WO2013017413A1 - Super-junction-schottky-pin-diode - Google Patents

Super-junction-schottky-pin-diode Download PDF

Info

Publication number
WO2013017413A1
WO2013017413A1 PCT/EP2012/064146 EP2012064146W WO2013017413A1 WO 2013017413 A1 WO2013017413 A1 WO 2013017413A1 EP 2012064146 W EP2012064146 W EP 2012064146W WO 2013017413 A1 WO2013017413 A1 WO 2013017413A1
Authority
WO
WIPO (PCT)
Prior art keywords
doped
semiconductor chip
chip according
epilayer
regions
Prior art date
Application number
PCT/EP2012/064146
Other languages
English (en)
French (fr)
Inventor
Ning Qu
Alfred Goerlach
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201280038385.XA priority Critical patent/CN103718297B/zh
Priority to EP12737284.5A priority patent/EP2740155B1/de
Priority to US14/236,604 priority patent/US9263515B2/en
Publication of WO2013017413A1 publication Critical patent/WO2013017413A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • High-voltage PiN diodes are PN diodes in which an undoped (intrinsic) and in practice mostly weakly doped layer i is located between the p and n regions.
  • the reverse voltage is mainly taken from the lightly doped region i.
  • the space charge zone mainly expands in the lightly doped region.
  • the doping concentration and the thickness of this lightly doped region are determined by the predetermined breakdown voltage.
  • a high breakdown voltage means low doping concentration and large thickness of this lightly doped region.
  • the doping concentration of the i-layer is about 3-10 14 cm -3 and the layer thickness is about 50 microns.
  • Doping concentration of the weakly doped region is thereby greatly increased. This leaves the chip low at the weakly doped central area. The forward voltage at high currents remains low. In contrast, in majority carrier devices such as Schottky diodes, there is no increase in carrier density.
  • the weakly doped region represents a large ohmic resistance at which a correspondingly high voltage drops in the direction of flow.
  • the charge carriers (electrons and holes) that are injected into the lightly doped region during the operation of PN or PiN diodes in the direction of flow must first be disconnected on shutdown before the diode can assume blocking voltage. Therefore, in the event of an abrupt current commutation, the current initially continues in the reverse direction until the stored charge carriers have been removed or removed.
  • This stream is also referred to as a clearing stream or reverse recovery current.
  • the amount and duration of the evacuation stream is determined primarily by the amount of charge carriers stored in the lightly doped region. The more charge carriers are present, the higher the removal flow. A higher purge current means a higher turn-off power dissipation.
  • the integration of the cut-off current over time yields the storage charge Qrr (reverse recovery charge), which is an important parameter for describing the turn-off power loss and should be as small as possible.
  • Schottky diodes metal-semiconductor contacts or silicide semiconductor contacts.
  • Schottky diodes there is no high injection in the flow mode. Therefore eliminating the removal of the mini- tial charge carriers. Schottky diodes switch quickly and almost without loss.
  • Epilayer with introduced into the epilayer, filled with p-type semiconductor material trenches, each having a highly p-doped region at its top, is such that an alternating arrangement of n-doped regions having a first width and p-doped regions with Furthermore, at the front side of the semiconductor chip, there is provided a first metal layer which forms a Schottky contact with the n-doped epilayer and forms an ohmic contact with the highly p-doped regions and serves as an anode electrode on the back side a second metal layer is provided in the semiconductor chip, which constitutes an ohmic contact and serves as a cathode electrode and wherein a respective dielectric layer is provided between an n-doped region and an adjacent p-doped region.
  • a diode according to the invention which is also referred to as a super junction Schottky oxide PiN diode, represents a combination of a Schottky diode with a PiN diode, which together form a superjunction structure and are galvanically isolated from each other.
  • a diode according to the invention has in comparison to conventional PiN power diodes at similarly low forward voltages significantly lower turn-off losses.
  • a diode according to the invention represents a trench structure with Schottky and PiN diodes connected in parallel, in which the Schotty and PiN regions are galvanically separated from one another and charge carrier compensation or
  • a diode according to the invention has a significantly lower turn-off power loss with comparable forward voltage and high current densities.
  • a diode according to the invention has a lower forward voltage at high current density and only a slightly higher turn-off power loss.
  • Figure 1 is a cross-sectional view of a section of a known
  • FIG. 2 shows a cross-sectional view of a section of a diode according to the invention
  • FIG. 3 is a diagram in which transmission characteristics are illustrated
  • FIG. 4 shows a diagram in which charge carrier distributions are illustrated in the p-doped epilayer
  • FIG. 5 shows a diagram in which charge carrier distributions are illustrated in the n-doped epilayer
  • FIG. 6 shows a diagram in which the turn-off behavior is illustrated
  • 7 shows a cross-sectional view of a section of a diode according to the invention according to a second embodiment
  • Figure 8 is a cross-sectional view of a section of a diode according to the invention according to a third embodiment
  • FIG 9 shows a cross-sectional view of a section of a diode according to the invention according to a fourth embodiment.
  • FIG. 1 the prior art structure of a CoolSBD is shown in partial cross-section.
  • the CoolSBD consists of an n + substrate 10, on which an n-epi layer 20 of thickness D_epi and the doping concentration ND is arranged.
  • the n-epitaxial layer 20 includes etched trenches 30 filled with p-doped silicon of the doping concentration NA and p + -doped silicon 40 in the upper regions.
  • the width of the n regions 20 is Wn
  • the width of the p or p + regions 30 and 40 is Wp. Dopings and widths are chosen such that the regions are depleted when the full reverse voltage is applied (superjunction principle).
  • the n-doped regions 20 and the p + doped regions 40 with a continuous first metal layer 50 covered with the n-doped regions 20 form a Schottky contact and form an ohmic contact with the p + -doped regions 40.
  • the metal layer 50 represents the anode contact of the diode.
  • the barrier height of the Schottky diode 50-20 can be adjusted For example, nickel or NiSi can be used as the metal layer 50.
