WO2013015304A1 - 導電性粒子、導電材料及び接続構造体 - Google Patents

導電性粒子、導電材料及び接続構造体 Download PDF

Info

Publication number
WO2013015304A1
WO2013015304A1 PCT/JP2012/068800 JP2012068800W WO2013015304A1 WO 2013015304 A1 WO2013015304 A1 WO 2013015304A1 JP 2012068800 W JP2012068800 W JP 2012068800W WO 2013015304 A1 WO2013015304 A1 WO 2013015304A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
particles
conductive layer
conductive particles
weight
Prior art date
Application number
PCT/JP2012/068800
Other languages
English (en)
French (fr)
Inventor
敬三 西岡
真弘 大塚
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020157011060A priority Critical patent/KR101626266B1/ko
Priority to JP2012541254A priority patent/JP5216165B1/ja
Priority to KR1020137017366A priority patent/KR101962977B1/ko
Priority to CN201280033707.1A priority patent/CN103650063B/zh
Publication of WO2013015304A1 publication Critical patent/WO2013015304A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/05611Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/0568Molybdenum [Mo] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05684Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29463Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29484Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Definitions

  • the present invention relates to conductive particles in which a conductive layer is disposed on the surface of base particles, and more particularly to conductive particles that can be used for electrical connection between electrodes, for example.
  • the present invention also relates to a conductive material and a connection structure using the conductive particles.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive materials conductive particles are dispersed in a binder resin.
  • the anisotropic conductive material is used for connection between an IC chip and a flexible printed circuit board, connection between an IC chip and a circuit board having an ITO electrode, and the like. For example, after disposing an anisotropic conductive material between the electrode of the IC chip and the electrode of the circuit board, these electrodes can be electrically connected by heating and pressing.
  • Patent Document 1 discloses a conductive material in which a nickel conductive layer or a nickel alloy conductive layer is formed on the surface of spherical base particles having an average particle diameter of 1 to 20 ⁇ m by an electroless plating method. Sex particles are disclosed. The conductive particles have minute protrusions of 0.05 to 4 ⁇ m on the outermost layer of the conductive layer. The conductive layer and the protrusion are substantially continuously connected.
  • Patent Document 2 discloses conductive particles having base particles and a conductive layer formed on the surface of the base particles.
  • a divinylbenzene-ethylvinylbenzene mixture is used as part of the monomer to form the substrate particles.
  • the compression elastic modulus is 2.5 ⁇ 10 9 N / m 2 or less
  • the compression deformation recovery rate is 30% or more
  • the fracture strain is 30% or more. is there.
  • Patent Document 2 describes that when the electrodes of the substrate are electrically connected using the conductive particles, the connection resistance is reduced and the connection reliability is increased.
  • connection resistance between the electrodes may increase.
  • the resin component between the electrodes and the conductive particles may not be sufficiently eliminated. For this reason, the connection resistance between the electrodes connected by the conductive particles contained in the anisotropic conductive material may increase.
  • a conductive layer containing nickel and phosphorus is formed.
  • an oxide film is formed on the surfaces of the electrodes connected by the conductive particles and the conductive layer of the conductive particles.
  • the conductive layer containing nickel and phosphorus is relatively soft. It may not be sufficiently eliminated, and the connection resistance may increase.
  • connection target member or the substrate may be damaged by the conductive particles.
  • connection resistance tends to increase.
  • conduction reliability between the electrodes is lowered.
  • a plurality of conductive particles may aggregate.
  • a short circuit between the electrodes may occur.
  • the oxide film may not be sufficiently removed, or damage to the connection target member or the substrate may not be suppressed. For this reason, even when the conductive particles described in Patent Document 2 are used, it is difficult to sufficiently reduce the connection resistance between the electrodes.
  • An object of the present invention is to suppress the aggregation of a plurality of conductive particles, and further to reduce the connection resistance between electrodes when used for connection between electrodes, and the conductive particles It is to provide a conductive material and a connection structure used.
  • a limited object of the present invention is that when used for connection between electrodes, the conductive particles that can effectively eliminate the oxide film on the surface of the electrode and conductive particles, and can reduce the connection resistance between the electrodes. And providing a conductive material and a connection structure using the conductive particles.
  • the limited object of the present invention is to provide a conductive material that can effectively eliminate the resin component between the electrode and the conductive particles and reduce the connection resistance between the electrodes when used for connection between the electrodes. And providing a connection structure.
  • a conductive material is disposed on the surface of the substrate particle and includes nickel, boron, and at least one metal component of tungsten and molybdenum. Conductive particles having a layer are provided.
  • the content of the boron in 100% by weight of the entire conductive layer is 0.05% by weight or more and 4% by weight or less.
  • the content of the metal component in 100% by weight of the entire conductive layer is 0.1% by weight or more and 30% by weight or less.
  • the content of the metal component in the entire conductive layer of 100% by weight exceeds 5% by weight and is 30% by weight or less.
  • the metal component contains tungsten.
  • the compression modulus when the conductive particles and 10% compressive deformation is 5000N / mm 2 or more and 15000 N / mm 2 or less.
  • the compression recovery rate is 5% or more and 70% or less.
  • the metal component contains molybdenum.
  • the said conductive layer contains nickel and molybdenum, and content of nickel is 70 weight% or more and 99.9 weight% in the whole 100 weight% of the said conductive layer.
  • the molybdenum content is 0.1 wt% or more and 30 wt% or less.
  • the compression elastic modulus when compressed by 5% is 7000 N / mm 2 or more, and 10% of the particle size of the conductive particles before compression in the compression direction. And when the conductive particles are compressed at 25% or less, the conductive layer is cracked.
  • the thickness of the conductive layer is 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the conductive layer has a protrusion on the outer surface.
  • the conductive material according to the present invention includes the above-described conductive particles and a binder resin.
  • connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first and second connection target members, and the connection
  • the part is formed of the above-described conductive particles, or is formed of a conductive material including the conductive particles and a binder resin.
  • a conductive layer containing nickel, boron, and at least one metal component of tungsten and molybdenum is disposed on the surface of the base particle, and thus a plurality of conductive The aggregation of the conductive particles can be suppressed. Furthermore, when the electrodes are connected using the conductive particles according to the present invention, the connection resistance can be lowered.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing conductive particles according to the third embodiment of the present invention.
  • FIG. 4 is a front cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view for explaining a state when the conductive particles are compressed.
  • FIG. 6 is a schematic diagram illustrating an example of the relationship between the compression load value and the compression displacement when a crack occurs in the conductive layer when the conductive particles are compressed.
  • the conductive particle according to the present invention is a conductive particle that is disposed on the surface of the substrate particle, nickel, boron, and at least one metal component of tungsten and molybdenum. And having a layer.
  • the conductive layer is a nickel-boron-tungsten / molybdenum conductive layer.
  • at least one metal component of tungsten and molybdenum may be referred to as a metal component M.
  • the conductive layer containing nickel, boron, and the metal component M may be referred to as a conductive layer X.
  • the connection resistance between the electrodes is lowered.
  • the content of nickel in 100% by weight of the entire conductive layer X in the conductive particles according to the present invention is 50% by weight or more, the connection resistance between the electrodes becomes considerably low. Accordingly, the content of nickel is preferably 50% by weight or more in the entire conductive layer X of 100% by weight.
  • the connection resistance may increase.
  • the oxide film on the surfaces of the electrodes and the conductive particles cannot be sufficiently removed, and the connection resistance tends to be high.
  • the connection resistance tends to increase, and when it is 1% by weight or more, the connection resistance tends to further increase.
  • connection target member or the substrate may be damaged by the conductive particles.
  • connection resistance between the electrodes can be lowered.
  • the oxide film on the surfaces of the electrodes and the conductive particles can be eliminated, and the connection resistance can be lowered.
  • the conductive layer X includes not only boron but also at least one metal component M of tungsten and molybdenum. Therefore, the conductive layer X including boron and the metal component M is included. Can be quite stiff. For this reason, the oxide film on the surface of the electrode and the conductive particles can be sufficiently eliminated, and the connection resistance can be considerably reduced. Particularly when the conductive layer X contains the metal component M and the conductive layer X has protrusions on the outer surface, the oxide film on the surface of the electrode and conductive particles can be more effectively eliminated, and the connection resistance can be reduced. It can be made even lower.
  • the conductive layer X contains the metal component M, the conductive layer X is considerably hardened. As a result, even if an impact is applied to the connection structure connecting the electrodes by the conductive particles, a conduction failure occurs. It becomes difficult. That is, the impact resistance of the connection structure can be increased.
  • the surface of the conductive layer of the conventional conductive particles may be highly magnetic, and the surface of the conductive layer containing nickel and boron is highly magnetic. Therefore, when the electrodes are electrically connected, Due to the influence of the agglomerated conductive particles, the electrodes adjacent in the horizontal direction tend to be easily connected.
  • the conductive layer X contains the metal component M, the magnetic property of the surface of the conductive layer X is considerably low. For this reason, it can suppress that several electroconductive particle aggregates. Therefore, when the electrodes are electrically connected, it is possible to prevent the electrodes adjacent in the lateral direction from being connected by the aggregated conductive particles. That is, a short circuit between adjacent electrodes can be further prevented.
  • the content of nickel is 70% by weight or more and 99.9% by weight or less, and the content of the metal component M is 0.1% by weight or more and 30% by weight.
  • the conductive layer X does not contain phosphorus, or the conductive layer X contains phosphorus, and the content of phosphorus in 100% by weight of the entire conductive layer X is less than 1% by weight.
  • the content of nickel is 70% by weight or more and 99.9% by weight or less, and the content of the metal component M is 0.1% by weight or more and 30% by weight or less. It is preferable that the conductive layer X does not contain phosphorus, or the conductive layer X contains phosphorus, and the content of phosphorus in 100% by weight of the entire conductive layer X is less than 1% by weight.
  • the conductive particles having this preferable configuration are used for the connection between the electrodes, the oxide film on the surfaces of the electrodes and the conductive particles can be effectively eliminated. For this reason, the connection resistance between the electrodes in the obtained connection structure can be further reduced. Moreover, since the content of nickel in the conductive particles having this preferable configuration is 70% by weight or more, the connection resistance between the electrodes becomes considerably low.
  • the content of the metal component M in 100% by weight of the entire conductive layer X is 0.1% by weight or more and 30% by weight or less, compared with a conductive layer not containing the metal component M, The conductive layer X becomes considerably hard. For this reason, as a result of effectively eliminating the oxide film on the surfaces of the electrodes and the conductive particles, the connection resistance between the electrodes is further reduced.
  • the resin component between the electrodes and the conductive particles can be effectively eliminated, so that the connection between the electrodes The resistance becomes even lower.
  • the compression elastic modulus (10% K value) when the conductive particles according to the present invention are 10% compressively deformed is preferably 5000 N / mm 2 or more, more preferably 7000 N / mm 2 or more, preferably 15000 N / mm 2 or less. More preferably, it is 10,000 N / mm 2 or less.
  • the compression elastic modulus (10% K value) is not less than the above lower limit, the oxide film on the surface of the electrode and the conductive particles can be more effectively eliminated, and the resin component between the electrode and the conductive particles can be further removed. As a result of more effective elimination, the connection resistance between the electrodes is further reduced.
  • the compression elastic modulus (10% K value) can be measured as follows.
  • the conductive particles are compressed under the conditions of a compression rate of 2.6 mN / sec and a maximum test load of 10 gf with a cylindrical indenter end face (diameter 50 ⁇ m, made of diamond).
  • the load value (N) and compression displacement (mm) at this time are measured.
  • the compression elastic modulus can be obtained by the following formula.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • K value (N / mm 2 ) (3/2 1/2 ) ⁇ F ⁇ S ⁇ 3 / 2 ⁇ R ⁇ 1/2
  • F Load value when the conductive particles are 10% compressively deformed (N)
  • S Compression displacement (mm) when the conductive particles are 10% compressively deformed
  • R radius of conductive particles (mm)
  • the compression recovery rate of the conductive particles is preferably 5% or more, more preferably 20% or more, preferably 70% or less, more preferably 60% or less, and even more preferably 50% or less.
  • the compression recovery rate is not less than the above lower limit and not more than the above upper limit, the oxide film on the surface of the electrode and the conductive particles can be more effectively eliminated, and the resin component between the electrode and the conductive particles is further more effective.
  • the connection resistance between the electrodes can be further reduced.
  • peeling is further less likely to occur at the interface between the cured product and the portion of the connection portion excluding the conductive particles and the conductive particles and the connection target member.
  • the conductive material is difficult to peel from the substrate or the like. This also makes the connection resistance between the electrodes even lower.
  • the compression recovery rate can be measured as follows.
  • a load (reverse load value) is applied to the central direction of the conductive particle until the conductive particle is compressed and deformed by 30% using a micro compression tester. Thereafter, unloading is performed up to the origin load value (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation.
  • the load speed is 0.33 mN / sec.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • Compression recovery rate (%) [(L1-L2) / L1] ⁇ 100
  • L1 Compression displacement from the load value for origin to the reverse load value when applying a load
  • L2 Unloading displacement from the reverse load value to the load value for origin when releasing the load
  • the compression elastic modulus and the compression recovery rate are the kind of the base particle, the particle diameter of the base particle, the content of nickel in 100% by weight of the whole conductive layer X, and the whole conductive layer X.
  • the content of the metal component M in 100% by weight, the content of phosphorus in the whole 100% by weight of the conductive layer X, the content of boron in the whole 100% by weight of the conductive layer X, the content of the conductive layer X It can be appropriately adjusted depending on the thickness.
  • the compression modulus (5% K value) when compressed by 5% is preferably 7000 N / mm 2 or more.
  • the conductive layer is cracked when the conductive particles are compressed by more than 10% and 25% or less of the particle diameter of the conductive particles before compression in the compression direction. It is preferable. In other words, when the conductive particles according to the present invention are compressed, the conductive particles exceed 10% of the particle diameter of the conductive particles before compression in the compression direction and are compressed and displaced at 25% or less. It is preferable that a crack occurs in the conductive layer. That is, the compressive displacement of the conductive particles that cause cracks in the conductive layer is preferably more than 10% and 25% or less. For example, when the conductive particles are significantly compressed, the conductive layer is moderately partially broken.
  • the conductive particles having such properties not only have a sufficiently high hardness at the initial stage of compression, but also crack when appropriately compressed. Since the conductive layer is cracked at the stage where the conductive particles are appropriately compressed during the connection between the electrodes, damage to the electrodes can be suppressed. As a result, the connection resistance between the electrodes in the obtained connection structure can be further reduced, and the conduction reliability between the electrodes can be further increased.
  • the compression elastic modulus (5% K value) when compressed at 5% is 7000 N / mm 2 or more and the conductive particles according to the present invention are compressed
  • the compression direction When the conductive particles are compressed at more than 10% and less than 25% of the particle diameter of the conductive particles before compression, it is preferable that the conductive layer is cracked.
  • the connection resistance between the electrodes can be further reduced.
  • the conductive particles in the initial stage of compression have sufficient hardness.
  • the oxide film on the surface of the electrode and the conductive particles can be effectively eliminated at the initial stage of compression of the conductive particles at the time of connection between the electrodes.
  • the electrode and the conductive layer in the conductive particles are effectively in contact, and the connection resistance between the electrodes can be further reduced.
  • the electrodes are electrically connected using conductive particles having a compression modulus (5% K value) of less than 7000 N / mm 2 when compressed by 5%, the compression is 5%.
  • the oxide film on the surfaces of the electrodes and the conductive particles There is a tendency that the elimination property of the electrode decreases, and the connection resistance between the electrodes tends to increase.
  • the 5% K value is more preferably 8000 N / mm 2 or more, further preferably 9000 N / mm 2 or more.
  • the upper limit of the 5% K value is not particularly limited.
  • the 5% K value may be, for example, 15000 N / mm 2 or less or 10000 N / mm 2 or less.
  • the compression elastic modulus (5% K value) can be measured as follows.
  • the conductive particles are compressed under the conditions of a compression rate of 2.6 mN / sec and a maximum test load of 10 gf with a cylindrical indenter end face (diameter 50 ⁇ m, made of diamond).
  • the load value (N) and compression displacement (mm) at this time are measured.
  • the compression elastic modulus can be obtained by the following formula.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • the compression modulus (10% K value and 5% K value) represents the hardness of the conductive particles universally and quantitatively. By using the compression elastic modulus, the hardness of the conductive particles can be expressed quantitatively and uniquely.
  • the compression displacement at which the conductive layer is cracked is more preferably 12% or more, and more preferably 20% or less.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • the conductive particle 1 includes a base particle 2, a conductive layer 3, a plurality of core substances 4, and a plurality of insulating substances 5.
  • the conductive layer 3 is disposed on the surface of the base particle 2.
  • the conductive layer 3 includes nickel, boron, and the metal component M.
  • the conductive layer 3 is a nickel-boron-tungsten / molybdenum conductive layer.
  • the conductive particle 1 is a coated particle in which the surface of the base particle 2 is coated with the conductive layer 3.
  • the conductive particle 1 has a plurality of protrusions 1a on the surface.
  • the conductive layer 3 has a plurality of protrusions 3a on the outer surface.
  • a plurality of core substances 4 are arranged on the surface of the base particle 2.
  • a plurality of core materials 4 are embedded in the conductive layer 3.
  • the core substance 4 is disposed inside the protrusions 1a and 3a.
  • the conductive layer 3 covers a plurality of core materials 4.
  • the outer surface of the conductive layer 3 is raised by the plurality of core materials 4 to form protrusions 1a and 3a.
  • the conductive particles 1 have an insulating material 5 disposed on the outer surface of the conductive layer 3. At least a part of the outer surface of the conductive layer 3 is covered with the insulating material 5.
  • the insulating substance 5 is made of an insulating material and is an insulating particle.
  • the electroconductive particle which concerns on this invention may have the insulating substance arrange
  • the conductive particles according to the present invention do not necessarily have an insulating material.
  • FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
  • the conductive particles 11 shown in FIG. 2 include base material particles 2, a second conductive layer 12 (another conductive layer), a conductive layer 13 (first conductive layer), a plurality of core substances 4, and a plurality of And an insulating material 5.
  • the conductive particles 1 and the conductive particles 11 are different only in the conductive layer. That is, the conductive particle 1 has a single-layered conductive layer, whereas the conductive particle 11 has a two-layered second conductive layer 12 and conductive layer 13.
