
  • the arm 12 is controlled using, for example, an electromagnetic brake.
  • a load auxiliary force
  • the arm 12 is controlled using, for example, an electromagnetic brake.
  • the load without delay auxiliary power
  • an exercise apparatus 200 according to a second embodiment of the present invention will be described with reference to FIG.
  • the user moves the arm 42 in the vertical direction, unlike the first embodiment in which the user performs an exercise (training exercise or rehabilitation exercise) by rotating the arm 12 (see FIG. 1).
  • An example in which exercise is performed will be described.
  • the exercise apparatus 200 includes a movable mechanism unit 40 and a movable mechanism control unit 20a having a motor control unit 24a for controlling a rotary motor 45 described later of the movable mechanism unit 40.
  • the rotary motor 45 is an example of the “drive unit” in the present invention and an example of the “motor” in the present invention.
  • the motor control unit 24a is an example of the "control unit” in the present invention.
  • the movable mechanism control unit 20a is an example of the "motor control device" in the present invention.
  • the movable mechanism portion 40 is configured to include a seat 41, an arm 42, an arm side pulley 43, a motor side pulley 44, a rotary motor 45, a reduction gear 46, and a movable mechanism support portion 47.
  • the arm 42 is an example of the “movable portion” in the present invention.
  • the arm 42 is configured to be movable in the vertical direction by applying an external force by the user's exercise (training exercise or rehabilitation exercise). Further, the rotation motor 45 is configured to be able to move the arm 42 in the vertical direction separately from the movement due to the external force of the user. Specifically, based on the motor control current input from the motor control unit 24a of the movable mechanism control unit 20a, the rotary motor 45 rotationally drives the motor rotation shaft 48 as a rotation shaft, and thereby the driving force by the rotation. Can be applied to the arm 42 via the motor rotation shaft 48, the reduction gear 46, the motor side pulley 44 and the arm side pulley 43.
  • the arm side pulley 43 and the motor side pulley 44 constitute a timing belt mechanism that rotates in conjunction with each other.
  • the driving force by the rotation of the rotary motor 45 is converted into driving force in the vertical direction through the timing belt mechanism consisting of the arm side pulley 43 and the motor side pulley 44, and the driving force in the vertical direction is transmitted to the arm 42. Granted.
  • the movable mechanism support portion 47 is provided to support the arm 42, the arm side pulley 43, the motor side pulley 44, and the rotation motor 45.
  • the rotary motor 45 is driven based on the motor control current from the motor control unit 24a of the movable mechanism control unit 20a to apply an external force to the arm 42 while sitting on the seat 41. It is possible to apply a load in the direction opposite to the direction of the external force applied to the arm 42 by the user to the user performing an exercise to move the arm 42 in the vertical direction via the arm 42, and the user
  • the auxiliary force in the direction along the direction of the external force applied to the arm 42 is configured to be able to be applied via the arm 42.
  • the user can perform a training exercise or a rehabilitation exercise by applying an external force to the arm 42 while moving on the seat 42 and moving the arm 42 in the vertical direction.
  • the remaining structure of the second embodiment is similar to that of the aforementioned first embodiment.
  • an exercise device 300 according to a third embodiment of the present invention will be described.
  • the third embodiment unlike the first embodiment using the rotary motor 13 (see FIG. 1) to move the arm 12 (see FIG. 1), an example using the linear motor 53 to move the arm 52 Will be explained.
  • the exercise apparatus 300 includes a movable mechanism unit 50 and a movable mechanism control unit 20b having a motor control unit 24b for controlling a linear motor 53 described later of the movable mechanism unit 50.
  • the linear motor 53 is an example of the “drive unit” in the present invention and an example of the “motor” in the present invention.
  • the motor control unit 24 b is an example of the “control unit” in the present invention.
  • the movable mechanism control unit 20b is an example of the "motor control device" in the present invention.
  • the movable mechanism unit 50 is configured to include a seat 51, an arm 52, a linear motor 53, and a linear scale 54.
  • the arm 52 is an example of the “movable portion” in the present invention.
  • the linear scale 54 is an example of the "position detection unit” in the present invention.
  • the arm 52 is configured to be movable in the horizontal direction when an external force is applied by a user's exercise (training exercise or rehabilitation exercise). Further, the linear motor 53 is configured to be capable of moving the arm 52 in the horizontal direction separately from the movement by the external force of the user. Specifically, the linear motor 53 is driven to generate thrust in the horizontal direction based on the motor control current input from the motor control unit 24b of the movable mechanism control unit 20b, whereby the thrust in the horizontal direction is generated. Is configured to be able to be applied to the arm 52.
  • the linear motor 53 is driven based on the motor control current from the motor control unit 24b of the movable mechanism control unit 20b to apply an external force to the arm 52 in a state lying on the sheet 51. It is possible to apply a load in the direction opposite to the direction of the external force applied to the arm 52 by the user to the user performing an exercise to move the arm 52 in the horizontal direction, and the user can An auxiliary force in a direction along the direction of the external force applied to the electrode 52 can be applied through the arm 52.
  • the user can perform a training exercise or a rehabilitation exercise by applying an external force to the arm 52 while lying on the sheet 51 to move the arm 52 in the horizontal direction.
  • the horizontal drive position of the linear motor 53 is detected by the linear scale 54. Then, the horizontal drive position of the linear motor 53 detected by the linear scale 54 is output toward the movable mechanism control unit 20b as position feedback.
  • the horizontal drive position of the linear motor 53 detected by the linear scale 54 is output toward the movable mechanism control unit 20b as position feedback.
  • the third embodiment unlike the first and second embodiments, since there is no decelerating mechanism provided between the linear motor 53 and the arm 52, it is not necessary to consider non-linear elements such as backlash by the decelerating mechanism, Control of the drive of the linear motor 53 can be performed more accurately.
  • the remaining structure of the third embodiment is similar to that of the aforementioned first embodiment.
  • processing flow of the motor control unit 24b of the movable mechanism control unit 20b when the user performs exercise (training exercise or rehabilitation exercise) using the exercise apparatus 300 according to the third embodiment is also the first embodiment (FIG. 3). And FIG. 4).
  • the movable mechanism control unit as an example of the motor control device according to the present invention is used to control the drive of the movable mechanism portion of the exercise apparatus.
  • the invention is not limited to this.
  • the motor control device may be used to control the drive of a drive mechanism used in the general industry.
  • the external force applied to the arm (movable portion) by the user is estimated using the disturbance observer.
  • the present invention is not limited to this.
  • the external force applied to the movable portion by the user may be estimated by another component such as an external torque sensor or a force sensor.
  • the setting input unit configured by the display unit capable of touch panel operation, the button switch capable of pressing operation, the rotary switch capable of rotating operation, etc. is extremely useful.
  • this invention is not limited to this.
  • an emergency stop operation may be performed using a dead man switch. In this way, it is possible to reliably stop the exercise device when the user stops exercising.
  • the present invention is not limited to this. In the present invention, if a rotary motor capable of outputting large torque at low speed is used, it is not necessary to provide a reduction gear between the arm and the rotary motor.
  • the reduction gear of the first and second embodiments is a reduction gear having a timing belt mechanism, a gear reduction gear formed of a spur gear or a worm, a reduction gear formed of a chain and a sprocket, or the like may be used. Good.
  • the target drive position of the rotary motor is fixed when an emergency occurs while the rotary motor (drive unit) is being driven by the training control method (first control method).
  • the motor control unit control unit
  • the motor control unit may be configured to perform control to make the arm (movable unit) in an immovable state, but the present invention is not limited to this.
  • the arm in the state where the rotary motor is driven by the training control method, when an emergency occurs, the arm can be freely moved by setting the driving force applied to the arm to zero by the rotary motor.
  • the motor control unit (control unit) may be configured to perform control to According to this configuration, when an emergency occurs during the user's training exercise, the load applied to the user via the arm can be made zero. This allows the user to easily move the arm to a safe position if an emergency occurs during a training exercise.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Pain & Pain Management (AREA)
  • Rehabilitation Therapy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Tools (AREA)
  • Control Of Position Or Direction (AREA)
  • Manipulator (AREA)