  • Metal layer 60 which represents the ohmic contact to the highly n + doped substrate 10.
  • this layer or layer sequence for soldering or another Mounting suitable may consist of a sequence of Cr / NiV and Ag.
  • the second metal layer 60 forms the cathode terminal.
  • the structure shown is a parallel connection of a Schottky and a PiN diode. In this case, the metal contact 50 with the n-doped columns forms 20 Schottky diodes.
  • the PiN structure is formed by the layer sequence consisting of p + region 40, p-region 30 and substrate 10 as a p + / p / n + structure.
  • the p- and n-doped columns are depleted.
  • the doping can be increased - at least up to a certain limit, which results from the fact that the space charge zones collide even at low voltage. This reduces in the flow direction the bulk resistance of the Schottky diodes 50 - 20 - 10.
  • the flux voltages are therefore lower than in a simple Schottky diode, which has a lower doping at the same blocking voltage.
  • some current flows through the PiN diodes in the direction of flow. This further reduces the flux voltage.
  • the minority carriers must be at
  • SJSOP super junction Schottky oxide PiN diode
  • dielectric layers 70-preferably SiO 2 layers-with a thickness D_ox are located between the p / p + and n-regions. As a result, the p and n regions are no longer directly connected galvanically. On the front of the chip are the n-doped regions
  • the metal layers 50 and 60 again represent the anode or cathode contact of the diode. Construction and function correspond to the arrangement according to FIG. 1.
  • the principle and advantage of the structure according to the invention according to FIG. 2 compared with the known structure according to FIG. 1 are compared using the example of 600 V diodes. For this purpose, components are considered with an active chip area of 26mm 2 and a chip thickness of 200 ⁇ of silicon.
  • the doping of the substrate 10 is 10 19 cm -3 .
  • the doping concentration NA of the n-doped regions or columns 20 and of the p-doped regions or columns 30 is identical and amounts to 10 16 cm -3 .
  • the alternately arranged n and p columns have a thickness D_epi of 35 ⁇ m.
  • the corresponding widths Wp and Wn are each 1 ⁇ .
  • the p + doping 40 is a Gaussian distribution with a surface concentration of 5-10 19 cm -3 at a penetration depth of approximately 0.5 ⁇ m
  • the oxide layers 70 additionally present in the structure according to the invention have a thickness D_ox of 50 nm.
  • the CoolSBD and the SJSOP are additionally compared with a 600V PiN diode of the same area and chip thickness Epidicke is 52 ⁇ and has a doping concentration of 3.1 -10 14 cm “3 .
  • the p-doped anode again has a Gaussian distribution with a surface concentration of 5-10 19 cm -3 at a penetration depth of 5 ⁇ m.
  • the reverse currents of SJSOP and CoolSBD are comparable, but one to two orders of magnitude higher than that of the PiN diode due to the Schottky barrier selected.
  • the forward voltages - measured at high currents, eg. At 100 A - a SJSOP are comparable to the PiN diode, but lower than the known CoolSBD. This is illustrated in FIG. 3, in which along the abscissa the forward voltage VF and along the ordinate the forward current IF are plotted.
  • the improved behavior of the SJSOP in the forward direction can be explained by the surprising finding that in the novel structure - in contrast to CoolSBD - over the entire p-doped column, as with a PiN diode, high injection prevails.
  • the oxide layers 70 prevent an outflow of charge carriers into the adjacent n-doped regions 20. Drained charge carriers are no longer available for high injection.
  • the Cause of the charge shift of a CoolSBD is to be found in the different slip voltages on the one hand, the Schottky diode 50 - 20 and on the other hand, the PiN diode 30 - 10. It is assumed that the slip voltage of the Schottky diode is lower than that of the PiN diode.
  • FIGS. 4 and 5 The calculated charge carrier distributions in the p- and n-doped regions are illustrated in FIGS. 4 and 5.
  • the vertical extension Y beginning at the lower edge of the first metal layer 50, and along the ordinate, the electron density (eDensity) and the hole density (hDensity) are plotted. It can be seen that there are hardly any differences in the n-area between CoolSBD and SJSOP, but in the new SJSOP the entire p-area is included
  • Electrons and holes are flooded.
  • FIG. 6 A cross-sectional view of a section of a diode according to the invention according to a second embodiment is shown in FIG. In contrast to the arrangement according to FIG. 2, the p-doped regions 30 and the oxide layers 70 do not terminate at the n / n + junction 20-10, but at a certain distance DS above them.
  • the invention is not restricted to trenches filled with p-doped semiconductor material in an n-doped epilayer.
  • n-doped epilayer instead of the n-doped epilayer, as can be seen from FIG. 8, which shows a third exemplary embodiment of the invention, there is also a p-doped epilayer 20 which has a highly p-doped region 40 on the surface. are introduced into the filled with n-doped semiconductor material trenches 30. Again, the n- and p-doped regions are galvanically separated by a dielectric layer 70. In this case, the filled n-doped layer at the bottom of the trench 30 must be galvanically connected to the highly n-doped substrate 10.
  • the p-doped epitaxial layer 20 terminates not at the highly n-doped substrate 10, but at a distance (DS) thereof analogous to FIG. 7, the p-doped epilayer 20 and the highly n-doped epitope must be present Substrate 10 still another n-doped layer 80 are located, to which the filled n-doped layer 30 connects. This is illustrated in Figure 9, which shows a fourth embodiment of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Die Erfindung betrifft einen Halbleiterchip, der ein n+-dotiertes Substrat, über dem sich eine n-dotierte Epischicht mit in die Epischicht eingebrachten, mit p-dotiertem Halbleitermaterial gefüllten Gräben, die an ihrer Oberseite jeweils einen hoch p-dotierten Bereich aufweisen, derart befindet, dass eine alternierende Anordnung von n-dotierten Bereichen mit einer ersten Breite und p-dotierten Bereichen mit einer zweiten Breite vorliegt. Des Weiteren enthält der Chip eine an seiner Vorderseite vorgesehene erste Metallschicht, die einen Schottky-Kontakt mit der n-dotierten Epischicht und einen ohmschen Kontakt mit den hoch p-dotierten Bereichen bildet und als Anodenelektrode dient. An der Rückseite des Halbleiterchips ist eine zweite Metallschicht vorgesehen, die einen ohmschen Kontakt darstellt und als Kathodenelektrode dient. Zwischen einem n-dotierten Bereich und einem benachbarten p-dotierten Bereich ist jeweils eine dielektrische Schicht vorgesehen.

