WO2013015051A1 - 集光型太陽光発電装置用光学素子に用いられるガラス、それを用いた集光型太陽光発電装置用光学素子および集光型太陽光発電装置 - Google Patents

集光型太陽光発電装置用光学素子に用いられるガラス、それを用いた集光型太陽光発電装置用光学素子および集光型太陽光発電装置 Download PDF

Info

Publication number
WO2013015051A1
WO2013015051A1 PCT/JP2012/065840 JP2012065840W WO2013015051A1 WO 2013015051 A1 WO2013015051 A1 WO 2013015051A1 JP 2012065840 W JP2012065840 W JP 2012065840W WO 2013015051 A1 WO2013015051 A1 WO 2013015051A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
glass
power generation
generation apparatus
photovoltaic power
Prior art date
Application number
PCT/JP2012/065840
Other languages
English (en)
French (fr)
Inventor
俣野 高宏
佐藤 史雄
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US14/131,209 priority Critical patent/US20140144505A1/en
Priority to CN2012800107417A priority patent/CN103415478A/zh
Publication of WO2013015051A1 publication Critical patent/WO2013015051A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0525Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells including means to utilise heat energy directly associated with the PV cell, e.g. integrated Seebeck elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to glass used for an optical element for a concentrating solar power generation device, an optical element for a concentrating solar power generation device using the same, and a concentrating solar power generation device.
  • an optical element made of glass is provided between a condensing lens and a solar battery cell.
  • the optical element totally reflects the light collected by the condenser lens on the inner surface and transmits the light to the solar battery cell.
  • Patent Document 1 discloses borosilicate glass
  • Patent Document 2 discloses silicate glass.
  • the optical element generally has a shape such as a trapezoidal cone or a cone, and is manufactured by subjecting an ingot-shaped glass material to grinding and polishing.
  • Patent Document 3 proposes a method in which a thin film made of a fluororesin is provided on the side surface of an optical element, whereby the surface of the optical element becomes clouded by water droplets or the like, and a part of the light leaks therefrom. It is possible to prevent exiting.
  • the conventional glass optical element used in the concentrating solar power generation device has insufficient weather resistance, and when used outdoors for a long period of time, defects such as surface alteration are likely to occur. Therefore, further improvement in weather resistance is required for optical elements.
  • the optical element In the concentrating solar power generation device, in order to further improve power generation efficiency and downsizing, the optical element must have a complicated shape such as a curved end or a polygonal cone. Is expected in the future. However, it is difficult to achieve such a complicated shape by cutting or polishing, which is disadvantageous in terms of cost.
  • the present invention is a glass used for an optical element for a concentrating solar power generation device, which has excellent weather resistance and can be easily processed into a complicated shape, and uses the same. It is an object of the present invention to provide an optical element for a concentrating solar power generation apparatus and a concentrating solar power generation apparatus.
  • the present invention relates to a glass used for an optical element for a concentrating solar power generation device, and in terms of mass%, SiO 2 30 to 80%, B 2 O 3 0 to 40%, Al 2 O 3 0 to 20%. , Li 2 O 0.1% or more and ZrO 2 0.1% or more.
  • it is an optical element made of glass having the above composition, it has excellent weather resistance, and even when used outdoors for a long period of time, defects such as surface alteration are unlikely to occur. Further, since it is easy to achieve a low softening point or low viscosity, it is suitable for melting and molding, and an optical element having a complicated shape can be easily produced by appropriately selecting the shape of a mold. .
  • the glass of the present invention further comprises, in mass%, CaO 0-20%, SrO 0-20%, BaO 0-20%, MgO 0-20%, ZnO 0-20%, Na 2 O 0.
  • it contains ⁇ 20%, K 2 O 0-20% and TiO 2 0-10%.