Abstract

 この運動装置(100)は、可動部(10)と、駆動部(13)と、位置検出部(17)と、制御部(24)とを備え、制御部は、位置検出部により検出された駆動部の現在の駆動位置に基づいて、可動部を現在の位置に留まらせるような第1制御方法により駆動部を駆動する。

Description

運動装置、モータ制御装置およびモータ制御方法
 この発明は、運動装置、モータ制御装置およびモータ制御方法に関する。
 従来、可動部と、可動部を移動させるための駆動部と、駆動部の駆動を制御する制御部とを備える運動装置が知られている。このような運動装置は、たとえば、特許第4061432号公報に開示されている。
 上記特許第4061432号公報には、ユーザの肢体に取り付けられるアーム(可動部)と、アームを移動させるための駆動力をアームに付与するアクチュエータ(駆動部)と、アクチュエータの駆動を制御する制御部とを備える運動療法装置(運動装置)が開示されている。この運動療法装置では、ユーザに負荷を付与するために、アクチュエータを予め設定された駆動パターンで駆動することにより、ユーザの肢体に取り付けられたアームを所定の移動パターンで移動させている。これにより、所定の移動パターンで移動しているアームに取り付けられたユーザの肢体がアームの移動と共に移動されるので、アームを介してユーザに負荷を付与することができる。
特許第4061432号公報
 しかしながら、上記特許第4061432号公報に開示された運動療法装置(運動装置)では、アーム(可動部)を介して負荷を付与するために、アームを所定の移動パターンで移動させるためのアクチュエータ(駆動部)の駆動パターンを予め設定しておく必要がある。このため、アーム(可動部)を介して負荷を付与するために煩雑な設定作業が必要になる。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、煩雑な設定作業を行うことなく可動部を介して負荷を付与することが可能な運動装置、モータ制御装置およびモータ制御方法を提供することである。
 上記目的を達成するために、この発明の第1の局面による運動装置は、ユーザの運動によって外力が加えられることにより移動可能に構成された可動部と、ユーザの外力による移動とは別に可動部を移動させるための駆動力を可動部に付与する駆動部と、可動部の現在の位置に対応する駆動部の現在の駆動位置を検出する位置検出部と、駆動部の駆動を制御する制御部と、を備え、制御部は、位置検出部により検出された駆動部の現在の駆動位置に基づいて、可動部を現在の位置に留まらせるような第1制御方法により駆動部を駆動する。
 この発明の第2の局面によるモータ制御装置は、外力が加えられることにより移動可能に構成された可動部に、外力による移動とは別に可動部を移動させるための駆動力を付与するモータの駆動を制御するモータ制御部を備え、モータ制御部は、可動部の現在の位置に対応するモータの現在の駆動位置を検出する位置検出部により検出されたモータの現在の駆動位置に基づいて、可動部を現在の位置に留まらせるように駆動部を駆動する。
 この発明の第3の局面によるモータ制御方法は、外力が加えられることにより移動可能に構成された可動部を外力による移動とは別に移動させるための駆動力を可動部に付与するモータの、可動部の現在の位置に対応する現在の駆動位置を検出するステップと、検出されたモータの現在の駆動位置に基づいて、可動部を現在の位置に留まらせるようにモータの駆動を制御するステップとを備える。
 以上説明したように本発明によれば、煩雑な設定作業を行うことなく可動部を介して負荷を付与することができる。
本発明の第1実施形態による運動装置の全体構成を示す図である。 本発明の第1実施形態による運動装置の可動機構制御部のモータ制御部の構成を示すブロック図である。 本発明の第1~第3実施形態による運動装置を用いてユーザがトレーニング運動を行う際におけるモータ制御部の処理フローを説明するためのフローチャートである。 本発明の第1~第3実施形態による運動装置を用いてユーザがリハビリ運動を行う際におけるモータ制御部の処理フローを説明するためのフローチャートである。 本発明の第2実施形態による運動装置の全体構成を示す図である。 本発明の第3実施形態による運動装置の全体構成を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 (第1実施形態)
 まず、図1を参照して、本発明の第1実施形態による運動装置100の構成について説明する。
 図1に示すように、運動装置100は、可動機構部10と、可動機構部10の後述する回転モータ13の制御を行うモータ制御部24を有する可動機構制御部20とを備えている。なお、回転モータ13は、本発明の「駆動部」の一例であるとともに、本発明の「モータ」の一例である。また、モータ制御部24は、本発明の「制御部」の一例である。また、可動機構制御部20は、本発明の「モータ制御装置」の一例である。
 可動機構部10と可動機構制御部20とは、可動機構制御部20の後述するモータ制御部24により出力されるモータ制御電流や、回転モータ13の後述するエンコーダ17(図2参照)により出力される位置フィードバックなどを伝達するためのケーブルを介して互いに接続されている。なお、エンコーダ17は、本発明の「位置検出部」の一例である。
 次に、図1を参照して、可動機構部10の具体的な構成について説明する。
 図1に示すように、可動機構部10は、シート11と、アーム12と、回転モータ13と、減速機14とを含むように構成されている。なお、アーム12は、本発明の「可動部」の一例である。
 アーム12は、ユーザの運動によって外力が加えられることにより移動可能に構成されている。なお、運動とは、ユーザがシート11に座った状態でアーム12を把持して動かす運動(アーム回動軸15を回動軸としてアーム12を回動させる運動)のことである。
 回転モータ13は、上記ユーザの外力による移動とは別にアーム12を移動させることが可能なように構成されている。具体的には、回転モータ13は、可動機構制御部20から入力されるモータ制御電流に基づいて、モータ回転軸16を回転軸として回転駆動することにより、その回転による駆動力をモータ回転軸16、減速機14およびアーム回動軸15を介してアーム12に付与することが可能なように構成されている。
 ここで、第1実施形態では、回転モータ13は、シート11に座った状態でアーム12に外力を加えて運動しているユーザに対して、ユーザがアーム12に加えた外力の方向とは反対方向の負荷をアーム12を介して付与することが可能であるとともに、ユーザがアーム12に加えた外力の方向に沿った方向の補助力をアーム12を介して付与することが可能なように構成されている。これにより、ユーザは、シート11に座った状態でアーム12に外力を加えて動かすことにより、トレーニング運動またはリハビリ運動を行うことが可能である。
 また、第1実施形態では、回転モータ13には、アーム12の現在の位置に対応する回転モータ13の現在の駆動位置(回転位置)を検出するためのエンコーダ17(図2参照)が設けられている。このエンコーダ17は、検出した回転モータ13の現在の駆動位置を位置フィードバックとして可動機構制御部20に出力するように構成されている。なお、エンコーダ17は、インクリメンタルエンコーダであってもよいし、アブソリュートエンコーダであってもよい。
 減速機14は、アーム回動軸15とモータ回転軸16とを連動して回転させるタイミングベルト機構を有している。この減速機14は、アーム回動軸15の回動速度をモータ回転軸16の回転速度に対して減速させることにより、回転モータ13により発生するトルク(駆動力)を増加させるとともに、増加されたトルクをモータ回転軸16、減速機14およびアーム回動軸15を介してアーム12に伝達するように構成されている。
 次に、可動機構制御部20の具体的な構成について説明する。
 可動機構制御部20は、設定入力部21と、状態表示部22と、パターン指令生成部23と、モータ制御部24とを含むように構成されている。
 設定入力部21は、ユーザが可動機構部10をどのように動作させるかを設定する際に使用される入力装置である。この設定入力部21は、たとえば、タッチパネル操作が可能な表示部や、押下操作が可能なボタンスイッチや、回転操作が可能なロータリスイッチなどにより構成される。これにより、ユーザは、設定入力部21を操作することによって、可動機構部10をトレーニング運動のために使用するかまたはリハビリ運動のために使用するかを選択したり、トレーニング運動またはリハビリ運動の強度を設定したりすることなどが可能である。すなわち、ユーザは、設定入力部21を操作することによって、後述するトレーニング制御方法により回転モータ13を駆動するかまたはアシスト制御方法により回転モータ13を駆動するかを選択したり、アーム12を介してユーザに付与する負荷または補助力の大きさを設定したりすることが可能である。
 状態表示部22は、回転モータ13の駆動力を含む駆動状態を表示することが可能なように構成されている。具体的には、状態表示部22は、可動機構部10のアーム12を介してユーザに与える負荷の大きさなどをグラフ形式で表示することが可能なように構成されている。また、パターン指令生成部23は、回転モータ13を予め設定された駆動パターンで駆動する場合(後述するアシスト制御方法により回転モータ13を駆動する場合など)において回転モータ13に与える目標駆動位置の変化のパターン(以下、パターン指令と呼ぶ)を生成するように構成されている。
 モータ制御部24は、後述する電流生成部30(図2参照)により生成されたモータ制御電流を回転モータ13に出力することにより、回転モータ13の駆動(アーム12の移動)を制御するように構成されている。なお、モータ制御電流は、回転モータ13に与えるトルク指令(目標駆動トルク)に基づいて生成される。