Description

Beschreibung
Titel
SUPER-JUNCTION-SCHOTTKY-PIN-DIODE
Stand der Technik
Im Rahmen der C02-Thematik werden zunehmend effiziente Stromumrichter benötigt. Beispiele sind Wechselrichter (Inverter) für Photovoltaik- oder Automobilanwendungen. Dazu sind hoch sperrende, verlustarme und schnell schaltende Leistungshalbleiter notwendig. Neben aktiven Halbleiterschaltern wie IGBTs oder CoolMOS-Transistoren sind auch Freilaufdioden erforderlich. Für Hochspannungsanwendungen werden in der Regel PiN-Dioden aus Silizium eingesetzt. PiN-Dioden weisen kleine Durchlassspannungen und niedrige Sperrströme und damit geringe Vorwärts- und Sperrverluste auf. Nachteilig sind allerdings hohe Schaltverluste, die bei der Stromkommutierung als Abschaltverluste auftreten.
Hochspannungs-PiN-Dioden sind PN-Dioden, bei denen sich zwischen p- und n- Gebiet eine undotierte (intrinsische) und in der Praxis meist schwach dotierte Schicht i befindet. Die Sperrspannung wird hauptsächlich von dem schwach dotierten Gebiet i übernommen. Die Raumladungszone dehnt sich hauptsächlich in dem schwach dotierten Gebiet aus. Die Dotierkonzentration und die Dicke dieses schwach dotierten Gebiets werden von der vorgegebenen Durchbruchspannung bestimmt. Eine hohe Durchbruchspannung bedeutet niedrige Dotierkonzentration und große Dicke dieses schwach dotierten Gebiets. Für eine 600V-Diode beträgt die Dotierungskonzentration der i-Schicht etwa 3-1014 cm"3 und die Schichtdicke etwa 50 Mikrometer.
Bei Flussbetrieb mit hoher Stromdichte tritt in PiN-Dioden eine Hochinjektion auf. Dabei werden Elektronen und Löcher in das schwach dotierte Gebiet injiziert. Die Konzentration der injizierten Minoritätsladungsträger übersteigt dabei die
Dotierkonzentration des schwach dotierten Gebiets. Die Leitfähigkeit des schwach dotierten Gebiets wird dadurch stark erhöht. Damit bleibt der Span- nungsabfall am schwach dotierten Mittelgebiet gering. Die Flussspannung bei hohen Strömen bleibt niedrig. Im Gegensatz dazu findet bei Majoritätsträgerbauelementen wie beispielsweise Schottky-Dioden keine Anhebung der Ladungsträgerdichte statt. Das schwach dotierte Gebiet stellt einen großen ohmschen Wi- derstand dar, an dem in Flussrichtung eine entsprechend hohe Spannung abfällt.
Die Ladungsträger (Elektronen und Löcher), die während des Betriebs von PN- oder PiN-Dioden in Flussrichtung in das schwach dotierte Gebiet injiziert werden, müssen beim Abschalten zuerst abgebaut werden, bevor die Diode Sperrspan- nung übernehmen kann. Daher fließt der Strom bei einer abrupten Stromkommutierung zunächst in Sperrrichtung weiter, bis die gespeicherten Ladungsträger abgebaut bzw. ausgeräumt sind. Dieser Strom wird auch als Ausräumstrom oder Reverse Recovery Current bezeichnet. Die Höhe und Dauer des Ausräumstroms wird in erster Linie von der Menge der im schwach dotierten Gebiet gespeicher- ten Ladungsträger bestimmt. Je mehr Ladungsträger vorliegen, desto höher ist der Ausräumstrom. Ein höherer Ausräumstrom bedeutet eine höhere Abschaltverlustleistung. Aus der Integration des Abschaltstroms über die Zeit erhält man die Speicherladung Qrr (Reverse Recovery Charge), die eine wichtige Größe zur Beschreibung der Abschaltverlustleistung ist und möglichst klein sein soll.
Schaltzeiten und Schaltverluste sind bei PiN-Dioden hoch.
Eine Verbesserung des Schaltverhaltens bieten Schottky-Dioden (Metall- Halbleiterkontakte bzw. Silizid-Halbleiterkontakte). Bei Schottky-Dioden findet keine Hochinjektion im Flussbetrieb statt. Daher entfällt das Ausräumen der Mi- noritätsladungsträger. Schottky-Dioden schalten schnell und nahezu verlustlos.
Allerdings sind für hohe Sperrspannungen wieder dicke und niedrig dotierte Halbleiterschichten notwendig, was bei hohen Strömen zu nicht akzeptablen, hohen Flussspannungen führt. Deswegen sind Leistungs-Schottky-Dioden in Silizium- Technik trotz guten Schaltverhaltens für Sperrspannungen über etwa 100 V nicht geeignet.
In der DE 197 40 195 C2 wird ein Halbleiterbauelement beschrieben, das nachfolgend stets als Cool SBD-Diode bezeichnet wird. Bei dieser Diode wird durch das Einbringen von dotierten, alternierend angeordneten p- und n-leitenden Säu- len unter einem Schottky-Kontakt eine nahezu beliebige Absenkung des Widerstandes möglich. Wenn die Säulenbreite reduziert wird, können die Säulendotie- rungen erhöht werden. Dabei ist die Dotierung der p- und n-Säulen so gewählt, dass bei einem Anliegen einer Sperrspannung alle Dotieratome ionisiert sind. Dieses Prinzip wird auch als Superjunction-Prinzip (SJ) bezeichnet. Da über die p-dotierten Säulen eine gewisse Minoritätsladungsträgerinjektion stattfindet, wird das ideale Schaltverhalten einer reinen Schottky-Diode nicht erreicht, gegenüber einer PiN-Diode aber deutlich verbessert. Die geringe Flussspannung der PiN- Diode wird aber bei hohen Strömen nicht erreicht. Das Superjunction-Prinzip ist beispielsweise in der Zeitschrift Japanese Journal of Applied Physics, Vol. 36, Seiten 6254 - 6262, beschrieben.