  • the conductive layer 13 is disposed on the surface of the base particle 2.
  • a second conductive layer 12 (another conductive layer) is disposed between the base particle 2 and the conductive layer 13. Therefore, the second conductive layer 12 is disposed on the surface of the base particle 2, and the conductive layer 13 is disposed on the surface of the second conductive layer 12.
  • the conductive layer 13 includes nickel, boron, and tungsten.
  • the conductive layer 13 has a plurality of protrusions 13a on the outer surface.
  • the conductive particles 11 have a plurality of protrusions 11a on the surface.
  • FIG. 3 is a cross-sectional view showing conductive particles according to the third embodiment of the present invention.
  • the conductive particle 21 shown in FIG. 3 has the base particle 2 and the conductive layer 22.
  • the conductive layer 22 is disposed on the surface of the base particle 2.
  • the conductive layer 22 includes nickel, boron, and the metal component M.
  • the conductive particles 21 do not have a core substance.
  • the conductive particles 21 do not have protrusions on the surface.
  • the conductive particles 21 are spherical.
  • the conductive layer 22 has no protrusion on the surface.
  • the electroconductive particle which concerns on this invention does not need to have a litigation
  • the conductive particles 21 do not have an insulating material.
  • the conductive particles 21 may have an insulating material disposed on the surface of the conductive layer 22.
  • the nickel content is 70 wt% or more and 99.9 wt% or less in 100 wt% of the entire conductive layers 3, 13, and 22, and the content of the metal component M is Is preferably 0.1% by weight or more and 30% by weight or less.
  • the conductive layers 3, 13, and 22 do not contain phosphorus, or the conductive layers 3, 13, and 22 contain phosphorus, and the total content of the conductive layers 3, 13, and 22 is 100% by weight. It is preferable that it is less than%.
  • the 5% K value of the conductive particles 1, 11 and 21 is preferably 7000 N / mm 2 or more. Further, when the conductive particles 1, 11, 21 are compressed, the conductive particles 1, 11, 21 exceed 10% of the particle diameter of the conductive particles 1, 11, 21 before compression in the compression direction, 25 It is preferable that cracks occur in the conductive layers 3, 13, and 22 when they are compressed and displaced by less than or equal to%. That is, in the conductive particles 1, 11, and 21, when the particle diameter of the conductive particles 1, 11, 21 before compression in the compression direction is X, the particle diameter of the conductive particles 1, 11, 21 in the compression direction Is preferably 0.75X or more and less than 0.90X, it is preferable that the conductive layers 3, 13, and 22 are cracked.
  • the particle diameter of the conductive particles 1, 11, 21 before compression in the compression direction is 5 ⁇ m
  • the conductive particles 1, 11, 21 are compressed and the conductive particles 1, 11, 11 in the compression direction are compressed.
  • the particle diameter of 21 is 3.75 ⁇ m or more and less than 4.5 ⁇ m, it is preferable that cracks occur in the conductive layers 3, 13, and 22. In the conductive particles 11, not only the conductive layer 13 but also the second conductive layer 12 may be cracked.
  • the “crack” indicates the first (first) crack in the conductive layer. Therefore, in the electroconductive particle 1,11,21 which concerns on this embodiment, when the electroconductive particle 1,11,21 which has the electroconductive layer 3,13,22 without a crack is compressed, electroconductive particle 1,11,21 It is preferable that cracking occurs in the conductive layers 3, 13, and 22 when 21 exceeds 10% of the particle diameter of the conductive particles 1, 11 and 21 before compression in the compression direction and is 25% or less.
  • the measurement of the compression displacement at which the conductive layers 3, 13, and 22 are cracked is performed as follows.
  • the conductive particles 21 are used.
  • the conductive particles 21 are placed on the base 71.
  • a micro compression tester (“Fischerscope H-100” manufactured by Fischer)
  • a cylinder (diameter 50 ⁇ m, made of diamond) is used as the compression member 72 under conditions of a compression speed of 0.33 mN / sec and a maximum test load of 10 mN.
  • the smooth end surface 72a of the compression member 72 is lowered toward the conductive particles 21 in the direction indicated by the arrow A.
  • the conductive particles 21 are compressed by the smooth end surface 72a.
  • the compression is continued until the crack 22a is partially generated in the conductive layer 22 of the conductive particles 21. In the case of conductive particles 1 and 11, the same measurement is performed.
  • the conductive layer cracks when the conductive particles are compressed and displaced by more than 10% of the particle diameter of the conductive particles before compression in the compression direction. It is preferable that the conductive layer is cracked at a compression displacement of 25% or less.
  • the relationship between the compressive load value and the compressive displacement is, for example, as shown in FIG. In FIG. 6, the compression is started from the point A0, and the conductive layer is cracked at the point A1. As the conductive layer cracks, the compression displacement (particle diameter) of the conductive particles in the compression direction changes, and the compression displacement moves from the A1 point to the A2 point.
  • a compressive load is applied to the conductive particles, and if the conductive layer cracks, the conductive particles are compressed with a relatively small compressive load. Therefore, the compression member that applies the compressive load to the conductive particles moves.
  • the compression displacement (particle diameter) of the conductive particles in the compression direction changes.
  • the slope of the line from point A0 to point A1 is relatively large.
  • the 5% K value of the conductive particles 21 is 7000 N / mm 2 or more and the conductive particles 21 are relatively hard, the slope of the line from the A0 point to the A1 point becomes large.
  • Examples of the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
  • the substrate particles are preferably substrate particles excluding metal particles, and are preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
  • the base material particles are preferably resin particles formed of a resin.
  • the said electroconductive particle is compressed by crimping
  • the substrate particles are resin particles, the conductive particles are easily deformed during the pressure bonding, and the contact area between the conductive particles and the electrode is increased. For this reason, the conduction
  • Examples of the resin for forming the resin particles include polyolefin resin, acrylic resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, and polyphenylene.
  • Examples thereof include oxide, polyacetal, polyimide, polyamideimide, polyetheretherketone, polyethersulfone, divinylbenzene polymer, and divinylbenzene copolymer.
  • Examples of the divinylbenzene copolymer include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer.
  • the resin for forming the resin particles is obtained by polymerizing one or more polymerizable monomers having a plurality of ethylenically unsaturated groups.
  • a polymer is preferred.
  • Examples of the inorganic material for forming the inorganic particles include silica and carbon black.
  • Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the substrate particles are metal particles
  • examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the particle diameter of the substrate particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, still more preferably 1.5 ⁇ m or more, particularly preferably 2 ⁇ m or more, preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, and even more preferably. Is not more than 300 ⁇ m, more preferably not more than 50 ⁇ m, particularly preferably not more than 30 ⁇ m, and most preferably not more than 5 ⁇ m.
  • the particle diameter of the substrate particles is equal to or greater than the above lower limit, the contact area between the conductive particles and the electrodes is increased, so that the conduction reliability between the electrodes is further increased, and the electrodes are connected via the conductive particles. The connection resistance between them becomes even lower.
  • the particle diameter of the base particle indicates a diameter when the base particle is a true sphere, and indicates a maximum diameter when the base particle is not a true sphere.
  • the particle diameter of the substrate particles is particularly preferably 2 ⁇ m or more and 5 ⁇ m or less.
  • the particle diameter of the substrate particles is in the range of 2 to 5 ⁇ m, even when the distance between the electrodes is small and the conductive layer is thick, small conductive particles can be obtained.
  • the electroconductive particle which concerns on this invention is arrange
  • the conductive layer X may be directly laminated on the surface of the base particle, or may be disposed on the surface of the base particle via another conductive layer or the like. Furthermore, another conductive layer may be disposed on the surface of the conductive layer X. It is preferable that no other conductive layer is disposed on the outer surface of the conductive layer X. It is preferable that the outer surface of the conductive particles is a conductive layer X containing nickel. When the electrodes are connected by conductive particles having the conductive layer X containing nickel, the connection resistance is further reduced.
  • the conductive layer X includes nickel, boron, at least one metal component M of tungsten and molybdenum.
  • the conductive layer X is a nickel-boron-tungsten / molybdenum conductive layer.
  • the conductive layer X preferably includes nickel, boron, and tungsten, preferably includes nickel, boron, and molybdenum, and preferably includes nickel, boron, tungsten, and molybdenum.
  • the conductive layer X may be a nickel-boron-tungsten conductive layer or a nickel-boron-molybdenum conductive layer.
  • the metal component M preferably contains tungsten, preferably contains molybdenum, and preferably contains tungsten and molybdenum.
  • nickel, boron, and the metal component M may be alloyed.
  • nickel and boron may be alloyed, nickel and the metal component M may be alloyed, or boron and the metal component M may be alloyed.
  • chromium or seaborgium may be used in the conductive layer X.
  • the hardness tends to be relatively low at the initial compression stage of the nickel conductive layer that does not contain both tungsten and molybdenum. For this reason, at the time of the connection between electrodes, the effect which eliminates the oxide film on the surface of an electrode and electroconductive particle becomes small, and there exists a tendency for the effect which makes connection resistance low.
  • the thickness of the nickel conductive layer that does not contain both tungsten and molybdenum is increased in order to obtain the effect of lowering the connection resistance further, or to be suitable for applications in which a large current flows, conductive objects may cause connection.
  • the member or the substrate tends to be easily damaged. As a result, the conduction reliability between the electrodes in the connection structure tends to be low.
  • the conductive layer X contains nickel and at least one metal component M of tungsten and molybdenum, it is easy to set the 5% K value to the lower limit or more. Further, the conductive layer X may be appropriately cracked when the conductive particles exceed 10% of the particle diameter of the conductive particles before compression in the compression direction and are compressed at 25% or less. Easy. When cracks occur when compressed appropriately, damage to the electrodes is less likely to occur, and therefore the connection resistance between the electrodes is further reduced.
  • the conductive layer X includes nickel and at least one metal component M of tungsten and molybdenum, the conductive layer X has an appropriate hardness, and therefore compresses the conductive particles.
  • an appropriate indentation can be formed on the electrodes.
  • the indentation formed on the electrode is a concave portion of the electrode formed by pressing the electrode with conductive particles.
  • the conductive layer X preferably contains nickel as a main component. From the viewpoint of effectively reducing the initial connection resistance between the electrodes, it is better that the content of nickel in 100% by weight of the entire conductive layer X is larger. Therefore, the content of nickel is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 70% by weight or more, and further preferably 75% by weight or more, in 100% by weight of the entire conductive layer X. Even more preferably, it is 80% by weight or more, particularly preferably 85% by weight or more, still more preferably 90% by weight or more, and most preferably 95% by weight or more.
  • the content of nickel in 100% by weight of the entire conductive layer X may be 97% by weight or more, 97.5% by weight or more, or 98% by weight or more.
  • the connection resistance between the electrodes is further reduced.
  • there are few oxide films in the surface of an electrode or a conductive layer there exists a tendency for the connection resistance between electrodes to become low, so that there is much content of the said nickel.
  • the upper limit of the nickel content can be changed as appropriate according to the content of boron and the metal component M.
  • the content of nickel in 100% by weight of the entire conductive layer X is preferably 99.9% by weight or less, more preferably 99.85% by weight or less, still more preferably 99.7% by weight or less, and particularly preferably 99.% by weight. Less than 45% by weight.
  • Conductive particles having a nickel conductive layer that does not contain boron are relatively soft at the initial compression stage of the nickel conductive layer that does not contain boron, and the oxide film on the surface of the electrode and conductive particles is eliminated when the electrodes are connected. The effect tends to be small, and the effect of reducing the connection resistance tends to be small.
  • the conductive layer may contain phosphorus instead of boron. In the conductive particles having a conductive layer containing nickel and phosphorus, the effect of eliminating the oxide film on the surface of the electrode and the conductive particles tends to be small, and the effect of reducing the connection resistance tends to be small.
  • the thickness of the conductive layer not containing boron or the thickness of the conductive layer containing nickel and phosphorus is increased in order to obtain the effect of lowering the connection resistance or to be suitable for applications in which a large current flows. If the thickness is increased, the connection target member or the substrate tends to be easily damaged by the conductive particles. As a result, the conduction reliability between the electrodes in the connection structure tends to be low.
  • the conductive layer X contains boron, it is easy to make the 5% K value equal to or more than the lower limit. Further, the conductive layer X may be appropriately cracked when the conductive particles exceed 10% of the particle diameter of the conductive particles before compression in the compression direction and are compressed at 25% or less. Easy. In addition, since the conductive layer X contains nickel, boron, and the metal component M, it is even easier to set the 5% K value to the lower limit or more. Furthermore, when the conductive particles are compressed at more than 10% of the particle diameter of the conductive particles before compression in the compression direction and less than 25%, the conductive layer X is more appropriately cracked. Is easy. When cracks occur when compressed appropriately, damage to the electrodes is less likely to occur, and therefore the connection resistance between the electrodes is further reduced.
  • the conductive layer X contains boron
  • the conductive layer X has an appropriate hardness, so that the electrodes are more unlikely to be damaged, and therefore the connection resistance between the electrodes is further reduced.
  • the conductive layer X contains boron
  • the conductive layer X has an appropriate hardness, so that when the conductive particles are compressed to connect the electrodes, an appropriate indentation can be formed on the electrodes.
  • the conductive layer X contains nickel, boron, and the metal component M, it is possible to achieve a high compressive elastic modulus. For this reason, the oxide film on the surface of the electrode and the conductive particle can be effectively eliminated at the initial stage of compression of the conductive particle at the time of connection between the electrodes, and the conductive particle is appropriately compressed at the time of connection between the electrodes. In this stage, the conductive layer X is cracked, so that damage to the electrode can be suppressed. As a result, the connection resistance between the electrodes in the resulting connection structure can be reduced, and the conduction reliability between the electrodes can be increased.
  • the content of boron in 100% by weight of the conductive layer X is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, still more preferably 0.1% by weight or more, preferably 5% by weight. Below, more preferably 4% by weight or less, still more preferably 3% by weight or less, particularly preferably 2.5% by weight or less, and most preferably 2% by weight or less.
  • the boron content is not less than the above lower limit, the conductive layer X becomes harder, the oxide film on the surface of the electrode and conductive particles can be more effectively removed, and the connection resistance between the electrodes is further reduced. can do.
  • the boron content is not more than the above upper limit, the content of nickel and the metal component M is relatively increased, so that the connection resistance between the electrodes is lowered.
  • the surface of the conductive layer X containing nickel and boron has high magnetism, and when the electrodes are electrically connected, the electrodes adjacent to each other in the lateral direction are connected due to the influence of the conductive particles aggregated by magnetism. There is a tendency to be easily. Since the conductive layer X contains nickel, boron, and the metal component M, the magnetism of the surface of the conductive layer X is considerably low. For this reason, it can suppress that several electroconductive particle aggregates. Therefore, when the electrodes are electrically connected, it is possible to prevent the electrodes adjacent in the lateral direction from being connected by the aggregated conductive particles. That is, a short circuit between adjacent electrodes can be further prevented.
  • the conductive layer X contains the metal component M, the conductive layer X has an appropriate hardness. Therefore, when the conductive particles are compressed to connect the electrodes, an appropriate indentation is formed on the electrodes. it can. Furthermore, the conductive layer X contains at least one of tungsten and molybdenum, or contains boron, so that the conductive layer X is considerably hardened. As a result, the electrodes are connected by conductive particles. Even when an impact is applied to the structure, poor conduction is unlikely to occur. That is, the impact resistance of the connection structure can be increased.
  • the content of the metal component M (total content of tungsten and molybdenum) in 100% by weight of the conductive layer X is preferably 0.01% by weight or more, more preferably 0.1% by weight or more. More preferably, it is 0.2% by weight or more, more preferably 0.5% by weight or more, still more preferably 1% by weight or more, particularly preferably more than 5% by weight, most preferably 10% by weight or more.
  • the content of the metal component M is equal to or more than the lower limit, the hardness of the outer surface of the conductive layer is further increased.
  • the oxide film on the surface of the electrode or the conductive layer can be effectively eliminated, and the resin component between the electrode and the conductive particles can be removed. It can be effectively eliminated, the connection resistance is lowered, and the impact resistance of the resulting connection structure is increased. Furthermore, when the content of the metal component M is equal to or more than the lower limit, the magnetism of the outer surface of the conductive layer X becomes weak and the plurality of conductive particles are difficult to aggregate. For this reason, the short circuit between electrodes can be suppressed effectively.
  • the upper limit of the content of the metal component M in 100% by weight of the entire conductive layer X can be appropriately changed depending on the contents of nickel and boron.
  • the content of the metal component M in the total 100% by weight of the conductive layer X is preferably 40% by weight or less, more preferably 30% by weight or less, still more preferably 25% by weight or less, and particularly preferably 20% by weight or less. It is.
  • the content of tungsten in 100% by weight of the conductive layer X is preferably 0.01% by weight or more, more preferably 0.1% by weight or more. More preferably 0.2% by weight or more, more preferably 0.5% by weight or more, still more preferably 1% by weight or more, particularly preferably more than 5% by weight, most preferably 10% by weight or more, preferably 40% by weight. % Or less, more preferably 30% by weight or less, still more preferably 25% by weight or less, and particularly preferably 20% by weight or less.
  • the content of molybdenum in the total 100% by weight of the conductive layer X is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and even more preferably. Is 0.2% by weight or more, more preferably 0.5% by weight or more, still more preferably 1% by weight or more, particularly preferably more than 5% by weight, most preferably 10% by weight or more, preferably 40% by weight or less. More preferably, it is 30% by weight or less, further preferably 25% by weight or less, and particularly preferably 20% by weight or less.
  • the total content of the nickel and the metal component M in 100% by weight of the conductive layer X is larger. Therefore, the total content of nickel and the metal component M is preferably 75.1% by weight or more, more preferably 80.1% by weight or more, and still more preferably 85.% by weight in the total 100% by weight of the conductive layer X. 1% by weight or more, particularly preferably 90.1% by weight or more, most preferably 95.1% by weight or more.
  • the total content of nickel and the metal component M in 100% by weight of the entire conductive layer X may be 97.1% by weight or more, 97.6% by weight or more, and 98. It may be 1% by weight or more.
  • the conductive layer X does not contain phosphorus, or the conductive layer X contains phosphorus, and the content of phosphorus in 100% by weight of the conductive layer X as a whole. Is preferably less than 1% by weight. From the viewpoint of further reducing the connection resistance between the electrodes, the conductive layer X does not contain phosphorus, or the conductive layer X contains phosphorus, and the content of phosphorus in 100% by weight of the conductive layer X as a whole. Is more preferably less than 0.5% by weight.
  • the content of phosphorus in 100% by weight of the entire conductive layer X is more preferably 0.3% by weight or less, still more preferably 0.1% by weight. % Or less.
  • the phosphorus content is less than or equal to the above upper limit, the oxide film on the surfaces of the electrodes and the conductive particles can be more effectively eliminated when connecting the electrodes. As a result, the connection resistance between the electrodes can be lowered.