 ここで、第1実施形態では、モータ制御部24は、ユーザにより設定入力部21が操作されて可動機構部10をトレーニング運動のために使用することが選択された場合に、エンコーダ17からの位置フィードバックに基づいて、回転モータ13を現在の駆動位置に留まらせるようなモータ制御電流を生成するように構成されている。一方、モータ制御部24は、ユーザにより設定入力部21が操作されて可動機構部10をリハビリ運動のために使用することが選択された場合に、パターン指令生成部23からのパターン指令に基づいて、回転モータ13を予め設定された駆動パターンで駆動するようなモータ制御電流を生成するように構成されている。
 また、第1実施形態では、モータ制御部24は、回転モータ13に与えるトルク指令を、ユーザの運動(トレーニング運動またはリハビリ運動)によってアーム12に加えられる外力に基づいて補償するように構成されている。すなわち、モータ制御部24は、ユーザの運動による外力の方向および大きさに応じて、トルク指令を補償するための補償トルクを生成するように構成されている。
 具体的には、モータ制御部24は、ユーザにより設定入力部21が操作されて可動機構部10をトレーニング運動のために使用することが選択された場合には、ユーザのトレーニング運動によってアーム12に加えられた外力を負帰還させることにより、回転モータ13に与えるトルク指令を補償するように構成されている。これにより、モータ制御部24は、ユーザがアーム12を用いてトレーニング運動を行う際に、ユーザがアーム12に加えた外力の方向とは反対方向の負荷をアーム12を介してユーザに付与するように構成されている。なお、この負荷の大きさは、ユーザが設定入力部21を操作して設定したトレーニングの強度と、トレーニング運動時のユーザがアーム12に加えた外力の大きさとに応じて決定される。以下では、このようなトレーニング運動時のユーザに負荷を付与するための回転モータ13の制御方法を、トレーニング制御方法と呼ぶ。なお、「トレーニング制御方法」は、本発明の「第1制御方法」の一例である。
 一方、モータ制御部24は、ユーザにより設定入力部21が操作されて可動機構部10をリハビリ運動のために使用することが選択された場合には、ユーザのリハビリ運動によってアーム12に加えられた外力を正帰還させることにより、回転モータ13に与えるトルク指令を補償するように構成されている。これにより、モータ制御部24は、ユーザがアーム12を用いてリハビリ運動を行う際に、ユーザがアーム12に加えた外力の方向に沿った方向の補助力をアーム12を介してユーザに付与するように構成されている。なお、この補助力の大きさは、ユーザが設定入力部21を操作して設定したリハビリの強度と、リハビリ運動時のユーザがアーム12に加えた外力の大きさとに応じて決定される。以下では、このようなリハビリ運動時のユーザに補助力を付与するための回転モータ13の制御方法を、アシスト制御方法と呼ぶ。なお、「アシスト制御方法」は、本発明の「第2制御方法」の一例である。
 なお、第1実施形態では、モータ制御部24は、非常状態が発生した場合に、回転モータ13の目標位置を固定するように構成されている。具体的には、モータ制御部24は、ユーザにより設定入力部21が操作されてアーム12を非常停止させる操作(非常停止操作)が行われた場合に、回転モータ13の目標駆動位置を固定することにより、アーム12を現在の位置に停止させて移動不可能な状態にするように構成されている。また、モータ制御部24は、後述する所定の2つの場合(回転モータ13の目標駆動位置と現在の駆動位置との差が異常になった場合、および、補償トルク調整部35(図2参照)に入力されるトルクが異常になった場合)にも、回転モータ13の目標駆動位置を固定することにより、アーム12を現在の位置に停止させて移動不可能な状態にするように構成されている。
 また、第1実施形態では、モータ制御部24は、上記のように回転モータ13の目標駆動位置が固定されてアーム12が移動不可能な状態とされた際において、ユーザにより設定入力部21が操作されて現在停止しているアーム12を初期位置に戻す操作(リセット操作)が行われた場合に、アーム12を所定の速度(ユーザが怪我をしない程度の速度)以下で初期位置に戻すように回転モータ13を駆動するように構成されている。
 以下、図2を参照して、モータ制御部24の詳細な構成について説明する。
 図2に示すように、モータ制御部24は、速度算出部25と、状態切替部26と、位置指令切替部27と、速度指令生成部28と、トルク指令生成部29と、電流生成部30と、補償トルク生成部31とを含むように構成されている。なお、補償トルク生成部31は、本発明の「補償力生成部」の一例である。
 速度算出部25は、微分器などにより構成されている。この速度算出部25は、エンコーダ17からの位置フィードバック(回転モータ13の現在の駆動位置)を微分することにより、速度フィードバック(回転モータ13の現在の駆動速度)を生成するように構成されている。そして、速度算出部25は、このように生成した速度フィードバックをトルク指令生成部29と後述する外乱オブザーバ32とに出力するように構成されている。
 状態切替部26は、ユーザにより設定入力部21が操作されて可動機構部10をトレーニング運動のために使用するかまたはリハビリ運動のために使用するかが選択された場合に、そのユーザの選択に応じて、位置指令切替部27の状態と、補償トルク生成部31の後述する符号切替部34の状態とを切り替えるように構成されている。
 具体的には、状態切替部26は、トレーニング制御方法により回転モータ13を駆動することがユーザにより選択された場合に、エンコーダ17からの位置フィードバックが位置指令(回転モータ13の目標駆動位置)として速度指令生成部28に入力されるように、位置指令切替部27を第1の状態(図2のr1参照)に切り替えるように構成されている。なお、この時、状態切替部26は、ユーザの外力に起因するトルクを負帰還させて補償トルク調整部35に出力するように符号切替部34の状態を切り替える(詳細は、後述する)ように構成されている。
 一方、状態切替部26は、アシスト制御方法により回転モータ13を駆動することがユーザにより選択された場合に、パターン指令生成部23からのパターン指令が位置指令(回転モータ13の目標駆動位置)として速度指令生成部28に入力されるように、位置指令切替部27を第2の状態(図2のr2参照)に切り替えるように構成されている。なお、この時、状態切替部26は、ユーザの外力に起因するトルクを正帰還させて補償トルク調整部35に出力するように符号切替部34の状態を切り替える(詳細は、後述する)ように構成されている。
 なお、状態切替部26は、ユーザの設定入力部21の操作により可動機構部10を緊急停止させるための緊急停止操作が行われた場合に、回転モータ13の目標駆動位置を固定するような位置指令が速度指令生成部28に入力されるように、位置指令切替部27を第3の状態(図2のrφ参照)に切り替えるように構成されている。また、状態切替部26は、ユーザにより緊急停止操作が行われた場合に加えて、回転モータ13の目標駆動位置と現在の駆動位置との差が異常になった場合(位置指令と位置フィードバックとの差が所定のしきい値以上になった場合)、および、補償トルク調整部35に入力されるトルクが異常になった場合(詳細は後述する)にも、位置指令切替部27を第3の状態に切り替えるように構成されている。
 速度指令生成部28は、P制御を行う制御系である。この速度指令生成部28は、入力される位置指令(回転モータ13の目標駆動位置)と位置フィードバック(エンコーダ17により検出された回転モータ13の現在の駆動位置)との差に、比例要素の位置比例ゲインKpを乗じることにより、速度指令(回転モータ13の目標駆動速度)を生成するように構成されている。そして、速度指令生成部28は、生成した速度指令をトルク指令生成部29に出力するように構成されている。
 トルク指令生成部29は、PI制御を行う制御系である。このトルク指令生成部29は、入力される速度指令(回転モータ13の目標駆動速度)と速度フィードバック(回転モータ13の現在の駆動速度)との差に、比例要素の速度比例ゲインKvと積分要素の積分時定数Tiとを乗じることにより、トルク指令(回転モータ13の目標駆動トルク)を生成するように構成されている。そして、トルク指令生成部29は、生成したトルク指令を電流生成部30に出力するように構成されている。
 電流生成部30は、PI制御を行う制御系である。この電流生成部30は、入力されるトルク指令(トルク指令生成部29により生成されたトルク指令に補償トルク生成部31により生成された補償トルクを加えたもの)に、比例要素の電流比例ゲインKiと積分要素の積分時定数Tiiとを乗じることにより、モータ制御電流(回転モータ13の目標駆動トルクに対応する電流指令)を生成するように構成されている。そして、電流生成部30は、生成したモータ制御電流を可動機構部10の回転モータ13に出力するように構成されている。
 補償トルク生成部31は、トルク指令生成部29により出力されるトルク指令を補償するための補償トルクを生成するように構成されている。具体的には、補償トルク生成部31は、外乱オブザーバ32と、無負荷トルク設定部33と、符号切替部34と、補償トルク調整部35とを含むように構成されている。
 外乱オブザーバ32は、モータ制御部24からのモータ制御電流に起因する駆動トルク以外に回転モータ13に加えられる外乱トルク(ユーザの運動によってアーム12に加えられる外力などに起因するトルク)を推定するために設けられている。具体的には、外乱オブザーバ32は、トルク指令生成部29により生成されたトルク指令(回転モータ13の目標駆動トルク)と、速度算出部25により生成された速度フィードバック(回転モータ13の現在の駆動速度)とに基づいて、回転モータ13に加えられる上記外乱トルクを推定するように構成されている。