  • the glass of the present invention further contains 0 to 20% of Bi 2 O 3 + La 2 O 3 + Gd 2 O 5 + Ta 2 O 5 + TiO 2 + Nb 2 O 5 + WO 3 by mass%. It is preferable that
  • the glass of the present invention further contains CeO 2 + Pr 2 O 3 + Nd 2 O 3 + Eu 2 O 3 + Tb 2 O 3 + Er 2 O 3 + Y 2 O 3 + Yb 2 O 5 in a mass percentage of 0-5. % Content is preferable.
  • the glass of the present invention preferably has a Fe 2 O 3 content of 500 ppm or less.
  • the glass of the present invention does not substantially contain a lead component, an arsenic component, and a fluorine component.
  • substantially containing no lead component, arsenic component and fluorine component means that these components are not intentionally added, and does not exclude the inevitable contamination. Specifically, it means that the contents of these components are each less than 0.1%.
  • the glass of the present invention preferably has an average coefficient of linear thermal expansion at 30 to 300 ° C. of 120 ⁇ 10 ⁇ 7 / ° C. or less.
  • This configuration can suppress damage due to temperature changes during cooling after molding or when used outdoors.
  • the glass of the present invention preferably has a temperature corresponding to a viscosity of 10 2.0 Pa ⁇ s of 1300 ° C. or lower.
  • the meltability and moldability can be improved.
  • the glass of the present invention preferably has a softening point of 750 ° C. or lower.
  • the glass of the present invention preferably has an internal transmittance of 90% or more at a thickness of 10 mm and a wavelength of 400 nm.
  • the power generation efficiency of the concentrating solar power generation device can be improved by using an optical element made of glass that satisfies the configuration.
  • the glass of the present invention preferably has an internal transmittance of 40% or less at a thickness of 10 mm and a wavelength of 300 nm.
  • this invention relates to the optical element for concentrating solar power generation devices which consists of one of the said glass.
  • the present invention includes a solar cell and a condensing optical system that condenses the solar cell, and the condensing optical system includes any one of the optical elements described above. It relates to a power generator.
  • FIG. 1 is a schematic conceptual diagram of a concentrating solar power generation device according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic conceptual diagram of a concentrating solar power generation apparatus including an optical element according to this embodiment.
  • the concentrating solar power generation device 1 includes a solar cell 5 and a condensing optical system 2 that condenses sunlight on the solar cell 5.
  • the condensing optical system 2 includes a condensing member 3 and an optical element 4.
  • the condensing member 3 condenses light such as sunlight.
  • the condensing member 3 can be composed of, for example, a convex lens or a Fresnel lens having positive optical power.
  • the optical element 4 is disposed between the light collecting member 3 and the solar cell 5.
  • the light condensed by the condensing member 3 enters the optical element 4 from the end face 41 of the optical element 4 (see FIG. 2).
  • the optical element 4 homogenizes the light collected by the light collecting member 3 and guides it to the light receiving surface 50 of the solar cell 5. Specifically, the light incident on the optical element 4 propagates through the optical element 4 while being homogenized by being reflected by the side surfaces 43a to 43d of the optical element 4.
  • the light propagating through the optical element 4 is emitted from the end face 42 of the optical element 4 toward the light receiving surface 50 as a homogenized planar light.
  • the solar cell 5 is arranged on the end surface 42 of the optical element 4 so that the light receiving surface 50 faces the end surface 42.
  • the light emitted from the end face 42 of the optical element 4 enters the solar cell 5. And in the solar cell 5, light energy is converted into electrical energy.
  • the type of the solar cell 5 is not particularly limited.
  • the solar cell 5 can be composed of, for example, a single crystal silicon solar cell, a polycrystalline silicon solar cell, a thin film solar cell, an amorphous silicon solar cell, a dye-sensitized solar cell, an organic semiconductor solar cell, or the like.
  • FIG. 2 is a schematic perspective view of the optical element according to the present embodiment. Next, a specific configuration of the optical element 4 will be described with reference to FIG.
  • the optical element 4 has a shape that tapers from the light collecting member 3 side toward the solar cell 5 side.