  • the resin component between the electrode and the conductive particles can be effectively eliminated, the connection resistance between the electrodes is further reduced. Since the connection resistance between the electrodes becomes considerably low, the conductive layer X particularly preferably does not contain phosphorus.
  • the conductive layer X includes the metal component M and the phosphorus content is not more than the upper limit, and the conductive layer X has protrusions on the outer surface, the surface of the electrode and the conductive particles The oxide film can be more effectively eliminated, the resin component between the electrode and the conductive particles can be effectively eliminated, and the connection resistance can be further reduced.
  • the conductive layer X containing the metal component M and the phosphorus content being not more than the above upper limit, the conductive layer X is considerably hardened.
  • the connection structure in which the electrodes are connected by conductive particles Even if an impact is applied to this, poor conduction is unlikely to occur. That is, the impact resistance of the connection structure can be increased.
  • the method for measuring the contents of nickel, boron, tungsten, molybdenum and phosphorus in the conductive layer X is not particularly limited, and various known analytical methods can be used. Examples of this measuring method include absorption spectrometry or spectrum analysis. In the above-mentioned absorption analysis method, a flame absorptiometer, an electric heating furnace absorptiometer, or the like can be used. Examples of the spectrum analysis method include a plasma emission analysis method and a plasma ion source mass spectrometry method.
  • ICP emission analyzer When measuring the contents of nickel, boron, tungsten, molybdenum and phosphorus in the conductive layer X, it is preferable to use an ICP emission analyzer.
  • ICP emission analyzers examples include ICP emission analyzers manufactured by HORIBA.
  • an ICP-MS analyzer In measuring the contents of nickel, boron, tungsten, molybdenum and phosphorus in the conductive layer X, an ICP-MS analyzer may be used.
  • the metal for forming the other conductive layer is not particularly limited.
  • the metal include gold, silver, copper, palladium, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, silicon, and tungsten. And alloys thereof.
  • the metal include tin-doped indium oxide (ITO) and solder. Especially, since the connection resistance between electrodes becomes still lower, an alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is more preferable.
  • the metal constituting the other conductive layer preferably contains nickel.
  • the method for forming a conductive layer (another conductive layer and conductive layer X) on the surface of the substrate particle is not particularly limited.
  • a method for forming the conductive layer for example, a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a paste containing metal powder or metal powder and a binder is used for base particles or other conductive layers.
  • a method of coating the surface for example, since formation of a conductive layer is simple, the method by electroless plating is preferable.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
  • the particle diameter of the conductive particles is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 1 ⁇ m or more, particularly preferably 2 ⁇ m or more, preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, and even more preferably. Is not more than 300 ⁇ m, more preferably not more than 100 ⁇ m, still more preferably not more than 50 ⁇ m, particularly preferably not more than 30 ⁇ m, still more particularly preferably not more than 20 ⁇ m, most preferably not more than 5 ⁇ m.
  • the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrodes is sufficiently large when the electrodes are connected using the conductive particles, and the conductive layer When forming the conductive particles, it becomes difficult to form aggregated conductive particles. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base material particles.
  • the particle diameter of the conductive particles when used for a conductive material such as an anisotropic conductive material is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrodes is sufficiently large when the electrodes are connected using the conductive particles, and the conductive layer When forming the conductive particles, it becomes difficult to form aggregated conductive particles. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base material particles.
  • the particle diameter of the conductive particles indicates the diameter when the conductive particles are true spherical, and indicates the maximum diameter when the conductive particles are not true spherical.
  • the thickness of the conductive layer X is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, still more preferably 0.05 ⁇ m or more, preferably 1 ⁇ m or less, more preferably 0.3 ⁇ m or less.
  • the thickness of the conductive layer X is not less than the above lower limit and not more than the above upper limit, sufficient conductivity can be obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently bonded at the time of connection between the electrodes. Deform.
  • the thickness of the conductive layer X is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, still more preferably 0.05 ⁇ m or more, preferably 0.5 ⁇ m or less. More preferably, it is 0.3 ⁇ m or less, and further preferably 0.1 ⁇ m or less.
  • the thickness of the conductive layer X is not less than the above lower limit and not more than the above upper limit, the coating with the conductive layer X can be made uniform, and the connection resistance between the electrodes becomes sufficiently low.
  • the total thickness of the conductive layer including the conductive layer X is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, still more preferably 0.05 ⁇ m or more, particularly It is preferably 0.1 ⁇ m or more, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, still more preferably 0.3 ⁇ m or less, and still more preferably 0.1 ⁇ m or less.
  • the thickness of the entire conductive layer is not less than the above lower limit and not more than the above upper limit, the covering of the entire conductive layer can be made uniform, and the connection resistance between the electrodes becomes sufficiently low.
  • the thickness of the conductive layer X is particularly preferably 0.05 ⁇ m or more and 0.5 ⁇ m or less. Furthermore, it is particularly preferable that the particle diameter of the base particle is 2 ⁇ m or more and 5 ⁇ m or less, and the thickness of the conductive layer X is 0.05 ⁇ m or more and 0.5 ⁇ m or less. The thickness of the conductive layer X is most preferably 0.05 ⁇ m or more and 0.3 ⁇ m or less. Furthermore, it is most preferable that the particle diameter of the substrate particles is 2 ⁇ m or more and 5 ⁇ m or less, and the thickness of the conductive layer X is 0.05 ⁇ m or more and 0.3 ⁇ m or less.
  • the conductive particles can be suitably used for applications in which a large current flows. Furthermore, when the conductive particles are compressed to connect the electrodes, it is possible to further suppress the electrodes from being damaged.
  • the thickness of the conductive layer X and the thickness of the entire conductive layer can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • a method for controlling the content of nickel, tungsten, molybdenum, boron and phosphorus in the conductive layer X for example, a method of controlling the pH of the nickel plating solution when forming the conductive layer X by electroless nickel plating, When forming the conductive layer X by electroless nickel plating, a method for adjusting the concentration of the boron-containing reducing agent, a method for adjusting the tungsten concentration in the nickel plating solution, a method for adjusting the molybdenum concentration in the nickel plating solution, and nickel Examples include a method of adjusting the nickel salt concentration in the plating solution.
  • a catalytic step and an electroless plating step are performed.
  • an example of a method for forming an alloy plating layer containing at least one of nickel, tungsten, and molybdenum and boron on the surface of the resin particles by electroless plating will be described.
  • a catalyst serving as a starting point for forming a plating layer by electroless plating is formed on the surface of the resin particles.
  • the surface of the resin particles is activated with an acid solution or an alkali solution
  • the reducing agent a boron-containing reducing agent is preferably used.
  • a phosphorus-containing reducing agent such as sodium hypophosphite may be used as the reducing agent.
  • a nickel plating bath containing a nickel salt, at least one of a tungsten-containing compound and a molybdenum-containing compound, and the boron-containing reducing agent is used.
  • nickel By immersing the resin particles in the nickel plating bath, nickel can be deposited on the surface of the resin particles on which the catalyst is formed, and a conductive layer containing nickel, boron, and the metal component M can be formed. .
  • Examples of the tungsten-containing compound include tungsten boride and sodium tungstate.
  • Examples of the molybdenum-containing compound include molybdenum boride and sodium molybdate.
  • Examples of the boron-containing reducing agent include dimethylamine borane, sodium borohydride, potassium borohydride, and the like.
  • the conductive particles according to the present invention preferably have protrusions on the surface.
  • the conductive layer including the conductive layer X preferably has protrusions on the outer surface, and the conductive layer X preferably has protrusions on the outer surface.
  • An oxide film is often formed on the surface of the electrode connected by the conductive particles.
  • an oxide film is often formed on the surface of the conductive layer of the conductive particles.
  • the conductive particles have an insulating material on the surface, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the protrusion between the conductive particles causes a gap between the conductive particles and the electrode. Resin can be effectively eliminated. For this reason, the conduction
  • the number of protrusions on the outer surface of the conductive layer per one conductive particle is preferably 3 or more, more preferably 5 or more.
  • the upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle diameter of the conductive particles.
  • the core substance Since the core substance is embedded in the conductive layer, it is easy for the conductive layer to have a plurality of protrusions on the outer surface. However, in order to form protrusions on the surfaces of the conductive particles and the conductive layer, the core substance is not necessarily used.
  • a core material is attached to the surface of the base particle, and then a conductive layer is formed by electroless plating, and a conductive layer is formed on the surface of the base particle by electroless plating. Thereafter, a method of attaching a core substance and further forming a conductive layer by electroless plating may be used.
  • a method for disposing the core substance on the surface of the base particle for example, a conductive substance that becomes the core substance is added to the dispersion of the base particle, and the core substance is added to the surface of the base particle, for example, .
  • Examples include a method of attaching a core substance.
  • the method of making a core substance accumulate and adhere on the surface of the base particle in a dispersion liquid is preferable.
  • Examples of the conductive substance constituting the core substance include metals, metal oxides, conductive nonmetals such as graphite, and conductive polymers.
  • Examples of the conductive polymer include polyacetylene. Among them, metal is preferable because conductivity can be increased and connection resistance can be effectively reduced.
  • the core substance is preferably metal particles.
  • the metal examples include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead.
  • examples thereof include alloys composed of two or more metals such as alloys, tin-copper alloys, tin-silver alloys, and tin-lead-silver alloys. Of these, nickel, copper, silver or gold is preferable.
  • the metal constituting the core material may be the same as or different from the metal constituting the conductive layer.
  • the metal constituting the core material preferably includes a metal constituting the conductive layer. It is preferable that the metal which comprises the said core substance contains nickel. It is preferable that the metal which comprises the said core substance contains nickel.
  • the shape of the core substance is not particularly limited.
  • the shape of the core substance is preferably a lump.
  • Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
  • the average diameter (average particle diameter) of the core substance is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the connection resistance between the electrodes can be effectively reduced.
  • the “average diameter (average particle diameter)” of the core substance indicates a number average diameter (number average particle diameter).
  • the average diameter of the core material is obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope and calculating an average value.
  • the conductive particles according to the present invention preferably include an insulating material disposed on the surface of the conductive layer.
  • an insulating material disposed on the surface of the conductive layer.
  • an insulating material is present between the plurality of electrodes, so that it is possible to prevent a short circuit between electrodes adjacent in the lateral direction instead of between the upper and lower electrodes.
  • the insulating substance between the conductive layer of the conductive particles and the electrodes can be easily excluded. Since the conductive particles have a plurality of protrusions on the outer surface of the conductive layer, the insulating material between the conductive layer of the conductive particles and the electrode can be easily excluded.
  • the insulating material is an insulating particle because the insulating material can be more easily removed when the electrodes are crimped.
  • thermoplastic resin examples include vinyl polymers and vinyl copolymers.
  • thermosetting resin an epoxy resin, a phenol resin, a melamine resin, etc.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose. Of these, water-soluble resins are preferable, and polyvinyl alcohol is more preferable.
  • Examples of a method for disposing an insulating material on the surface of the conductive layer include a chemical method and a physical or mechanical method.
  • Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method.
  • Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion, spraying, dipping, and vacuum deposition. In particular, since the insulating substance is difficult to be detached, a method of disposing the insulating substance on the surface of the conductive layer through a chemical bond is preferable.
  • the average diameter (average particle diameter) of the insulating material can be appropriately selected depending on the particle diameter of the conductive particles and the use of the conductive particles.
  • the average diameter (average particle diameter) of the insulating material is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the average diameter of the insulating material is not less than the above lower limit, the conductive layers of the plurality of conductive particles are difficult to contact when the conductive particles are dispersed in the binder resin.
  • the average diameter of the insulating particles is not more than the above upper limit, it is not necessary to make the pressure too high in order to eliminate the insulating material between the electrodes and the conductive particles when the electrodes are connected. There is no need for heating.
  • the “average diameter (average particle diameter)” of the insulating material indicates a number average diameter (number average particle diameter).
  • the average diameter of the insulating material is obtained using a particle size distribution measuring device or the like.
  • the conductive material according to the present invention includes the conductive particles described above and a binder resin.
  • the conductive particles according to the present invention are preferably added to a binder resin and used as a conductive material.
  • the conductive material according to the present invention is preferably an anisotropic conductive material.
  • the binder resin is not particularly limited.
  • a known insulating resin is used.
  • the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers.
  • the said binder resin only 1 type may be used and 2 or more types may be used together.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
  • examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin.
  • examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • a filler for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • Various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
  • the method for dispersing the conductive particles in the binder resin is not particularly limited, and a conventionally known dispersion method can be used.
  • Examples of a method for dispersing the conductive particles in the binder resin include a method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. The conductive particles are dispersed in water. Alternatively, after uniformly dispersing in an organic solvent using a homogenizer or the like, it is added to the binder resin and kneaded with a planetary mixer or the like, and the binder resin is diluted with water or an organic solvent. Then, the method of adding the said electroconductive particle, kneading with a planetary mixer etc. and disperse
  • distributing is mentioned.
  • the conductive material according to the present invention can be used as a conductive paste and a conductive film.
  • a film-like adhesive such as a conductive film
  • a film-like adhesive containing no conductive particles is added to the film-like adhesive containing the conductive particles. It may be laminated.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably 99.% or more. It is 99 weight% or less, More preferably, it is 99.9 weight% or less.
  • the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased.
  • the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 40% by weight or less, more preferably 20% by weight or less, More preferably, it is 10 weight% or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.
  • connection structure can be obtained by connecting the connection target members using the conductive particles of the present invention or using a conductive material containing the conductive particles and a binder resin.
  • connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first and second connection target members, and the connection portion is a conductive member of the present invention. It is preferable that the connection structure be formed of conductive particles or formed of a conductive material containing the conductive particles and a binder resin. In the case where conductive particles are used, the connection portion itself is conductive particles. That is, the first and second connection target members are connected by the conductive particles.
  • the conductive material used for obtaining the connection structure is preferably an anisotropic conductive material.
  • FIG. 4 is a front cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
  • connection portion 54 includes a first connection target member 52, a second connection target member 53, and a connection portion 54 that connects the first and second connection target members 52 and 53.
  • the connection portion 54 is formed by curing a conductive material including the conductive particles 1.
  • the conductive particles 1 are schematically shown for convenience of illustration.
  • the first connection target member 52 has a plurality of electrodes 52b on the upper surface 52a (front surface).
  • the second connection target member 53 has a plurality of electrodes 53b on the lower surface 53a (front surface).
  • the electrode 52 b and the electrode 53 b are electrically connected by one or a plurality of conductive particles 1. Therefore, the first and second connection target members 52 and 53 are electrically connected by the conductive particles 1.
  • the manufacturing method of the connection structure is not particularly limited.
  • the conductive material is disposed between the first connection target member and the second connection target member to obtain a laminate, and then the laminate is heated and pressurized. Methods and the like.
  • the pressurizing pressure is about 9.8 ⁇ 10 4 to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is about 120 to 220 ° C.
  • connection target member examples include electronic components such as semiconductor chips, capacitors, and diodes, and circuit boards such as printed boards, flexible printed boards, and glass boards.
  • the conductive material is preferably a conductive material for connecting electronic components.
  • the conductive material is a paste-like conductive paste, and is preferably applied on the connection target member in a paste-like state.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode.
  • the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
  • Example 1 Divinylbenzene copolymer resin particles (“Micropearl SP-203” manufactured by Sekisui Chemical Co., Ltd.) having a particle size of 3.0 ⁇ m were prepared.
  • the resin particles were taken out by dispersing 10 parts by weight of the resin particles in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser, and then filtering the solution. Next, the resin particles were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the resin particles. The resin particles whose surface was activated were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a suspension.
  • a nickel plating solution (pH 8.5) containing 0.23 mol / L of nickel sulfate, 0.92 mol / L of dimethylamine borane, 0.5 mol / L of sodium citrate and 0.01 mol / L of sodium tungstate was prepared.
  • the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, the suspension is filtered to take out the particles, washed with water, and dried to obtain conductive particles having a nickel-boron-tungsten conductive layer (thickness 0.1 ⁇ m) on the surface of the resin particles. It was.
  • Example 2 Conductive particles having a nickel-boron-tungsten conductive layer (thickness 0.1 ⁇ m) disposed on the surface of the resin particles are the same as in Example 1 except that the sodium tungstate concentration is changed to 0.12 mol / L. Obtained.
  • Example 3 Conductive particles having a nickel-boron-tungsten conductive layer (thickness 0.1 ⁇ m) disposed on the surface of the resin particles are the same as in Example 1 except that the sodium tungstate concentration is changed to 0.23 mol / L. Obtained.
  • Example 4 Conductive particles having a nickel-boron-tungsten conductive layer (thickness 0.1 ⁇ m) disposed on the surface of the resin particles are the same as in Example 1 except that the sodium tungstate concentration is changed to 0.35 mol / L. Obtained.
  • Nickel-boron-tungsten was formed on the surface of the resin particles in the same manner as in Example 1 except that the dimethylamine borane concentration was changed to 2.76 mol / L and the sodium tungstate concentration was changed to 0.35 mol / L. Conductive particles having a conductive layer (thickness 0.1 ⁇ m) were obtained.
  • Example 6 Palladium adhesion process Divinylbenzene resin particles (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) having a particle diameter of 5.0 ⁇ m were prepared. The resin particles were etched and washed with water. Next, resin particles were added to 100 mL of a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash
  • a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash
