WO2013015186A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2013015186A1
WO2013015186A1 PCT/JP2012/068296 JP2012068296W WO2013015186A1 WO 2013015186 A1 WO2013015186 A1 WO 2013015186A1 JP 2012068296 W JP2012068296 W JP 2012068296W WO 2013015186 A1 WO2013015186 A1 WO 2013015186A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
hole
header
tube
Prior art date
Application number
PCT/JP2012/068296
Other languages
English (en)
French (fr)
Inventor
俊 吉岡
隆平 加治
吉和 白石
明大 藤原
孝之 兵頭
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to ES12817270T priority Critical patent/ES2731727T3/es
Priority to US14/234,563 priority patent/US20140174703A1/en
Priority to EP12817270.7A priority patent/EP2738507B1/en
Priority to CN201280037416.XA priority patent/CN103717989B/zh
Publication of WO2013015186A1 publication Critical patent/WO2013015186A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits

Definitions

  • the present invention relates to a heat exchanger.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-163004
  • a heat exchanger that uses a flat multi-hole tube to exchange heat between refrigerants has been used in a refrigeration cycle. ing.
  • two flat multi-hole tubes through which two kinds of refrigerants to be heat exchange flow are bonded to each other.
  • the flat multi-hole tube is connected to the header so that the direction in which the refrigerant flow path holes of the flat multi-hole tube are aligned with the longitudinal direction of the header. Therefore, when connecting many flat multi-hole pipes to a header, it is necessary to lengthen a header and it is difficult to make it compact.
  • An object of the present invention is to provide a compact heat exchanger.
  • the heat exchanger includes a header, a first flat tube, and a second flat tube.
  • the header has a first main channel through which the first refrigerant flows and a second main channel through which the second refrigerant flows.
  • the first flat tube is connected to the header.
  • the first flat tube is a flat multi-hole tube having a plurality of first refrigerant flow holes through which the first refrigerant flows.
  • the second flat tube is connected to the header.
  • the second flat tube is a flat multi-hole tube having a plurality of second refrigerant flow holes through which the second refrigerant flows.
  • the header has a secondary flow path forming member.
  • the sub channel forming member forms a first sub channel and a second sub channel.
  • the first sub-flow path connects the first main flow path and the first refrigerant flow path hole.
  • the second sub-flow channel connects the second main flow channel and the second refrigerant flow channel hole.
  • the first flat tube and the second flat tube are in close contact. The first flat tube and the second flat tube exchange heat between the first refrigerant flowing through the first refrigerant flow path hole and the second refrigerant flowing through the second refrigerant flow path hole.
  • the first main channel of the header communicates with the plurality of first refrigerant channel holes of the first flat tube via the first sub-channel, and the second of the header.
  • the main channel communicates with the plurality of second refrigerant channel holes of the second flat tube via the second sub channel.
  • the first flat tube is flat along the direction in which the first refrigerant flow path holes are arranged.
  • the first main channel is formed along the longitudinal direction of the header.
  • the heat exchanger according to the first aspect does not need to increase the length of the header and can be made compact.
  • a heat exchanger according to a second aspect of the present invention is the heat exchanger according to the first aspect, wherein the first flat tube and the second flat tube are arranged in the direction in which the first refrigerant passage hole and the second refrigerant passage hole are arranged. Are connected to the header so that the longitudinal direction of the cross section intersects the longitudinal direction of the header.
  • the heat exchanger according to a third aspect of the present invention is the heat exchanger according to the second aspect, wherein the first flat tube and the second flat tube are such that the longitudinal direction of the cross section is orthogonal to the longitudinal direction of the header.
  • the first flat tube is connected to the header so that the flat direction of the first flat tube is orthogonal to the longitudinal direction of the header. The same applies to the second flat tube. Therefore, the heat exchanger according to the third aspect can be efficiently made compact.
  • a heat exchanger according to a fourth aspect of the present invention is the heat exchanger according to any one of the first aspect to the third aspect, wherein the auxiliary flow path forming member is an end of the first flat tube and the second flat tube.
  • the portion includes a tube bonding member that is bonded and fixed to the header.
  • the member for connecting the first flat tube to the header and the member for connecting the second flat tube to the header can be integrated. Therefore, the heat exchange according to the fourth aspect can reduce the number of parts, and thus can suppress the manufacturing cost.
  • a heat exchanger according to a fifth aspect of the present invention is the heat exchanger according to the fourth aspect, wherein the auxiliary flow path forming member further includes end portions of the first flat tube and the second flat tube together with the tube bonding member.
  • a tube fixing member for fixing is included.
  • the heat exchanger according to a sixth aspect of the present invention is the heat exchanger according to any one of the first aspect to the fifth aspect, wherein the sub flow path forming member includes the plurality of first sub flow paths and the plurality of first flow paths. 2 sub-flow paths are formed.
  • a heat exchanger according to a seventh aspect of the present invention is the heat exchanger according to any one of the first aspect to the sixth aspect, wherein the first refrigerant and the second refrigerant are carbon dioxide.
  • the heat exchanger according to the first to seventh aspects of the present invention can be made compact. Moreover, the heat exchanger which concerns on the 4th viewpoint thru
  • FIG. 1 It is a schematic block diagram of the air conditioning apparatus in embodiment of this invention. It is a front view of the economizer heat exchanger in the embodiment of the present invention. It is a top view of the economizer heat exchanger in the embodiment of the present invention. It is sectional drawing of the horizontal direction of the economizer heat exchanger in embodiment of this invention. It is sectional drawing of the horizontal direction of the economizer heat exchanger in embodiment of this invention. It is sectional drawing of the orthogonal
  • FIG. 1 is a schematic configuration diagram of an air conditioner 1 as an example of a refrigeration apparatus including a heat exchanger according to the present invention.
  • the air conditioner 1 includes a refrigerant circuit 10 configured to be capable of cooling operation, and performs a two-stage compression refrigeration cycle using a refrigerant that operates in a supercritical region such as carbon dioxide.
  • the refrigerant circuit 10 mainly includes a compression mechanism 2, a heat source side heat exchanger 3, an expansion mechanism 4, a use side heat exchanger 5, and an economizer heat exchanger 6. Next, these components will be described.
  • the compression mechanism 2 compresses the refrigerant from a low pressure in the refrigeration cycle to a high pressure in the refrigeration cycle.
  • the compression mechanism 2 is a compressor 21 that compresses refrigerant in two stages using two compression elements.
  • the compressor 21 has a sealed structure in which a compression element drive motor 21b, a drive shaft 21c, a front-stage compression element 2c, and a rear-stage compression element 2d are accommodated in a casing 21a.
  • the compression element drive motor 21b is connected to the drive shaft 21c.
  • the drive shaft 21c is connected to the front-stage compression element 2c and the rear-stage compression element 2d.
  • the compressor 21 has a single-shaft two-stage compression structure in which the compression element drive motor 21b drives the front-stage compression element 2c and the rear-stage compression element 2d via one drive shaft 21c.
  • the compressor 21 sucks low-pressure refrigerant from the suction pipe 2a, compresses the sucked refrigerant by the front-stage compression element 2c, and then discharges the compressed intermediate-pressure refrigerant to the intermediate-pressure refrigerant pipe 7.
  • the compressor 21 sucks the intermediate-pressure refrigerant discharged to the intermediate-pressure refrigerant pipe 7, compresses the sucked refrigerant by the rear-stage compression element 2d, and then discharges the compressed high-pressure refrigerant to the discharge pipe 2b. To discharge.
  • the heat source side heat exchanger 3 is a radiator that cools the high-pressure refrigerant compressed by the compression mechanism 2.
  • the heat source side heat exchanger 3 exchanges heat between air as a cooling source and the refrigerant flowing in the heat source side heat exchanger 3.
  • the heat source side heat exchanger 3 is connected to the compression mechanism 2 via the first high-pressure refrigerant pipe 3a and the discharge pipe 2b.
  • the first high-pressure refrigerant pipe 3a is a refrigerant pipe connected to the inlet of the heat source side heat exchanger 3 and the discharge pipe 2b.
  • the heat source side heat exchanger 3 is connected to an economizer heat exchanger 6 and an injection unit 8 to be described later via a second high-pressure refrigerant pipe 3b.