Offenbarung der Erfindung
Bei einem Halbleiterchip mit den im Anspruch 1 angegebenen Merkmalen handelt es sich im Unterschied zu den vorstehend beschriebenen Halbleiteranordnungen um eine Super-Junction-Schottky-Oxid-PiN-Diode.
Diese weist ein n+-dotiertes Substrat auf, über dem sich eine n-dotierte
Epischicht mit in die Epischicht eingebrachten, mit p-dotiertem Halbleitermaterial gefüllten Gräben, die an ihrer Oberseite jeweils einen hoch p-dotierten Bereich aufweisen, derart befindet, dass eine alternierende Anordnung von n-dotierten Bereichen mit einer ersten Breite und p-dotierten Bereichen mit einer zweiten Breite vorliegt, wobei des Weiteren an der Vorderseite des Halbleiterchips eine erste Metallschicht vorgesehen ist, die einen Schottky-Kontakt mit der n-dotierten Epischicht und einen ohmschen Kontakt mit den hoch p-dotierten Bereichen bildet und als Anodenelektrode dient, an der Rückseite des Halbleiterchips eine zweite Metallschicht vorgesehen ist, die einen ohmschen Kontakt darstellt und als Kathodenelektrode dient und wobei zwischen einem n-dotierten Bereich und einem benachbarten p-dotierten Bereich jeweils eine dielektrische Schicht vorgesehen ist.
Dadurch wird in vorteilhafter Weise eine hochsperrende Hochvolt-Diode mit niedriger Flussspannung und günstigem Schaltverhalten zur Verfügung gestellt. Eine Diode gemäß der Erfindung, die auch als Super-Junction-Schottky-Oxid-PiN- Diode bezeichnet wird, stellt eine Kombination einer Schottky-Diode mit einer PiN-Diode dar, die zusammen eine Superjunction-Struktur bilden und voneinander galvanisch getrennt sind. Eine Diode gemäß der Erfindung weist im Vergleich zu herkömmlichen PiN-Leistungsdioden bei ähnlich niedrigen Flussspannungen deutlich geringere Abschaltverluste auf.
Eine Diode gemäß der Erfindung stellt eine Trenchstruktur mit parallel geschalteten Schotty- und PiN-Dioden dar, bei denen die Schotty- und PiN-Bereiche galvanisch voneinander getrennt sind und Ladungsträgerkompensation bzw.
Superjunction-Struktur aufweisen. Durch die galvanische Trennung von Schottky- und PiN-Struktur tritt in den PiN-Bereichen eine Hochinjektion auf. Bei nahezu gleichen Abschaltverlusten ist die Flussspannung geringer als bei einer bekannten Cool SBD-Diode.
Im Vergleich zu einer Hochspannungs-PiN-Diode weist eine erfindungsgemäße Diode eine deutlich kleinere Abschaltverlustleistung bei vergleichbarer Flussspannung und hohen Stromdichten auf.
Im Vergleich zu einer Cool SBD-Diode weist eine erfindungsgemäße Diode eine niedrigere Flussspannung bei hoher Stromdichte und einer nur unwesentlich höheren Abschaltverlustleistung auf.
Nachfolgend wird die Erfindung anhand der Zeichnung näher erläutert. Es zeigt
Figur 1 eine Querschnittsdarstellung eines Ausschnitts einer bekannten
Cool SBD-Diode,
Figur 2 eine Querschnittsdarstellung eines Ausschnitts einer erfindungsgemäßen Diode,
Figur 3 ein Diagramm, in welchem Durchlasskennlinien veranschaulicht sind,
Figur 4 ein Diagramm, in welchem Ladungsträgerverteilungen in der p-dotierten Epischicht veranschaulicht sind,
Figur 5 ein Diagramm, in welchem Ladungsträgerverteilungen in der n-dotierten Epischicht veranschaulicht sind,
Figur 6 ein Diagramm, in welchem das Abschaltverhalten veranschaulicht ist, Figur 7 eine Querschnittsdarstellung eines Ausschnitts einer erfindungsgemäßen Diode gemäß einem zweiten Ausführungsbeispiel,
Figur 8 eine Querschnittsdarstellung eines Ausschnitts einer erfindungsgemäßen Diode gemäß einem dritten Ausführungsbeispiel und
Figur 9 eine Querschnittsdarstellung eines Ausschnitts einer erfindungsgemäßen Diode gemäß einem vierten Ausführungsbeispiel.