  • Electroless nickel plating step In the same manner as in Example 1, conductive particles in which a nickel-boron-tungsten conductive layer (thickness: 0.1 ⁇ m) was disposed on the surface of the resin particles were obtained.
  • Example 7 Conductive particles having a nickel-boron-tungsten conductive layer (thickness 0.1 ⁇ m) disposed on the surface of the resin particles are the same as in Example 6 except that the sodium tungstate concentration is changed to 0.35 mol / L. Obtained.
  • Example 8 (1) Preparation of insulating particles Into a 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, cooling tube and temperature probe, 100 mmol of methyl methacrylate and N, N, N-trimethyl Ion-exchanged water containing a monomer composition containing 1 mmol of —N-2-methacryloyloxyethylammonium chloride and 1 mmol of 2,2′-azobis (2-amidinopropane) dihydrochloride so that the solid content is 5% by weight. Then, the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, it was freeze-dried to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm, and a CV value of 10%.
  • the insulating particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
  • Example 6 10 g of the conductive particles obtained in Example 6 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 ⁇ m mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
  • Example 9 Conductive particles having a nickel-boron-tungsten conductive layer (thickness 0.1 ⁇ m) disposed on the surface of the resin particles are the same as in Example 1 except that the sodium tungstate concentration is changed to 0.46 mol / L. Obtained.
  • Example 10 In the same manner as in Example 1 except that the dimethylamine borane concentration was changed to 4.60 mol / L and the sodium tungstate concentration was changed to 0.23 mol / L, nickel-boron-tungsten was formed on the surface of the resin particles. Conductive particles having a conductive layer (thickness 0.1 ⁇ m) were obtained.
  • Comparative Example 2 A conductive layer (thickness: 0.1 ⁇ m) containing nickel and boron was disposed on the surface of the resin particles in the same manner as in Example 1 except that 0.01 mol / L of sodium tungstate in the nickel plating solution was not used. Conductive particles were obtained.
  • Divinylbenzene copolymer resin particles (“Micropearl SP-203” manufactured by Sekisui Chemical Co., Ltd.) having a particle size of 3.0 ⁇ m were prepared.
  • the resin particles were taken out by dispersing 10 parts by weight of the resin particles in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser, and then filtering the solution. Next, the resin particles were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the resin particles. The resin particles whose surface was activated were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a suspension.
  • a nickel plating solution (pH 8.5) containing 0.23 mol / L of nickel sulfate, 0.92 mol / L of dimethylamine borane, 0.5 mol / L of sodium citrate and 0.01 mol / L of sodium molybdate was prepared.
  • the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, the suspension is filtered to remove the particles, washed with water, and dried to obtain conductive particles in which a nickel-boron-molybdenum conductive layer (thickness 0.1 ⁇ m) is disposed on the surface of the resin particles. It was.
  • Example 12 Conductive particles in which a nickel-boron-molybdenum conductive layer (thickness: 0.1 ⁇ m) is arranged on the surface of the resin particles are the same as in Example 11 except that the sodium molybdate concentration is changed to 0.12 mol / L. Obtained.
  • Example 13 Conductive particles in which a nickel-boron-molybdenum conductive layer (thickness 0.1 ⁇ m) is arranged on the surface of the resin particles are the same as in Example 11 except that the sodium molybdate concentration is changed to 0.23 mol / L. Obtained.
  • Example 14 Conductive particles having a nickel-boron-molybdenum conductive layer (thickness: 0.1 ⁇ m) disposed on the surface of the resin particles in the same manner as in Example 11 except that the sodium molybdate concentration was changed to 0.35 mol / L. Obtained.
  • Nickel-boron-molybdenum was formed on the surface of the resin particles in the same manner as in Example 11 except that the dimethylamine borane concentration was changed to 2.76 mol / L and the sodium molybdate concentration was changed to 0.35 mol / L. Conductive particles having a conductive layer (thickness 0.1 ⁇ m) were obtained.
  • Example 16 (1) Palladium adhesion process Divinylbenzene resin particles (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) having a particle diameter of 5.0 ⁇ m were prepared. The resin particles were etched and washed with water. Next, resin particles were added to 100 mL of a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash
  • a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash
  • Example 17 Conductive particles having a nickel-boron-molybdenum conductive layer (thickness: 0.1 ⁇ m) disposed on the surface of the resin particles in the same manner as in Example 16 except that the sodium molybdate concentration was changed to 0.35 mol / L. Obtained.
  • Example 18 (1) Preparation of insulating particles Into a 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, cooling tube and temperature probe, 100 mmol of methyl methacrylate and N, N, N-trimethyl Ion-exchanged water containing a monomer composition containing 1 mmol of —N-2-methacryloyloxyethylammonium chloride and 1 mmol of 2,2′-azobis (2-amidinopropane) dihydrochloride so that the solid content is 5% by weight. Then, the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, it was freeze-dried to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm, and a CV value of 10%.
  • the insulating particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
  • Example 16 10 g of the conductive particles obtained in Example 16 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 ⁇ m mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
  • Example 19 Conductive particles having a nickel-boron-molybdenum conductive layer (thickness: 0.1 ⁇ m) disposed on the surface of the resin particles in the same manner as in Example 11 except that the sodium molybdate concentration was changed to 0.46 mol / L. Obtained.
  • Nickel-boron-molybdenum was formed on the surface of the resin particles in the same manner as in Example 11 except that the dimethylamine borane concentration was changed to 4.60 mol / L and the sodium molybdate concentration was changed to 0.23 mol / L. Conductive particles having a conductive layer (thickness 0.1 ⁇ m) were obtained.
  • the plating state of 50 conductive particles obtained was observed with a scanning electron microscope. The presence or absence of plating unevenness such as plating cracking or plating peeling was observed. The case where the number of conductive particles in which plating unevenness was confirmed was 4 or less was judged as “good”, and the case where the number of conductive particles in which plating unevenness was confirmed was 5 or more was judged as “bad”.
  • the obtained anisotropic conductive material was stored at 25 ° C. for 72 hours. After storage, it was evaluated whether or not the conductive particles aggregated in the anisotropic conductive material were settled. The case where the aggregated conductive particles were not settled was judged as “good”, and the case where the aggregated conductive particles were settled was judged as “bad”.
  • connection resistance Fabrication of connection structure 10 parts by weight of bisphenol A type epoxy resin (“Epicoat 1009” manufactured by Mitsubishi Chemical Corporation), 40 parts by weight of acrylic rubber (weight average molecular weight of about 800,000), 200 parts by weight of methyl ethyl ketone, and a microcapsule type curing agent (Asahi Kasei Chemicals) "HX3941HP” manufactured by HX3941) and 2 parts by weight of a silane coupling agent (“SH6040" manufactured by Toray Dow Corning Silicone Co., Ltd.) are mixed, and the conductive particles are added so that the content is 3% by weight.
  • a resin composition was obtained by dispersing.
  • the obtained resin composition was applied to a 50 ⁇ m-thick PET (polyethylene terephthalate) film whose one surface was release-treated, and dried with hot air at 70 ° C. for 5 minutes to produce an anisotropic conductive film.
  • the thickness of the obtained anisotropic conductive film was 12 ⁇ m.
  • the obtained anisotropic conductive film was cut into a size of 5 mm ⁇ 5 mm.
  • a two-layer flexible printed board width 2 cm, length 1 cm having the same aluminum electrode was bonded after being aligned so that the electrodes overlap each other.
  • the laminated body of this glass substrate and the two-layer flexible printed board was thermocompression bonded under pressure bonding conditions of 10 N, 180 ° C., and 20 seconds to obtain a connection structure.
  • a two-layer flexible printed board in which an aluminum electrode is directly formed on a polyimide film was used.
  • connection resistance measurement The connection resistance between the opposing electrodes of the obtained connection structure was measured by the 4-terminal method. Further, the connection resistance was determined according to the following criteria.
  • connection resistance is 2.0 ⁇ or less ⁇ : Connection resistance exceeds 2.0 ⁇ , 3.0 ⁇ or less ⁇ : Connection resistance exceeds 3.0 ⁇ , 5.0 ⁇ or less ⁇ : Connection resistance exceeds 5.0 ⁇
  • Impact resistance was evaluated by dropping the connection structure obtained in the above (6) connection resistance evaluation from a position of 70 cm in height and confirming conduction. The case where the rate of increase in resistance value from the initial resistance value was 50% or less was determined as “good”, and the case where the rate of increase in resistance value from the initial resistance value exceeded 50% was determined as “bad”.
  • the conductive particles of Examples 21 to 40 and Comparative Examples 4 to 6 were prepared separately from the conductive particles of Examples 1 to 20 and Comparative Examples 1 to 3.
  • Divinylbenzene copolymer resin particles (“Micropearl SP-203” manufactured by Sekisui Chemical Co., Ltd.) having a particle size of 3.0 ⁇ m were prepared.
  • the resin particles were taken out by dispersing 10 parts by weight of the resin particles in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser, and then filtering the solution. Next, the resin particles were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the resin particles. The resin particles whose surface was activated were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a suspension.
  • a nickel plating solution (pH 8.5) containing 0.23 mol / L of nickel sulfate, 0.92 mol / L of dimethylamine borane, 0.5 mol / L of sodium citrate and 0.01 mol / L of sodium tungstate was prepared.
  • the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, the suspension is filtered to take out the particles, washed with water, and dried to obtain conductive particles having a nickel-boron-tungsten conductive layer (thickness 0.1 ⁇ m) on the surface of the resin particles. It was.
  • Example 22 Conductive particles having a nickel-boron-tungsten conductive layer (thickness: 0.1 ⁇ m) disposed on the surface of the resin particles in the same manner as in Example 21 except that the sodium tungstate concentration was changed to 0.12 mol / L. Obtained.
  • Example 23 Conductive particles having a nickel-boron-tungsten conductive layer (thickness 0.1 ⁇ m) disposed on the surface of the resin particles were obtained in the same manner as in Example 21 except that the sodium tungstate concentration was changed to 0.23 mol / L. Obtained.
  • Example 24 Conductive particles having a nickel-boron-tungsten conductive layer (thickness: 0.1 ⁇ m) disposed on the surface of the resin particles in the same manner as in Example 21 except that the sodium tungstate concentration was changed to 0.35 mol / L. Obtained.
  • Nickel-boron-tungsten was formed on the surface of the resin particles in the same manner as in Example 21 except that the dimethylamine borane concentration was changed to 2.76 mol / L and the sodium tungstate concentration was changed to 0.35 mol / L. Conductive particles having a conductive layer (thickness 0.1 ⁇ m) were obtained.
  • Example 26 (1) Palladium adhesion process Divinylbenzene resin particles (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) having a particle diameter of 5.0 ⁇ m were prepared. The resin particles were etched and washed with water. Next, resin particles were added to 100 mL of a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash
  • a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash
  • Electroless nickel plating step In the same manner as in Example 21, conductive particles in which a nickel-boron-tungsten conductive layer (thickness: 0.1 ⁇ m) was disposed on the surface of the resin particles were obtained.
  • Example 27 Conductive particles having a nickel-boron-tungsten conductive layer (thickness: 0.1 ⁇ m) disposed on the surface of the resin particles are the same as in Example 26 except that the sodium tungstate concentration is changed to 0.35 mol / L. Obtained.
  • Example 28 (1) Preparation of insulating particles Into a 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, cooling tube and temperature probe, 100 mmol of methyl methacrylate and N, N, N-trimethyl Ion-exchanged water containing a monomer composition containing 1 mmol of —N-2-methacryloyloxyethylammonium chloride and 1 mmol of 2,2′-azobis (2-amidinopropane) dihydrochloride so that the solid content is 5% by weight. Then, the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, it was freeze-dried to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm, and a CV value of 10%.
  • the insulating particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
  • Example 26 10 g of the conductive particles obtained in Example 26 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 ⁇ m mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
  • Example 29 Conductive particles having a nickel-boron-tungsten conductive layer (thickness 0.1 ⁇ m) disposed on the surface of the resin particles are the same as in Example 21 except that the sodium tungstate concentration is changed to 0.46 mol / L. Obtained.
  • Example 30 In the same manner as in Example 21, except that the dimethylamine borane concentration was changed to 4.60 mol / L and the sodium tungstate concentration was changed to 0.23 mol / L, nickel-boron-tungsten was formed on the surface of the resin particles. Conductive particles having a conductive layer (thickness 0.1 ⁇ m) were obtained.
  • Example 4 In the same manner as in Example 21 except that 0.92 mol / L of dimethylamine borane in the nickel plating solution was changed to 0.5 mol / L of sodium hypophosphite, nickel, tungsten and phosphorus were added to the surface of the resin particles.
  • positioned was obtained.
  • the phosphorus content in the entire conductive layer of 100% by weight was 8.7% by weight.
  • Example 5 A conductive layer (thickness 0.1 ⁇ m) containing nickel and boron was disposed on the surface of the resin particles in the same manner as in Example 21 except that 0.01 mol / L of sodium tungstate in the nickel plating solution was not used. Conductive particles were obtained.
  • Divinylbenzene copolymer resin particles (“Micropearl SP-203” manufactured by Sekisui Chemical Co., Ltd.) having a particle size of 3.0 ⁇ m were prepared.
  • the resin particles were taken out by dispersing 10 parts by weight of the resin particles in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser, and then filtering the solution. Next, the resin particles were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the resin particles. The resin particles whose surface was activated were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a suspension.
  • a nickel plating solution (pH 8.5) containing 0.23 mol / L of nickel sulfate, 0.92 mol / L of dimethylamine borane, 0.5 mol / L of sodium citrate and 0.01 mol / L of sodium molybdate was prepared.
  • the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, the suspension is filtered to remove the particles, washed with water, and dried to obtain conductive particles in which a nickel-boron-molybdenum conductive layer (thickness 0.1 ⁇ m) is disposed on the surface of the resin particles. It was.
  • Example 32 Conductive particles having a nickel-boron-molybdenum conductive layer (thickness: 0.1 ⁇ m) disposed on the surface of the resin particles in the same manner as in Example 31 except that the sodium molybdate concentration was changed to 0.12 mol / L. Obtained.
  • Example 33 Conductive particles having a nickel-boron-molybdenum conductive layer (thickness: 0.1 ⁇ m) disposed on the surface of the resin particles in the same manner as in Example 31 except that the sodium molybdate concentration was changed to 0.23 mol / L. Obtained.
  • Example 34 Conductive particles having a nickel-boron-molybdenum conductive layer (thickness 0.1 ⁇ m) disposed on the surface of the resin particles were obtained in the same manner as in Example 31 except that the sodium molybdate concentration was changed to 0.35 mol / L. Obtained.
  • Nickel-boron-molybdenum was formed on the surface of the resin particles in the same manner as in Example 31 except that the dimethylamine borane concentration was changed to 2.76 mol / L and the sodium molybdate concentration was changed to 0.35 mol / L. Conductive particles having a conductive layer (thickness 0.1 ⁇ m) were obtained.
  • Example 36 (1) Palladium adhesion process Divinylbenzene resin particles (“Micropearl SP-205” manufactured by Sekisui Chemical Co., Ltd.) having a particle diameter of 5.0 ⁇ m were prepared. The resin particles were etched and washed with water. Next, resin particles were added to 100 mL of a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash
  • a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash
  • Example 37 Conductive particles having a nickel-boron-molybdenum conductive layer (thickness: 0.1 ⁇ m) disposed on the surface of the resin particles in the same manner as in Example 36 except that the sodium molybdate concentration was changed to 0.35 mol / L. Obtained.
  • Example 38 (1) Preparation of insulating particles Into a 1000 mL separable flask equipped with a four-neck separable cover, stirring blade, three-way cock, cooling tube and temperature probe, 100 mmol of methyl methacrylate and N, N, N-trimethyl Ion-exchanged water containing a monomer composition containing 1 mmol of —N-2-methacryloyloxyethylammonium chloride and 1 mmol of 2,2′-azobis (2-amidinopropane) dihydrochloride so that the solid content is 5% by weight. Then, the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, it was freeze-dried to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm, and a CV value of 10%.
  • the insulating particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
  • Example 36 10 g of the conductive particles obtained in Example 36 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 ⁇ m mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
  • Example 39 Conductive particles having a nickel-boron-molybdenum conductive layer (thickness: 0.1 ⁇ m) disposed on the surface of the resin particles in the same manner as in Example 31 except that the sodium molybdate concentration was changed to 0.46 mol / L. Obtained.
  • Example 40 In the same manner as in Example 31, except that the dimethylamine borane concentration was changed to 4.60 mol / L and the sodium molybdate concentration was changed to 0.23 mol / L, nickel-boron-molybdenum was formed on the surface of the resin particles. Conductive particles having a conductive layer (thickness 0.1 ⁇ m) were obtained.
  • the plating state of 50 conductive particles obtained was observed with a scanning electron microscope. The presence or absence of plating unevenness such as plating cracking or plating peeling was observed. The case where the number of conductive particles in which plating unevenness was confirmed was 4 or less was judged as “good”, and the case where the number of conductive particles in which plating unevenness was confirmed was 5 or more was judged as “bad”.
  • the obtained anisotropic conductive material was stored at 25 ° C. for 72 hours. After storage, it was evaluated whether or not the conductive particles aggregated in the anisotropic conductive material were settled. The case where the aggregated conductive particles were not settled was judged as “good”, and the case where the aggregated conductive particles were settled was judged as “bad”.
  • connection structure 10 parts by weight of bisphenol A type epoxy resin (“Epicoat 1009” manufactured by Mitsubishi Chemical Corporation), 40 parts by weight of acrylic rubber (weight average molecular weight of about 800,000), 200 parts by weight of methyl ethyl ketone, and a microcapsule type curing agent (Asahi Kasei Chemicals) "HX3941HP” manufactured by HX3941) and 2 parts by weight of a silane coupling agent ("SH6040" manufactured by Toray Dow Corning Silicone Co., Ltd.) are mixed, and the conductive particles are added so that the content is 3% by weight.
  • a resin composition was obtained by dispersing.
  • the obtained resin composition was applied to a 50 ⁇ m-thick PET (polyethylene terephthalate) film whose one surface was release-treated, and dried with hot air at 70 ° C. for 5 minutes to produce an anisotropic conductive film.
  • the thickness of the obtained anisotropic conductive film was 12 ⁇ m.
  • the obtained anisotropic conductive film was cut into a size of 5 mm ⁇ 5 mm.
  • a two-layer flexible printed board (width 2 cm, length 1 cm) having the same aluminum electrode was aligned and aligned so that the electrodes overlapped.
  • the laminated body of the glass substrate and the two-layer flexible printed circuit board was thermocompression bonded under pressure bonding conditions of 10 N, 180 ° C., and 20 seconds to obtain a connection structure.
  • a two-layer flexible printed board in which an aluminum electrode is directly formed on a polyimide film was used.
  • connection resistance measurement The connection resistance between the opposing electrodes of the obtained connection structure was measured by the 4-terminal method. The initial connection resistance was determined according to the following criteria.
  • connection resistance is 2.0 ⁇ or less ⁇ : Connection resistance exceeds 2.0 ⁇ , 3.0 ⁇ or less ⁇ : Connection resistance exceeds 3.0 ⁇ , 4.0 ⁇ or less ⁇ ⁇ : Connection resistance is 4.0 ⁇ Exceeding 5.0 ⁇ or less ⁇ : Connection resistance exceeds 5.0 ⁇
  • connection resistance after high-temperature and high-humidity test The connection structure obtained by producing the connection structure (6) was allowed to stand for 100 hours under the conditions of 85 ° C and 85% humidity. The connection resistance between the electrodes of the connection structure after being allowed to stand was measured by the four-terminal method, and the obtained measurement value was used as the connection resistance after the high temperature and high humidity test. Moreover, the connection resistance after a high temperature, high humidity test was determined according to the following criteria.
  • connection resistance is 2.0 ⁇ or less ⁇ : Connection resistance exceeds 2.0 ⁇ , 3.0 ⁇ or less ⁇ : Connection resistance exceeds 3.0 ⁇ , 4.0 ⁇ or less ⁇ ⁇ : Connection resistance is 4.0 ⁇ Exceeding 5.0 ⁇ or less ⁇ : Connection resistance exceeds 5.0 ⁇
  • connection structure obtained by the preparation of the connection structure (6) was dropped from a position of 70 cm in height, and the impact resistance was evaluated by confirming conduction. The case where the rate of increase in resistance value from the initial resistance value was 50% or less was determined as “good”, and the case where the rate of increase in resistance value from the initial resistance value exceeded 50% was determined as “bad”.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Wire Bonding (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 複数の導電性粒子が凝集するのを抑制でき、更に電極間の接続に用いた場合に電極間の接続抵抗を低くすることができる導電性粒子、並びに該導電性粒子を用いた導電材料を提供する。 本発明に係る導電性粒子1は、基材粒子2と、基材粒子2の表面上に配置されており、かつニッケルと、ボロンと、タングステン及びモリブデンの内の少なくとも1種の金属成分とを含む導電層3とを有する。本発明に係る導電材料は、導電性粒子1と、バインダー樹脂とを含む。