  • the second high-pressure refrigerant pipe 3b includes an outlet of the heat source side heat exchanger 3, an inlet of the economizer heat exchanger 6 (an inlet of a refrigerant channel sent from the heat source side heat exchanger 3 to the expansion mechanism 4), and an injection unit.
  • 8 is a refrigerant pipe connected to 8 inlets (an inlet of a refrigerant flow path branched from the second high-pressure refrigerant pipe 3b).
  • the expansion mechanism 4 Before the expansion mechanism 4 sends the high-pressure refrigerant cooled in the heat source side heat exchanger 3 and the economizer heat exchanger 6 to the use side heat exchanger 5, it reaches the vicinity of the low pressure in the refrigeration cycle. Reduce pressure.
  • the expansion mechanism 4 is, for example, an electric expansion valve.
  • the expansion mechanism 4 is connected to the economizer heat exchanger 6 via the third high-pressure refrigerant pipe 3c.
  • the third high-pressure refrigerant pipe 3 c is a refrigerant pipe connected to the outlet of the economizer heat exchanger 6 (the outlet of the flow path of the refrigerant sent from the heat source side heat exchanger 3 to the expansion mechanism 4) and the inlet of the expansion mechanism 4. It is.
  • the expansion mechanism 4 is connected to the use side heat exchanger 5 via the first low-pressure refrigerant pipe 5a.
  • the first low-pressure refrigerant pipe 5 a is a refrigerant pipe connected to the outlet of the expansion mechanism 4 and the inlet of the use side heat exchanger 5.
  • (1-4) Usage-side heat exchanger The usage-side heat exchanger 5 is an evaporator that heats and evaporates the low-pressure refrigerant decompressed by the expansion mechanism 4.
  • the use side heat exchanger 5 exchanges heat between air as a heating source and the refrigerant flowing in the use side heat exchanger 5.
  • the use side heat exchanger 5 is connected to the expansion mechanism 4 via the first low-pressure refrigerant pipe 5a.
  • the use side heat exchanger 5 is connected to the compression mechanism 2 via the second low-pressure refrigerant pipe 5b.
  • the second low-pressure refrigerant pipe 5b is a refrigerant pipe connected to the outlet of the use side heat exchanger 5 and the suction pipe 2a.
  • the economizer heat exchanger 6 exchanges heat between the high-pressure refrigerant sent from the heat source side heat exchanger 3 to the expansion mechanism 4 and the intermediate-pressure refrigerant flowing through the injection unit 8.
  • the injection unit 8 branches the high-pressure refrigerant sent from the heat source side heat exchanger 3 to the expansion mechanism 4 and returns it to the inlet of the rear stage side compression element 2d. Specifically, the injection unit 8 branches the refrigerant from the second high-pressure refrigerant pipe 3 b and returns it to the intermediate pressure refrigerant pipe 7.
  • the injection unit 8 includes a first injection tube 8a and a second injection tube 8b.
  • the first injection pipe 8a connects the second high-pressure refrigerant pipe 3b and the inlet of the economizer heat exchanger 6 (the inlet of the refrigerant flow path branched from the second high-pressure refrigerant pipe 3b).
  • the second injection pipe 8 b connects the outlet of the economizer heat exchanger 6 (the outlet of the refrigerant flow path branched from the second high-pressure refrigerant pipe 3 b) and the intermediate pressure refrigerant pipe 7.
  • the first injection pipe 8a is provided with an injection valve 8c that functions as a return valve capable of opening degree control.
  • the injection valve 8c is, for example, an electric expansion valve.
  • the injection valve 8 c reduces the high-pressure refrigerant branched from the second high-pressure refrigerant pipe 3 b to near the intermediate pressure that is the pressure of the refrigerant flowing in the intermediate-pressure refrigerant pipe 7.
  • the high-pressure refrigerant sent from the heat source side heat exchanger 3 to the expansion mechanism 4 is cooled by heat exchange with the intermediate-pressure refrigerant flowing through the injection unit 8.
  • the intermediate-pressure refrigerant flowing through the injection unit 8 is heated and evaporated by heat exchange with the high-pressure refrigerant sent from the heat source side heat exchanger 3 to the expansion mechanism 4 while temporarily flowing in a gas-liquid two-phase state. To do.
  • the evaporated intermediate pressure refrigerant passes through the second injection pipe 8 b and then merges with the refrigerant flowing in the intermediate pressure refrigerant pipe 7.
  • the merged intermediate-pressure refrigerant is sucked into the rear-stage compression element 2d and compressed to a high pressure in the refrigeration cycle by the rear-stage compression element 2d.
  • the compressed high-pressure refrigerant is discharged from the compression mechanism 2 to the discharge pipe 2b.
  • the high-pressure refrigerant discharged from the compression mechanism 2 is sent to the heat source side heat exchanger 3 through the first high-pressure refrigerant pipe 3a.
  • the high-pressure refrigerant sent to the heat source side heat exchanger 3 is cooled by exchanging heat with external air by the heat source side heat exchanger 3.
  • a part of the high-pressure refrigerant cooled by the heat source side heat exchanger 3 is branched into the first injection pipe 8a in the second high-pressure refrigerant pipe 3b.
  • the high-pressure refrigerant branched to the first injection pipe 8a is sent to the economizer heat exchanger 6 after being reduced to near the intermediate pressure in the refrigeration cycle by the injection valve 8c.
  • the high-pressure refrigerant after branching to the first injection pipe 8a (that is, flowing through the second high-pressure refrigerant pipe 3b) is sent to the economizer heat exchanger 6.
  • the high-pressure refrigerant from the second high-pressure refrigerant pipe 3b is cooled by exchanging heat with the intermediate-pressure refrigerant from the first injection pipe 8a.
  • the intermediate-pressure refrigerant from the first injection pipe 8a is heated by exchanging heat with the high-pressure refrigerant from the second high-pressure refrigerant pipe 3b, and returned to the intermediate-pressure refrigerant pipe 7 through the second injection pipe 8b.
  • the high-pressure refrigerant cooled in the economizer heat exchanger 6 is sent to the expansion mechanism 4 through the third high-pressure refrigerant pipe 3c.
  • the high-pressure refrigerant sent to the expansion mechanism 4 is depressurized by the expansion mechanism 4, becomes a low-pressure and gas-liquid two-phase refrigerant in the refrigeration cycle, and is sent to the use-side heat exchanger 5 through the first low-pressure refrigerant pipe 5a. .
  • the low-pressure and gas-liquid two-phase refrigerant sent to the use side heat exchanger 5 is heated and evaporated by exchanging heat with external air by the use side heat exchanger 5.
  • the economizer heat exchanger 6 is a heat exchanger according to the present invention.
  • FIG. 2 is a front view of the economizer heat exchanger 6.
  • FIG. 3 is a top view of the economizer heat exchanger 6.
  • the economizer heat exchanger 6 mainly includes a pair of headers 61, a plurality of first flat multi-hole tubes 64a, and a plurality of second flat multi-hole tubes 64b. Next, these components will be described.
  • the header 61 is arranged such that its longitudinal direction is along the vertical direction.
  • the header 61 includes a flow path forming member 62 and a pipe connecting member 63.
  • the flow path forming member 62 includes a first main flow path 62a1, a second main flow path 62a2, a plurality of first communication flow paths 62b1, and a plurality of second communication flow paths 62b2. As shown in FIGS. 4 to 7, the first communication channel 62b1 and the second communication channel 62b2 communicate with the first main channel 62a1 and the second main channel 62a2, respectively.
  • FIG. 8 is an external view of the flow path forming member 62 as seen from the arrow VIII in FIG.
  • the first communication channel 62 b 1 and the second communication channel 62 b 2 open alternately on the opening surface 62 s of the channel forming member 62 along the longitudinal direction of the channel forming member 62. Yes.
  • the first communication channel 62b1 opens to the opening surface 62s along the first main channel 62a1
  • the second communication channel 62b2 opens to the opening surface 62s along the second main channel 62a2.
  • the first main flow path 62a1 and the first communication flow path 62b1 are flow paths through which the high-pressure refrigerant from the second high-pressure refrigerant pipe 3b flows.
  • the second main flow path 62a2 and the second communication flow path 62b2 are flow paths through which the intermediate pressure refrigerant from the first injection pipe 8a flows.
  • the first main flow path 62a1 is a flow path through which the refrigerant flows in the vertical direction
  • the first communication flow path 62b1 is a flow path branched from the first main flow path 62a1 and through which the refrigerant flows in the horizontal direction.
  • the second main channel 62a2 is a channel through which the refrigerant flows in the vertical direction
  • the second communication channel 62b2 is a channel branched from the second main channel 62a2 and through which the refrigerant flows in the horizontal direction.
  • the pipe connecting member 63 is a member for connecting the flow path forming member 62 to the first flat multi-hole pipe 64a and the second flat multi-hole pipe 64b. The detailed configuration of the pipe connecting member 63 will be described later.
  • the first flat multi-hole tube 64a is a flat tube having a plurality of first refrigerant flow path holes 65a.