In der Figur 1 ist die dem Stand der Technik entsprechende Struktur einer CoolSBD ausschnittsweise im Querschnitt dargestellt. Die CoolSBD besteht aus einem n+-Substrat 10, auf dem eine n-Epischicht 20 der Dicke D_epi und der Dotierungskonzentration ND angeordnet ist. Die n-Epischicht 20 enthält eingeätzte Gräben (Trenchs) 30, die mit p-dotiertem Silizium der Dotierungskonzentration NA bzw. in den oberen Bereichen mit p+-dotiertem Silizium 40 gefüllt sind. Die Weite der n-Bereiche 20 ist Wn, die Weite der p- bzw. p+-Bereiche 30 bzw. 40 ist Wp. Dotierungen und Weiten sind so gewählt, dass die Bereiche bei Anliegen der vollen Sperrspannung verarmt sind (Superjunction Prinzip). Dies ist etwa bei NA-Wp = ND-Wn = 1012 cm"2 der Fall. Auf der Vorderseite des Chips sind die n- dotierten Bereiche 20 und die p+-dotierten Bereiche 40 mit einer durchgehenden ersten Metallschicht 50 bedeckt, die mit den n-dotierten Bereichen 20 einen Schottky-Kontakt und mit den p+-dotierten Bereichen 40 einen ohmschen Kontakt bildet. Die Metallschicht 50 stellt den Anodenkontakt der Diode dar. Durch Wahl eines entsprechenden Metalls 50 kann die Barrierenhöhe der Schottky- Diode 50-20 eingestellt werden. Beispielsweise kann als Metallschicht 50 Nickel bzw. NiSi verwendet werden. Über der funktionalen Schicht 50 können sich ggf. noch weitere - nicht eingezeichnete Metallschichten - befinden, um die Oberfläche beispielsweise lötfähig oder bondbar zu machen. Auf der Rückseite des Chips befindet sich eine zweite Metallschicht 60, die den ohmschen Kontakt zum hoch n+-dotierten Substrat 10 darstellt. Üblicherweise ist diese Schicht bzw. Schichtenfolge zur Löt- oder einer sonstigen Montage geeignet. Sie kann beispielsweise aus einer Abfolge von Cr / NiV und Ag bestehen. Die zweite Metallschicht 60 bildet den Kathodenanschluss. Bei der gezeigten Struktur handelt es sich um eine Parallelschaltung einer Schottky- und einer PiN-Diode. Dabei bildet der Metallkontakt 50 mit den n- dotierten Säulen 20 Schottky-Dioden. Die PiN-Struktur wird durch die Schichtenfolge bestehend aus p+-Gebiet 40, p-Gebiet 30 und Substrat 10 als p+ / p / n+ - Struktur gebildet.
Bei Anliegen der Sperrspannung verarmen die p- und n-dotierten Säulen. Mit abnehmender Breite Wp und Wn kann die Dotierung - zumindest bis zu einer gewissen Grenze, die daraus resultiert, dass die Raumladungszonen schon bei kleiner Spannung zusammenstoßen - erhöht werden. Dies reduziert in Flussrichtung den Bahnwiderstand der Schottky-Dioden 50 - 20 - 10. Die Flussspannungen sind deshalb niedriger als bei einer einfachen Schottky-Diode, die bei gleicher Sperrspannung eine niedrigere Dotierung aufweist. Zusätzlich fließt in Flussrichtung noch etwas Strom durch die PiN-Dioden. Dadurch wird die Fluss- Spannung weiter reduziert. Allerdings müssen die Minoritätsladungsträger beim
Abschalten mit nachteiligen Effekten für die Schaltzeit auch wieder ausgeräumt werden.
Ein erfindungsgemäßes Ausführungsbeispiel einer Super-Junction-Schottky- Oxid-PiN-Diode (SJSOP) ist in der Figur 2 ausschnittsweise im Querschnitt dargestellt. Die SJSOP besteht aus einem n+-Substrat 10, auf dem eine n- Epischicht 20 der Dicke D_epi angeordnet ist. Die n-Epischicht 20 enthält eingeätzte Gräben (Trenchs) 30, die mit p-dotiertem Silizium und an der Oberseite mit p+-dotiertem Silizium 40 gefüllt sind. Die Weite der n-Bereiche 20 beträgt Wn, die der p- bzw. p+-Bereiche 30 bzw. 40 beträgt Wp. Wiederum sind die Dotierungskonzentrationen und Weiten so gewählt, dass das Superjunction-Prinzip gilt. Im Gegensatz zu einer Anordnung gemäß der Figur 1 befinden sich zwischen den p/p+- und n-Bereichen dielektrische Schichten 70 - vorzugsweise Si02-Schichten - mit einer Dicke D_ox. Dadurch sind die p- und n-Bereiche nicht mehr direkt gal- vanisch verbunden. Auf der Vorderseite des Chips sind die n-dotierten Bereiche
20 und die p+-dotierten Bereiche 40 mit einer durchgehenden Metallschicht 50 bedeckt, die mit den n-dotierten Bereichen 20 einen Schottky-Kontakt und mit den p+-dotierten Bereichen 40 einen ohmschen Kontakt bildet. Die Metallschichten 50 und 60 stellen wiederum den Anoden- bzw. Kathodenkontakt der Diode dar. Aufbau und Funktion entsprechen der Anordnung gemäß der Figur 1 . Prinzip und Vorteil der erfindungsgemäßen Struktur gemäß der Figur 2 gegenüber der bekannten Struktur nach Figur 1 werden am Beispiel von 600 V-Dioden verglichen. Dazu werden Bauelemente mit einer aktiven Chipfläche von 26mm2 und einer Chipdicke von 200 μηη aus Silizium betrachtet. Die Dotierung des Sub- strats 10 beträgt 1019 cm"3. Die Dotierkonzentration NA der n-dotierten Bereiche bzw. Säulen 20 und der p-dotierten Bereiche bzw. Säulen 30 ist identisch und beträgt 1016 cm"3. Die alternierend angeordneten n- und p-Säulen haben eine Dicke D_epi von 35 μηη. Die