  • the surface 40 of the optical element 4 has two end surfaces 41 and 42 constituting a light entrance / exit surface and side surfaces 43a to 43d constituting a light reflection surface.
  • the end surfaces 41 and 42 are opposed to each other.
  • the side surfaces 43a to 43d connect the end surfaces 41 and 42.
  • the shape of the optical element 4 may be conical or pyramidal.
  • the shape of the end surfaces 41 and 42 may be either a flat surface or a curved surface.
  • angular part and ridgeline part of the optical element 4 may be R chamfered, and, thereby, the damage by the impact from the outside can be suppressed.
  • the glass constituting the optical element 4 is, by mass%, SiO 2 30-80%, B 2 O 3 0-40%, Al 2 O 3 0-30%, Li 2 O 0.1% or more and ZrO 2 0. Contains 1 to 10%. Below, the reason which specified content of each component as mentioned above is explained in full detail. Unless otherwise specified, “%” below means “mass%”.
  • SiO 2 is a component constituting a glass skeleton, and has an effect of suppressing devitrification and improving weather resistance. It also has the effect of increasing the Abbe number.
  • the content of SiO 2 is preferably 30 to 80%, 40 to 75%, 45 to 70%, 45 to 65%, particularly 45 to 60%.
  • the refractive index tends to decrease.
  • the SiO 2 is too small, or decreased resistance to devitrification glass becomes unstable, weather resistance acid resistance and water resistance and the like as well as phase separation tends to decrease.
  • the thermal expansion coefficient increases, and the thermal shock resistance may be reduced.
  • B 2 O 3 is also a component constituting the glass skeleton, and has an effect of suppressing devitrification and improving weather resistance.
  • the content of B 2 O 3 is preferably 0 to 40%, 2.5 to 30%, particularly preferably 5 to 20%. If the B 2 O 3 content is too large, or the weather resistance is lowered, the refractive index tends to decrease.
  • Al 2 O 3 is also a component constituting the glass skeleton, and has the effect of suppressing devitrification and improving weather resistance.
  • the content of Al 2 O 3 is preferably 0 to 30%, 2.5 to 25%, particularly 5 to 20%. When the content of Al 2 O 3 is too large, weather resistance along with the refractive index decreases tends to decrease.
  • Li 2 O is a component that acts as a flux and has a large effect of lowering the softening point.
  • the content of Li 2 O is preferably 0.1% or more, 1% or more, and particularly preferably 2% or more.
  • the Li 2 O content is preferably 0.1% or more, 1% or more, and particularly preferably 2% or more.
  • the Li 2 O content is preferably 20% or less, particularly preferably 15% or less.
  • ZrO 2 is a component that has the effect of dramatically improving weather resistance such as acid resistance and water resistance.
  • the content of ZrO 2 is preferably 0.1% or more, particularly preferably 1% or more. If the content of ZrO 2 is too small, it is difficult to obtain the effect.
  • the upper limit is not particularly limited, the content of ZrO 2 is too large, it becomes easily devitrified higher viscosity, 15% or less, it is preferable 10% or less, especially 5% or less.
  • the glass constituting the optical element 4 further includes CaO 0-20%, SrO 0-20%, BaO 0-20%, MgO 0-20%, ZnO 0-20%, Na 2 O. 0 to 20%, K 2 O 0 to 20%, TiO 2 0 to 10% can be contained.
  • CaO, SrO, BaO, MgO and ZnO act as a flux to lower the softening point and have the effect of lowering the liquidus temperature.
  • Their contents are each preferably 0 to 20%, particularly preferably 0.1 to 10%. When there is too much content of these components, weather resistance, such as acid resistance and water resistance, will fall easily.
  • CaO + SrO + BaO + MgO + ZnO is preferably 0.1 to 50%, 1 to 40%, particularly preferably 3 to 35%. If the total amount of these components is too small, it is difficult to obtain the effect of lowering the softening point. On the other hand, if the total amount is too large, the weather resistance tends to decrease.
  • Na 2 O and K 2 O act as a flux to lower the softening point and have the effect of lowering the liquidus temperature.