  • the first flat multi-hole pipe 64a is arranged so that the arrangement direction of the first refrigerant flow path holes 65a is horizontal, that is, the normal line of the flat surface indicates the vertical direction.
  • the second flat multi-hole pipe 64b is a flat pipe having a plurality of second refrigerant flow path holes 65b.
  • the second flat multi-hole pipe 64b is arranged so that the arrangement direction of the second refrigerant flow path holes 65b is horizontal, that is, the normal line of the flat surface indicates the vertical direction.
  • a pair in which one first flat multi-hole tube 64 a and one second flat multi-hole tube 64 b are in close contact with each other on a flat surface is the longitudinal direction of the header 61.
  • Both ends of the first flat multi-hole tube 64a and the second flat multi-hole tube 64b are connected to a pair of headers 61, respectively.
  • FIG. 9 is a cross-sectional view of the first flat multi-hole tube 64a and the second flat multi-hole tube 64b cut along the cutting line IX-IX in FIG.
  • the arrangement direction of the first refrigerant flow hole 65a of the first flat multi-hole pipe 64a and the arrangement direction of the second refrigerant flow hole 65b of the second flat multi-hole pipe 64b are as follows. It is orthogonal to the longitudinal direction of 61. (3-3) Pipe Connection Member
  • the pipe connection member 63 includes a pipe bonding member 63a, a pipe fixing member 63b, and a spacer member 63c.
  • FIG. 10 is a front view of the pipe bonding member 63a.
  • FIG. 11 is a front view of the tube fixing member 63b.
  • FIG. 12 is a front view of the spacer member 63c.
  • 10 to 12 are external views as seen from the arrow VIII in FIG.
  • the tube bonding member 63a is a member having a U-shaped cross section when viewed along the vertical direction.
  • the pipe bonding member 63a has a plurality of flat pipe insertion holes 63a1 arranged in the vertical direction. The ends of the first flat multi-hole tube 64a and the second flat multi-hole tube 64b are inserted into the respective flat tube insertion holes 63a1.
  • the flat tube insertion hole 63a1 fixes the ends of the first flat multi-hole tube 64a and the second flat multi-hole tube 64b.
  • the tube fixing member 63b is a plate disposed in close contact with the tube bonding member 63a and the spacer member 63c in a space surrounded by the tube bonding member 63a and the flow path forming member 62. It is a shaped member. As shown in FIG. 11, the tube fixing member 63b has a plurality of flat tube fastening holes 63b1 arranged in the vertical direction. The flat tube retaining hole 63b1 has two convex portions 63b2 at the center in the horizontal direction. The convex portion 63b2 fixes the ends of the first flat multi-hole tube 64a and the second flat multi-hole tube 64b together with the flat tube insertion hole 63a1.
  • the height of the convex portion 63b2 is smaller than the thickness of the first flat multi-hole tube 64a and the second flat multi-hole tube 64b.
  • the spacer member 63c is in close contact with the opening surface 62s of the pipe fixing member 63b and the flow path forming member 62 in the space surrounded by the pipe bonding member 63a and the flow path forming member 62. It is the plate-shaped member arrange
  • the spacer member 63c has a plurality of spacer holes 63c1 arranged in the vertical direction. Part of the end faces of the first flat multi-hole pipe 64a and the second flat multi-hole pipe 64b are in contact with the end face of the spacer member 63c, as shown in FIGS.
  • the height positions of the first communication flow path 62b1 and the second communication flow path 62b2 that open to the opening surface 62s of the flow path forming member 62 are flat tube insertion holes 63a1, flat tube retaining holes 63b1, and spacer holes. Equal to the height position of 63c1.
  • the first refrigerant channel hole 65a and the second refrigerant channel hole 65b communicate with the first communication channel 62b1 and the second communication channel 62b2 via the spacer holes 63c1, respectively.
  • the spacer hole 63c1 that communicates with the first communication channel 62b1 is referred to as a first sub-channel 62c1
  • the spacer hole 63c1 that communicates with the second communication channel 62b2 is referred to as a second sub-channel 62c2.
  • the first sub-channel 62c1 is a space that communicates the first refrigerant channel hole 65a and the first main channel 62a1 together with the first communication channel 62b1.
  • the second sub-channel 62c2 is a space that communicates the second refrigerant channel hole 65b and the second main channel 62a2 together with the second communication channel 62b2.
  • the high-pressure refrigerant that is cooled by the heat source side heat exchanger 3 and flows through the second high-pressure refrigerant pipe 3 b is supplied to the first main flow path 62 a 1 in the header 61 of the economizer heat exchanger 6.
  • the high-pressure refrigerant flowing through the first main flow path 62a1 is diverted to the first sub flow paths 62c1 through the first communication flow paths 62b1, and then into the first refrigerant flow path holes 65a of the first flat multi-hole pipes 64a. Inflow.
  • the intermediate-pressure refrigerant branched from the second high-pressure refrigerant pipe 3b and depressurized by the injection valve 8c and flowing through the first injection pipe 8a is the second in the header 61 on the opposite side to the side supplied with the high-pressure refrigerant. It is supplied to the main flow path 62a2.
  • the intermediate pressure refrigerant flowing through the second main flow path 62a2 is diverted to the second sub flow paths 62c2 via the second communication flow paths 62b2, and the second refrigerant flow path holes 65b of the second flat multi-hole pipes 64b. Flow into.
  • the high-pressure refrigerant flowing through the first refrigerant flow hole 65a of each first flat multi-hole pipe 64a is the second refrigerant flow of the second flat multi-hole pipe 64b that is in close contact with the first flat multi-hole pipe 64a. Heat is exchanged with the intermediate pressure refrigerant flowing through the passage hole 65b. As shown in FIG. 13, the flow direction of the high-pressure refrigerant in the first refrigerant flow path hole 65a is opposite to the flow direction of the intermediate-pressure refrigerant in the second refrigerant flow path hole 65b.
  • the high-pressure refrigerant that has exchanged heat through the first refrigerant passage hole 65a flows into the first main passage 62a1 in the header 61 on the opposite side.
  • the high-pressure refrigerant is sent from the first main flow path 62a1 to the third high-pressure refrigerant pipe 3c.
  • the intermediate-pressure refrigerant that has exchanged heat through the second refrigerant flow path hole 65b flows into the second main flow path 62a2 in the header 61 on the opposite side.
  • the intermediate pressure refrigerant is sent from the second main flow path 62a2 to the second injection pipe 8b.
  • the high-pressure refrigerant flowing through the first main flow path 62a1 of the header 61 is divided into the first sub flow paths 62c1, and then each first flat multi-hole pipe 64a.
  • the intermediate-pressure refrigerant flowing through the second main flow path 62a2 of the header 61 flows into the second refrigerant flow path holes 65b of the second flat multi-hole pipes 64b after being divided into the second sub flow paths 62c2.
  • the first sub flow channel 62 c 1 and the second sub flow channel 62 c 2 are spaces formed by the pipe connection member 63.
  • the first flat multi-hole tube 64 a and the second flat multi-hole tube 64 b are connected to the header 61 so that the arrangement direction of the holes 65 b is orthogonal to the longitudinal direction of the header 61.
  • the first flat multi-hole pipe 64a and the second flat multi-hole pipe 64b are shown in FIG. 14 by using the pipe connecting member 63 that forms the first sub-flow path 62c1 and the second sub-flow path 62c2. As shown, it can be coupled to the header 61.
  • the economizer heat exchanger 6 in the present embodiment has a number of flat multi-hole tubes 64 a and 64 b in the header 61 as compared with the conventional heat exchanger as shown in FIG. 15. Since it can connect efficiently, the length of the header 61 can be made small.
  • the economizer heat exchanger 6 in the present embodiment can be easily made compact.
  • the economizer heat exchanger 6 has been described as the heat exchanger according to the present invention.
  • the heat exchanger according to the present invention is a general-purpose heat exchanger that performs heat exchange between the refrigerant and the refrigerant. Can adapt adaptively.
  • the first flat multi-hole tube 64a and the second flat multi-hole tube 64b are arranged so that the arrangement direction of the first refrigerant flow hole 65a and the second refrigerant flow hole 65b is orthogonal to the longitudinal direction of the header 61.
  • the arrangement direction of the first refrigerant passage hole 65 a and the second refrigerant passage hole 65 b only needs to intersect the longitudinal direction of the header 61.
  • a large number of flat multi-hole tubes 64 a and 64 b can be efficiently connected to the header 61. Can be reduced. Therefore, the economizer heat exchanger 6 in this modification can be easily made compact.
  • the heat exchanger according to the present invention can be made compact.
  • Economizer heat exchanger heat exchanger
  • Header 62a1 First main flow path 62a2 Second main flow path
  • Pipe connection member 63a Pipe adhesive member
  • Pipe fixing member 63b Pipe fixing member
  • First sub flow path 62c2 Second sub flow path
  • 64a First flat multi-hole pipe (first flat pipe) 64b Second flat multi-hole tube (second flat tube)
  • 65a First refrigerant channel hole 65b Second refrigerant channel hole