entsprechenden Weiten Wp und Wn betragen jeweils 1 μηη. Die p+-Aufdotierung 40 ist eine Gaußverteilung mit einer Oberflächenkon- zentration von 5-1019 cm"3 bei einer Eindringtiefe von etwa 0,5 μηη. Die Barriere des Schottky-Kontakts, der aus dem Vorderseitenmetall 50 und den n-dotierten Säulen 20 gebildet wird, beträgt 0,72 eV. Die in der erfindungsgemäßen Struktur zusätzlich vorhandenen Oxidschichten 70 haben eine Dicke D_ox von 50 nm. Die CoolSBD und die SJSOP werden zusätzlich noch mit einer 600V PiN-Diode gleicher Fläche und Chipdicke verglichen. Die n-dotierte Epidicke beträgt 52μηι und hat eine Dotierkonzentration von 3,1 -1014 cm"3. Die p-dotierte Anode weist wieder eine Gaußverteilung mit einer Oberflächenkonzentration von 5-1019 cm"3 bei einer Eindringtiefe von 5 μηη auf.
Bei vergleichbaren Durchbruchsspannungen (650V) sind die Sperrströme von SJSOP und CoolSBD vergleichbar, allerdings wegen der gewählten Schottky- Barriere um ein bis zwei Größenordnungen höher als bei der PiN-Diode. Die Durchlassspannungen - gemessen bei hohen Strömen, z. B. bei 100 A - einer SJSOP sind vergleichbar mit der PiN-Diode, aber geringer als bei der bekannten CoolSBD. Dies ist in der Figur 3 dargestellt, in welcher längs der Abszisse die Flussspannung VF und längs der Ordinate der Flussstrom IF aufgetragen sind.
Das verbesserte Verhalten der SJSOP in Durchlassrichtung lässt sich mit der überraschenden Erkenntnis erklären, dass bei der neuartigen Struktur - im Gegensatz zur CoolSBD - über die gesamte p-dotierte Säule, genau wie bei einer PiN-Diode, Hochinjektion herrscht. Dabei verhindern die Oxidschichten 70 einen Abfluss von Ladungsträgern in die benachbarten n-dotierten Gebiete 20. Abgeflossene Ladungsträger stehen für Hochinjektion nicht mehr zur Verfügung. Die Ursache der Ladungsverschiebung einer CoolSBD ist in den unterschiedlichen Schleusenspannungen einerseits der Schottky-Diode 50 - 20 und anderseits der PiN-Diode 30 - 10 zu suchen. Dabei wird vorausgesetzt, dass die Schleusenspannung der Schottky-Diode niedriger als die der PiN-Diode ist. Die berechne- ten Ladungsträgerverteilungen im p- und n-dotierten Gebiet sind in den Figuren 4 und 5 illustriert. Dort ist jeweils längs der Abszisse die vertikale Erstreckung Y, beginnend am unteren Rand der ersten Metallschicht 50, und längs der Ordinate die Elektronendichte (eDensity) und die Löcherdichte (hDensity) aufgetragen. Man erkennt, dass im n-Gebiet zwischen CoolSBD und SJSOP kaum Unter- schiede bestehen, bei der neuartigen SJSOP das gesamte p-Gebiet aber mit
Elektronen und Löchern überflutet ist.
Wegen der höheren Minoritätsladungsträgerkonzentration (Elektronen in den schwach p-dotierten Gebieten 30) ist das Schaltverhalten einer erfindungsgemä- ßen Diode etwas ungünstiger als bei der CoolSBD, allerdings wesentlich besser als bei einer PiN-Diode. Dieser Sachverhalt ist in der Figur 6 veranschaulicht, in welcher längs der Abszisse die Zeit und längs der Ordinate der Strom aufgetragen ist. Eine Querschnittsdarstellung eines Ausschnitts einer erfindungsgemäßen Diode gemäß einem zweiten Ausführungsbeispiel ist in der Figur 7 dargestellt. Im Gegensatz zur Anordnung nach der Figur 2 enden die p-dotierten Gebiete 30 und die Oxidschichten 70 nicht am n / n+ -Übergang 20 - 10, sondern in einem gewissen Abstand DS darüber.
Grundsätzlich ist die Erfindung nicht auf mit p-dotiertem Halbleitermaterial gefüllte Gräben in einer n-dotierten Epischicht beschränkt. An Stelle der n-dotierten Epischicht kann, wie es aus der Figur 8 ersichtlich ist, die ein drittes Ausführungsbeispiel für die Erfindung zeigt, auch eine p-dotierten Epischicht 20, die an der Oberfläche einen hoch p-dotierten Bereich 40 aufweist, vorliegen, in die mit n-dotiertem Halbleitermaterial gefüllte Gräben 30 eingebracht sind. Dabei sind wiederum die n- und p-dotierten Bereiche galvanisch durch eine dielektrische Schicht 70 getrennt. Dabei muss die gefüllte n-dotierte Schicht am Boden des Grabens 30 mit dem hoch n-dotierten Substrat 10 galvanisch verbunden sein. Für den Fall, dass die p-dotierte Epischicht 20 analog zu Fig. 7 nicht am hoch n- dotierten Substrat 10, sondern in einem Abstand (DS) davon endet, muss sich zwischen der p-dotierten Epischicht 20 und dem hoch n-dotierten Substrat 10 noch eine weitere n-dotierte Schicht 80 befinden, an die die gefüllte n-dotierte Schicht 30 anschließt. Dies ist in der Figur 9 veranschaulicht, die ein viertes Ausführungsbeispiel für die Erfindung zeigt.