 無負荷トルク設定部33は、ユーザの外力以外の外力(たとえば、重力など)によってアーム12を移動させないために回転モータ13に予め付与しておく必要があるトルク(以下、無負荷トルクと呼ぶ)を設定・保存するために設けられている。この無負荷トルクは、ユーザがアーム12を用いて運動(トレーニング運動またはリハビリ運動)を行う前の初期の段階で測定される。第1実施形態では、外乱オブザーバ32により推定された外乱トルクから無負荷トルク設定部33に設定された無負荷トルクが減算されることより、回転モータ13に加えられる外乱トルクのうちのユーザの外力に起因するトルクが算出される。
 符号切替部34は、上記のように算出されたユーザの外力に起因するトルクを負帰還させて補償トルク調整部35に出力する状態(位置指令切替部27の第1の状態(図2のr1参照)に対応)と、正帰還させて補償トルク調整部35に出力する状態(位置指令切替部27の第2の状態(図2のr2参照)に対応)とを、ユーザの選択(トレーニング制御方法により回転モータ13を駆動するかまたはアシスト制御方法により回転モータ13を駆動するかの選択)に応じて切り替えるために設けられている。具体的には、符号切替部34は、トレーニング制御方法により回転モータ13を駆動することがユーザにより選択された場合には、上記ユーザの外力に起因するトルクを負帰還させて補償トルク調整部35に出力する一方、アシスト制御方法により回転モータ13を駆動することがユーザにより選択された場合には、上記ユーザの外力に起因するトルクを正帰還させて補償トルク調整部35に出力するように、上記ユーザの外力に起因するトルクの符号を切り替えるように構成されている。
 補償トルク調整部35は、補償トルクの大きさを調整するために設けられている。具体的には、補償トルク調整部35は、符号切替部34を介して入力されるトルク(ユーザの外力に起因するトルク)の大きさを、ユーザが設定入力部21を操作して設定したトレーニング運動またはリハビリ運動の強度に応じて調整するように構成されている。また、補償トルク調整部35は、符号切替部34を介して入力されるトルクが異常である場合に、その異常なトルクを所定の制限値の範囲内に調整するように構成されている。なお、補償トルク調整部35に入力されるトルクが異常である場合として、たとえば、速度指令生成部28から出力される速度フィードバックが過渡応答により大きく変動したり、外乱オブザーバ32の応答ゲインが正しく設定されていなかったりすることに起因して、補償トルク調整部35に入力されるトルクが過度に大きくなった場合が考えられる。この他、補償トルク調整部35に入力されるトルクが異常である場合として、ユーザの負傷などによりアーム12に加えられている外力の大きさが急激に変化することに起因して、補償トルク調整部35に入力されるトルクが急激に変化した場合なども考えられる。そして、補償トルク調整部35は、調整したトルクを補償トルクとして電流生成部30に出力するように構成されている。
 なお、補償トルク調整部35は、平均化フィルタや平滑化フィルタなどを含むように構成されている。この平滑化フィルタは、ローパスフィルタなどの一次遅れフィルタであってもよいし、他の次数のフィルタであってもよい。これにより、補償トルク調整部35から出力される補償トルクが平均化されるとともに平滑化されるので、補償トルクの出力がばらついたり不連続になったりするのが抑制される。
 次に、図3を参照して、本発明の第1実施形態による運動装置100を用いてユーザがトレーニング運動を行う際(トレーニング制御方法により回転モータ13を駆動する際)におけるモータ制御部24の処理フローについて説明する。この処理フローは、ユーザにより設定入力部21が操作されて可動機構部10をトレーニング運動のために使用することが選択された場合に、開始される。
 まず、図3に示すように、ステップS1において、状態切替部26により位置指令切替部27が第1の状態(図2のr1参照)に切り替えられる。これにより、エンコーダ17からの位置フィードバックが位置指令として速度指令生成部28に入力される。なお、この時、ユーザによりアーム12に加えられる外力に起因するトルク(外乱オブザーバ32の推定結果と無負荷トルク設定部33に設定された無負荷トルクとにより算出されたトルク)を負帰還させたものが補償トルク調整部35に入力されるように、位置指令切替部27の状態だけでなく、符号切替部34の状態も状態切替部26により切り替えられる。これらの結果、ユーザの運動方向とは反対方向で、かつ、ユーザの外力に応じた大きさの負荷がアーム12を介してユーザに付与されるので、ユーザは、アーム12を把持して動かすことによりトレーニング運動を行うことが可能になる。そして、ステップS2に進む。
 ステップS2においては、ユーザにより設定入力部21が操作されてアーム12の非常停止操作が行われたか否かが判断される。このステップS2において、ユーザにより非常停止操作が行われていないと判断された場合には、ステップS3に進む。
 ステップS3においては、補償トルク調整部35に入力されるトルクが異常か否かが判断される。このステップS3においては、たとえば、速度指令生成部28から出力される速度フィードバックが過渡応答により大きく変動したり、外乱オブザーバ32の応答ゲインが正しく設定されていなかったりすることに起因して、補償トルク調整部35に入力されるトルクが過度に大きくなった場合に、補償トルク調整部35に入力されるトルクが異常であると判断される。また、ステップS3においては、ユーザの負傷などによりアーム12に加えられている外力の大きさが急激に変化することに起因して、補償トルク調整部35に入力されるトルクが急激に変化した場合なども、保障トルク調整部35に入力されるトルクが異常であると判断される。そして、ステップS3において、補償トルク調整部35に入力されるトルクが異常でないと判断された場合には、ステップS4に進む。
 ステップS4においては、回転モータ13の目標駆動位置と現在の駆動位置との差が異常か否か(位置指令と位置フィードバックとの差が所定のしきい値以上になっていないかどうか)が判断される。このステップS4において、回転モータ13の目標位置と現在位置との差が異常でないと判断された場合には、上記ステップS2に戻る。また、ステップS4において、回転モータ13の目標位置と現在位置との差が異常であると判断された場合には、ステップS5に進む。
 なお、上記ステップS2において、ユーザにより非常停止操作が行われたと判断された場合にも、ステップS5に進む。また、上記ステップS3において、補償トルク調整部35に入力されるトルクが異常であると判断された場合にも、ステップS5に進む。
 ステップS5においては、状態切替部26により位置指令切替部27が第3の状態(図2のrφ参照)に切り替えられる。これにより、回転モータ13の目標駆動位置が固定され、可動機構部10のアーム12が現在の位置に停止される。そして、ステップS6に進む。
 ステップS6においては、ユーザにより設定入力部21が操作されてアーム12のリセット操作(現在停止しているアーム12を初期位置に戻す操作)が行われたか否かが判断される。このステップS6の判断は、ユーザによりリセット操作が行われたと判断されるまで繰り返される。そして、ステップS6において、ユーザによりリセット操作が行われたと判断された場合には、ステップS7に進む。
 ステップS7においては、アーム12を徐々に初期位置に戻す処理が実行される。すなわち、ユーザが怪我をしない程度の速度でアーム12を初期位置に戻すように回転モータ13を駆動する処理が実行される。そして、処理が終了する。
 次に、図4を参照して、本発明の第1実施形態による運動装置100を用いてユーザがリハビリ運動を行う際(アシスト制御方法により回転モータ13を駆動する際)におけるモータ制御部24の処理フローについて説明する。この処理フローは、ユーザにより設定入力部21が操作されて可動機構部10をリハビリ運動のために使用することが選択された場合に、開始される。
 まず、図4に示すように、ステップS11において、状態切替部26により位置指令切替部27が第2の状態(図2のr2参照)に切り替えられる。これにより、パターン指令生成部23からのパターン指令が位置指令として速度指令生成部28に入力される。なお、この時、ユーザによりアーム12に加えられる外力に起因するトルク(外乱オブザーバ32の推定結果と無負荷トルク設定部33に設定された無負荷トルクとにより算出されたトルク)を正帰還させたものが補償トルク調整部35に入力されるように、位置指令切替部27の状態だけでなく、符号切替部34の状態も状態切替部26により切り替えられる。これらの結果、ユーザの運動方向に沿った方向で、かつ、ユーザの外力に応じた大きさの補助力がアーム12を介してユーザに付与されるので、ユーザは、アーム12を把持して動かすことによりリハビリ運動を行うことが可能になる。そして、ステップS12に進む。
 ステップS12においては、ユーザにより設定入力部21が操作されて可動機構部10の非常停止操作が行われたか否かが判断される。このステップS12において、ユーザにより非常停止操作が行われていないと判断された場合には、ステップS13に進む。
 ステップS13においては、補償トルク調整部35に入力されるトルクが異常か否かが判断される。このステップS13において、補償トルク調整部35に入力されるトルクが異常であると判断された場合には、ステップS14に進む。