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

エコノマイザ熱交換器(6)は、ヘッダ(61)と、第1扁平多穴管(64a)と、第2扁平多穴管(64b)とを備える。ヘッダ(61)は、第1冷媒が流れる第1主流路(62a1)と、第2冷媒が流れる第2主流路(62a2)とを有する。第1扁平多穴管(64a)は、第1冷媒が流れる複数の第1冷媒流路穴(65a)を有する。第2扁平多穴管(64b)は、第2冷媒が流れる複数の第2冷媒流路穴(65b)を有する。ヘッダ(61)は、管接続部材(63)を有する。管接続部材(63)は、第1副流路(62c1)と、第2副流路(62c2)とを形成する。第1副流路(62c1)は、第1主流路(62a1)と第1冷媒流路穴(65a)とを連通させる。第2副流路(62c2)は、第2主流路(62a2)と第2冷媒流路穴(65b)とを連通させる。第1扁平多穴管(64a)および第2扁平多穴管(64b)は密着しており、第1冷媒と第2冷媒との間で熱交換をさせる。

Description

熱交換器
 本発明は、熱交換器に関する。
 従来、特許文献1(特開2007-163004号公報)に開示されているように、扁平多穴管を用いて冷媒と冷媒との間で熱交換をさせる熱交換器が、冷凍サイクルに使用されている。この熱交換器では、熱交換される2種類の冷媒がそれぞれ流れる2つの扁平多穴管が、互いに貼り合わされている。そして、この熱交換器では、扁平多穴管の冷媒流路穴の並び方向がヘッダの長手方向に沿うように、扁平多穴管がヘッダに連結されている。そのため、ヘッダに多数の扁平多穴管を連結させる場合、ヘッダを長くする必要があり、コンパクト化が難しい。
 本発明の目的は、コンパクトな熱交換器を提供することである。
 本発明の第1観点に係る熱交換器は、ヘッダと、第1扁平管と、第2扁平管とを備える。ヘッダは、第1冷媒が流れる第1主流路と、第2冷媒が流れる第2主流路とを有する。第1扁平管は、ヘッダに連結される。第1扁平管は、第1冷媒が流れる複数の第1冷媒流路穴を有する扁平多穴管である。第2扁平管は、ヘッダに連結される。第2扁平管は、第2冷媒が流れる複数の第2冷媒流路穴を有する扁平多穴管である。ヘッダは、副流路形成部材を有する。副流路形成部材は、第1副流路と、第2副流路とを形成する。第1副流路は、第1主流路と第1冷媒流路穴とを連通させる。第2副流路は、第2主流路と第2冷媒流路穴とを連通させる。第1扁平管および第2扁平管は、密着している。第1扁平管および第2扁平管は、第1冷媒流路穴を流れる第1冷媒と、第2冷媒流路穴を流れる第2冷媒との間で熱交換をさせる。
 第1観点に係る熱交換器では、ヘッダの第1主流路は、第1副流路を介して、第1扁平管の複数の第1冷媒流路穴と連通し、かつ、ヘッダの第2主流路は、第2副流路を介して、第2扁平管の複数の第2冷媒流路穴と連通する。第1扁平管は、第1冷媒流路穴の並び方向に沿って扁平である。第1主流路は、ヘッダの長手方向に沿って形成されている。第1冷媒流路穴を第1主流路に直接連通させる場合、第1扁平管の扁平な方向がヘッダの長手方向に沿うように、第1扁平管をヘッダに連結する必要がある。そのため、ヘッダに多数の第1扁平管を連結させる場合、ヘッダの長さが大きくなるので、熱交換器をコンパクト化することが難しい。一方、第1観点に係る熱交換器では、第1副流路を介して冷媒流路穴を第1主流路に連通させることによって、第1扁平管の扁平な方向がヘッダの長手方向に沿うように、第1扁平管をヘッダに連結する必要がない。第2扁平管に関しても、同様である。従って、第1観点に係る熱交換器は、ヘッダの長さを大きくする必要がなく、コンパクト化することができる。
 本発明の第2観点に係る熱交換器は、第1観点に係る熱交換器において、第1扁平管および第2扁平管は、第1冷媒流路穴および第2冷媒流路穴の並び方向である横断面長手方向がヘッダの長手方向と交差するように、ヘッダに連結される。
 本発明の第3観点に係る熱交換器は、第2観点に係る熱交換器において、第1扁平管および第2扁平管は、横断面長手方向がヘッダの長手方向と直交するように、ヘッダに連結される。
 第3観点に係る熱交換器では、第1扁平管の扁平な方向がヘッダの長手方向に直交するように、第1扁平管がヘッダに連結されている。第2扁平管に関しても、同様である。従って、第3観点に係る熱交換器は、効率的にコンパクト化することができる。
 本発明の第4観点に係る熱交換器は、第1観点乃至第3観点のいずれか1つに係る熱交換器において、副流路形成部材は、第1扁平管および第2扁平管の端部が接着され、かつ、ヘッダに固定される管接着部材を含む。
 第4観点に係る熱交換器では、第1扁平管をヘッダに連結するための部材と、第2扁平管をヘッダに連結するための部材とを一体化することができる。従って、第4観点に係る熱交換きは、部品点数を削減できるので、製造コストを抑えることができる。
 本発明の第5観点に係る熱交換器は、第4観点に係る熱交換器において、副流路形成部材は、さらに、第1扁平管および第2扁平管の端部を、管接着部材と共に固定する管固定部材を含む。
 本発明の第6観点に係る熱交換器は、第1観点乃至第5観点のいずれか1つに係る熱交換器において、副流路形成部材は、複数の第1副流路および複数の第2副流路を形成する。
 本発明の第7観点に係る熱交換器は、第1観点乃至第6観点のいずれか1つに係る熱交換器において、第1冷媒および第2冷媒は、二酸化炭素である。
 本発明の第1観点乃至第7観点に係る熱交換器は、コンパクト化することができる。また、本発明の第4観点乃至第6観点に係る熱交換器は、製造コストを抑えることができる。
本発明の実施形態における、空気調和装置の概略構成図である。 本発明の実施形態における、エコノマイザ熱交換器の正面図である。 本発明の実施形態における、エコノマイザ熱交換器の上面図である。 本発明の実施形態における、エコノマイザ熱交換器の水平方向の断面図である。 本発明の実施形態における、エコノマイザ熱交換器の水平方向の断面図である。 本発明の実施形態における、エコノマイザ熱交換器の鉛直方向の断面図である。 本発明の実施形態における、エコノマイザ熱交換器の鉛直方向の断面図である。 本発明の実施形態における、流路形成部材の外観図である。 本発明の実施形態における、第1扁平多穴管および第2扁平多穴管の断面図である。 本発明の実施形態における、管接着部材の正面図である。 本発明の実施形態における、管固定部材の正面図である。 本発明の実施形態における、スペーサ部材の正面図である。 本発明の実施形態における、エコノマイザ熱交換器内の冷媒の流れを表す図である。 本発明の実施形態における、エコノマイザ熱交換器のヘッダおよび扁平多穴管の外観図である。 従来の、冷媒・冷媒熱交換器のヘッダおよび扁平多穴管の外観図である。
 以下、本発明に係る熱交換器の実施形態について、図面に基づいて説明する。なお、本発明に係る熱交換器の実施形態は、本発明の具体例の一つであって、本発明の技術的範囲を限定するものではない。
 (1)空気調和装置の構成
 図1は、本発明に係る熱交換器を備える冷凍装置の一例としての空気調和装置1の概略構成図である。空気調和装置1は、冷房運転が可能となるように構成された冷媒回路10を有し、二酸化炭素等の超臨界域で作動する冷媒を使用して二段圧縮式冷凍サイクルを行う。冷媒回路10は、主として、圧縮機構2と、熱源側熱交換器3と、膨張機構4と、利用側熱交換器5と、エコノマイザ熱交換器6とを有している。次に、これらの構成要素について説明する。
  (1-1)圧縮機構
 圧縮機構2は、冷凍サイクルにおける低圧から、冷凍サイクルにおける高圧まで冷媒を圧縮する。圧縮機構2は、2つの圧縮要素を用いて冷媒を二段圧縮する圧縮機21である。圧縮機21は、ケーシング21a内に、圧縮要素駆動モータ21bと、駆動軸21cと、前段側圧縮要素2cと、後段側圧縮要素2dとが収容された密閉式構造となっている。圧縮要素駆動モータ21bは、駆動軸21cに連結されている。駆動軸21cは、前段側圧縮要素2cおよび後段側圧縮要素2dに連結されている。すなわち、圧縮機21は、圧縮要素駆動モータ21bが、1本の駆動軸21cを介して、前段側圧縮要素2cおよび後段側圧縮要素2dを駆動する、一軸二段圧縮構造を有する。
 圧縮機21は、吸入管2aから低圧の冷媒を吸入し、吸入された冷媒を前段側圧縮要素2cによって圧縮した後に、圧縮された中間圧の冷媒を中間圧冷媒管7に吐出する。次に、圧縮機21は、中間圧冷媒管7に吐出された中間圧の冷媒を吸入し、吸入された冷媒を後段側圧縮要素2dによって圧縮した後に、圧縮された高圧の冷媒を吐出管2bに吐出する。
  (1-2)熱源側熱交換器