Claims

Ansprüche
1 . Halbleiterchip, mit
einem n+-dotierten Substrat (10), über dem sich eine n-dotierte Epischicht (20) mit in die Epischicht eingebrachten, mit p-dotiertem Halbleitermaterial gefüllten Gräben (30), die an ihrer Oberseite jeweils einen hoch p-dotierten Bereich (40) aufweisen, derart befindet, dass eine alternierende Anordnung von n-dotierten Bereichen (20) mit einer ersten Breite (Wn) und p-dotierten Bereichen (30) mit einer zweiten Breite (Wp) vorliegt,
einer an der Vorderseite des Halbleiterchips vorgesehenen ersten Metallschicht (50), die einen Schottky-Kontakt mit der n-dotierten Epischicht (20) und einen ohmschen Kontakt mit den hoch p-dotierten Bereichen (40) bildet und als Anodenelektrode dient,
einer an der Rückseite des Halbleiterchips vorgesehenen zweiten Metallschicht (60), die einen ohmschen Kontakt darstellt und als Kathodenelektrode dient,
dadurch gekennzeichnet, dass
zwischen einem n-dotierten Bereich (20) und einem benachbarten p- dotierten Bereich (30) jeweils eine dielektrische Schicht (70) vorgesehen ist.
2. Halbleiterchip nach Anspruch 1 , dadurch gekennzeichnet, dass die mit p- dotiertem Halbleitermaterial gefüllten Gräben (30) an ihrer Unterseite jeweils mit dem n+-dotierten Substrat (10) kontaktiert sind.
3. Halbleiterchip nach Anspruch 1 , dadurch gekennzeichnet, dass die Unterseite der mit p-dotiertem Halbleitermaterial gefüllten Gräben (30) jeweils einen Abstand (DS) von dem n+-Substrat (10) aufweisen.
4. Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Breite und die Dotierung der n-dotierten Epischicht (20) und der p-dotierten Gräben (30) derart gewählt sind, dass diese Gebiete beim Vorliegen der maximalen Sperrspannung vollständig verarmt sind.
Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dielektrischen Schichten (70) Siliziumdioxidschichten sind.
Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dotierkonzentration der n-dotierten Epischicht (20) größer ist als die Dotierkonzentration der n-dotierten Epischicht einer konventionellen Hochspannungs-pn-Diode oder einer konventionellen Hochspannungs- Schottkydiode mit vergleichbarer Sperrspannung.
Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass seine Durchbruchspannung größer als 200 V ist.
Halbleiterchip nach Anspruch 7, dadurch gekennzeichnet, dass seine Durchbruchspannung größer als 600 V ist.
Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Breite (Wn) der n-dotierten .Bereiche (20) und die zweite Breite (Wp) der p-dotierten Bereiche (30) im Bereich zwischen 1 μηη und 4 μηη liegt, die Tiefe der n-dotierten Bereiche (20) und der p-dotierten Bereiche (30) zwischen 30 μηη und 80 μηη liegt und die Breite der dielektrischen Schichten (70) im Bereich zwischen 10 nm und 100 nm liegt.
10. Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die p-dotierten Gräben (30) in Streifenanordnung oder in Form von Inseln angeordnet sind.
1 1 . Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die p-dotierten Gräben (30) in die n-dotierte Epischicht (20) eingeätzt sind.
12. Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass alle Halbleiterschichten den jeweils gegenteiligen Leitfähig- keitstyp aufweisen, die erste Metallschicht (50) als Kathodenelektrode dient und die zweite Metallschicht (60) als Anodenelektrode dient.
13. Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er in einem Einpressdiodengehäuse realisiert ist.
14. Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er Bestandteil eines Gleichrichters eines Kraftfahrzeuggenerators ist.
15. Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Leitfähigkeitstyp von Epischicht (20) und gefüllten Gräben (30) vertauscht ist und dass sich an der Oberfläche der p-dotierten
Epischicht (20) jeweils ein hoch p-dotierter Bereich (40) befindet.
16. Halbleiterchip nach Anspruch 15, dadurch gekennzeichnet, dass zwischen der Unterseite der p-dotierten Epischicht (20) und dem n+-dotierten Substrat (10) eine n-dotierte Schicht (80) vorgesehen ist.
PCT/EP2012/064146 2011-08-02 2012-07-19 Super-junction-schottky-pin-diode WO2013017413A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280038385.XA CN103718297B (zh) 2011-08-02 2012-07-19 超结肖特基pin二极管
EP12737284.5A EP2740155B1 (de) 2011-08-02 2012-07-19 Super-junction-schottky-pin-diode
US14/236,604 US9263515B2 (en) 2011-08-02 2012-07-19 Super-junction schottky PIN diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011080258A DE102011080258A1 (de) 2011-08-02 2011-08-02 Super-Junction-Schottky-Oxid-PiN-Diode
DE102011080258.4 2011-08-02

Publications (1)

Publication Number Publication Date
WO2013017413A1 true WO2013017413A1 (de) 2013-02-07

Family

ID=46545387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/064146 WO2013017413A1 (de) 2011-08-02 2012-07-19 Super-junction-schottky-pin-diode

Country Status (5)

Country Link
US (1) US9263515B2 (de)
EP (1) EP2740155B1 (de)
CN (1) CN103718297B (de)
DE (1) DE102011080258A1 (de)
WO (1) WO2013017413A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274435A (zh) * 2022-09-22 2022-11-01 深圳芯能半导体技术有限公司 一种凸形碳化硅mps器件及其制备方法、芯片

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201911B4 (de) 2012-02-09 2022-09-22 Robert Bosch Gmbh Super-Junction-Schottky-Oxid-PiN-Diode mit dünnen p-Schichten unter dem Schottky-Kontakt
US9716151B2 (en) * 2013-09-24 2017-07-25 Semiconductor Components Industries, Llc Schottky device having conductive trenches and a multi-concentration doping profile therebetween
US9093568B1 (en) 2014-04-16 2015-07-28 Infineon Technologies Ag Semiconductor diode
CN104617160B (zh) * 2015-01-28 2017-07-11 工业和信息化部电子第五研究所 肖特基二极管及其制造方法
CN106158625A (zh) * 2015-04-14 2016-11-23 北大方正集团有限公司 一种超结二极管及其制造方法
WO2017119066A1 (ja) * 2016-01-05 2017-07-13 三菱電機株式会社 炭化珪素半導体装置
DE102016204250A1 (de) * 2016-03-15 2017-09-21 Robert Bosch Gmbh Trench basierte Diode und Verfahren zur Herstellung einer solchen Diode
CN107293601B (zh) * 2016-04-12 2021-10-22 朱江 一种肖特基半导体装置及其制备方法
US10312710B1 (en) 2017-01-31 2019-06-04 The United States Of America, As Represented By The Secretary Of The Navy Energy recovery pulse forming network
US10608122B2 (en) 2018-03-13 2020-03-31 Semicondutor Components Industries, Llc Schottky device and method of manufacture
CN109461767B (zh) * 2018-10-25 2022-03-29 深圳市金鑫城纸品有限公司 一种超结结构的制作方法
DE102020001842A1 (de) * 2020-03-20 2021-09-23 Azur Space Solar Power Gmbh Stapelförmiges photonisches III-V-Halbleiterbauelement
CN116364748A (zh) * 2021-12-27 2023-06-30 苏州东微半导体股份有限公司 半导体二极管
CN114944422B (zh) * 2022-07-22 2023-03-28 浙江大学 一种浮岛器件及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19740195C2 (de) 1997-09-12 1999-12-02 Siemens Ag Halbleiterbauelement mit Metall-Halbleiterübergang mit niedrigem Sperrstrom
US6590240B1 (en) * 1999-07-28 2003-07-08 Stmicroelectronics S.A. Method of manufacturing unipolar components
US20100237456A1 (en) * 2007-09-21 2010-09-23 Ning Qu Semiconductor device and method for its manufacture