  • Their contents are each preferably 0 to 20%, particularly preferably 0.1 to 10%. When there is too much content of these components, weather resistance, such as acid resistance and water resistance, will fall easily. Moreover, there is a possibility that the thermal expansion coefficient is increased and the thermal shock resistance is lowered.
  • the total amount of Li 2 O, Na 2 O and K 2 O which are alkali metal oxide components Is preferably adjusted as appropriate.
  • Li 2 O + Na 2 O + K 2 O is preferably 0.1 to 30%, 1 to 25%, particularly 3 to 20%. If the total amount of these components is too small, it is difficult to obtain the effect of lowering the softening point. On the other hand, if the amount is too large, the weather resistance tends to decrease or the thermal expansion coefficient increases and the thermal shock resistance decreases. It becomes easy to do.
  • TiO 2 acts as a flux to lower the softening point, and has an effect of suppressing coloring by ultraviolet rays and an effect of improving weather resistance such as acid resistance and water resistance.
  • the content of TiO 2 is preferably 0 to 10%, particularly preferably 0.1 to 5%. When the content of TiO 2 is too large, in the transmittance curve, the transmittance in the ultraviolet region shifts to the longer wavelength side, and coloring tends to occur, or the refractive index tends to increase.
  • Bi 2 O 3 + La 2 O 3 + Gd 2 O 5 + Ta 2 O 5 + TiO 2 + Nb 2 O 5 + WO 3 is 0 to 20%, 0 to 10%, 0.1 to 8%, particularly 1 to It is preferably 5%. If the total amount of these components is too large, the transmittance in the visible range may be reduced.
  • SiO 2 + Al 2 O 3 + ZrO 2 is preferably 35 to 80%, particularly preferably 37 to 75%. If the total amount of these components is too large, the viscosity tends to increase, while if too small, the weather resistance tends to be inferior.
  • (SiO 2 + Al 2 O 3 ) / ZrO 2 is preferably in a mass ratio of 700 or less, particularly 650 or less. When the ratio is too large, the weather resistance tends to be inferior.
  • BaO + ZnO is preferably 1.5 to 40%, particularly preferably 2 to 30%. If the total amount of these components is too small, the viscosity tends to increase, while if too large, the weather resistance tends to be inferior.
  • (SiO 2 + Al 2 O 3 ) / Li 2 O is preferably a mass ratio of 700 or less, particularly 600 or less. When the ratio is too large, the viscosity tends to increase.
  • (Na 2 O + K 2 O) / Li 2 O is preferably in a mass ratio of 0.1 to 100, particularly 0.2 to 50. If the ratio is too small, the thermal expansion coefficient may increase and the thermal shock resistance may be reduced. Moreover, there exists a tendency for a viscosity to become high. On the other hand, if the ratio is too large, the weather resistance tends to be inferior.
  • the glass constituting the optical element 4 is a total amount of CeO 2 + Nd 2 O 3 + Pr 2 O 3 + Eu 2 O 3 + Tb 2 O 3 + Er 2 O 3 + Y 2 O 3 in a total amount of mass%.
  • + Yb 2 O 5 can be contained in an amount of 0 to 5%.
  • CeO 2, Pr 2 O 3, Nd 2 O 3, Eu 2 O 3, Tb 2 O 3, Er 2 O 3, Y 2 O 3 And Yb 2 O 5 are components that generate strong light emission when irradiated with light in the visible to near-ultraviolet region, and by adding these components, the amount of light irradiation to the solar cells is increased and the power generation efficiency is increased. Can be expected to improve.
  • CeO 2 + Pr 2 O 3 + Nd 2 O 3 + Eu 2 O 3 + Tb 2 O 3 + Er 2 O 3 + Y 2 O 3 + Yb 2 O 5 is 0 to 5%, 0.1 to 3%, particularly 0 It is preferably 1 to 1%.
  • the content of Fe 2 O 3 is preferably 0.1% or less, 0.05% or less, and particularly preferably 0.01% or less.