 熱源側熱交換器3は、圧縮機構2によって圧縮された高圧の冷媒を冷却する放熱器である。熱源側熱交換器3は、冷却源としての空気と、熱源側熱交換器3内を流れる冷媒との間で熱交換をさせる。熱源側熱交換器3は、第1高圧冷媒管3aおよび吐出管2bを介して、圧縮機構2に接続されている。第1高圧冷媒管3aは、熱源側熱交換器3の入口と、吐出管2bとに接続される冷媒管である。熱源側熱交換器3は、第2高圧冷媒管3bを介して、エコノマイザ熱交換器6および後述するインジェクション部8に接続されている。第2高圧冷媒管3bは、熱源側熱交換器3の出口と、エコノマイザ熱交換器6の入口(熱源側熱交換器3から膨張機構4に送られる冷媒の流路の入口)と、インジェクション部8の入口(第2高圧冷媒管3bから分岐された冷媒の流路の入口)とに接続される冷媒管である。
  (1-3)膨張機構
 膨張機構4は、熱源側熱交換器3およびエコノマイザ熱交換器6において冷却された高圧の冷媒を、利用側熱交換器5に送る前に、冷凍サイクルにおける低圧付近まで減圧する。膨張機構4は、例えば、電動膨張弁である。膨張機構4は、第3高圧冷媒管3cを介して、エコノマイザ熱交換器6に接続されている。第3高圧冷媒管3cは、エコノマイザ熱交換器6の出口(熱源側熱交換器3から膨張機構4に送られる冷媒の流路の出口)と、膨張機構4の入口とに接続される冷媒管である。膨張機構4は、第1低圧冷媒管5aを介して、利用側熱交換器5に接続されている。第1低圧冷媒管5aは、膨張機構4の出口と、利用側熱交換器5の入口とに接続される冷媒管である。
  (1-4)利用側熱交換器
 利用側熱交換器5は、膨張機構4によって減圧された低圧の冷媒を加熱して蒸発させる蒸発器である。利用側熱交換器5は、加熱源としての空気と、利用側熱交換器5内を流れる冷媒との間で熱交換をさせる。利用側熱交換器5は、第1低圧冷媒管5aを介して、膨張機構4に接続されている。利用側熱交換器5は、第2低圧冷媒管5bを介して、圧縮機構2に接続されている。第2低圧冷媒管5bは、利用側熱交換器5の出口と、吸入管2aとに接続される冷媒管である。
  (1-5)エコノマイザ熱交換器
 エコノマイザ熱交換器6は、熱源側熱交換器3から膨張機構4に送られる高圧の冷媒と、インジェクション部8を流れる中間圧の冷媒との間で熱交換をさせる。
 インジェクション部8は、熱源側熱交換器3から膨張機構4に送られる高圧の冷媒を分岐させて、後段側圧縮要素2dの入口に戻す。具体的には、インジェクション部8は、第2高圧冷媒管3bから冷媒を分岐させて、中間圧冷媒管7に戻す。インジェクション部8は、第1インジェクション管8aと、第2インジェクション管8bとから構成される。第1インジェクション管8aは、第2高圧冷媒管3bと、エコノマイザ熱交換器6の入口(第2高圧冷媒管3bから分岐された冷媒の流路の入口)とを接続する。第2インジェクション管8bは、エコノマイザ熱交換器6の出口(第2高圧冷媒管3bから分岐された冷媒の流路の出口)と、中間圧冷媒管7とを接続する。第1インジェクション管8aには、開度制御が可能な戻し弁として機能するインジェクション弁8cが設けられている。インジェクション弁8cは、例えば、電動膨張弁である。インジェクション弁8cは、第2高圧冷媒管3bから分岐した高圧の冷媒を、中間圧冷媒管7内を流れる冷媒の圧力である中間圧付近まで減圧する。
 エコノマイザ熱交換器6では、熱源側熱交換器3から膨張機構4に送られる高圧の冷媒は、インジェクション部8を流れる中間圧の冷媒との熱交換によって冷却される。一方、インジェクション部8を流れる中間圧の冷媒は、一時的に気液二相状態で流れながら、熱源側熱交換器3から膨張機構4に送られる高圧の冷媒との熱交換によって加熱されて蒸発する。蒸発した中間圧の冷媒は、第2インジェクション管8bを通過した後、中間圧冷媒管7内を流れる冷媒と合流する。
 (2)空気調和装置の動作
 次に、空気調和装置1の冷房運転時の動作について、冷媒回路10を循環する冷媒の流れに基づいて説明する。冷凍サイクルにおける低圧の冷媒は、吸入管2aから圧縮機構2に吸入される。圧縮機構2に吸入された低圧の冷媒は、前段側圧縮要素2cによって冷凍サイクルにおける中間圧まで圧縮された後に、中間圧冷媒管7に吐出される。中間圧冷媒管7において、前段側圧縮要素2cから吐出された中間圧の冷媒は、第2インジェクション管8bから戻された中間圧の冷媒と合流する。合流した中間圧の冷媒は、後段側圧縮要素2dに吸入され、後段側圧縮要素2dによって冷凍サイクルにおける高圧まで圧縮される。圧縮された高圧の冷媒は、圧縮機構2から吐出管2bに吐出される。
 圧縮機構2から吐出された高圧の冷媒は、第1高圧冷媒管3aを通じて熱源側熱交換器3に送られる。熱源側熱交換器3に送られた高圧の冷媒は、熱源側熱交換器3によって外部の空気と熱交換を行って冷却される。熱源側熱交換器3によって冷却された高圧の冷媒の一部は、第2高圧冷媒管3bにおいて、第1インジェクション管8aに分岐される。第1インジェクション管8aに分岐された高圧の冷媒は、インジェクション弁8cによって冷凍サイクルにおける中間圧付近まで減圧された後に、エコノマイザ熱交換器6に送られる。一方、第1インジェクション管8aに分岐された後の(すなわち、第2高圧冷媒管3bを流れる)高圧の冷媒は、エコノマイザ熱交換器6に送られる。
 エコノマイザ熱交換器6において、第2高圧冷媒管3bからの高圧の冷媒は、第1インジェクション管8aからの中間圧の冷媒と熱交換を行って冷却される。一方、第1インジェクション管8aからの中間圧の冷媒は、第2高圧冷媒管3bからの高圧の冷媒と熱交換を行って加熱され、第2インジェクション管8bを通じて中間圧冷媒管7に戻される。
 エコノマイザ熱交換器6において冷却された高圧の冷媒は、第3高圧冷媒管3cを通じて膨張機構4に送られる。膨張機構4に送られた高圧の冷媒は、膨張機構4によって減圧されて、冷凍サイクルにおける低圧かつ気液二相状態の冷媒となり、第1低圧冷媒管5aを通じて利用側熱交換器5に送られる。利用側熱交換器5に送られた低圧かつ気液二相状態の冷媒は、利用側熱交換器5によって外部の空気と熱交換を行って加熱されて蒸発する。利用側熱交換器5において加熱されて蒸発した低圧の冷媒は、第2低圧冷媒管5b及び吸入管2aを通じて再び圧縮機構2に吸入される。このようにして、空気調和装置1は、冷媒回路10内に冷媒を循環させて冷房運転を行う。
 (3)エコノマイザ熱交換器の詳細な構成
 次に、エコノマイザ熱交換器6の詳細な構成について説明する。本実施形態において、エコノマイザ熱交換器6は、本発明に係る熱交換器である。図2は、エコノマイザ熱交換器6の正面図である。図3は、エコノマイザ熱交換器6の上面図である。図2は、図3に示される矢印IIの方向から見た場合における正面図である。図3は、図2に示される矢印IIIの方向から見た場合における上面図である。図4および図5は、それぞれ、図2の切断線IV-IVおよび切断線V-Vに沿って切断した水平方向の断面図である。図6および図7は、それぞれ、図3の切断線VI-VIおよび切断線VII-VIIに沿って切断した鉛直方向の断面図である。エコノマイザ熱交換器6は、主として、一対のヘッダ61と、複数の第1扁平多穴管64aと、複数の第2扁平多穴管64bとから構成されている。次に、これらの構成要素について説明する。
  (3-1)ヘッダ
 一対のヘッダ61のぞれぞれは同じ構造を有しているので、以下、任意の一方のヘッダ61のみについて説明する。ヘッダ61は、その長手方向が鉛直方向に沿うように配置される。ヘッダ61は、流路形成部材62と管接続部材63とを有する。流路形成部材62は、第1主流路62a1と、第2主流路62a2と、複数の第1連絡流路62b1と、複数の第2連絡流路62b2とを内部に有する。図4~図7に示されるように、第1連絡流路62b1および第2連絡流路62b2は、それぞれ、第1主流路62a1および第2主流路62a2と連通する。図8は、図4の矢印VIIIから見た、流路形成部材62の外観図である。図8に示されるように、第1連絡流路62b1および第2連絡流路62b2は、流路形成部材62の開口面62sに、流路形成部材62の長手方向に沿って交互に開口している。第1連絡流路62b1は、第1主流路62a1に沿って開口面62sに開口し、第2連絡流路62b2は、第2主流路62a2に沿って開口面62sに開口している。
 第1主流路62a1および第1連絡流路62b1は、第2高圧冷媒管3bからの高圧の冷媒が流れる流路である。第2主流路62a2および第2連絡流路62b2は、第1インジェクション管8aからの中間圧の冷媒が流れる流路である。第1主流路62a1は、鉛直方向に冷媒が流れる流路であり、第1連絡流路62b1は、第1主流路62a1から分岐して水平方向に冷媒が流れる流路である。第2主流路62a2は、鉛直方向に冷媒が流れる流路であり、第2連絡流路62b2は、第2主流路62a2から分岐して水平方向に冷媒が流れる流路である。
 管接続部材63は、流路形成部材62と、第1扁平多穴管64aおよび第2扁平多穴管64bとを接続するための部材である。管接続部材63の詳細な構成については、後述する。
  (3-2)第1扁平多穴管および第2扁平多穴管