Description

導電性粒子、導電材料及び接続構造体
 本発明は、基材粒子の表面上に導電層が配置されている導電性粒子に関し、より詳細には、例えば、電極間の電気的な接続に用いることができる導電性粒子に関する。また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体に関する。
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。これらの異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。
 上記異方性導電材料は、ICチップとフレキシブルプリント回路基板との接続、及びICチップとITO電極を有する回路基板との接続等に用いられている。例えば、ICチップの電極と回路基板の電極との間に異方性導電材料を配置した後、加熱及び加圧することにより、これらの電極を電気的に接続できる。
 上記導電性粒子の一例として、下記の特許文献1には、平均粒径1~20μmの球状の基材粒子の表面に、無電解めっき法によりニッケル導電層又はニッケル合金導電層が形成された導電性粒子が開示されている。この導電性粒子は、導電層の最表層に0.05~4μmの微小な突起を有する。該導電層と該突起とは実質的に連続的に連なっている。
 また、下記の特許文献2には、基材粒子と、該基材粒子の表面に形成された導電層とを有する導電性粒子が開示されている。基材粒子を形成するために、ジビニルベンゼン-エチルビニルベンゼン混合物が単量体の一部として用いられている。この導電性粒子では、粒子径の10%が変位したときの圧縮弾性率が2.5×10N/m以下で圧縮変形回復率が30%以上、かつ、破壊歪みが30%以上である。特許文献2には、上記導電性粒子を用いて基板の電極間を電気的に接続した場合に、接続抵抗が低くなり、接続信頼性が高くなることが記載されている。
特開2000-243132号公報 特開2003-313304号公報
 特許文献1に記載の導電性粒子を用いて電極間を接続した場合には、電極間の接続抵抗が高くなることがある。また、特許文献1に記載の導電性粒子を含む異方性導電材料を用いて電極間を接続した場合には、電極と導電性粒子の間の樹脂成分を十分に排除できないことがある。このため、上記異方性導電材料に含まれる導電性粒子により接続された電極間の接続抵抗が高くなることがある。
 また、特許文献1の実施例の導電性粒子では、ニッケルとリンとを含む導電層が形成されている。導電性粒子により接続される電極、及び導電性粒子の導電層の表面には、酸化被膜が形成されていることが多い。ニッケルとリンとを含む導電層を有する導電性粒子を用いて電極間を接続した場合には、ニッケルとリンとを含む導電層が比較的柔らかいので、電極及び導電性粒子の表面の酸化被膜を十分に排除できず、接続抵抗が高くなることがある。
 また、接続抵抗を低くするために、特許文献1に記載のようなニッケルとリンとを含む導電層の厚みを厚くすると、導電性粒子により接続対象部材又は基板が傷つくことがある。接続対象部材又は電極が損傷すると、接続抵抗が高くなりやすい。また、電極又は接続対象部材が損傷すると、電極間の導通信頼性が低くなる。
 さらに、特許文献1に記載のような従来の導電性粒子では、複数の導電性粒子が凝集することがある。凝集した複数の導電性粒子を用いて電極間を接続すると、電極間の短絡が生じることがある。
 また、特許文献2に記載の導電性粒子でも、酸化被膜を十分に排除できなかったり、接続対象部材又は基板の損傷を抑制できなかったりすることがある。このため、特許文献2に記載の導電性粒子を用いた場合でも、電極間の接続抵抗を十分に低くすることは困難である。
 本発明の目的は、複数の導電性粒子が凝集するのを抑制でき、更に電極間の接続に用いた場合に電極間の接続抵抗を低くすることができる導電性粒子、並びに該導電性粒子を用いた導電材料及び接続構造体を提供することである。
 本発明の限定的な目的は、電極間の接続に用いた場合に、電極及び導電性粒子の表面の酸化被膜を効果的に排除でき、電極間の接続抵抗を低くすることができる導電性粒子、並びに該導電性粒子を用いた導電材料及び接続構造体を提供することである。
 本発明の限定的な目的は、電極間の接続に用いた場合に、電極と導電性粒子との間の樹脂成分を効果的に排除でき、電極間の接続抵抗を低くすることができる導電材料及び接続構造体を提供することである。
 本発明の広い局面によれば、基材粒子と、前記基材粒子の表面上に配置されており、かつニッケルと、ボロンと、タングステン及びモリブデンの内の少なくとも1種の金属成分とを含む導電層とを有する、導電性粒子が提供される。
 本発明に係る導電性粒子のある特定の局面では、前記導電層の全体100重量%中の前記ボロンの含有量が0.05重量%以上、4重量%以下である。
 本発明に係る導電性粒子のある特定の局面では、前記導電層の全体100重量%中の前記金属成分の含有量が0.1重量%以上、30重量%以下である。
 本発明に係る導電性粒子のある特定の局面では、前記導電層の全体100重量%中の前記金属成分の含有量が5重量%を超え、30重量%以下である。
 本発明に係る導電性粒子のある特定の局面では、前記金属成分がタングステンを含む。
 本発明に係る導電性粒子のある特定の局面では、該導電性粒子を10%圧縮変形したときの圧縮弾性率が5000N/mm以上、15000N/mm以下である。
 本発明に係る導電性粒子のある特定の局面では、圧縮回復率が5%以上、70%以下である。
 本発明に係る導電性粒子のある特定の局面では、前記金属成分がモリブデンを含む。
 本発明に係る導電性粒子のある特定の局面では、前記導電層がニッケルとモリブデンとを含み、前記導電層の全体100重量%中、ニッケルの含有量が70重量%以上、99.9重量%以下であり、モリブデンの含有量が0.1重量%以上、30重量%以下である。
 本発明に係る導電性粒子のある特定の局面では、5%圧縮されたときの圧縮弾性率が7000N/mm以上であり、かつ、圧縮方向における圧縮前の導電性粒子の粒子径の10%を超え、25%以下で導電性粒子が圧縮されたときに、前記導電層に割れが生じる。
 本発明に係る導電性粒子のある特定の局面では、前記導電層の厚みが0.05μm以上、0.5μm以下である。
 本発明に係る導電性粒子のある特定の局面では、前記導電層は外表面に突起を有する。
 本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。
 本発明に係る接続構造体は、第1の接続対象部材と、第2の接続対象部材と、前記第1,第2の接続対象部材を接続している接続部とを備えており、前記接続部が、上述した導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されている。
 本発明に係る導電性粒子では、基材粒子の表面上に、ニッケルと、ボロンと、タングステン及びモリブデンの内の少なくとも1種の金属成分とを含む導電層が配置されているので、複数の導電性粒子が凝集するのを抑制できる。さらに、本発明に係る導電性粒子を用いて電極間を接続した場合に、接続抵抗を低くすることができる。
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。 図4は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す正面断面図である。 図5は、導電性粒子を圧縮するときの状態を説明するための模式的な断面図である。 図6は、導電性粒子の圧縮時に導電層に割れが生じるときの圧縮荷重値と圧縮変位との関係の一例を示す模式図である。
 以下、本発明の詳細を説明する。
 本発明に係る導電性粒子は、基材粒子と、該基材粒子の表面上に配置されており、かつニッケルと、ボロンと、タングステン及びモリブデンの内の少なくとも1種の金属成分とを含む導電層とを有する。該導電層は、ニッケル-ボロン-タングステン/モリブデン導電層である。以下、タングステン及びモリブデンの内の少なくとも1種の金属成分を、金属成分Mと記載することがある。以下、ニッケルとボロンと金属成分Mとを含む導電層を、導電層Xと記載することがある。
 本発明に係る導電性粒子における上述した構成の採用によって、複数の導電性粒子が凝集するのを抑制できる。複数の導電性粒子が凝集するのを抑制できる結果、電極間の短絡を効果的に防ぐことができる。さらに、本発明に係る導電性粒子における上述した構成の採用によって、本発明に係る導電性粒子を用いて電極間を接続した場合に、接続抵抗を低くすることができる。
 ニッケルを含む導電層を有する導電性粒子により電極間を接続した場合には、電極間の接続抵抗が低くなる。本発明に係る導電性粒子における導電層Xの全体100重量%中のニッケルの含有量が50重量%以上であると、電極間の接続抵抗がかなり低くなる。従って、上記導電層Xの全体100重量%中、ニッケルの含有量は50重量%以上であることが好ましい。
 また、ボロンを含まないニッケル導電層を有する導電性粒子では、該ボロンを含まないニッケル導電層が柔らかすぎて、電極間の接続時に、電極及び導電性粒子の表面の酸化被膜を十分に排除できず、接続抵抗が高くなることがある。例えば、ニッケルとリンとを含む導電層を有する導電性粒子では、電極及び導電性粒子の表面の酸化被膜を十分に排除できず、接続抵抗が高くなりやすい。特に、上記導電層の全体100重量%中のリンの含有量が10.5重量%以上であると、接続抵抗が高くなりやすく、1重量%以上であると接続抵抗がより一層高くなりやすい。
 一方で、接続抵抗を低くするために、ニッケルとリンとを含む導電層の厚みを厚くすると、導電性粒子により接続対象部材又は基板が傷つくことがある。
 これに対して、ニッケルとボロンとを含む上記導電層Xの硬さは比較的高いので、電極間の接続抵抗を低くすることができる。電極間の接続の際に、電極及び導電性粒子の表面の酸化被膜を排除でき、接続抵抗を低くすることができる。
 さらに、本発明に係る導電性粒子では、上記導電層Xがボロンだけでなく、タングステン及びモリブデンの内の少なくとも1種の金属成分Mも含むので、ボロンと上記金属成分Mとを含む導電層Xをかなり硬くすることができる。このため、電極及び導電性粒子の表面の酸化被膜を十分に排除でき、接続抵抗をかなり低くすることができる。特に上記導電層Xが上記金属成分Mを含みかつ上記導電層Xが外表面に突起を有する場合には、電極及び導電性粒子の表面の酸化被膜をより一層効果的に排除でき、接続抵抗をより一層低くすることができる。
 さらに、上記導電層Xが上記金属成分Mを含むことによって、上記導電層Xがかなり硬くなる結果、導電性粒子により電極間を接続した接続構造体に衝撃が与えられても、導通不良が生じ難くなる。すなわち、接続構造体の耐衝撃性を高めることもできる。
 さらに、従来の導電性粒子の導電層の表面の磁性が高いことがあり、またニッケルとボロンとを含む導電層の表面の磁性は高いことから、電極間を電気的に接続した場合に、磁性により凝集した導電性粒子の影響で、横方向に隣接する電極間が接続されやすい傾向がある。本発明に係る導電性粒子では、上記導電層Xが上記金属成分Mを含むので、上記導電層Xの表面の磁性がかなり低くなる。このため、複数の導電性粒子が凝集するのを抑制できる。従って、電極間を電気的に接続した場合に、凝集した導電性粒子により横方向に隣接する電極間が接続されるのを抑制できる。すなわち、隣り合う電極間の短絡をより一層防止できる。
 上記導電層Xの全体100重量%中、ニッケルの含有量が70重量%以上、99.9重量%以下であり、かつ、上記金属成分Mの含有量が0.1重量%以上、30重量%以下であることが好ましい。さらに、上記導電層Xがリンを含まないか、又は上記導電層Xがリンを含みかつ上記導電層Xの全体100重量%中のリンの含有量が1重量%未満であることが好ましい。
 上記導電層Xの全体100重量%中、ニッケルの含有量が70重量%以上、99.9重量%以下であり、上記金属成分Mの含有量が0.1重量%以上、30重量%以下であり、かつ上記導電層Xがリンを含まないか、又は上記導電層Xがリンを含みかつ上記導電層Xの全体100重量%中のリンの含有量が1重量%未満であることが好ましい。この好ましい構成を備える導電性粒子を電極間の接続に用いた場合には、電極及び導電性粒子の表面の酸化被膜を効果的に排除できる。このため、得られる接続構造体における電極間の接続抵抗をより一層低くすることができる。また、この好ましい構成を備える導電性粒子におけるニッケルの含有量は70重量%以上であるので、電極間の接続抵抗がかなり低くなる。
 また、上記導電層Xの全体100重量%中の上記金属成分Mの含有量が0.1重量%以上、30重量%以下であることによって、上記金属成分Mを含まない導電層と比べて、導電層Xがかなり硬くなる。このため、電極及び導電性粒子の表面の酸化被膜を効果的に排除できる結果、電極間の接続抵抗がより一層低くなる。また、導電性粒子とバインダー樹脂とを配合し、導電材料を用いて電極間を接続した場合に、電極と導電性粒子との間の樹脂成分を効果的に排除できることによっても、電極間の接続抵抗がより一層低くなる。
 本発明に係る導電性粒子を10%圧縮変形したときの圧縮弾性率(10%K値)は、好ましくは5000N/mm以上、より好ましくは7000N/mm以上、好ましくは15000N/mm以下、より好ましくは10000N/mm以下である。上記圧縮弾性率(10%K値)が上記下限以上であると、電極及び導電性粒子の表面の酸化被膜をより一層効果的に排除でき、更に電極と導電性粒子との間の樹脂成分をより一層効果的に排除できる結果、電極間の接続抵抗がより一層低くなる。
 上記圧縮弾性率(10%K値)は、以下のようにして測定できる。
 微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、圧縮速度2.6mN/秒、及び最大試験荷重10gfの条件下で導電性粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。
 K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:導電性粒子が10%圧縮変形したときの荷重値(N)
 S:導電性粒子が10%圧縮変形したときの圧縮変位(mm)
 R:導電性粒子の半径(mm)
 上記導電性粒子の圧縮回復率は、好ましくは5%以上、より好ましくは20%以上、好ましくは70%以下、より好ましくは60%以下、更に好ましくは50%以下である。圧縮回復率が上記下限以上及び上記上限以下であると、電極及び導電性粒子の表面の酸化被膜をより一層効果的に排除でき、更に電極と導電性粒子との間の樹脂成分をより一層効果的に排除できる結果、電極間の接続抵抗がより一層低くなる。さらに、硬化物及び接続部の導電性粒子を除く部分と導電性粒子及び接続対象部材との界面で剥離がより一層生じ難くなる。さらに、電極間の接続に用いられた導電性粒子の反発力を抑制できる結果、導電材料が基板等から剥離し難くなる。このことによっても、電極間の接続抵抗がより一層低くなる。
 上記圧縮回復率は、以下のようにして測定できる。
 試料台上に導電性粒子を散布する。散布された導電性粒子1個について、微小圧縮試験機を用いて、導電性粒子の中心方向に、導電性粒子が30%圧縮変形するまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。
 圧縮回復率(%)=[(L1-L2)/L1]×100
 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでのまでの圧縮変位
 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
 なお、上記圧縮弾性率及び上記圧縮回復率は、上記基材粒子の種類、上記基材粒子の粒子径、上記導電層Xの全体100重量%中のニッケルの含有量、上記導電層Xの全体100重量%中の上記金属成分Mの含有量、上記導電層Xの全体100重量%中のリンの含有量、上記導電層Xの全体100重量%中のボロンの含有量、上記導電層Xの厚みなどにより適宜調整可能である。
 本発明に係る導電性粒子では、5%圧縮されたときの圧縮弾性率(5%K値)が7000N/mm以上であることが好ましい。
 さらに、本発明に係る導電性粒子では、圧縮方向における圧縮前の導電性粒子の粒子径の10%を超え、25%以下で導電性粒子が圧縮されたときに、上記導電層に割れが生じることが好ましい。言い換えれば、本発明に係る導電性粒子を圧縮した場合に、該導電性粒子が、圧縮方向における圧縮前の導電性粒子の粒子径の10%を超え、25%以下で圧縮変位したときに、上記導電層に割れが生じることが好ましい。すなわち、導電層に割れが生じる導電性粒子の圧縮変位は、10%を超え、25%以下であることが好ましい。例えば、導電性粒子をかなり圧縮したときに、導電層が適度に部分的に割れる。このような性質を有する導電性粒子では、圧縮初期段階における硬さが十分に高いだけでなく、適度に圧縮されたときに割れが生じる。電極間の接続時に、導電性粒子が適度に圧縮された段階において、導電層に割れが生じるので、電極の損傷を抑制できる。この結果、得られる接続構造体における電極間の接続抵抗をより一層低くすることができ、電極間の導通信頼性をより一層高めることができる。
 本発明に係る導電性粒子では、5%圧縮されたときの圧縮弾性率(5%K値)が7000N/mm以上であり、かつ本発明に係る導電性粒子を圧縮した場合に、圧縮方向における圧縮前の導電性粒子の粒子径の10%を超え、25%以下で導電性粒子が圧縮されたときに、上記導電層に割れが生じることが好ましい。この好ましい構成を備える導電性粒子を電極間の接続に用いた場合に、電極間の接続抵抗をより一層低くすることができる。
 本発明に係る導電性粒子において、5%圧縮されたときの圧縮弾性率(5%K値)が7000N/mm以上である場合には、圧縮初期段階における導電性粒子は、十分な硬さを有する。このため、電極間の接続時における導電性粒子の圧縮初期段階で、電極及び導電性粒子の表面の酸化被膜を効果的に排除できる。この結果、電極と導電性粒子における導電層とが効果的に接触し、電極間の接続抵抗をより一層低くすることができる。
 これに対して、5%圧縮されたときの圧縮弾性率(5%K値)が7000N/mm未満である導電性粒子を用いて電極間を電気的に接続した場合には、5%圧縮されたときの圧縮弾性率(5%K値)が7000N/mm以上である導電性粒子を用いて電極間を電気的に接続した場合と比べて、電極及び導電性粒子の表面の酸化被膜の排除性が低下する傾向があり、電極間の接続抵抗が高くなる傾向がある。
 電極間の接続抵抗をより一層低くする観点からは、上記5%K値は、より好ましくは8000N/mm以上、更に好ましくは9000N/mm以上である。上記5%K値の上限は特に限定されない。上記5%K値は、例えば、15000N/mm以下であってもよく、10000N/mm以下であってもよい。
 上記圧縮弾性率(5%K値)は、以下のようにして測定できる。
 微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、圧縮速度2.6mN/秒、及び最大試験荷重10gfの条件下で導電性粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。
 K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:導電性粒子が5%圧縮変形したときの荷重値(N)
 S:導電性粒子が5%圧縮変形したときの圧縮変位(mm)
 R:導電性粒子の半径(mm)
 上記圧縮弾性率(10%K値及び5%K値)は、導電性粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、導電性粒子の硬さを定量的かつ一義的に表すことができる。
 電極間の接続抵抗をより一層低くする観点からは、上記導電層に割れが生じる圧縮変位は、より好ましくは12%以上、より好ましくは20%以下である。
 以下、図面を参照しつつ本発明の具体的な実施形態及び実施例を説明することにより、本発明を明らかにする。
 図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。
 図1に示すように、導電性粒子1は、基材粒子2と、導電層3と、複数の芯物質4と、複数の絶縁物質5とを有する。
 導電層3は、基材粒子2の表面上に配置されている。導電層3は、ニッケルとボロンと上記金属成分Mとを含む。導電層3は、ニッケル-ボロン-タングステン/モリブデン導電層である。導電性粒子1は、基材粒子2の表面が導電層3により被覆された被覆粒子である。
 導電性粒子1は表面に、複数の突起1aを有する。導電層3は外表面に、複数の突起3aを有する。複数の芯物質4が、基材粒子2の表面上に配置されている。複数の芯物質4は導電層3内に埋め込まれている。芯物質4は、突起1a,3aの内側に配置されている。導電層3は、複数の芯物質4を被覆している。複数の芯物質4により導電層3の外表面が隆起されており、突起1a,3aが形成されている。
 導電性粒子1は、導電層3の外表面上に配置された絶縁物質5を有する。導電層3の外表面の少なくとも一部の領域が、絶縁物質5により被覆されている。絶縁物質5は絶縁性を有する材料により形成されており、絶縁性粒子である。このように、本発明に係る導電性粒子は、導電層の外表面上に配置された絶縁物質を有していてもよい。但し、本発明に係る導電性粒子は、絶縁物質を必ずしも有していなくてもよい。
 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。
 図2に示す導電性粒子11は、基材粒子2と、第2の導電層12(他の導電層)と、導電層13(第1の導電層)と、複数の芯物質4と、複数の絶縁物質5とを有する。
 導電性粒子1と導電性粒子11とでは、導電層のみが異なっている。すなわち、導電性粒子1では、1層構造の導電層が形成されているのに対し、導電性粒子11では、2層構造の第2の導電層12及び導電層13が形成されている。
 導電層13は、基材粒子2の表面上に配置されている。基材粒子2と導電層13との間に、第2の導電層12(他の導電層)が配置されている。従って、基材粒子2の表面上に第2の導電層12が配置されており、第2の導電層12の表面上に導電層13が配置されている。導電層13は、ニッケルとボロンとタングステンとを含む。導電層13は外表面に、複数の突起13aを有する。導電性粒子11は表面に、複数の突起11aを有する。
 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。
 図3に示す導電性粒子21は、基材粒子2と、導電層22とを有する。導電層22は、基材粒子2の表面上に配置されている。導電層22は、ニッケルとボロンと上記金属成分Mとを含む。
 導電性粒子21は、芯物質を有さない。導電性粒子21は表面に突起を有さない。導電性粒子21は球状である。導電層22は表面に突起を有さない。このように、本発明に係る導電性粒子は突起を有していなくてもよく、球状であってもよい。また、導電性粒子21は、絶縁物質を有さない。但し、導電性粒子21は、導電層22の表面上に配置された絶縁物質を有していてもよい。
 導電性粒子1,11,21では、導電層3,13,22の全体100重量%中、ニッケルの含有量が70重量%以上、99.9重量%以下であり、上記金属成分Mの含有量が0.1重量%以上、30重量%以下であることが好ましい。さらに、導電層3,13,22がリンを含まないか、又は導電層3,13,22がリンを含みかつ導電層3,13,22の全体100重量%中、リンの含有量が1重量%未満であることが好ましい。
 導電性粒子1,11,21の上記5%K値は、7000N/mm以上であることが好ましい。さらに、導電性粒子1,11,21を圧縮した場合に、導電性粒子1,11,21が、圧縮方向における圧縮前の導電性粒子1,11,21の粒子径の10%を超え、25%以下で圧縮変位されたときに、導電層3,13,22に割れが生じることが好ましい。すなわち、導電性粒子1,11,21では、圧縮方向における圧縮前の導電性粒子1,11,21の粒子径をXとしたときに、圧縮方向における導電性粒子1,11,21の粒子径が0.75X以上、0.90X未満であるときに、導電層3,13,22に割れが生じることが好ましい。例えば、圧縮方向における圧縮前の導電性粒子1,11,21の粒子径が5μmである場合には、導電性粒子1,11,21を圧縮させて、圧縮方向における導電性粒子1,11,21の粒子径が3.75μm以上、4.5μm未満となったときに、導電層3,13,22に割れが生じることが好ましい。なお、導電性粒子11では、導電層13だけでなく、第2の導電層12にも割れが生じてもよい。
 なお、上記「割れ」は、導電層における初め(第1回目)の割れを示す。従って、本実施形態に係る導電性粒子1,11,21では、割れがない導電層3,13,22を有する導電性粒子1,11,21を圧縮したときに、導電性粒子1,11,21が圧縮方向における圧縮前の導電性粒子1,11,21の粒子径の10%を超え、25%以下で圧縮変位したときに、導電層3,13,22に割れが生じることが好ましい。
 導電層3,13,22に割れが生じる圧縮変位の測定は、具体的には、以下のようにして行われる。なお、図5では、導電性粒子21を用いている。
 図5に示すように、台71の上に導電性粒子21を置く。微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて、圧縮速度0.33mN/秒及び最大試験荷重10mNの条件で、円柱(直径50μm、ダイヤモンド製)を圧縮部材72として、該圧縮部材72の平滑端面72aを導電性粒子21に向かって、矢印Aで示す方向に降下させる。平滑端面72aにより導電性粒子21を圧縮する。導電性粒子21の導電層22に部分的に割れ22aが生じるまで圧縮は継続される。導電性粒子1,11の場合にも、同様にして測定される。
 なお、図5に示す断面図では、導電性粒子21の上下部分で導電層22に割れ22aが形成された状態が図示されているが、導電層に割れが生じる位置は特に限定されない。
 上記のようにして導電性粒子を圧縮したときに、導電性粒子が、圧縮方向における圧縮前の導電性粒子の粒子径の10%を超えて圧縮変位したときに、上記導電層に割れが生じ、25%以下の圧縮変位で、上記導電層に割れが生じることが好ましい。
 導電性粒子を圧縮しながら、圧縮荷重値及び圧縮変位を測定すると、圧縮荷重値と圧縮変位との関係は、例えば、図6に示すようになる。図6では、A0点から圧縮が開始されており、A1点において導電層に割れが生じている。導電層の割れに伴って、圧縮方向における導電性粒子の圧縮変位(粒子径)が変化し、圧縮変位がA1点からA2点に移動する。圧縮時には導電性粒子に圧縮荷重がかけられおり、導電層の割れが生じると比較的小さな圧縮荷重で導電性粒子が圧縮されるので、導電性粒子に圧縮荷重をかけている圧縮部材が移動し、圧縮方向における導電性粒子の圧縮変位(粒子径)が変化する。
 なお、図6において、A0点からA1点に至る線の傾きは比較的大きい。導電性粒子21の上記5%K値が7000N/mm以上であり、導電性粒子21が比較的硬い場合には、A0点からA1点に至る線の傾きが大きくなる。
 [基材粒子]
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることが好ましい。
 上記基材粒子は、樹脂により形成された樹脂粒子であることが好ましい。上記導電性粒子を用いて電極間を接続する際には、上記導電性粒子を電極間に配置した後、圧着することにより上記導電性粒子を圧縮させる。基材粒子が樹脂粒子であると、上記圧着の際に上記導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の導通信頼性が高くなる。
 上記樹脂粒子を形成するための樹脂としては、例えば、ポリオレフィン樹脂、アクリル樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。基材粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を複数有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
 上記無機粒子を形成するための無機物としては、シリカ及びカーボンブラック等が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。
 上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。
 上記基材粒子の粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上、更に好ましくは1.5μm以上、特に好ましくは2μm以上、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは300μm以下、更に好ましくは50μm以下、特に好ましくは30μm以下、最も好ましくは5μm以下である。基材粒子の粒子径が上記下限以上であると、導電性粒子と電極との接触面積が大きくなるため、電極間の導通信頼性がより一層高くなり、導電性粒子を介して接続された電極間の接続抵抗がより一層低くなる。さらに基材粒子の表面に導電層を無電解めっきにより形成する際に凝集し難くなり、凝集した導電性粒子が形成されにくくなる。粒子径が上記上限以下であると、導電性粒子が充分に圧縮されやすく、電極間の接続抵抗がより一層低くなり、更に電極間の間隔が小さくなる。上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。
 上記基材粒子の粒子径は、2μm以上、5μm以下であることが特に好ましい。上記基材粒子の粒子径が2~5μmの範囲内であると、電極間の間隔が小さくなり、かつ導電層の厚みを厚くしても、小さい導電性粒子が得られる。
 [導電層]
 本発明に係る導電性粒子は、基材粒子の表面上に配置されており、かつニッケルとボロンとタングステン及びモリブデンの内の少なくとも1種の金属成分Mとを含む導電層Xを有する。上記導電層Xは、基材粒子の表面に直接積層されていてもよく、他の導電層などを介して基材粒子の表面上に配置されていてもよい。さらに、上記導電層Xの表面上に他の導電層が配置されていてもよい。上記導電層Xの外側の表面上に他の導電層が配置されていないことが好ましい。導電性粒子の外表面がニッケルを含む導電層Xであることが好ましい。ニッケルを含む導電層Xを有する導電性粒子により電極間を接続した場合には、接続抵抗がより一層低くなる。
 上記導電層Xは、ニッケルとボロンとタングステン及びモリブデンの内の少なくとも1種の金属成分Mとを含む。上記導電層Xは、ニッケル-ボロン-タングステン/モリブデン導電層である。上記導電層Xは、ニッケルとボロンとタングステンとを含むことが好ましく、ニッケルとボロンとモリブデンとを含むことが好ましく、ニッケルとボロンとタングステンとモリブデンとを含むことが好ましい。上記導電層Xは、ニッケル-ボロン-タングステン導電層であってもよく、ニッケル-ボロン-モリブデン導電層であってもよい。上記金属成分Mは、タングステンを含むことが好ましく、モリブデンを含むことが好ましく、タングステンとモリブデンとを含むことが好ましい。
 上記導電層Xでは、ニッケルとボロンと上記金属成分Mとは合金化していてもよい。上記導電層Xでは、ニッケルとボロンとが合金化していてもよく、ニッケルと上記金属成分Mとが合金化していてもよく、ボロンと上記金属成分Mとが合金化していてもよい。また、上記導電層Xでは、ニッケル、ボロン及び上記金属成分M以外に、クロム、シーボーギウムを用いてもよい。
 また、タングステン及びモリブデンの双方を含まないニッケル導電層を有する導電性粒子では、該タングステン及びモリブデンの双方を含まないニッケル導電層の圧縮初期段階で硬さが、比較的低くなりやすい。このため、電極間の接続時に、電極及び導電性粒子の表面の酸化被膜を排除する効果が小さくなり、接続抵抗を低くする効果が小さくなる傾向がある。
 一方で、接続抵抗を低くする効果をより一層得るために、又は大きな電流が流れる用途に適するように、タングステン及びモリブデンの双方を含まないニッケル導電層の厚みを厚くすると、導電性粒子により接続対象部材又は基板が傷つきやすくなる傾向がある。この結果、接続構造体における電極間の導通信頼性が低くなる傾向がある。
 これに対して、上記導電層Xは、ニッケルと、タングステン及びモリブデンの内の少なくとも1種の金属成分Mとを含むので、上記5%K値を上記下限以上にすることが容易である。さらに、導電性粒子が、圧縮方向における圧縮前の導電性粒子の粒子径の10%を超え、25%以下で圧縮されたときに、上記導電層Xに適度に割れが生じるようにすることが容易である。適度に圧縮されたときに割れが発生することによって電極の損傷がより一層生じ難くなり、従って電極間の接続抵抗がより一層低くなる。
 さらに、上記導電層Xは、ニッケルと、タングステン及びモリブデンの内の少なくとも1種の金属成分Mとを含むことから、上記導電層Xは適度な硬さを有するので、導電性粒子を圧縮して電極間を接続したとき、電極に適度な圧痕を形成できる。なお、電極に形成される圧痕は、導電性粒子が電極を押してできた電極の凹部である。
 上記導電層Xは、ニッケルを主成分として含むことが好ましい。電極間の初期の接続抵抗を効果的に低くする観点からは、上記導電層Xの全体100重量%中のニッケルの含有量は多いほどよい。従って、上記導電層Xの全体100重量%中、ニッケルの含有量は好ましくは50重量%以上、より好ましくは60重量%以上、より一層好ましくは70重量%以上、更に好ましくは75重量%以上、更に一層好ましくは80重量%以上、特に好ましくは85重量%以上、より一層特に好ましくは90重量%以上、最も好ましくは95重量%以上である。上記導電層Xの全体100重量%中のニッケルの含有量は97重量%以上であってもよく、97.5重量%以上であってもよく、98重量%以上であってもよい。上記ニッケルの含有量が上記下限以上であると、電極間の接続抵抗がより一層低くなる。また、電極や導電層の表面における酸化被膜が少ない場合には、上記ニッケルの含有量が多いほど電極間の接続抵抗が低くなる傾向がある。
 