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1019720B (zh) * 1991-03-19 1992-12-30 电子科技大学 半导体功率器件
JP3618517B2 (ja) * 1997-06-18 2005-02-09 三菱電機株式会社 半導体装置およびその製造方法
US6252288B1 (en) * 1999-01-19 2001-06-26 Rockwell Science Center, Llc High power trench-based rectifier with improved reverse breakdown characteristic
US7186609B2 (en) * 1999-12-30 2007-03-06 Siliconix Incorporated Method of fabricating trench junction barrier rectifier
CN1179397C (zh) * 2001-09-27 2004-12-08 同济大学 一种制造含有复合缓冲层半导体器件的方法
JP4539011B2 (ja) * 2002-02-20 2010-09-08 富士電機システムズ株式会社 半導体装置
US7696598B2 (en) * 2005-12-27 2010-04-13 Qspeed Semiconductor Inc. Ultrafast recovery diode
DE102007060231A1 (de) * 2007-12-14 2009-06-18 Robert Bosch Gmbh Generator mit Gleichrichteranordnung
US8829614B2 (en) * 2009-08-31 2014-09-09 Alpha And Omega Semiconductor Incorporated Integrated Schottky diode in high voltage semiconductor device
JP5482701B2 (ja) * 2011-03-17 2014-05-07 富士電機株式会社 半導体素子
DE102012201911B4 (de) * 2012-02-09 2022-09-22 Robert Bosch Gmbh Super-Junction-Schottky-Oxid-PiN-Diode mit dünnen p-Schichten unter dem Schottky-Kontakt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19740195C2 (de) 1997-09-12 1999-12-02 Siemens Ag Halbleiterbauelement mit Metall-Halbleiterübergang mit niedrigem Sperrstrom
US6590240B1 (en) * 1999-07-28 2003-07-08 Stmicroelectronics S.A. Method of manufacturing unipolar components
US20100237456A1 (en) * 2007-09-21 2010-09-23 Ning Qu Semiconductor device and method for its manufacture

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 36, pages 6254 - 6262
RAJESH N GUPTA ET AL: "A Novel Planarized, Silicon Trench Sidewall Oxide-Merged p-i-n Schottky (TSOX-MPS) Rectifier", IEEE ELECTRON DEVICE LETTERS, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 20, no. 12, 1 December 1999 (1999-12-01), XP011018697, ISSN: 0741-3106 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274435A (zh) * 2022-09-22 2022-11-01 深圳芯能半导体技术有限公司 一种凸形碳化硅mps器件及其制备方法、芯片
CN115274435B (zh) * 2022-09-22 2023-01-03 深圳芯能半导体技术有限公司 一种凸形碳化硅mps器件及其制备方法、芯片

Also Published As

Publication number Publication date
DE102011080258A1 (de) 2013-02-07
CN103718297A (zh) 2014-04-09
CN103718297B (zh) 2018-08-14
US20140239435A1 (en) 2014-08-28
US9263515B2 (en) 2016-02-16
EP2740155A1 (de) 2014-06-11
EP2740155B1 (de) 2019-05-01

Similar Documents

Publication Publication Date Title
EP2740155B1 (de) Super-junction-schottky-pin-diode
DE102012201911B4 (de) Super-Junction-Schottky-Oxid-PiN-Diode mit dünnen p-Schichten unter dem Schottky-Kontakt
DE102010036743B4 (de) Bipolares Halbleiterbauelement, Speed-Diode und Herstellungsverfahren
DE102006050338B4 (de) Halbleiterbauelement mit verbessertem Speicherladung zu Dioden-Softness Trade-off
EP2786418B1 (de) Hochspannungs-trench-junction-barrier-schottkydiode
DE102012105162B4 (de) Integriertes Leistungshalbleiterbauelement, Herstellungsverfahren dafür und Chopperschaltung mit integriertem Halbleiterbauelement
WO2009040265A1 (de) Halbleitervorrichtung
DE102013211572A1 (de) Halbleiterbauelement mit ladungsträgerlebensdauerreduktionsmitteln
DE102019111308A1 (de) Siliziumcarbid halbleiterbauelement
DE112011100533T5 (de) Halbleitervorrichtung
DE102014105353B4 (de) Halbleiterbauelement mit kompensationsgebieten
DE112019000544T5 (de) Halbleitervorrichtung und leistungswandlungsvorrichtung
DE102015204138A1 (de) Halbleitervorrichtung mit einer Trench-MOS-Barrier-Schottky-Diode
WO2011015393A1 (de) Halbleiteranordnung mit einer schottky-diode
EP2462620A1 (de) Halbleiteranordnung und verfahren zu deren herstellung
DE102009044670B4 (de) Bipolares Halbleiterbauelement und Herstellungsverfahren
WO2012055627A1 (de) Halbleiteranordnung mit schottkydiode
EP2499673B1 (de) Schotty-Diode und Verfahren zu deren Herstellung
DE102022129749A1 (de) Elektronische vorrichtung einschliesslich einer transistorstruktur
DE10213534B4 (de) Halbleiteraufbau mit Schaltelement und Randelement
DE102015204137A1 (de) Halbleitervorrichtung mit einer Trench-Schottky-Barrier-Schottky-Diode
EP2462619A1 (de) Schottky diode mit substrat pn diode
DE112019007687T5 (de) Siliciumcarbid-halbleitereinheit und leistungswandler
EP2600405A2 (de) Super trench schottky barrier schottkydiode
WO2014195131A1 (de) Hochspannungs-trench-junction-barrier-schottkydiode mit p-schichten unter dem schottky-kontakt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12737284

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012737284

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14236604

Country of ref document: US