 第1扁平多穴管64aは、複数の第1冷媒流路穴65aを有する扁平管である。第1扁平多穴管64aは、第1冷媒流路穴65aの並び方向が水平方向になるように、すなわち、その扁平な面の法線が鉛直方向を指すように、配置されている。第2扁平多穴管64bは、複数の第2冷媒流路穴65bを有する扁平管である。第2扁平多穴管64bは、第2冷媒流路穴65bの並び方向が水平方向になるように、すなわち、その扁平な面の法線が鉛直方向を指すように、配置されている。
 本実施形態では、図2に示されるように、1本の第1扁平多穴管64aおよび1本の第2扁平多穴管64bが扁平な面において互いに密着したペアが、ヘッダ61の長手方向に沿って、複数段配置されている。第1扁平多穴管64aおよび第2扁平多穴管64bの両端部は、それぞれ、一対のヘッダ61に連結されている。
 図9は、図3の切断線IX-IXに沿って切断した、第1扁平多穴管64aおよび第2扁平多穴管64bの断面図である。図9に示されるように、第1扁平多穴管64aの第1冷媒流路穴65aの並び方向、および、第2扁平多穴管64bの第2冷媒流路穴65bの並び方向は、ヘッダ61の長手方向に直交している。
  (3-3)管接続部材
 管接続部材63は、図4~図7に示されるように、管接着部材63aと、管固定部材63bと、スペーサ部材63cとから構成される。図10は、管接着部材63aの正面図である。図11は、管固定部材63bの正面図である。図12は、スペーサ部材63cの正面図である。図10~図12は、それぞれ、図4の矢印VIIIから見た外観図である。
 管接着部材63aは、図4~図7に示されるように、鉛直方向に沿って見た場合の断面形状がU字型の部材である。管接着部材63aは、図10に示されるように、複数の扁平管嵌入孔63a1が、鉛直方向に配置されている。それぞれの扁平管嵌入孔63a1には、第1扁平多穴管64aおよび第2扁平多穴管64bの端部が嵌入される。扁平管嵌入孔63a1は、第1扁平多穴管64aおよび第2扁平多穴管64bの端部を固定する。
 管固定部材63bは、図4~図7に示されるように、管接着部材63aと流路形成部材62とによって囲まれる空間において、管接着部材63aおよびスペーサ部材63cに密着して配置される板状部材である。管固定部材63bは、図11に示されるように、複数の扁平管留め孔63b1が鉛直方向に配置されている。扁平管留め孔63b1は、水平方向中央部に2つの凸部63b2を有している。凸部63b2は、扁平管嵌入孔63a1と共に、第1扁平多穴管64aおよび第2扁平多穴管64bの端部を固定する。凸部63b2の高さは、第1扁平多穴管64aおよび第2扁平多穴管64bの厚みよりも小さい。
 スペーサ部材63cは、図4~図7に示されるように、管接着部材63aと流路形成部材62とによって囲まれる空間において、管固定部材63bおよび流路形成部材62の開口面62sに密着して配置される板状部材である。スペーサ部材63cは、図12に示されるように、複数のスペーサ孔63c1が鉛直方向に配置されている。第1扁平多穴管64aおよび第2扁平多穴管64bの端面の一部は、図4および図5に示されるように、スペーサ部材63cの端面に接触している。
 本実施形態において、流路形成部材62の開口面62sに開口する第1連絡流路62b1および第2連絡流路62b2の高さ位置は、扁平管嵌入孔63a1、扁平管留め孔63b1およびスペーサ孔63c1の高さ位置に等しい。これにより、第1冷媒流路穴65aおよび第2冷媒流路穴65bは、それぞれ、スペーサ孔63c1を介して、第1連絡流路62b1および第2連絡流路62b2と連通する。以下、第1連絡流路62b1と連通するスペーサ孔63c1を、第1副流路62c1と呼び、第2連絡流路62b2と連通するスペーサ孔63c1を、第2副流路62c2と呼ぶ。第1副流路62c1は、第1連絡流路62b1と共に、第1冷媒流路穴65aと第1主流路62a1とを連通する空間である。第2副流路62c2は、第2連絡流路62b2と共に、第2冷媒流路穴65bと第2主流路62a2とを連通する空間である。
 (4)エコノマイザ熱交換器における冷媒の流れ
 エコノマイザ熱交換器6における熱交換について、図13を参照しながら説明する。熱源側熱交換器3によって冷却されて第2高圧冷媒管3bを流れる高圧の冷媒は、エコノマイザ熱交換器6の一のヘッダ61内の第1主流路62a1に供給される。第1主流路62a1を流れる高圧の冷媒は、各第1連絡流路62b1を介して各第1副流路62c1に分流し、各第1扁平多穴管64aの第1冷媒流路穴65aに流入する。
 一方、第2高圧冷媒管3bから分岐してインジェクション弁8cによって減圧されて第1インジェクション管8aを流れる中間圧の冷媒は、高圧の冷媒が供給された側の反対側のヘッダ61内の第2主流路62a2に供給される。第2主流路62a2を流れる中間圧の冷媒は、各第2連絡流路62b2を介して各第2副流路62c2に分流し、各第2扁平多穴管64bの第2冷媒流路穴65bに流入する。
 そして、各第1扁平多穴管64aの第1冷媒流路穴65aを流れる高圧の冷媒は、その第1扁平多穴管64aに密着している第2扁平多穴管64bの第2冷媒流路穴65bを流れる中間圧の冷媒と熱交換される。図13に示されるように、第1冷媒流路穴65aにおける高圧の冷媒の流れ方向は、第2冷媒流路穴65bにおける中間圧の冷媒の流れ方向の反対の方向である。
 第1冷媒流路穴65aを通過して熱交換された高圧の冷媒は、反対側のヘッダ61内の第1主流路62a1に流入する。最終的に、高圧の冷媒は、第1主流路62a1から第3高圧冷媒管3cに送られる。一方、第2冷媒流路穴65bを通過して熱交換された中間圧の冷媒は、反対側のヘッダ61内の第2主流路62a2に流入する。最終的に、中間圧の冷媒は、第2主流路62a2から第2インジェクション管8bに送られる。
 (5)特徴
 本実施形態におけるエコノマイザ熱交換器6では、ヘッダ61の第1主流路62a1を流れる高圧の冷媒は、各第1副流路62c1に分流した後に、各第1扁平多穴管64aの第1冷媒流路穴65aに流入する。また、ヘッダ61の第2主流路62a2を流れる中間圧の冷媒は、各第2副流路62c2に分流した後に、各第2扁平多穴管64bの第2冷媒流路穴65bに流入する。第1副流路62c1および第2副流路62c2は、管接続部材63によって形成される空間である。
 このエコノマイザ熱交換器6では、図14に示されるように、第1扁平多穴管64aの第1冷媒流路穴65aの並び方向、および、第2扁平多穴管64bの第2冷媒流路穴65bの並び方向がヘッダ61の長手方向と直交するように、第1扁平多穴管64aおよび第2扁平多穴管64bが、ヘッダ61に連結されている。本実施形態では、第1副流路62c1および第2副流路62c2を形成する管接続部材63を用いることによって、第1扁平多穴管64aおよび第2扁平多穴管64bを、図14に示されるように、ヘッダ61に連結することができる。
 ここで、図15に示されるような従来の熱交換器では、扁平多穴管内の冷媒流路穴の並び方向がヘッダの長手方向に沿うように、複数の扁平多穴管がヘッダに連結されている。この熱交換器では、多数の扁平多穴管をヘッダに連結するためには、ヘッダの長さを大きくする必要があるので、コンパクト化が難しい。一方、図14に示されるように、本実施形態におけるエコノマイザ熱交換器6では、図15に示されるような従来の熱交換器と比べて、多数の扁平多穴管64a,64bをヘッダ61に効率的に連結することができるので、ヘッダ61の長さを小さくすることができる。従って、本実施形態におけるエコノマイザ熱交換器6は、コンパクト化が容易である。
 (6)変形例
  (6-1)変形例A
 本実施形態では、エコノマイザ熱交換器6が本発明に係る熱交換器であるとして説明したが、本発明に係る熱交換器は、冷媒と冷媒との間の熱交換を行う熱交換器に汎用的に適応することができる。
  (6-2)変形例B
 本実施形態では、第1冷媒流路穴65aおよび第2冷媒流路穴65bの並び方向がヘッダ61の長手方向と直交するように、第1扁平多穴管64aおよび第2扁平多穴管64bが、ヘッダ61に連結されているが、第1冷媒流路穴65aおよび第2冷媒流路穴65bの並び方向は、ヘッダ61の長手方向と交差していればよい。
 本変形例においても、図15に示されるような従来の熱交換器と比べて、多数の扁平多穴管64a,64bをヘッダ61に効率的に連結することができるので、ヘッダ61の長さを小さくすることができる。従って、本変形例におけるエコノマイザ熱交換器6も、コンパクト化が容易である。
 本発明に係る熱交換器は、コンパクト化することができる。
  6   エコノマイザ熱交換器(熱交換器)
 61   ヘッダ
 62a1 第1主流路
 62a2 第2主流路
 63   管接続部材(副流路形成部材)
 63a  管接着部材
 63b  管固定部材
 62c1 第1副流路
 62c2 第2副流路
 64a  第1扁平多穴管(第1扁平管)
 64b  第2扁平多穴管(第2扁平管)
 65a  第1冷媒流路穴
 65b  第2冷媒流路穴
特開2007-163004号公報