  • Sb 2 O 3 , SO 3 , NO 3, carbon and the like can be added in a total amount of 1% or less as a clarifying agent, an oxidizing agent, or a reducing agent.
  • the refractive index (nd) of the glass of the present invention is not particularly limited, but is preferably 1.5 to 1.7, particularly 1.5 to 1.6, for example. If the refractive index is too low, light tends to leak to the outside on the side surfaces 43a to 43d of the optical element 4. On the other hand, if the refractive index is too high, the light is reflected at the end face 41 of the optical element 4 and is difficult to enter the optical element 4.
  • the surface roughness of the surface 40 of the optical element 4 is preferably 200 nm or less, 100 nm or less, 50 nm or less, 20 nm or less, particularly 10 nm or less in terms of arithmetic surface roughness (Ra) defined by JIS B0601.
  • the optical element 4 preferably has an average linear thermal expansion coefficient at 30 to 300 ° C. of 120 ⁇ 10 ⁇ 7 / ° C. or less, 110 ⁇ 10 ⁇ 7 / ° C. or less, particularly 100 ⁇ 10 ⁇ 7 / ° C. or less. If the average linear thermal expansion coefficient is too high, it cannot cope with temperature changes during cooling after molding or when used outdoors, and may be damaged.
  • the lower limit is not particularly limited, but it is practically 30 ⁇ 10 ⁇ 7 / ° C. or higher, particularly 50 ⁇ 10 ⁇ 7 / ° C. or higher.
  • the optical element 4 preferably has a temperature corresponding to a viscosity of 10 2.0 Pa ⁇ s of 1300 ° C. or lower, particularly 1200 ° C. or lower. If the temperature corresponding to a viscosity of 10 2.0 Pa ⁇ s is too high, the meltability and moldability are lowered, and the refractory during melting or the mold during molding tends to deteriorate.
  • the optical element 4 preferably has a softening point of 750 ° C. or lower, 700 ° C. or lower, particularly 650 ° C. or lower. If the softening point is too high, the mold tends to deteriorate during molding.
  • the optical element 4 preferably has an internal transmittance of 90% or more, 92.5% or more, particularly 95% or more at a thickness of 10 mm and a wavelength of 400 nm. If the internal transmittance is too low, the power generation efficiency of the concentrating solar power generation device tends to be inferior.
  • the internal transmittance at a thickness of 10 mm and a wavelength of 300 nm is preferably 40% or less, 30% or less, 20% or less, 10% or less, particularly preferably 0%.
  • the internal transmittance at a thickness of 10 mm and a wavelength of 315 nm is preferably 60% or less, 40% or less, 20% or less, and particularly preferably 0%. If the internal transmittance at a wavelength of 300 nm or 315 nm is too high, the amount of ultraviolet rays that pass through the optical element increases, and as a result, the resin adhesive used around the optical element tends to deteriorate.
  • the optical element 4 is obtained by polishing by mechanical polishing or press molding.
  • the press molding include a direct press in which molten glass is directly poured into a mold to perform pressure molding, a reheat press in which a molded body obtained by vitrification once is reheated and softened and deformed.
  • press molding is more advantageous than mechanical polishing when the upper and lower surfaces are curved or an optical element having a complicated shape is obtained.
  • Good surface roughness can be easily obtained by performing, for example, flame polishing after press molding. Further, the chamfering process may be performed on the ridge line part and the corner part of the optical element 4.
  • optical element 4 was a truncated pyramid shape, it is not limited to this structure, If it has a shape which can condense to a solar cell, it will not specifically limit.
  • end surfaces 41 and 42 do not need to be planar, and may be convex or concave.
  • Tables 1 to 5 show examples of the present invention (Nos. 1 to 32 and 36 to 43) and comparative examples (Nos. 33 to 35), respectively.
  • glass raw materials were prepared so as to have each composition shown in the table, and melted at 1000 to 1400 ° C. for 4 hours using a platinum crucible. After melting, the glass melt was poured onto a carbon plate, and after annealing, a sample suitable for each measurement was produced.