 ステップS14においては、状態切替部26により位置指令切替部27が第1の状態(図2のr1参照)に切り替えられる。これにより、所定の移動パターンで移動しているアーム12を現在の位置に留まらせるような制御がモータ制御部24により行われるようになる。そして、ステップS15に進む。なお、上記ステップS13において、補償トルク調整部35に入力されるトルクが異常でないと判断された場合にも、ステップS15に進む。
 ステップS15においては、回転モータ13の目標駆動位置と現在の駆動位置との差が異常か否かが判断される。このステップS15において、回転モータ13の目標位置と現在位置との差が異常でないと判断された場合には、上記ステップS12に戻る。また、ステップS15において、回転モータ13の目標位置と現在位置との差が異常であると判断された場合には、ステップS16に進む。
 なお、上記ステップS12において、ユーザにより非常停止操作が行われたと判断された場合にも、ステップS16に進む。また、上記ステップS13において、補償トルク調整部35に入力されるトルクが異常であると判断された場合にも、ステップS16に進む。
 ステップS16においては、状態切替部26により位置指令切替部27が第3の状態(図2のrφ参照)に切り替えられる。これにより、回転モータ13の目標駆動位置が固定され、可動機構部10のアーム12が現在の位置に停止される。そして、ステップS17に進む。
 ステップS17においては、ユーザにより設定入力部21が操作されてアーム12のリセット操作が行われたか否かが判断される。このステップS17の判断は、ユーザによりリセット操作が行われたと判断されるまで繰り返される。そして、ステップS17において、ユーザによりリセット操作が行われたと判断された場合には、ステップS18に進む。
 ステップS18においては、アーム12を徐々に初期位置に戻す処理が実行される。すなわち、ユーザが怪我をしない程度の速度でアーム12を初期位置に戻すように回転モータ13を駆動する処理が実行される。そして、処理が終了する。
 第1実施形態では、上記のように、エンコーダ17により検出された回転モータ13の現在の駆動位置(位置フィードバック)に基づいて、アーム12を現在の位置に留まらせるようなトレーニング制御方法により回転モータ13を駆動するようにモータ制御部24を構成する。これにより、アーム12を所定の移動パターンで移動させるための回転モータ13の駆動パターンを予め設定するなどの煩雑な設定作業を行うことなく、ユーザがアーム12に外力を加えるだけで、そのユーザの外力の方向と反対方向の負荷をアーム12を介してユーザに付与することができる。その結果、ユーザに負荷を付与する運動(トレーニング運動)を容易に提供することができる。
 また、第1実施形態では、上記のように、トレーニング制御方法により回転モータ13を駆動する際に、アーム12を現在位置に留まらせるように、エンコーダ17により検出された回転モータ13の現在の駆動位置(位置フィードバック)を目標駆動位置(位置指令)として回転モータ13を駆動するようにモータ制御部24を構成する。これにより、エンコーダ17の検出結果(位置フィードバック)を利用して、容易に、アーム12を現在位置に留まらせる制御を行うことができる。
 また、第1実施形態では、上記のように、トレーニング制御方法により回転モータ13を駆動する際に、ユーザの外力に応じた大きさの負荷を、ユーザの外力の方向とは反対方向に、アーム12を介してユーザに付与するようにモータ制御部24を構成する。これにより、ユーザの体力に応じた適切な負荷をアーム12を介してユーザに付与することができる。
 また、第1実施形態では、上記のように、トレーニング制御方法により回転モータ13を駆動する際に、回転モータ13によりアーム12に付与される駆動力が所定の制限値の範囲内に含まれるように補償するようにモータ制御部24を構成する。これにより、アーム12を介してユーザに与える負荷の大きさが必要以上に大きくなるのを抑制することができる。
 また、第1実施形態では、上記のように、アーム12に加えられる外乱の推定を行う外乱オブザーバ32を設け、外乱オブザーバ32による推定結果から、ユーザの外力が加えられていない状態においてアーム12に加えられている外乱(無負荷トルク)を減算することにより、ユーザの外力を算出するようにモータ制御部24を構成する。これにより、外乱オブザーバ32の推定結果をそのままユーザの外力とする場合と異なり、ユーザの外力が加えられていない状態においてアーム12に加えられている外乱(無負荷トルク)を考慮することにより、ユーザの外力を正確に算出することができる。
 また、第1実施形態では、上記のように、トレーニング制御方法に加えて、ユーザの加えた外力の方向に沿った方向の補助力をアーム12を介してユーザに付与するアシスト制御方法により、回転モータ13を駆動することが可能なようにモータ制御部24を構成する。これにより、ユーザは、トレーニング制御方法により回転モータが駆動されることによってアーム12を介して付与される負荷を利用して、容易に、トレーニング運動を行うことができるとともに、アシスト制御方法により回転モータが駆動されることによってアーム12を介して付与される補助力を利用して、容易に、リハビリ運動を行うこともできる。
 また、第1実施形態では、上記のように、アシスト制御方法により回転モータ13を駆動する際に、回転モータ13によりアーム12に付与される駆動力が所定の制限値の範囲内に含まれるように補償するようにモータ制御部24を構成する。これにより、アーム12を介してユーザに与える補助力の大きさが必要以上に大きくなるのを抑制することができる。
 また、第1実施形態では、上記のように、トレーニング制御方法により回転モータ13を駆動する場合には、エンコーダ17により検出された回転モータ13の現在の駆動位置(位置フィードバック)に基づいて回転モータ13を駆動する一方、アシスト制御方法により回転モータ13を駆動する場合には、予め設定された駆動パターン(パターン指令生成部23により生成されたパターン指令)で回転モータ13を駆動するようにモータ制御部24を構成する。ここで、一般に、リハビリ運動を行うことが必要なユーザは、アーム12に大きな外力を加えることができないので、アーム12を容易に移動させることができず、十分なリハビリ効果を得にくい場合がある。この場合に、第1実施形態では、アシスト制御時に、予め設定された駆動パターン(パターン指令生成部23により生成されたパターン指令)で回転モータ13が駆動されるので、ユーザがリハビリ効果を得やすくすることができる。
 また、第1実施形態では、上記のように、トレーニング制御方法により回転モータ13を駆動する場合には、ユーザの外力を負帰還させることにより補償された駆動力で回転モータ13を駆動する一方、アシスト制御方法により回転モータ13を駆動する場合には、ユーザの外力を正帰還させることにより補償された駆動力で回転モータ13を駆動するようにモータ制御部24を構成する。これにより、トレーニング制御時において、容易に、ユーザの外力と反対方向の負荷をアーム12を介してユーザに付与することができるとともに、アシスト制御時において、容易に、ユーザの外力に沿った方向の補助力をアーム12を介してユーザに付与することができる。
 また、第1実施形態では、上記のように、非常状態が発生した場合に、回転モータ13の目標駆動位置を固定するようにモータ制御部24を構成する。これにより、非常状態が発生した場合にアーム12を停止させることができるので、非常状態が発生した場合におけるユーザの安全を確保することができる。
 また、第1実施形態では、上記のように、ユーザにより非常停止操作が行われた場合に、回転モータ13の目標駆動位置を固定するようにモータ制御部24を構成する。これにより、たとえばユーザの疲労などによりアーム12を非常停止させる必要がある場合に、非常停止操作を行うことによって、容易に、アーム12を停止させることができる。
 また、第1実施形態では、上記のように、外乱オブザーバ32による推定結果が異常となった場合に、回転モータ13の目標駆動位置を固定するようにモータ制御部24を構成する。これにより、たとえば速度指令生成部28から出力される速度フィードバックが過渡応答により大きく変動したり、外乱オブザーバ32の応答ゲインが正しく設定されていなかったりすることに起因して、外乱オブザーバ32の推定結果が異常になった場合に、アーム12を停止させることができる。また、ユーザの負傷などによりアーム12に加えられている外力の大きさが急激に変化することに起因して、外乱オブザーバ32の推定結果が異常になった場合にも、アーム12を停止させることができる。
 また、第1実施形態では、上記のように、回転モータ13の現在の駆動位置(位置フィードバック)と目標駆動位置(位置指令)との差が所定のしきい値以上であると判断した場合に、回転モータ13の目標駆動位置を固定するようにモータ制御部24を構成する。これにより、回転モータ13の現在の駆動位置と目標駆動位置との差が過度に大きい場合に、その過度に大きい差を急激に近づけるような過大な駆動力が回転モータ13に付与されることがないので、アーム12が急激に移動するのを抑制することができる。
 また、第1実施形態では、上記のように、回転モータ13の目標駆動位置が固定され、かつ、ユーザによりリセット操作が行われた場合に、アーム12を所定の速度(ユーザが怪我をしない程度の速度)以下で初期位置に戻すように回転モータ13を駆動するようにモータ制御部24を構成する。これにより、ユーザによりリセット操作が行われるまで、停止しているアーム12が移動するのを防止することができる。