 ニッケルの含有量の上限は、ボロン及び上記金属成分Mの含有量などにより適宜変更できる。上記導電層Xの全体100重量%中のニッケルの含有量は好ましくは99.9重量%以下、より好ましくは99.85重量%以下、更に好ましくは99.7重量%以下、特に好ましくは99.45重量%未満である。
 ボロンを含まないニッケル導電層を有する導電性粒子では、該ボロンを含まないニッケル導電層の圧縮初期段階で比較的柔らかく、電極間の接続時に、電極及び導電性粒子の表面の酸化被膜を排除する効果が小さくなり、接続抵抗を低くする効果が小さくなる傾向がある。また、導電層は、ボロンではなくリンを含むことがある。ニッケルとリンとを含む導電層を有する導電性粒子では、電極及び導電性粒子の表面の酸化被膜を排除する効果が小さくなり、接続抵抗を低くする効果が小さくなりやすい傾向がある。
 一方で、接続抵抗を低くする効果をより一層得るために、又は大きな電流が流れる用途に適するように、ボロンを含まない導電層の厚みを厚くしたり、ニッケルとリンとを含む導電層の厚みを厚くしたりすると、導電性粒子により接続対象部材又は基板が傷つきやすくなる傾向がある。この結果、接続構造体における電極間の導通信頼性が低くなる傾向がある。
 これに対して、上記導電層Xがボロンを含むため、上記5%K値を上記下限以上にすることが容易である。さらに、導電性粒子が、圧縮方向における圧縮前の導電性粒子の粒子径の10%を超え、25%以下で圧縮されたときに、上記導電層Xに適度に割れが生じるようにすることが容易である。また、上記導電層Xがニッケルとボロンと上記金属成分Mとを含むことで、上記5%K値を上記下限以上にすることがさらに一層容易である。さらに、導電性粒子が、圧縮方向における圧縮前の導電性粒子の粒子径の10%を超え、25%以下で圧縮されたときに、上記導電層Xにより一層適度に割れが生じるようにすることが容易である。適度に圧縮されたときに割れが発生することによって電極の損傷がより一層生じ難くなり、従って電極間の接続抵抗がより一層低くなる。
 さらに、上記導電層Xがボロンを含むことから、上記導電層Xは適度な硬さを有するので、電極の損傷がより一層生じ難くなり、従って電極間の接続抵抗がより一層低くなる。さらに、上記導電層Xがボロンを含むことから、上記導電層Xは適度な硬さを有するので、導電性粒子を圧縮して電極間を接続したとき、電極に適度な圧痕を形成できる。
 特に、上記導電層Xがニッケルとボロンと上記金属成分Mとを含むので、高い圧縮弾性率を達成することが可能である。このため、電極間の接続時における導電性粒子の圧縮初期段階で、電極及び導電性粒子の表面の酸化被膜を効果的に排除でき、かつ、電極間の接続時に、導電性粒子が適度に圧縮された段階において、上記導電層Xに割れが生じるので、電極の損傷を抑制できる。この結果、得られる接続構造体における電極間の接続抵抗を低くすることができ、電極間の導通信頼性を高めることができる
 上記導電層Xの全体100重量%中のボロンの含有量は好ましくは0.01重量%以上、より好ましくは0.05重量%以上、更に好ましくは0.1重量%以上、好ましくは5重量%以下、より好ましくは4重量%以下、更に好ましくは3重量%以下、特に好ましくは2.5重量%以下、最も好ましくは2重量%以下である。ボロンの含有量が上記下限以上であると、上記導電層Xがより一層硬くなり、電極及び導電性粒子の表面の酸化被膜をより一層効果的に除去でき、電極間の接続抵抗をより一層低くすることができる。ボロンの含有量が上記上限以下であると、ニッケル及び上記金属成分Mの含有量が相対的に多くなるので、電極間の接続抵抗が低くなる。
 また、ニッケルとボロンとを含む上記導電層Xの表面の磁性は高く、電極間を電気的に接続した場合に、磁性により凝集した導電性粒子の影響で、横方向に隣接する電極間が接続されやすい傾向がある。上記導電層Xがニッケルとボロンと上記金属成分Mとを含むので、上記導電層Xの表面の磁性がかなり低くなる。このため、複数の導電性粒子が凝集するのを抑制できる。従って、電極間を電気的に接続した場合に、凝集した導電性粒子により横方向に隣接する電極間が接続されるのを抑制できる。すなわち、隣り合う電極間の短絡をより一層防止できる。
 さらに、上記導電層Xが上記金属成分Mを含むことから、上記導電層Xは適度な硬さを有するので、導電性粒子を圧縮して電極間を接続したとき、電極に適度な圧痕を形成できる。さらに、上記導電層Xがタングステン及びモリブデンの内の少なくとも1種を含んでいたり、ボロンを含んでいたりすることによって、上記導電層Xがかなり硬くなる結果、導電性粒子により電極間を接続した接続構造体に衝撃が与えられても、導通不良が生じ難くなる。すなわち、接続構造体の耐衝撃性を高めることもできる。
 上記導電層Xの全体100重量%中の上記金属成分Mの含有量(タングステン及びモリブデンの合計の含有量)は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、より一層好ましくは0.2重量%以上、更に好ましくは0.5重量%以上、更に一層好ましくは1重量%以上、特に好ましくは5重量%を超え、最も好ましくは10重量%以上である。上記金属成分Mの含有量が上記下限以上であると、導電層の外表面の硬さがより一層高くなる。このため、電極又は導電層の表面に酸化被膜が形成されている場合に、電極及び導電性粒子の表面の酸化被膜を効果的に排除でき、更に電極と導電性粒子との間の樹脂成分を効果的に排除でき、接続抵抗が低くなり、かつ得られる接続構造体の耐衝撃性が高くなる。さらに、上記金属成分Mの含有量が上記下限以上であると、上記導電層Xの外表面の磁性が弱くなり、複数の導電性粒子が凝集し難くなる。このため、電極間の短絡を効果的に抑制できる。
 上記導電層Xの全体100重量%中の上記金属成分Mの含有量の上限は、ニッケル及びボロンの含有量などにより適宜変更できる。上記導電層Xの全体100重量%中の上記金属成分Mの含有量は、好ましくは40重量%以下、より好ましくは30重量%以下、更に好ましくは25重量%以下、特に好ましくは20重量%以下である。
 また、上記導電層Xがタングステンを含む場合に、上記導電層Xの全体100重量%中のタングステンの含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、より一層好ましくは0.2重量%以上、更に好ましくは0.5重量%以上、更に一層好ましくは1重量%以上、特に好ましくは5重量%を超え、最も好ましくは10重量%以上、好ましくは40重量%以下、より好ましくは30重量%以下、更に好ましくは25重量%以下、特に好ましくは20重量%以下である。上記導電層Xがモリブデンを含む場合に、上記導電層Xの全体100重量%中のモリブデンの含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、より一層好ましくは0.2重量%以上、更に好ましくは0.5重量%以上、更に一層好ましくは1重量%以上、特に好ましくは5重量%を超え、最も好ましくは10重量%以上、好ましくは40重量%以下、より好ましくは30重量%以下、更に好ましくは25重量%以下、特に好ましくは20重量%以下である。
 電極間の初期の接続抵抗を効果的に低くする観点からは、上記導電層Xの全体100重量%中の上記ニッケルと上記金属成分Mとの合計の含有量は多いほどよい。従って、上記導電層Xの全体100重量%中、ニッケルと上記金属成分Mとの合計の含有量は好ましくは75.1重量%以上、より好ましくは80.1重量%以上、更に好ましくは85.1重量%以上、特に好ましくは90.1重量%以上、最も好ましくは95.1重量%以上である。上記導電層Xの全体100重量%中のニッケルと上記金属成分Mとの合計の含有量は97.1重量%以上であってもよく、97.6重量%以上であってもよく、98.1重量%以上であってもよい。
 電極間の接続抵抗をより一層低くする観点からは、上記導電層Xはリンを含まないか、又は上記導電層Xはリンを含みかつ上記導電層Xの全体100重量%中のリンの含有量が1重量%未満であることが好ましい。電極間の接続抵抗を更に一層低くする観点からは、上記導電層Xはリンを含まないか、又は上記導電層Xはリンを含みかつ上記導電層Xの全体100重量%中のリンの含有量が0.5重量%未満であることがより好ましい。電極間の接続抵抗をより一層効果的に低くする観点からは、上記導電層Xの全体100重量%中のリンの含有量はより好ましくは0.3重量%以下、更に好ましくは0.1重量%以下である。リンの含有量が上記上限以下であることによって、電極間の接続の際に、電極及び導電性粒子の表面の酸化被膜をより一層効果的に排除できる。この結果、電極間の接続抵抗を低くすることができる。さらに、電極と導電性粒子との間の樹脂成分を効果的に排除できるので、電極間の接続抵抗がより一層低くなる。電極間の接続抵抗がかなり低くなることから、上記導電層Xはリンを含まないことが特に好ましい。
 特に、上記導電層Xが上記金属成分Mを含み、かつリンの含有量が上記上限以下であり、更に上記導電層Xが外表面に突起を有する場合には、電極及び導電性粒子の表面の酸化被膜をより一層効果的に排除でき、更に電極と導電性粒子との間の樹脂成分を効果的に排除でき、接続抵抗をより一層低くすることができる。
 さらに、上記導電層Xが上記金属成分Mを含み、かつリンの含有量が上記上限以下であることによって、上記導電層Xがかなり硬くなる結果、導電性粒子により電極間を接続した接続構造体に衝撃が与えられても、導通不良が生じ難くなる。すなわち、接続構造体の耐衝撃性を高めることもできる。
 上記導電層Xにおけるニッケル、ボロン、タングステン、モリブデン及びリンの各含有量の測定方法は、既知の種々の分析法を用いることができ特に限定されない。この測定方法として、吸光分析法又はスペクトル分析法等が挙げられる。上記吸光分析法では、フレーム吸光光度計及び電気加熱炉吸光光度計等を用いることができる。上記スペクトル分析法としては、プラズマ発光分析法及びプラズマイオン源質量分析法等が挙げられる。
 上記導電層Xにおけるニッケル、ボロン、タングステン、モリブデン及びリンの各含有量を測定する際には、ICP発光分析装置を用いることが好ましい。ICP発光分析装置の市販品としては、HORIBA社製のICP発光分析装置等が挙げられる。また、上記導電層Xにおけるニッケル、ボロン、タングステン、モリブデン及びリンの各含有量を測定する際には、ICP-MS分析器を用いてもよい。
 上記他の導電層(第2の導電層)を形成するための金属は特に限定されない。該金属としては、例えば、金、銀、銅、パラジウム、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。なかでも、電極間の接続抵抗がより一層低くなるので、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムがより好ましい。上記他の導電層を構成する金属はニッケルを含むことが好ましい。
 上記基材粒子の表面上に導電層(他の導電層及び導電層X)を形成する方法は特に限定されない。導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子又は他の導電層の表面にコーティングする方法等が挙げられる。なかでも、導電層の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。
 上記導電性粒子の粒子径は、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上、特に好ましくは2μm以上、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは300μm以下、更に好ましくは100μm以下、更に一層好ましくは50μm以下、特に好ましくは30μm以下、より一層特に好ましくは20μm以下、最も好ましくは5μm以下である。導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。
 また、異方性導電材料などの導電材料に使用する際の導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、好ましくは100μm以下、より好ましくは20μm以下である。導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。
 上記導電性粒子の粒子径は、導電性粒子が真球状である場合には、直径を示し、導電性粒子が真球状ではない場合には、最大径を示す。
 上記導電層Xの厚みは好ましくは0.005μm以上、より好ましくは0.01μm以上、更に好ましくは0.05μm以上、好ましくは1μm以下、より好ましくは0.3μm以下である。上記導電層Xの厚みが上記下限以上及び上記上限以下であると、充分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が充分に変形する。
 導電層が2層以上の積層構造である場合に、導電層Xの厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上、更に好ましくは0.05μm以上、好ましくは0.5μm以下、より好ましくは0.3μm以下、更に好ましくは0.1μm以下である。上記導電層Xの厚みが上記下限以上及び上記上限以下であると、導電層Xによる被覆を均一にでき、かつ電極間の接続抵抗が充分に低くなる。
 導電層が2層以上の積層構造である場合に、導電層Xを含む導電層全体の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上、更に好ましくは0.05μm以上、特に好ましくは0.1μm以上、好ましくは1μm以下、より好ましくは0.5μm以下、より一層好ましくは0.3μm以下、更に好ましくは0.1μm以下である。上記導電層全体の厚みが上記下限以上及び上記上限以下であると、導電層全体による被覆を均一にでき、かつ電極間の接続抵抗が充分に低くなる。
 上記導電層Xの厚みは、0.05μm以上、0.5μm以下であることが特に好ましい。さらに、基材粒子の粒子径が2μm以上、5μm以下であり、かつ、上記導電層Xの厚みが0.05μm以上、0.5μm以下であることが特に好ましい。上記導電層Xの厚みは、0.05μm以上、0.3μm以下であることが最も好ましい。さらに、基材粒子の粒子径が2μm以上、5μm以下であり、かつ、上記導電層Xの厚みが0.05μm以上、0.3μm以下であることが最も好ましい。これらの好ましい上記導電層Xの厚み及び基材粒子の粒子径を満足すると、導電性粒子を大きな電流が流れる用途により好適に用いることができる。さらに、導電性粒子を圧縮して電極間を接続した場合に、電極が損傷するのをより一層抑制できる。
 上記導電層Xの厚み及び上記導電層全体の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。
 上記導電層Xにおけるニッケル、タングステン、モリブデン、ボロン及びリンの含有量を制御する方法としては、例えば、無電解ニッケルめっきにより導電層Xを形成する際に、ニッケルめっき液のpHを制御する方法、無電解ニッケルめっきにより導電層Xを形成する際に、ボロン含有還元剤の濃度を調整する方法、ニッケルめっき液中のタングステン濃度を調整する方法、ニッケルめっき液中のモリブデン濃度を調整する方法並びにニッケルめっき液中のニッケル塩濃度を調整する方法等が挙げられる。
 無電解めっきにより形成する方法では、一般的に、触媒化工程と、無電解めっき工程とが行われる。以下、無電解めっきにより、樹脂粒子の表面に、ニッケルとタングステン及びモリブデンの内の少なくとも1種とボロンと含む合金めっき層を形成する方法の一例を説明する。
 上記触媒化工程では、無電解めっきによりめっき層を形成するための起点となる触媒を、樹脂粒子の表面に形成させる。
 上記触媒を樹脂粒子の表面に形成させる方法としては、例えば、塩化パラジウムと塩化スズとを含む溶液に、樹脂粒子を添加した後、酸溶液又はアルカリ溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法、並びに硫酸パラジウムとアミノピリジンとを含有する溶液に、樹脂粒子を添加した後、還元剤を含む溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法等が挙げられる。上記還元剤として、ボロン含有還元剤が好適に用いられる。但し、上記還元剤として、次亜リン酸ナトリウム等のリン含有還元剤を用いてもよい。
 上記無電解めっき工程では、ニッケル塩と、タングステン含有化合物及びモリブデン含有化合物の内の少なくとも1種と、上記ボロン含有還元剤とを含むニッケルめっき浴が用いられる。ニッケルめっき浴中に樹脂粒子を浸漬することにより、触媒が表面に形成された樹脂粒子の表面に、ニッケルを析出させることができ、ニッケルとボロンと上記金属成分Mとを含む導電層を形成できる。
 上記タングステン含有化合物としては、ホウ化タングステン及びタングステン酸ナトリウム等が挙げられる。
 上記モリブデン含有化合物としては、ホウ化モリブデン及びモリブデン酸ナトリウム等が挙げられる。
 上記ボロン含有還元剤としては、ジメチルアミンボラン、水素化ホウ素ナトリウム及び水素化ホウ素カリウム等が挙げられる。
 本発明に係る導電性粒子は、表面に突起を有することが好ましい。上記導電層Xを含む導電層は、外表面に突起を有することが好ましく、上記導電層Xは外表面に突起を有することが好ましい。導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。さらに、導電性粒子の導電層の表面には、酸化被膜が形成されていることが多い。突起を有する導電性粒子の使用により、電極間に導電性粒子を配置した後、圧着させることにより、突起により酸化被膜が効果的に排除される。このため、電極と導電性粒子とをより一層確実に接触させることができ、電極間の接続抵抗を低くすることができる。さらに、導電性粒子が表面に絶縁物質を有する場合、又は導電性粒子がバインダー樹脂中に分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間の樹脂を効果的に排除できる。このため、電極間の導通信頼性が高くなる。
 上記突起は複数であることが好ましい。上記導電性粒子1個当たりの上記導電層の外表面の突起は、好ましくは3個以上、より好ましくは5個以上である。上記突起の数の上限は特に限定されない。突起の数の上限は導電性粒子の粒子径等を考慮して適宜選択できる。
 [芯物質]
 上記芯物質が上記導電層中に埋め込まれていることによって、上記導電層が外表面に複数の突起を有するようにすることが容易である。但し、導電性粒子及び導電層の表面に突起を形成するために、芯物質を必ずしも用いなくてもよい。
 上記突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電層を形成する方法、並びに基材粒子の表面に無電解めっきにより導電層を形成した後、芯物質を付着させ、更に無電解めっきにより導電層を形成する方法等が挙げられる。
 上記基材粒子の表面上に芯物質を配置する方法としては、例えば、基材粒子の分散液中に、芯物質となる導電性物質を添加し、基材粒子の表面に芯物質を、例えば、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質となる導電性物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。なかでも、付着させる芯物質の量を制御しやすいため、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法が好ましい。
 上記芯物質を構成する導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。導電性ポリマーとしては、ポリアセチレン等が挙げられる。なかでも、導電性を高めることができ、更に接続抵抗を効果的に低くすることができるので、金属が好ましい。上記芯物質は金属粒子であることが好ましい。
 上記金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫-鉛合金、錫-銅合金、錫-銀合金及び錫-鉛-銀合金等の2種類以上の金属で構成される合金等が挙げられる。なかでも、ニッケル、銅、銀又は金が好ましい。上記芯物質を構成する金属は、上記導電層を構成する金属と同じであってもよく、異なっていてもよい。上記芯物質を構成する金属は、上記導電層を構成する金属を含むことが好ましい。上記芯物質を構成する金属は、ニッケルを含むことが好ましい。上記芯物質を構成する金属は、ニッケルを含むことが好ましい。
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。
 上記芯物質の平均径(平均粒子径)は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の平均径が上記下限以上及び上記上限以下であると、電極間の接続抵抗を効果的に低くすることができる。
 上記芯物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。芯物質の平均径は、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。
 [絶縁物質]
 本発明に係る導電性粒子は、上記導電層の表面上に配置された絶縁物質を備えることが好ましい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電層と電極との間の絶縁物質を容易に排除できる。導電性粒子が導電層の外表面に複数の突起を有するので、導電性粒子の導電層と電極との間の絶縁物質を容易に排除できる。
 電極間の圧着時に上記絶縁物質をより一層容易に排除できることから、上記絶縁物質は、絶縁性粒子であることが好ましい。
 上記絶縁物質の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。
 上記ポリオレフィン類としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂が好ましく、ポリビニルアルコールがより好ましい。
 上記導電層の表面上に絶縁物質を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。なかでも、絶縁物質が脱離し難いことから、上記導電層の表面に、化学結合を介して上記絶縁物質を配置する方法が好ましい。
 上記絶縁物質の平均径(平均粒子径)は、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。上記絶縁物質の平均径(平均粒子径)は好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは1μm以下、より好ましくは0.5μm以下である。絶縁物質の平均径が上記下限以上であると、導電性粒子がバインダー樹脂中に分散されたときに、複数の導電性粒子における導電層同士が接触し難くなる。絶縁性粒子の平均径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁物質を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。
 上記絶縁物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。絶縁物質の平均径は、粒度分布測定装置等を用いて求められる。
 (導電材料)
 本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。本発明に係る導電性粒子は、バインダー樹脂中に添加され、導電材料として用いられることが好ましい。本発明に係る導電材料は、異方性導電材料であることが好ましい。
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。
 上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
 上記バインダー樹脂中に上記導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ特に限定されない。上記バインダー樹脂中に上記導電性粒子を分散させる方法としては、例えば、上記バインダー樹脂中に上記導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法、上記導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法、並びに上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法等が挙げられる。
 本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルム等のフィルム状の接着剤として使用される場合には、該導電性粒子を含むフィルム状の接着剤に、導電性粒子を含まないフィルム状の接着剤が積層されていてもよい。上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電フィルムは異方性導電フィルムであることが好ましい。
 上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。
 上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは40重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。
 (接続構造体)
 本発明の導電性粒子を用いて、又は該導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
 上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1,第2の接続対象部材を接続している接続部とを備え、該接続部が本発明の導電性粒子により形成されているか、又は該導電性粒子とバインダー樹脂とを含む導電材料により形成されている接続構造体であることが好ましい。導電性粒子が用いられた場合には、接続部自体が導電性粒子である。すなわち、第1,第2の接続対象部材が導電性粒子により接続される。上記接続構造体を得るために用いられる上記導電材料は異方性導電材料であることが好ましい。
 図4に、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に正面断面図で示す。
 図4に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1,第2の接続対象部材52,53を接続している接続部54とを備える。接続部54は、導電性粒子1を含む導電材料を硬化させることにより形成されている。なお、図4では、導電性粒子1は、図示の便宜上、略図的に示されている。
 第1の接続対象部材52は上面52a(表面)に、複数の電極52bを有する。第2の接続対象部材53は下面53a(表面)に、複数の電極53bを有する。電極52bと電極53bとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が導電性粒子1により電気的に接続されている。
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10~4.9×10Pa程度である。上記加熱の温度は、120~220℃程度である。
 上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板及びガラス基板等の回路基板等が挙げられる。上記導電材料は、電子部品を接続するための導電材料であることが好ましい。上記導電材料はペースト状の導電ペーストであり、ペースト状の状態で接続対象部材上に塗工されることが好ましい。
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
 (実施例1)
 粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-203」)を用意した。
 パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、上記樹脂粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、樹脂粒子を取り出した。次いで、樹脂粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、樹脂粒子の表面を活性化させた。表面が活性化された樹脂粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液を得た。
 また、硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.92mol/L、クエン酸ナトリウム0.5mol/L及びタングステン酸ナトリウム0.01mol/Lを含むニッケルめっき液(pH8.5)を用意した。
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液を濾過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例2)
 タングステン酸ナトリウム濃度を0.12mol/Lに変更したこと以外は実施例1と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例3)
 タングステン酸ナトリウム濃度を0.23mol/Lに変更したこと以外は実施例1と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例4)
 タングステン酸ナトリウム濃度を0.35mol/Lに変更したこと以外は実施例1と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例5)
 ジメチルアミンボラン濃度を2.76mol/Lに変更したこと、並びにタングステン酸ナトリウム濃度を0.35mol/Lに変更したこと以外は実施例1と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例6)