  • Examples No. The samples 1 to 32 and 36 to 43 have a thermal expansion coefficient of 119 ⁇ 10 ⁇ 7 / ° C. or lower, a softening point of 730 ° C. or lower, a temperature corresponding to a viscosity of 10 2.0 Pa ⁇ s, 1295 ° C. or lower,
  • the internal transmittance was 90.3% or more at a thickness of 10 mm and a wavelength of 400 nm, and each characteristic was excellent. Moreover, all showed favorable devitrification resistance.
  • Sample 33 had a high softening point of 765 ° C. and was not suitable for reheat press molding. Further, the temperature corresponding to a viscosity of 10 2.0 Pa ⁇ s exceeded 1300 ° C., and was not suitable for direct press molding.
  • No. The 34 samples are inferior in weather resistance and can be considered difficult to use outdoors for long periods of time. Further, the internal transmittance at a thickness of 10 mm and a wavelength of 400 nm is as low as 86%, which is considered to be inferior to the power generation efficiency of the solar cell.
  • the thermal expansion coefficient was measured using a thermal expansion measuring device (dilat meter).
  • the softening point was measured by a fiber method based on ASTM 338-93.
  • the temperature corresponding to a viscosity of 10 2.0 Pa ⁇ s was measured by a platinum ball pulling method.
  • the internal transmittance was first measured using a spectrophotometer (UV-3100 manufactured by Shimadzu Corporation) for each optically polished sample having a thickness of 5 mm ⁇ 0.1 mm and 10 mm ⁇ 0.1 mm.
  • the transmittance including the surface reflection loss in the range was measured at intervals of 0.5 nm, and the internal transmittance at wavelengths of 400 nm, 315 nm, and 300 nm was calculated from the obtained measured values.
  • the wavelength at which the internal transmittance was 0% was read.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 集光型太陽光発電装置用光学素子に用いられるガラスであって、耐候性に優れ、かつ、複雑な形状に容易に加工することが可能なガラス、それを用いた集光型太陽光発電装置用光学素子、および、集光型太陽光発電装置を提供する。 集光型太陽光発電装置用光学素子に用いられるガラスであって、質量%で、SiO 30~80%、B 0~40%、Al 0~20%、LiO 0.1%以上およびZrO 0.1%以上を含有することを特徴とするガラス。

Description