 また、第1実施形態では、上記のように構成した外乱オブザーバ32を含むモータ制御部24を用いてユーザに負荷(補助力)を付与することによって、たとえば電磁ブレーキを用いてアーム12を制御してユーザに負荷を付与する場合や、外部トルクセンサや力センサなどを用いてユーザの外力を推定してユーザに負荷(補助力)を付与する場合などと異なり、ユーザの外力に対して正確で、かつ、遅延のない負荷(補助力)をユーザに付与することができる。
 (第2実施形態)
 次に、図5を参照して、本発明の第2実施形態による運動装置200について説明する。この第2実施形態では、ユーザがアーム12(図1参照)を回動させることにより運動(トレーニング運動またはリハビリ運動)を行う上記第1実施形態と異なり、ユーザがアーム42を上下方向に移動させることにより運動を行う例について説明する。
 図5に示すように、第2実施形態による運動装置200は、可動機構部40と、可動機構部40の後述する回転モータ45の制御を行うモータ制御部24aを有する可動機構制御部20aとを備えている。なお、回転モータ45は、本発明の「駆動部」の一例であるとともに、本発明の「モータ」の一例である。また、モータ制御部24aは、本発明の「制御部」の一例である。また、可動機構制御部20aは、本発明の「モータ制御装置」の一例である。
 可動機構部40は、シート41と、アーム42と、アーム側プーリ43と、モータ側プーリ44と、回転モータ45と、減速機46と、可動機構支持部47とを含むように構成されている。なお、アーム42は、本発明の「可動部」の一例である。
 アーム42は、ユーザの運動(トレーニング運動またはリハビリ運動)によって外力が加えられることにより上下方向に移動可能に構成されている。また、回転モータ45は、ユーザの外力による移動とは別に、アーム42を上下方向に移動させることが可能なように構成されている。具体的には、回転モータ45は、可動機構制御部20aのモータ制御部24aから入力されるモータ制御電流に基づいて、モータ回転軸48を回転軸として回転駆動することにより、その回転による駆動力をモータ回転軸48、減速機46、モータ側プーリ44およびアーム側プーリ43を介してアーム42に付与することが可能なように構成されている。
 なお、アーム側プーリ43とモータ側プーリ44とは、互いに連動して回転するタイミングベルト機構を構成している。これにより、回転モータ45の回転による駆動力は、アーム側プーリ43とモータ側プーリ44とからなるタイミングベルト機構を介して上下方向の駆動力に変換され、その上下方向の駆動力がアーム42に付与される。なお、可動機構支持部47は、アーム42、アーム側プーリ43、モータ側プーリ44および回転モータ45を支持するように設けられている。
 ここで、第2実施形態では、回転モータ45は、可動機構制御部20aのモータ制御部24aからのモータ制御電流に基づいて駆動することにより、シート41に座った状態でアーム42に外力を加えてアーム42を上下方向に移動させる運動を行うユーザに対して、ユーザがアーム42に加えた外力の方向とは反対方向の負荷をアーム42を介して付与することが可能であるとともに、ユーザがアーム42に加えた外力の方向に沿った方向の補助力をアーム42を介して付与することが可能なように構成されている。これにより、ユーザは、シート41に座った状態でアーム42に外力を加えてアーム42を上下方向に移動させることにより、トレーニング運動またはリハビリ運動を行うことが可能である。
 なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。
 また、第2実施形態による運動装置200を用いてユーザが運動(トレーニング運動またはリハビリ運動)を行う際における可動機構制御部20aのモータ制御部24aの処理フローも、上記第1実施形態(図3および図4参照)と同様である。
 また、第2実施形態の効果も、上記第1実施形態と同様である。
 (第3実施形態)
 次に、図6を参照して、本発明の第3実施形態による運動装置300について説明する。この第3実施形態では、アーム12(図1参照)を移動させるために回転モータ13(図1参照)を用いる上記第1実施形態と異なり、アーム52を移動させるためにリニアモータ53を用いる例について説明する。
 図6に示すように、第3実施形態による運動装置300は、可動機構部50と、可動機構部50の後述するリニアモータ53の制御を行うモータ制御部24bを有する可動機構制御部20bとを備えている。なお、リニアモータ53は、本発明の「駆動部」の一例であるとともに、本発明の「モータ」の一例である。また、モータ制御部24bは、本発明の「制御部」の一例である。また、可動機構制御部20bは、本発明の「モータ制御装置」の一例である。
 可動機構部50は、シート51と、アーム52と、リニアモータ53と、リニアスケール54とを含むように構成されている。なお、アーム52は、本発明の「可動部」の一例である。また、リニアスケール54は、本発明の「位置検出部」の一例である。
 アーム52は、ユーザの運動(トレーニング運動またはリハビリ運動)によって外力が加えられることにより水平方向に移動可能に構成されている。また、リニアモータ53は、ユーザの外力による移動とは別に、アーム52を水平方向に移動させることが可能なように構成されている。具体的には、リニアモータ53は、可動機構制御部20bのモータ制御部24bから入力されるモータ制御電流に基づいて、水平方向の推力を発生させるように駆動することにより、その水平方向の推力をアーム52に付与することが可能なように構成されている。
 ここで、第3実施形態では、リニアモータ53は、可動機構制御部20bのモータ制御部24bからのモータ制御電流に基づいて駆動することにより、シート51に横たわった状態でアーム52に外力を加えてアーム52を水平方向に動かす運動を行うユーザに対して、ユーザがアーム52に加えた外力の方向とは反対方向の負荷をアーム52を介して付与することが可能であるとともに、ユーザがアーム52に加えた外力の方向に沿った方向の補助力をアーム52を介して付与することが可能なように構成されている。これにより、ユーザは、シート51に横たわった状態でアーム52に外力を加えてアーム52を水平方向に動かすことにより、トレーニング運動またはリハビリ運動を行うことが可能である。
 なお、第3実施形態では、リニアモータ53の水平方向の駆動位置は、リニアスケール54により検出される。そして、リニアスケール54により検出されたリニアモータ53の水平方向の駆動位置は、位置フィードバックとして可動機構制御部20bに向けて出力される。第3実施形態では、上記第1および第2実施形態と異なり、リニアモータ53とアーム52との間に減速機構を設けない分、減速機構によるバックラッシなどの非線形要素を考慮する必要がないので、リニアモータ53の駆動の制御をより正確に行うことができる。
 なお、第3実施形態のその他の構成は、上記第1実施形態と同様である。
 また、第3実施形態による運動装置300を用いてユーザが運動(トレーニング運動またはリハビリ運動)を行う際における可動機構制御部20bのモータ制御部24bの処理フローも、上記第1実施形態(図3および図4参照)と同様である。
 また、第3実施形態の効果も、上記第1実施形態と同様である。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、上記第1~第3実施形態では、本発明のモータ制御装置の一例としての可動機構制御部を、運動装置の可動機構部の駆動の制御を行うために用いる例を示したが、本発明はこれに限らない。本発明では、モータ制御装置を、一般産業に用いられる駆動機構の駆動の制御を行うために用いてもよい。
 また、上記第1~第3実施形態では、ユーザがアーム(可動部)に加えた外力を外乱オブザーバを用いて推定する例を示したが、本発明はこれに限らない。本発明では、ユーザが可動部に加えた外力を外部トルクセンサや力センサなどの他の部品により推定してもよい。
 また、上記第1~第3実施形態では、タッチパネル操作が可能な表示部や、押下操作が可能なボタンスイッチや、回転操作が可能なロータリスイッチなどにより構成される設定入力部を使用して非常停止操作を行う例を示したが、本発明はこれに限らない。本発明では、デッドマンスイッチを使用して非常停止操作を行うようにしてもよい。このようにすれば、ユーザが運動を停止した時点で確実に運動装置を非常停止させることができる。
 また、上記第1および第2実施形態では、アーム(可動部)と回転モータ(駆動部)との間に減速機を設け、その減速機を用いて回転モータの駆動トルクを増幅させる例を示したが、本発明はこれに限らない。本発明では、低速で大きいトルクを出力可能な回転モータを用いるのであれば、アームと回転モータとの間に減速機を設けなくてもよい。なお、上記第1および第2実施形態の減速機は、タイミングベルト機構を有する減速機であるが、平歯車やウォームなどからなるギア減速機や、チェーンおよびスプロケットからなる減速機などを用いてもよい。
 また、上記第1実施形態では、トレーニング制御方法(第1の制御方法)により回転モータ(駆動部)を駆動している状態で、非常状態が発生した場合に、回転モータの目標駆動位置を固定することによって、アーム(可動部)を移動不可能な状態にする制御を行うようにモータ制御部(制御部)を構成する例を示したが、本発明はこれに限らない。本発明では、トレーニング制御方法により回転モータが駆動されている状態で、非常状態が発生した場合に、回転モータがアームに付与する駆動力をゼロにすることによって、アームを自由に移動可能な状態にする制御を行うようにモータ制御部(制御部)を構成してもよい。このように構成すれば、ユーザのトレーニング運動時に非常状態が発生した場合に、アームを介してユーザに付与する負荷をゼロにすることができる。これにより、ユーザは、トレーニング運動時に非常状態が発生した場合に、アームを安全な位置まで容易に移動させることができる。