 (1)パラジウム付着工程
 粒子径が5.0μmであるジビニルベンゼン樹脂粒子(積水化学工業社製「ミクロパールSP-205」)を用意した。この樹脂粒子をエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に樹脂粒子を添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に樹脂粒子を添加し、パラジウムが付着された樹脂粒子を得た。
 (2)芯物質付着工程
 パラジウムが付着された樹脂粒子をイオン交換水300mL中で3分間攪拌し、分散させ、分散液を得た。次に、金属ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された樹脂粒子を得た。
 (3)無電解ニッケルめっき工程
 実施例1と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例7)
 タングステン酸ナトリウム濃度を0.35mol/Lに変更したこと以外は実施例6と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例8)
 (1)絶縁性粒子の作製
 4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
 絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。
 実施例6で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
 走査電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。
 (実施例9)
 タングステン酸ナトリウム濃度を0.46mol/Lに変更したこと以外は実施例1と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例10)
 ジメチルアミンボラン濃度を4.60mol/Lを変更したこと、並びにタングステン酸ナトリウム濃度を0.23mol/Lに変更したこと以外は実施例1と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (比較例1)
 ニッケルめっき液におけるジメチルアミンボラン0.92mol/Lを、次亜リン酸ナトリウム0.5mol/Lに変更したこと以外は実施例1と同様にして、樹脂粒子の表面にニッケルとタングステンとリンとを含む導電層(厚み0.1μm)が配置された導電性粒子を得た。導電層の全体100重量%におけるリンの含有量は8.9重量%であった。
 (比較例2)
 ニッケルめっき液におけるタングステン酸ナトリウム0.01mol/Lを用いなかったこと以外は実施例1と同様にして、樹脂粒子の表面にニッケルとボロンとを含む導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例11)
 粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-203」)を用意した。
 パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、上記樹脂粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、樹脂粒子を取り出した。次いで、樹脂粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、樹脂粒子の表面を活性化させた。表面が活性化された樹脂粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液を得た。
 また、硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.92mol/L、クエン酸ナトリウム0.5mol/L及びモリブデン酸ナトリウム0.01mol/Lを含むニッケルめっき液(pH8.5)を用意した。
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例12)
 モリブデン酸ナトリウム濃度を0.12mol/Lに変更したこと以外は実施例11と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例13)
 モリブデン酸ナトリウム濃度を0.23mol/Lに変更したこと以外は実施例11と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例14)
 モリブデン酸ナトリウム濃度を0.35mol/Lに変更したこと以外は実施例11と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例15)
 ジメチルアミンボラン濃度を2.76mol/Lに変更したこと、並びにモリブデン酸ナトリウム濃度を0.35mol/Lに変更したこと以外は実施例11と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例16)
 (1)パラジウム付着工程
 粒子径が5.0μmであるジビニルベンゼン樹脂粒子(積水化学工業社製「ミクロパールSP-205」)を用意した。この樹脂粒子をエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に樹脂粒子を添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に樹脂粒子を添加し、パラジウムが付着された樹脂粒子を得た。
 (2)芯物質付着工程
 パラジウムが付着された樹脂粒子をイオン交換水300mL中で3分間攪拌し、分散させ、分散液を得た。次に、金属ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された樹脂粒子を得た。
 (3)無電解ニッケルめっき工程
 実施例11と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例17)
 モリブデン酸ナトリウム濃度を0.35mol/Lに変更したこと以外は実施例16と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例18)
 (1)絶縁性粒子の作製
 4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
 絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。
 実施例16で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
 走査電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。
 (実施例19)
 モリブデン酸ナトリウム濃度を0.46mol/Lに変更したこと以外は実施例11と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例20)
 ジメチルアミンボラン濃度を4.60mol/Lを変更したこと、並びにモリブデン酸ナトリウム濃度を0.23mol/Lに変更したこと以外は実施例11と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (比較例3)
 ニッケルめっき液におけるジメチルアミンボラン0.92mol/Lを、次亜リン酸ナトリウム0.5mol/Lに変更したこと以外は実施例11と同様にして、樹脂粒子の表面にニッケルとモリブデンとリンとを含む導電層(厚み0.1μm)が配置された導電性粒子を得た。導電層の全体100重量%におけるリンの含有量は9.5重量%であった。
 (実施例1~20及び比較例1~3の評価)
 (1)導電性粒子の圧縮弾性率(5%K値)
 得られた導電性粒子の圧縮弾性率(5%K値)を、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
 (2)導電層の割れ発生試験
 台の上に導電性粒子を置いた。微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて、圧縮速度0.33mN/秒及び最大試験荷重10mNの条件で、円柱(直径50μm、ダイヤモンド製)を圧縮部材として、該圧縮部材の平滑端面を導電性粒子に向かって降下させた。平滑端面により導電性粒子を圧縮した。導電性粒子の導電層に割れが生じるまで圧縮を行った。圧縮方向における圧縮前の導電性粒子の粒子径に対して、導電層に割れが生じた導電性粒子の上記圧縮変位を下記の表1,2に示した。上記圧縮変位の評価結果については、3つの導電性粒子の測定値の平均値を下記の表1,2に示した。
 (3)導電層Xの全体100重量%中のニッケル、ボロン、リン、タングステン及びモリブデンの含有量
 60%硝酸5mLと37%塩酸10mLとの混合液に、導電性粒子5gを加え、導電層を完全に溶解させ、溶液を得た。得られた溶液を用いて、ニッケル、ボロン、リン、タングステン及びモリブデンの含有量をICP-MS分析器(日立製作所社製)により分析した。なお、実施例の導電性粒子における導電層はリンを含んでいなかった。
 (4)めっき状態
 得られた導電性粒子50個のめっき状態を、走査型電子顕微鏡により観察した。めっき割れ又はめっき剥がれ等のめっきむらの有無を観察した。めっきむらが確認された導電性粒子が4個以下の場合を「良好」、めっきむらが確認された導電性粒子が5個以上の場合を「不良」と判定した。
 (5)凝集状態
 ビスフェノールA型エポキシ樹脂(三菱化学社製「エピコート1009」)10重量部と、アクリルゴム(重量平均分子量約80万)40重量部と、メチルエチルケトン200重量部と、マイクロカプセル型硬化剤(旭化成ケミカルズ社製「HX3941HP」)50重量部と、シランカップリング剤(東レダウコーニングシリコーン社製「SH6040」)2重量部とを混合し、導電性粒子を含有量が3重量%となるように添加し、分散させ、異方性導電材料を得た。
 得られた異方性導電材料を25℃で72時間保管した。保管後に、異方性導電材料において凝集した導電性粒子が沈降しているか否かを評価した。凝集した導電性粒子が沈降していない場合を「良好」、凝集した導電性粒子が沈降している場合を「不良」と判定した。
 (6)接続抵抗
 接続構造体の作製:
 ビスフェノールA型エポキシ樹脂(三菱化学社製「エピコート1009」)10重量部と、アクリルゴム(重量平均分子量約80万)40重量部と、メチルエチルケトン200重量部と、マイクロカプセル型硬化剤(旭化成ケミカルズ社製「HX3941HP」)50重量部と、シランカップリング剤(東レダウコーニングシリコーン社製「SH6040」)2重量部とを混合し、導電性粒子を含有量が3重量%となるように添加し、分散させ、樹脂組成物を得た。
 得られた樹脂組成物を、片面が離型処理された厚さ50μmのPET(ポリエチレンテレフタレート)フィルムに塗布し、70℃の熱風で5分間乾燥し、異方性導電フィルムを作製した。得られた異方性導電フィルムの厚さは12μmであった。
 得られた異方性導電フィルムを5mm×5mmの大きさに切断した。切断された異方性導電フィルムを、一方に抵抗測定用の引き回し線を有するアルミニウム電極(高さ0.2μm、L/S=20μm/20μm)を有するガラス基板(幅3cm、長さ3cm)のアルミニウム電極側のほぼ中央に貼り付けた。次いで、同じアルミニウム電極を有する2層フレキシブルプリント基板(幅2cm、長さ1cm)を、電極同士が重なるように位置合わせをしてから貼り合わせた。このガラス基板と2層フレキシブルプリント基板との積層体を、10N、180℃、及び20秒間の圧着条件で熱圧着し、接続構造体を得た。なお、ポリイミドフィルムにアルミニウム電極が直接形成されている2層フレキシブルプリント基板を用いた。
 接続抵抗の測定:
 得られた接続構造体の対向する電極間の接続抵抗を4端子法により測定した。また、接続抵抗を下記の基準で判定した。
 [接続抵抗の判定基準]
 ○○:接続抵抗が2.0Ω以下
 ○:接続抵抗が2.0Ωを超え、3.0Ω以下
 △:接続抵抗が3.0Ωを超え、5.0Ω以下
 ×:接続抵抗が5.0Ωを超える
 (7)耐衝撃性
 上記(6)接続抵抗の評価で得られた接続構造体を高さ70cmの位置から落下させ、導通を確認することにより耐衝撃性の評価を行った。初期抵抗値からの抵抗値の上昇率が50%以下の場合を「良好」、初期抵抗値からの抵抗値の上昇率が50%を超える場合を「不良」と判定した。
 (8)圧痕の形成の有無
 微分干渉顕微鏡を用いて、上記(6)接続抵抗の評価で得られた接続構造体のガラス基板側から、ガラス基板に設けられた電極を観察し、導電性粒子が接触した電極の圧痕の形成の有無を下記の基準で判定した。なお、電極の圧痕の形成の有無について、電極面積が0.02mmとなるように、微分干渉顕微鏡にて観察し、電極0.02mmあたりの圧痕の個数を算出した。任意の10箇所を微分干渉顕微鏡にて観察し、電極0.02mmあたりの圧痕の個数の平均値を算出した。
 [圧痕の形成の有無の判定基準]
 ○○:電極0.02mmあたりの圧痕が25個以上
 ○:電極0.02mmあたりの圧痕が20個以上、25個未満
 △:電極0.02mmあたりの圧痕が5個以上、20個未満
 ×:電極0.02mmあたりの圧痕が5個未満
 結果を下記の表1,2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、実施例21~40及び比較例4~6の導電性粒子は、実施例1~20及び比較例1~3の導電性粒子とは別に作製した。
 (実施例21)
 粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-203」)を用意した。
 パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、上記樹脂粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、樹脂粒子を取り出した。次いで、樹脂粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、樹脂粒子の表面を活性化させた。表面が活性化された樹脂粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液を得た。
 また、硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.92mol/L、クエン酸ナトリウム0.5mol/L及びタングステン酸ナトリウム0.01mol/Lを含むニッケルめっき液(pH8.5)を用意した。
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例22)
 タングステン酸ナトリウム濃度を0.12mol/Lに変更したこと以外は実施例21と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例23)
 タングステン酸ナトリウム濃度を0.23mol/Lに変更したこと以外は実施例21と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例24)
 タングステン酸ナトリウム濃度を0.35mol/Lに変更したこと以外は実施例21と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例25)
 ジメチルアミンボラン濃度を2.76mol/Lに変更したこと、並びにタングステン酸ナトリウム濃度を0.35mol/Lに変更したこと以外は実施例21と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例26)
 (1)パラジウム付着工程
 粒子径が5.0μmであるジビニルベンゼン樹脂粒子(積水化学工業社製「ミクロパールSP-205」)を用意した。この樹脂粒子をエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に樹脂粒子を添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に樹脂粒子を添加し、パラジウムが付着された樹脂粒子を得た。
 (2)芯物質付着工程
 パラジウムが付着された樹脂粒子をイオン交換水300mL中で3分間攪拌し、分散させ、分散液を得た。次に、金属ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された樹脂粒子を得た。
 (3)無電解ニッケルめっき工程
 実施例21と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例27)
 タングステン酸ナトリウム濃度を0.35mol/Lに変更したこと以外は実施例26と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例28)
 (1)絶縁性粒子の作製
 4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
 絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。
 実施例26で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
 走査電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。
 (実施例29)
 タングステン酸ナトリウム濃度を0.46mol/Lに変更したこと以外は実施例21と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例30)
 ジメチルアミンボラン濃度を4.60mol/Lを変更したこと、並びにタングステン酸ナトリウム濃度を0.23mol/Lに変更したこと以外は実施例21と同様にして、樹脂粒子の表面にニッケル-ボロン-タングステン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (比較例4)
 ニッケルめっき液におけるジメチルアミンボラン0.92mol/Lを、次亜リン酸ナトリウム0.5mol/Lに変更したこと以外は実施例21と同様にして、樹脂粒子の表面にニッケルとタングステンとリンとを含む導電層(厚み0.1μm)が配置された導電性粒子を得た。導電層の全体100重量%におけるリンの含有量は8.7重量%であった。
 (比較例5)
 ニッケルめっき液におけるタングステン酸ナトリウム0.01mol/Lを用いなかったこと以外は実施例21と同様にして、樹脂粒子の表面にニッケルとボロンとを含む導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例31)
 粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-203」)を用意した。
 パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、上記樹脂粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、樹脂粒子を取り出した。次いで、樹脂粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、樹脂粒子の表面を活性化させた。表面が活性化された樹脂粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液を得た。
 また、硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.92mol/L、クエン酸ナトリウム0.5mol/L及びモリブデン酸ナトリウム0.01mol/Lを含むニッケルめっき液(pH8.5)を用意した。
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例32)
 モリブデン酸ナトリウム濃度を0.12mol/Lに変更したこと以外は実施例31と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例33)
 モリブデン酸ナトリウム濃度を0.23mol/Lに変更したこと以外は実施例31と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例34)
 モリブデン酸ナトリウム濃度を0.35mol/Lに変更したこと以外は実施例31と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例35)
 ジメチルアミンボラン濃度を2.76mol/Lに変更したこと、並びにモリブデン酸ナトリウム濃度を0.35mol/Lに変更したこと以外は実施例31と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例36)
 (1)パラジウム付着工程
 粒子径が5.0μmであるジビニルベンゼン樹脂粒子(積水化学工業社製「ミクロパールSP-205」)を用意した。この樹脂粒子をエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に樹脂粒子を添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に樹脂粒子を添加し、パラジウムが付着された樹脂粒子を得た。
 (2)芯物質付着工程
 パラジウムが付着された樹脂粒子をイオン交換水300mL中で3分間攪拌し、分散させ、分散液を得た。次に、金属ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された樹脂粒子を得た。
 (3)無電解ニッケルめっき工程
 実施例31と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例37)
 モリブデン酸ナトリウム濃度を0.35mol/Lに変更したこと以外は実施例36と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例38)
 (1)絶縁性粒子の作製
 4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
 絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。
 実施例36で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
 走査電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。
 (実施例39)
 モリブデン酸ナトリウム濃度を0.46mol/Lに変更したこと以外は実施例31と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (実施例40)
 ジメチルアミンボラン濃度を4.60mol/Lを変更したこと、並びにモリブデン酸ナトリウム濃度を0.23mol/Lに変更したこと以外は実施例31と同様にして、樹脂粒子の表面にニッケル-ボロン-モリブデン導電層(厚み0.1μm)が配置された導電性粒子を得た。
 (比較例6)
 ニッケルめっき液におけるジメチルアミンボラン0.92mol/Lを、次亜リン酸ナトリウム0.5mol/Lに変更したこと以外は実施例31と同様にして、樹脂粒子の表面にニッケルとモリブデンとリンとを含む導電層(厚み0.1μm)が配置された導電性粒子を得た。導電層の全体100重量%におけるリンの含有量は9.5重量%であった。
 (実施例21~40及び比較例4~6の評価)
 (1)導電性粒子の圧縮弾性率(10%K値)
 得られた導電性粒子の圧縮弾性率(10%K値)を、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
 (2)導電性粒子の圧縮回復率
 得られた導電性粒子を30%圧縮したときの圧縮回復率を、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
 (3)導電層の全体100重量%中のニッケル、ボロン、リン、タングステン及びモリブデンの含有量
 60%硝酸5mLと37%塩酸10mLとの混合液に、導電性粒子5gを加え、導電層を完全に溶解させ、溶液を得た。得られた溶液を用いて、ニッケル、ボロン、リン、タングステン及びモリブデンの含有量をICP-MS分析器(日立製作所社製)により分析した。なお、実施例の導電性粒子における導電層はリンを含んでいなかった。
 (4)めっき状態
 得られた導電性粒子50個のめっき状態を、走査型電子顕微鏡により観察した。めっき割れ又はめっき剥がれ等のめっきむらの有無を観察した。めっきむらが確認された導電性粒子が4個以下の場合を「良好」、めっきむらが確認された導電性粒子が5個以上の場合を「不良」と判定した。
 (5)凝集状態
 ビスフェノールA型エポキシ樹脂(三菱化学社製「エピコート1009」)10重量部と、アクリルゴム(重量平均分子量約80万)40重量部と、メチルエチルケトン200重量部と、マイクロカプセル型硬化剤(旭化成ケミカルズ社製「HX3941HP」)50重量部と、シランカップリング剤(東レダウコーニングシリコーン社製「SH6040」)2重量部とを混合し、導電性粒子を含有量が3重量%となるように添加し、分散させ、異方性導電材料を得た。
 得られた異方性導電材料を25℃で72時間保管した。保管後に、異方性導電材料において凝集した導電性粒子が沈降しているか否かを評価した。凝集した導電性粒子が沈降していない場合を「良好」、凝集した導電性粒子が沈降している場合を「不良」と判定した。
 (6)初期の接続抵抗
 接続構造体の作製:
 ビスフェノールA型エポキシ樹脂(三菱化学社製「エピコート1009」)10重量部と、アクリルゴム(重量平均分子量約80万)40重量部と、メチルエチルケトン200重量部と、マイクロカプセル型硬化剤(旭化成ケミカルズ社製「HX3941HP」)50重量部と、シランカップリング剤(東レダウコーニングシリコーン社製「SH6040」)2重量部とを混合し、導電性粒子を含有量が3重量%となるように添加し、分散させ、樹脂組成物を得た。
 得られた樹脂組成物を、片面が離型処理された厚さ50μmのPET(ポリエチレンテレフタレート)フィルムに塗布し、70℃の熱風で5分間乾燥し、異方性導電フィルムを作製した。得られた異方性導電フィルムの厚さは12μmであった。
 得られた異方性導電フィルムを5mm×5mmの大きさに切断した。切断された異方性導電フィルムを、一方に抵抗測定用の引き回し線を有するアルミニウム電極(高さ0.2μm、L/S=20μm/20μm)を有するガラス基板(幅3cm、長さ3cm)のアルミニウム電極側のほぼ中央に貼り付けた。次いで、同じアルミニウム電極を有する2層フレキシブルプリント基板(幅2cm、長さ1cm)を、電極同士が重なるように位置合わせをしてから貼り合わせた。このガラス基板と2層フレキシブルプリント基板との積層体を、10N、180℃、及び20秒間の圧着条件で熱圧着し、接続構造体を得た。なお、ポリイミドフィルムにアルミニウム電極が直接形成されている2層フレキシブルプリント基板を用いた。
 接続抵抗の測定:
 得られた接続構造体の対向する電極間の接続抵抗を4端子法により測定した。また、初期の接続抵抗を下記の基準で判定した。
 [接続抵抗の判定基準]
 ○○:接続抵抗が2.0Ω以下
 ○:接続抵抗が2.0Ωを超え、3.0Ω以下
 △:接続抵抗が3.0Ωを超え、4.0Ω以下
 △△:接続抵抗が4.0Ωを超え、5.0Ω以下
 ×:接続抵抗が5.0Ωを超える
 (7)高温高湿試験後の接続抵抗
 上記(6)接続構造体の作製で得られた接続構造体を、85℃及び湿度85%の条件で100時間放置した。放置後の接続構造体の電極間の接続抵抗を4端子法により測定し、得られた測定値を高温高湿試験後の接続抵抗とした。また、高温高湿試験後の接続抵抗を下記の基準で判定した。
 [接続抵抗の判定基準]
 ○○:接続抵抗が2.0Ω以下
 ○:接続抵抗が2.0Ωを超え、3.0Ω以下
 △:接続抵抗が3.0Ωを超え、4.0Ω以下
 △△:接続抵抗が4.0Ωを超え、5.0Ω以下
 ×:接続抵抗が5.0Ωを超える
 (8)耐衝撃性
 上記(6)接続構造体の作製で得られた接続構造体を高さ70cmの位置から落下させ、導通を確認することにより耐衝撃性の評価を行った。初期抵抗値からの抵抗値の上昇率が50%以下の場合を「良好」、初期抵抗値からの抵抗値の上昇率が50%を超える場合を「不良」と判定した。
 (9)圧痕の形成の有無
 微分干渉顕微鏡を用いて、上記(6)接続構造体の作製で得られた接続構造体のガラス基板側から、ガラス基板に設けられた電極を観察し、導電性粒子が接触した電極の圧痕の形成の有無を下記の基準で判定した。なお、電極の圧痕の形成の有無について、電極面積が0.02mmとなるように、微分干渉顕微鏡にて観察し、電極0.02mmあたりの圧痕の個数を算出した。任意の10箇所を微分干渉顕微鏡にて観察し、電極0.02mmあたりの圧痕の個数の平均値を算出した。
 [圧痕の形成の有無の判定基準]
 ○○:電極0.02mmあたりの圧痕が25個以上
 ○:電極0.02mmあたりの圧痕が20個以上、25個未満
 △:電極0.02mmあたりの圧痕が5個以上、20個未満
 ×:電極0.02mmあたりの圧痕が1個以上、5個未満
 ××:電極0.02mmあたりの圧痕が0個
 結果を下記の表3,4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 1…導電性粒子
 1a…突起
 2…基材粒子
 3…導電層
 3a…突起
 4…芯物質
 5…絶縁物質
 11…導電性粒子
 11a…突起
 12…第2の導電層
 13…導電層
 13a…突起
 21…導電性粒子
 22…導電層
 22a…割れ
 51…接続構造体
 52…第1の接続対象部材
 52a…上面
 52b…電極
 53…第2の接続対象部材
 53a…下面
 53b…電極
 54…接続部
 71…台
 72…圧縮部材
 72a…平滑端面