Claims (7)

  1.  第1冷媒が流れる第1主流路(62a1)と、第2冷媒が流れる第2主流路(62a2)と、を有するヘッダ(61)と、
     前記ヘッダに連結され、かつ、前記第1冷媒が流れる複数の第1冷媒流路穴(65a)を有する扁平多穴管である第1扁平管(64a)と、
     前記ヘッダに連結され、かつ、前記第2冷媒が流れる複数の第2冷媒流路穴(65b)を有する扁平多穴管である第2扁平管(64b)と、
    を備え、
     前記ヘッダは、前記第1主流路と前記第1冷媒流路穴とを連通させる第1副流路(62c1)と、前記第2主流路と前記第2冷媒流路穴とを連通させる第2副流路(62c2)と、を形成する副流路形成部材(63)を有し、
     前記第1扁平管および前記第2扁平管は、密着しており、かつ、前記第1冷媒流路穴を流れる前記第1冷媒と、前記第2冷媒流路穴を流れる前記第2冷媒と、の間で熱交換をさせる、
    熱交換器(6)。
  2.  前記第1扁平管および前記第2扁平管は、前記第1冷媒流路穴および前記第2冷媒流路穴の並び方向である横断面長手方向が前記ヘッダの長手方向と交差するように、前記ヘッダに連結される、
    請求項1に記載の熱交換器。
  3.  前記第1扁平管および前記第2扁平管は、前記横断面長手方向が前記ヘッダの長手方向と直交するように、前記ヘッダに連結される、
    請求項2に記載の熱交換器。
  4.  前記副流路形成部材は、前記第1扁平管および前記第2扁平管の端部が接着され、かつ、前記ヘッダに固定される管接着部材(63a)を含む、
    請求項1から3のいずれか1項に記載の熱交換器。
  5.  前記副流路形成部材は、さらに、前記第1扁平管および前記第2扁平管の端部を、前記管接着部材と共に固定する管固定部材(63b)を含む、
    請求項4に記載の熱交換器。
  6.  前記副流路形成部材は、複数の前記第1副流路および複数の前記第2副流路を形成する、
    請求項1から5のいずれか1項に記載の熱交換器。
  7.  前記第1冷媒および前記第2冷媒は、二酸化炭素である、
    請求項1から6のいずれか1項に記載の熱交換器。
PCT/JP2012/068296 2011-07-28 2012-07-19 熱交換器 WO2013015186A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES12817270T ES2731727T3 (es) 2011-07-28 2012-07-19 Intercambiador de calor
US14/234,563 US20140174703A1 (en) 2011-07-28 2012-07-19 Heat exchanger
EP12817270.7A EP2738507B1 (en) 2011-07-28 2012-07-19 Heat exchanger
CN201280037416.XA CN103717989B (zh) 2011-07-28 2012-07-19 热交换器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011165034A JP5287949B2 (ja) 2011-07-28 2011-07-28 熱交換器
JP2011-165034 2011-07-28

Publications (1)

Publication Number Publication Date
WO2013015186A1 true WO2013015186A1 (ja) 2013-01-31