Claims (16)

  1.  ユーザの運動によって外力が加えられることにより移動可能に構成された可動部(12、42、52)と、
     前記ユーザの外力による移動とは別に前記可動部を移動させるための駆動力を前記可動部に付与する駆動部(13、45、53)と、
     前記可動部の現在の位置に対応する前記駆動部の現在の駆動位置を検出する位置検出部(17、54)と、
     前記駆動部の駆動を制御する制御部(24、24a、24b)と、
    を備え、
     前記制御部は、前記位置検出部により検出された前記駆動部の現在の駆動位置に基づいて、前記可動部を現在の位置に留まらせるような第1制御方法により前記駆動部を駆動する、運動装置。
  2.  前記制御部は、前記第1制御方法により前記駆動部を駆動する際に、前記可動部を現在位置に留まらせるように、前記位置検出部により検出された前記駆動部の現在の駆動位置を目標駆動位置として前記駆動部を駆動する、請求項1に記載の運動装置。
  3.  前記制御部は、前記第1制御方法により前記駆動部を駆動する際に、前記ユーザの外力に応じた大きさの負荷を、前記ユーザの外力の方向とは反対方向に、前記可動部を介して前記ユーザに付与する、請求項2に記載の運動装置。
  4.  前記制御部は、前記第1制御方法により前記駆動部を駆動する際に、前記駆動部により前記可動部に付与される駆動力が所定の制限値の範囲内に含まれるように補償する、請求項1に記載の運動装置。
  5.  前記可動部に加えられる外乱の推定を行う外乱オブザーバ(32)をさらに備え、
     前記制御部は、前記ユーザの外力により前記可動部が移動される際に、前記外乱オブザーバによる推定結果から、前記ユーザの外力が加えられていない状態において前記可動部に加えられている外乱を減算することにより、前記ユーザの外力を算出するように構成されている、請求項3に記載の運動装置。
  6.  前記制御部は、
     前記第1制御方法に加えて、
     前記ユーザの加えた外力の方向に沿った方向の補助力を前記可動部を介して前記ユーザに付与する第2制御方法により、前記駆動部を駆動することが可能な、請求項1に記載の運動装置。
  7.  前記制御部は、前記第2制御方法により前記駆動部を駆動する際に、前記駆動部により前記可動部に付与される駆動力が所定の制限値の範囲内に含まれるように補償する、請求項6に記載の運動装置。
  8.  前記制御部は、
     前記第1制御方法により前記駆動部を駆動する場合には、前記位置検出部により検出された前記駆動部の現在の駆動位置に基づいて前記駆動部を駆動する一方、
     前記第2制御方法により前記駆動部を駆動する場合には、予め設定された駆動パターンで前記駆動部を駆動する、請求項6に記載の運動装置。
  9.  前記制御部は、
     前記第1制御方法により前記駆動部を駆動する場合には、前記ユーザの外力を負帰還させることにより補償された駆動力で前記駆動部を駆動する一方、
     前記第2制御方法により前記駆動部を駆動する場合には、前記ユーザの外力を正帰還させることにより補償された駆動力で前記駆動部を駆動する、請求項6に記載の運動装置。
  10.  前記制御部は、非常状態が発生した場合に、前記駆動部の目標駆動位置を固定する、請求項1に記載の運動装置。
  11.  前記非常状態が発生した場合は、前記ユーザにより非常停止操作が行われた場合を含む、請求項10に記載の運動装置。
  12.  前記可動部に加えられる外乱の推定を行う外乱オブザーバをさらに備え、
     前記非常状態が発生した場合は、前記外乱オブザーバによる推定結果が異常となった場合を含む、請求項10に記載の運動装置。
  13.  前記非常状態が発生した場合は、前記駆動部の現在の駆動位置と目標駆動位置との差が所定のしきい値以上となった場合を含む、請求項10に記載の運動装置。
  14.  前記制御部は、前記駆動部の目標駆動位置が固定され、かつ、前記ユーザによりリセット操作が行われた場合に、前記可動部を所定の速度以下で初期位置に戻すように前記駆動部を駆動する、請求項10~13のいずれか1項に記載の運動装置。
  15.  外力が加えられることにより移動可能に構成された可動部(12、42、52)に、前記外力による移動とは別に前記可動部を移動させるための駆動力を付与するモータ(13、45、53)の駆動を制御するモータ制御部(24、24a、24b)を備え、
     前記モータ制御部は、前記可動部の現在の位置に対応する前記モータの現在の駆動位置を検出する位置検出部(17、54)により検出された前記モータの現在の駆動位置に基づいて、前記可動部を現在の位置に留まらせるように前記駆動部を駆動する、モータ制御装置。
  16.  外力が加えられることにより移動可能に構成された可動部(12、42、52)を前記外力による移動とは別に移動させるための駆動力を前記可動部に付与するモータ(13、45、53)の、前記可動部の現在の位置に対応する現在の駆動位置を検出するステップと、
     検出された前記モータの現在の駆動位置に基づいて、前記可動部を現在の位置に留まらせるように前記モータの駆動を制御するステップとを備える、モータ制御方法。
PCT/JP2011/067738 2011-08-03 2011-08-03 運動装置、モータ制御装置およびモータ制御方法 WO2013018205A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/067738 WO2013018205A1 (ja) 2011-08-03 2011-08-03 運動装置、モータ制御装置およびモータ制御方法
JP2013526686A JP5871001B2 (ja) 2011-08-03 2011-08-03 運動装置、モータ制御装置およびモータ制御方法
CN201180072744.9A CN103733155B (zh) 2011-08-03 2011-08-03 运动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067738 WO2013018205A1 (ja) 2011-08-03 2011-08-03 運動装置、モータ制御装置およびモータ制御方法