集光型太陽光発電装置用光学素子に用いられるガラス、それを用いた集光型太陽光発電装置用光学素子および集光型太陽光発電装置
 本発明は、集光型太陽光発電装置用光学素子に用いられるガラス、それを用いた集光型太陽光発電装置用光学素子および集光型太陽光発電装置に関する。
 従来、集光型太陽光発電装置において、集光レンズと太陽電池セルとの間にガラス製の光学素子が設けられている。光学素子は、集光レンズによって集光された光を、内表面で全反射して太陽電池セルに伝える。光学素子に用いられる材質として、特許文献1にはホウ珪酸ガラス、特許文献2にはケイ酸塩ガラスが開示されている。光学素子は、一般に台形錐や円錐等の形状を有しており、インゴット状のガラス材料に対し研削、研磨加工を施すことにより作製される。
 ところで、集光型太陽光発電装置は主に屋外で使用されるため、それに用いられる光学素子には優れた耐候性が要求される。例えば、特許文献3には、光学素子の側面にフッ素樹脂製の薄膜を設ける方法が提案されており、それにより、光学素子の表面が水滴等により白濁して、そこから光の一部が漏れ出ることを防ぐことが可能となる。
特開2006-313809号公報 特開2010-199588号公報 特開2006-278581号公報
 集光型太陽光発電装置に用いられる従来のガラス製の光学素子は耐候性が不十分であり、長期間屋外で使用すると、表面変質等の不具合が発生しやすかった。したがって、光学素子に対して、さらなる耐候性の向上が求められている。
 なお、集光型太陽光発電装置において、さらなる発電効率の向上や小型化を図るため、光学素子の形状は、端部を曲面にしたり多角錐形状にするなど、複雑な形状が要求されることが今後予想される。しかしながら、切削や研磨加工ではこのような複雑な形状を達成することが困難であり、コスト面でも不利である。
 以上に鑑み、本発明は、集光型太陽光発電装置用光学素子に用いられるガラスであって、耐候性に優れ、かつ、複雑な形状に容易に加工することが可能なガラス、それを用いた集光型太陽光発電装置用光学素子、および、集光型太陽光発電装置を提供することを目的とする。
 本発明は、集光型太陽光発電装置用光学素子に用いられるガラスであって、質量%で、SiO 30~80%、B 0~40%、Al 0~20%、LiO 0.1%以上およびZrO 0.1%以上を含有することを特徴とするガラスに関する。
 上記組成を有するガラスからなる光学素子であれば、耐候性に優れ、長期間屋外で使用しても、表面変質等の不具合が生じにくい。また、低軟化点または低粘度を達成しやすいため、溶融や成形に適しており、金型の形状を適宜選択することにより、複雑な形状を有する光学素子を容易に作製することが可能となる。
 第二に、本発明のガラスは、さらに、質量%で、CaO 0~20%、SrO 0~20%、BaO 0~20%、MgO 0~20%、ZnO 0~20%、NaO 0~20%、KO 0~20%およびTiO 0~10%を含有することが好ましい。
 第三に、本発明のガラスは、さらに、質量%で、Bi+La+Gd+Ta+TiO+Nb+WOを0~20%含有することを特徴とすることが好ましい。
 第四に、本発明のガラスは、さらに、質量%で、CeO+Pr+Nd+Eu+Tb+Er+Y+Ybを0~5%含有することが好ましい。
 第五に、本発明のガラスは、Feの含有量が500ppm以下であることが好ましい。
 第六に、本発明のガラスは、鉛成分、ヒ素成分およびフッ素成分を実質的に含有しないことが好ましい。
 当該構成により、環境負荷の小さいガラスとすることができる。ここで、「鉛成分、ヒ素成分およびフッ素成分を実質的に含有しない」とは、これらの成分を意図的に添加しないという意味であり、不可避的不純物の混入まで排除するものではない。具体的には、これらの成分の含有量が各々0.1%未満であることを意味する。
 第七に、本発明のガラスは、30~300℃における平均線熱膨張係数が120×10-7/℃以下であることが好ましい。
 当該構成により、成形後の冷却時や、屋外で使用した際の温度変化による破損を抑制することができる。
 第八に、本発明のガラスは、102.0Pa・sの粘度に相当する温度が1300℃以下であることが好ましい。
 当該構成によれば、溶融性や成形性を向上できる。
 第九に、本発明のガラスは、軟化点が750℃以下であることが好ましい。
 当該構成によれば、成形時における金型の劣化を抑制することができる。
 第十に、本発明のガラスは、肉厚10mmかつ波長400nmにおける内部透過率が90%以上であることが好ましい。
 当該構成を満たすガラスからなる光学素子を用いることにより、集光型太陽光発電装置の発電効率を向上させることができる。
 第十一に、本発明のガラスは、肉厚10mmかつ波長300nmにおける内部透過率が40%以下であることが好ましい。