Family

ID=47601034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068296 WO2013015186A1 (ja) 2011-07-28 2012-07-19 熱交換器

Country Status (7)

Country Link
US (1) US20140174703A1 (ja)
EP (1) EP2738507B1 (ja)
JP (1) JP5287949B2 (ja)
CN (1) CN103717989B (ja)
ES (1) ES2731727T3 (ja)
TR (1) TR201909098T4 (ja)
WO (1) WO2013015186A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109073340A (zh) * 2016-01-21 2018-12-21 埃塔里姆有限公司 与流体进行热交换的装置和系统
US11402162B2 (en) * 2018-04-05 2022-08-02 Mitsubishi Electric Corporation Distributor and heat exchanger
WO2022259288A1 (ja) * 2021-06-07 2022-12-15 三菱電機株式会社 熱交換器及び室外機

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2941522B1 (fr) * 2009-01-27 2012-08-31 Valeo Systemes Thermiques Echangeur de chaleur pour deux fluides, en particulier evaporateur de stockage pour dispositif de climatisation
CN104520122A (zh) * 2013-03-15 2015-04-15 克拉克设备公司 单交换器hvac单元和使用单交换器hvac单元的动力机器
JP6361452B2 (ja) * 2014-10-16 2018-07-25 ダイキン工業株式会社 冷媒蒸発器
CN107367089A (zh) * 2016-05-13 2017-11-21 浙江盾安热工科技有限公司 微通道换热器
US10584922B2 (en) * 2017-02-22 2020-03-10 Hamilton Sundstrand Corporation Heat exchanges with installation flexibility
JP6889618B2 (ja) * 2017-06-02 2021-06-18 サンデンホールディングス株式会社 熱交換器
US11879691B2 (en) * 2017-06-12 2024-01-23 General Electric Company Counter-flow heat exchanger
US11022373B2 (en) * 2019-01-08 2021-06-01 Meggitt Aerospace Limited Heat exchangers and methods of making the same
US11725889B1 (en) * 2019-02-26 2023-08-15 National Technology & Engineering Solutions Of Sandia, Llc Refractory high entropy alloy compact heat exchanger
EP3722720B1 (en) * 2019-04-09 2023-05-10 Pfannenberg GmbH Heat exchanger arrangement, method for producing a heat exchanger arrangement and use of a heat exchanger arrangement
CN112400087B (zh) * 2019-06-12 2022-05-10 开利公司 两级单气体冷却器hvac循环
US11802736B2 (en) 2020-07-29 2023-10-31 Hamilton Sundstrand Corporation Annular heat exchanger
DE102021208717A1 (de) * 2021-08-10 2023-02-16 Mahle International Gmbh Wärmeübertrager
US11493286B1 (en) * 2021-10-12 2022-11-08 Hamilton Sundstrand Corporation Header for high-pressure heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267585A (ja) * 1997-01-27 1998-10-09 Denso Corp 熱交換器
JP2001133189A (ja) * 1999-11-02 2001-05-18 Zexel Valeo Climate Control Corp 熱交換器
JP2007163004A (ja) 2005-12-13 2007-06-28 Calsonic Kansei Corp 熱交換器
JP2007333304A (ja) * 2006-06-15 2007-12-27 Valeo Thermal Systems Japan Corp 熱交換器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454677U (ja) * 1987-09-29 1989-04-04
DE60031808T2 (de) * 1999-07-26 2007-09-20 Denso Corp., Kariya Kühlkreisvorrichtung
JP4727051B2 (ja) * 2001-02-14 2011-07-20 三菱重工業株式会社 インタークーラ及びco2冷媒車両用空調装置
US20030178188A1 (en) * 2002-03-22 2003-09-25 Coleman John W. Micro-channel heat exchanger
JP3960233B2 (ja) * 2002-04-03 2007-08-15 株式会社デンソー 熱交換器
JP4348113B2 (ja) * 2003-05-23 2009-10-21 株式会社ヴァレオサーマルシステムズ 熱交換器
JP2005003239A (ja) * 2003-06-10 2005-01-06 Sanyo Electric Co Ltd 冷媒サイクル装置
JP4196774B2 (ja) * 2003-07-29 2008-12-17 株式会社デンソー 内部熱交換器
CN100535554C (zh) * 2004-03-17 2009-09-02 昭和电工株式会社 热交换器
CN100575856C (zh) * 2005-02-02 2009-12-30 开利公司 微流道热交换器的集管
ES2373964T3 (es) * 2005-02-02 2012-02-10 Carrier Corporation Intercambiador de calor con expansión de fluido en tubo colector.
CN101915480B (zh) * 2006-04-14 2014-10-29 三菱电机株式会社 热交换器及制冷空调装置
EP2090851A1 (en) * 2008-02-15 2009-08-19 Delphi Technologies, Inc. Heat exchanger with a mixing chamber
KR20110106933A (ko) * 2009-01-20 2011-09-29 다이킨 고교 가부시키가이샤 물 열교환기 및 온수 열원 장치
FR2941522B1 (fr) * 2009-01-27 2012-08-31 Valeo Systemes Thermiques Echangeur de chaleur pour deux fluides, en particulier evaporateur de stockage pour dispositif de climatisation
CN102095315B (zh) * 2011-03-04 2012-01-25 刘小江 一种蜂窝孔式换热器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267585A (ja) * 1997-01-27 1998-10-09 Denso Corp 熱交換器
JP2001133189A (ja) * 1999-11-02 2001-05-18 Zexel Valeo Climate Control Corp 熱交換器
JP2007163004A (ja) 2005-12-13 2007-06-28 Calsonic Kansei Corp 熱交換器
JP2007333304A (ja) * 2006-06-15 2007-12-27 Valeo Thermal Systems Japan Corp 熱交換器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109073340A (zh) * 2016-01-21 2018-12-21 埃塔里姆有限公司 与流体进行热交换的装置和系统
US11402162B2 (en) * 2018-04-05 2022-08-02 Mitsubishi Electric Corporation Distributor and heat exchanger
WO2022259288A1 (ja) * 2021-06-07 2022-12-15 三菱電機株式会社 熱交換器及び室外機

Also Published As

Publication number Publication date
JP5287949B2 (ja) 2013-09-11
EP2738507A4 (en) 2015-04-01
ES2731727T3 (es) 2019-11-18
EP2738507B1 (en) 2019-03-27
EP2738507A1 (en) 2014-06-04
JP2013029244A (ja) 2013-02-07
CN103717989A (zh) 2014-04-09
US20140174703A1 (en) 2014-06-26
CN103717989B (zh) 2016-08-31
TR201909098T4 (tr) 2019-07-22

Similar Documents

Publication Publication Date Title
JP5287949B2 (ja) 熱交換器
JP5794022B2 (ja) 熱交換器
WO2018116413A1 (ja) 分配器、熱交換器、及び、冷凍サイクル装置
JP6767637B2 (ja) 熱交換器およびそれを用いた冷凍システム
CN109564070B (zh) 热交换器和使用它的制冷系统
CN109844439B (zh) 热交换器和使用该热交换器的制冷系统
WO2007069570A1 (ja) 熱交換器
CN109328291B (zh) 热交换器和使用它的制冷装置
JP5786497B2 (ja) 熱交換器
JP5540816B2 (ja) 蒸発器ユニット
JP5709777B2 (ja) 熱交換器及び冷凍空調装置
CN112424554B (zh) 板翅片层叠型热交换器和使用它的制冷系统
JP5315957B2 (ja) 冷凍装置
WO2013051653A1 (ja) 熱交換ユニット及び冷凍装置
JP2014126284A (ja) 冷凍装置
JP2013134016A (ja) 熱交換器
JP5903795B2 (ja) 冷凍装置ユニット
JP2018066535A (ja) 熱交換器およびそれを用いた冷凍システム
JP2020118369A (ja) プレートフィン積層型熱交換器およびそれを用いた冷凍システム
JP2020016391A (ja) 冷凍装置の熱源ユニット。
JP6111655B2 (ja) 冷凍装置
WO2018061185A1 (ja) 冷凍サイクル装置
JP6913858B2 (ja) プレートフィン積層型熱交換器およびそれを用いた冷凍システム
JP6872694B2 (ja) プレートフィン積層型熱交換器およびそれを用いた冷凍システム
JP6108857B2 (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817270

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14234563

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012817270

Country of ref document: EP