Claims (14)

  1.  基材粒子と、
     前記基材粒子の表面上に配置されており、かつニッケルと、ボロンと、タングステン及びモリブデンの内の少なくとも1種の金属成分とを含む導電層とを有する、導電性粒子。
  2.  前記導電層の全体100重量%中の前記ボロンの含有量が0.05重量%以上、4重量%以下である、請求項1に記載の導電性粒子。
  3.  前記導電層の全体100重量%中の前記金属成分の含有量が0.1重量%以上、30重量%以下である、請求項1又は2に記載の導電性粒子。
  4.  前記導電層の全体100重量%中の前記金属成分の含有量が5重量%を超え、30重量%以下である、請求項1又は2に記載の導電性粒子。
  5.  前記金属成分がタングステンを含む、請求項1~4のいずれか1項に記載の導電性粒子。
  6.  10%圧縮変形したときの圧縮弾性率が5000N/mm以上、15000N/mm以下である、請求項1~5のいずれか1項に記載の導電性粒子。
  7.  圧縮回復率が5%以上、70%以下である、請求項1~6のいずれか1項に記載の導電性粒子。
  8.  前記金属成分がモリブデンを含む、請求項1~7のいずれか1項に記載の導電性粒子。
  9.  前記導電層がニッケルとモリブデンとを含み、
     前記導電層の全体100重量%中、ニッケルの含有量が70重量%以上、99.9重量%以下であり、モリブデンの含有量が0.1重量%以上、30重量%以下である、請求項1~8のいずれか1項に記載の導電性粒子。
  10.  5%圧縮されたときの圧縮弾性率が7000N/mm以上であり、かつ、圧縮方向における圧縮前の導電性粒子の粒子径の10%を超え、25%以下で導電性粒子が圧縮されたときに、前記導電層に割れが生じる、請求項1~9のいずれか1項に記載の導電性粒子。
  11.  前記導電層の厚みが0.05μm以上、0.5μm以下である、請求項1~10のいずれか1項に記載の導電性粒子。
  12.  前記導電層が外表面に突起を有する、請求項1~11のいずれか1項に記載の導電性粒子。
  13.  請求項1~12のいずれか1項に記載の導電性粒子と、バインダー樹脂とを含む、導電材料。
  14.  第1の接続対象部材と、第2の接続対象部材と、前記第1,第2の接続対象部材を接続している接続部とを備え、
     前記接続部が、請求項1~12のいずれか1項に記載の導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されている、接続構造体。
PCT/JP2012/068800 2011-07-28 2012-07-25 導電性粒子、導電材料及び接続構造体 WO2013015304A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157011060A KR101626266B1 (ko) 2011-07-28 2012-07-25 도전성 입자, 도전 재료 및 접속 구조체
JP2012541254A JP5216165B1 (ja) 2011-07-28 2012-07-25 導電性粒子、導電材料及び接続構造体
KR1020137017366A KR101962977B1 (ko) 2011-07-28 2012-07-25 도전성 입자, 도전 재료 및 접속 구조체
CN201280033707.1A CN103650063B (zh) 2011-07-28 2012-07-25 导电性粒子、导电材料及连接结构体

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-165916 2011-07-28
JP2011165916 2011-07-28
JP2011247220 2011-11-11
JP2011-247220 2011-11-11
JP2011-280086 2011-12-21
JP2011280086 2011-12-21

Publications (1)

Publication Number Publication Date
WO2013015304A1 true WO2013015304A1 (ja) 2013-01-31

Family

ID=47601145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068800 WO2013015304A1 (ja) 2011-07-28 2012-07-25 導電性粒子、導電材料及び接続構造体

Country Status (5)

Country Link
JP (1) JP5216165B1 (ja)
KR (2) KR101626266B1 (ja)
CN (1) CN103650063B (ja)
TW (1) TWI511166B (ja)
WO (1) WO2013015304A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232408A (ja) * 2011-12-21 2013-11-14 Sekisui Chem Co Ltd 導電性粒子、導電材料及び接続構造体
WO2014115467A1 (ja) * 2013-01-24 2014-07-31 積水化学工業株式会社 基材粒子、導電性粒子、導電材料及び接続構造体
JP2014207222A (ja) * 2013-03-19 2014-10-30 積水化学工業株式会社 接続構造体の製造方法及び接続構造体
JP2015005503A (ja) * 2013-05-22 2015-01-08 積水化学工業株式会社 接続構造体
JP2015028920A (ja) * 2013-06-26 2015-02-12 積水化学工業株式会社 接続構造体
JP2015118933A (ja) * 2013-11-18 2015-06-25 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JP2015130328A (ja) * 2013-12-03 2015-07-16 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
WO2015174195A1 (ja) * 2014-05-12 2015-11-19 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216165B1 (ja) * 2011-07-28 2013-06-19 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JP6009933B2 (ja) * 2011-12-22 2016-10-19 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
CN104117685B (zh) * 2014-07-30 2016-08-24 金堆城钼业股份有限公司 一种钼酸钠掺杂钼粉的制备方法
KR102398998B1 (ko) * 2016-05-19 2022-05-17 세키스이가가쿠 고교가부시키가이샤 도전성 입자, 도전 재료 및 접속 구조체
JP2019179647A (ja) * 2018-03-30 2019-10-17 デクセリアルズ株式会社 導電材料、及び接続体の製造方法
KR102174943B1 (ko) * 2018-12-31 2020-11-05 덕산하이메탈(주) 도전입자, 도전재료 및 접속 구조체
CN111383793B (zh) * 2018-12-31 2021-10-26 德山金属株式会社 导电粒子、导电材料以及接触结构体
KR20210114596A (ko) * 2020-03-10 2021-09-24 삼성디스플레이 주식회사 표시장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075057A (ja) * 2000-08-30 2002-03-15 Mitsui Mining & Smelting Co Ltd 被覆銅粉
JP2008041671A (ja) * 2007-09-07 2008-02-21 Sekisui Chem Co Ltd 導電性微粒子の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3696429B2 (ja) 1999-02-22 2005-09-21 日本化学工業株式会社 導電性無電解めっき粉体とその製造方法並びに該めっき粉体からなる導電性材料
JP2003313304A (ja) 2002-04-22 2003-11-06 Sekisui Chem Co Ltd 導電性微粒子、導電性微粒子の製造方法及び電子部品の接合材料
KR101131229B1 (ko) * 2004-01-30 2012-03-28 세키스이가가쿠 고교가부시키가이샤 도전성 미립자 및 이방성 도전 재료
CN1737072B (zh) * 2004-08-18 2011-06-08 播磨化成株式会社 导电粘合剂及使用该导电粘合剂制造物件的方法
CN101724361B (zh) * 2008-12-30 2011-12-07 四川虹欧显示器件有限公司 各向异性导电胶和导电膜以及电连接方法
JP5216165B1 (ja) * 2011-07-28 2013-06-19 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075057A (ja) * 2000-08-30 2002-03-15 Mitsui Mining & Smelting Co Ltd 被覆銅粉
JP2008041671A (ja) * 2007-09-07 2008-02-21 Sekisui Chem Co Ltd 導電性微粒子の製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232408A (ja) * 2011-12-21 2013-11-14 Sekisui Chem Co Ltd 導電性粒子、導電材料及び接続構造体
WO2014115467A1 (ja) * 2013-01-24 2014-07-31 積水化学工業株式会社 基材粒子、導電性粒子、導電材料及び接続構造体
JP5571271B1 (ja) * 2013-01-24 2014-08-13 積水化学工業株式会社 基材粒子、導電性粒子、導電材料及び接続構造体
JP2014207222A (ja) * 2013-03-19 2014-10-30 積水化学工業株式会社 接続構造体の製造方法及び接続構造体
JP2015005503A (ja) * 2013-05-22 2015-01-08 積水化学工業株式会社 接続構造体
JP2015028920A (ja) * 2013-06-26 2015-02-12 積水化学工業株式会社 接続構造体
JP2015118933A (ja) * 2013-11-18 2015-06-25 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JP2019021635A (ja) * 2013-11-18 2019-02-07 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JP2015130328A (ja) * 2013-12-03 2015-07-16 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
WO2015174195A1 (ja) * 2014-05-12 2015-11-19 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JP5996806B2 (ja) * 2014-05-12 2016-09-21 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JPWO2015174195A1 (ja) * 2014-05-12 2017-04-20 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
TWI665685B (zh) * 2014-05-12 2019-07-11 日商積水化學工業股份有限公司 Conductive particles, conductive materials, and connection structures

Also Published As

Publication number Publication date
CN103650063A (zh) 2014-03-19
KR101626266B1 (ko) 2016-05-31
TW201310467A (zh) 2013-03-01
JP5216165B1 (ja) 2013-06-19
CN103650063B (zh) 2016-01-20
KR20140043305A (ko) 2014-04-09
KR101962977B1 (ko) 2019-03-27
KR20150052363A (ko) 2015-05-13
JPWO2013015304A1 (ja) 2015-02-23
TWI511166B (zh) 2015-12-01

Similar Documents

Publication Publication Date Title
JP5216165B1 (ja) 導電性粒子、導電材料及び接続構造体
JP6247371B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6009933B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6084868B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6276351B2 (ja) 導電性粒子、導電材料及び接続構造体
JP5636118B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2013149611A (ja) 導電性粒子、導電材料及び接続構造体
JP5476210B2 (ja) 導電性粒子、異方性導電材料及び接続構造体
JP5476221B2 (ja) 導電性粒子、異方性導電材料及び接続構造体
WO2017051842A1 (ja) 導電性粒子、導電材料、および接続構造体
JP5940760B2 (ja) 導電性粒子、異方性導電材料及び接続構造体
JP2019024006A (ja) 導電性粒子、導電材料及び接続構造体
JP6478308B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2014026971A (ja) 導電性粒子、導電材料及び接続構造体
JP6386163B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2012004033A (ja) 導電性粒子、異方性導電材料及び接続構造体
JP6441555B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6411194B2 (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP7132112B2 (ja) 導電フィルム及び接続構造体
JP2015109267A (ja) 導電性粒子、導電材料及び接続構造体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012541254

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137017366

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817290

Country of ref document: EP

Kind code of ref document: A1