Publications (1)

Publication Number Publication Date
WO2013018205A1 true WO2013018205A1 (ja) 2013-02-07

Family

ID=47628768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067738 WO2013018205A1 (ja) 2011-08-03 2011-08-03 運動装置、モータ制御装置およびモータ制御方法

Country Status (3)

Country Link
JP (1) JP5871001B2 (ja)
CN (1) CN103733155B (ja)
WO (1) WO2013018205A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173859A (ja) * 2014-03-17 2015-10-05 三菱電機エンジニアリング株式会社 運動療法装置の制御装置および制御方法
JP2017030081A (ja) * 2015-07-30 2017-02-09 ファナック株式会社 産業用ロボットシステムおよびその制御方法
JP2020137802A (ja) * 2019-02-28 2020-09-03 上銀科技股▲分▼有限公司 上肢訓練システム及び制御方法
US11123608B2 (en) 2019-03-05 2021-09-21 Hiwin Technologies Corp. Upper limb training system and control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7194326B2 (ja) * 2017-04-13 2022-12-22 株式会社ジェイテクト モータ制御装置
CN110787026B (zh) * 2019-11-11 2022-04-12 上海电气集团股份有限公司 一种基于多传感器信息的运动异常保护方法及康复设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851748U (ja) * 1981-10-07 1983-04-08 セノ−株式会社 筋力トレ−ニング装置
JPH01110374A (ja) * 1987-09-30 1989-04-27 Kurt Berroth 積極的筋力トレーニング用装置
JP2007307180A (ja) * 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd リハビリテーション装置
JP2009225845A (ja) * 2008-03-19 2009-10-08 Hitachi Ltd トレーニングシステム、トレーニングマシンの制御方法およびトレーニングマシンの制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272795A (ja) * 2001-03-14 2002-09-24 Japan Science & Technology Corp 上肢の運動機能回復訓練サポートシステム
JP2005348779A (ja) * 2004-06-08 2005-12-22 Asahi Kasei Engineering Kk 運動機能回復訓練システム
JP4183696B2 (ja) * 2005-06-07 2008-11-19 丸善工業株式会社 パワーアシストつき体幹筋力トレーニングマシン
CN101007205A (zh) * 2006-01-27 2007-08-01 明根股份有限公司 应用于健身器材的可程序控制阻力装置及方法
CN101347664A (zh) * 2007-07-20 2009-01-21 王国梁 提供运动阻力及自动回卷效能的改进的马达控制装置
JP5308685B2 (ja) * 2008-02-01 2013-10-09 パナソニックヘルスケア株式会社 受動型運動機器
JP5028348B2 (ja) * 2008-07-07 2012-09-19 パナソニック株式会社 揺動型運動装置
CN101810925B (zh) * 2009-02-19 2013-08-07 杨华平 智能电磁式健身器械阻尼器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851748U (ja) * 1981-10-07 1983-04-08 セノ−株式会社 筋力トレ−ニング装置
JPH01110374A (ja) * 1987-09-30 1989-04-27 Kurt Berroth 積極的筋力トレーニング用装置
JP2007307180A (ja) * 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd リハビリテーション装置
JP2009225845A (ja) * 2008-03-19 2009-10-08 Hitachi Ltd トレーニングシステム、トレーニングマシンの制御方法およびトレーニングマシンの制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173859A (ja) * 2014-03-17 2015-10-05 三菱電機エンジニアリング株式会社 運動療法装置の制御装置および制御方法
US9713744B2 (en) 2014-03-17 2017-07-25 Mitsubishi Electric Engineering Company, Limited Exercise therapy device
JP2017030081A (ja) * 2015-07-30 2017-02-09 ファナック株式会社 産業用ロボットシステムおよびその制御方法
US10011017B2 (en) 2015-07-30 2018-07-03 Fanuc Corporation Industrial robot system and control method thereof
JP2020137802A (ja) * 2019-02-28 2020-09-03 上銀科技股▲分▼有限公司 上肢訓練システム及び制御方法
US11123608B2 (en) 2019-03-05 2021-09-21 Hiwin Technologies Corp. Upper limb training system and control method thereof

Also Published As

Publication number Publication date
CN103733155B (zh) 2016-02-17
JP5871001B2 (ja) 2016-03-01
CN103733155A (zh) 2014-04-16
JPWO2013018205A1 (ja) 2015-03-02

Similar Documents

Publication Publication Date Title
WO2013018205A1 (ja) 運動装置、モータ制御装置およびモータ制御方法
JP6114837B2 (ja) 訓練装置
JP3929230B2 (ja) 運動療法装置
US20060006836A1 (en) Training device
JP6699843B2 (ja) ロボットアームの制御システム
JP2013193183A (ja) トルク検出方法及びアーム装置
JPWO2019087866A1 (ja) 操舵制御装置
JP6305283B2 (ja) 動力装置の制御システム
JPWO2007138668A1 (ja) エレベータのドア装置
US9317028B2 (en) Electric motor control device
WO2011145476A1 (ja) モータ制御装置
JP2008001117A (ja) 車両の操舵装置
JP5023500B2 (ja) 電動パワーステアリング装置
JP4554480B2 (ja) モーター制御装置
CN114127381A (zh) 用于调节车辆组件的驱动设备
JP2015136803A (ja) 同期誤差を低減する機能を有する射出成形機の制御装置
JP5585218B2 (ja) エレベータのドア制御装置
JP4618433B2 (ja) マニピュレータの柔軟制御装置および柔軟制御方法
US10092368B2 (en) Medical apparatus with a medical optical appliance and a holding device and method for operating the medical apparatus
Vertechy et al. Linear-quadratic-Gaussian torque control: application to a flexible joint of a rehabilitation exoskeleton
JP2005337812A (ja) 材料試験機
KR102693378B1 (ko) 재활 로봇 시스템 및 재활 로봇의 제어방법
JP7502781B2 (ja) ロボットアームの制御システム
JP2019097586A (ja) 運動訓練装置
KR102228527B1 (ko) 착용형 로봇을 위한 제어 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180072744.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870410

Country of ref document: EP

Kind code of ref document: A1