 第十二に、本発明は、前記いずれかのガラスからなる集光型太陽光発電装置用光学素子に関する。
 第十三に、本発明は、太陽電池と、太陽電池に集光する集光光学系とを備え、集光光学系が前記いずれかの光学素子を有することを特徴とする集光型太陽光発電装置に関する。
図1は、本発明の一実施形態に係る集光型太陽光発電装置の模式的概念図である。 図2は、本発明の一実施形態に係る光学素子の模式的斜視図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率等は、現実の物体の寸法の比率等とは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 (集光型太陽光発電装置)
 図1は、本実施形態に係る光学素子を備えた集光型太陽光発電装置の模式的概念図である。
 集光型太陽光発電装置1は、太陽電池5と、太陽電池5に太陽光を集光する集光光学系2とを備える。集光光学系2は、集光部材3と光学素子4とを有する。集光部材3は、太陽光等の光を集光する。集光部材3は、例えば凸レンズや正の光学的パワーを有するフレネルレンズ等により構成することができる。
 光学素子4は、集光部材3と太陽電池5との間に配されている。集光部材3により集光された光は、光学素子4の端面41(図2を参照)から光学素子4内に入射する。光学素子4は、集光部材3により集光された光を均質化し、太陽電池5の受光面50に導く。具体的には、光学素子4に入射した光は、光学素子4の側面43a~43dにおいて反射されることにより均質化されながら光学素子4内を伝搬する。そして、光学素子4内を伝搬した光は、光学素子4の端面42から均質化された面状光として受光面50に向けて出射される。
 光学素子4の端面42には、受光面50が端面42に対向するように太陽電池5が配されている。光学素子4の端面42から出射した光は太陽電池5に入射する。そして、太陽電池5において、光エネルギーが電気エネルギーに変換される。
 なお、太陽電池5の種類は特に限定されない。太陽電池5は、例えば、単結晶シリコン太陽電池、多結晶シリコン太陽電池、薄膜太陽電池、アモルファスシリコン太陽電池、色素増感型太陽電池、有機半導体太陽電池等により構成することができる。
 (光学素子)
 図2は、本実施形態に係る光学素子の模式的斜視図である。次に、図2を参照しながら、光学素子4の具体的構成について説明する。
 光学素子4は、集光部材3側から太陽電池5側に向かって先細る形状を有する。光学素子4の表面40は、光入出面を構成している2つの端面41,42と、光反射面を構成している側面43a~43dとを有する。端面41,42は、互いに対向している。側面43a~43dは、端面41,42を接続している。尚、光学素子4の形状は、円錐状や角錐状であっても構わない。また、端面41,42の形状は、平面もしくは曲面のどちらでもよい。また、光学素子4の角部や稜線部に対しR面取り加工が施されていてもよく、それにより、外部からの衝撃による破損を抑制することができる。
 光学素子4を構成するガラスは、質量%で、SiO 30~80%、B 0~40%、Al 0~30%、LiO 0.1%以上およびZrO 0.1~10%を含有する。以下に、各成分の含有量を上記のように特定した理由を詳述する。なお、特に断りがない場合、以下の「%」は「質量%」を意味する。
 SiOはガラス骨格を構成する成分であり、失透を抑制するとともに耐候性を向上させる効果がある。また、アッベ数を高める効果がある。SiOの含有量は30~80%、40~75%、45~70%、45~65%、特に45~60%であることが好ましい。SiOの含有量が多すぎると、軟化点が高くなったり、屈折率が低下する傾向がある。一方、SiOが少なすぎると、ガラスが不安定になって耐失透性が低下したり、分相するとともに耐酸性や耐水性等の耐候性が低下しやすくなる。また、熱膨張係数が大きくなって、耐熱衝撃性が低下するおそれがある。
 Bもガラス骨格を構成する成分であり、失透を抑制するとともに耐候性を向上させる効果がある。Bの含有量は0~40%、2.5~30%、特に5~20%であることが好ましい。Bの含有量が多すぎると、耐候性が低下したり、屈折率が低下する傾向がある。
 Alもガラス骨格を構成する成分であり、失透を抑制するとともに耐候性を向上させる効果がある。Alの含有量は0~30%、2.5~25%、特に5~20%であることが好ましい。Alの含有量が多すぎると、屈折率が低下するとともに耐候性が低下する傾向がある。
 LiOは融剤として作用し、軟化点を低下させる効果の大きい成分である。LiOの含有量は0.1%以上、1%以上、特に2%以上であることが好ましい。LiOの含有量が少なすぎると、上記効果が得られにくくなる。なお、LiOの含有量が多すぎると、耐酸性や耐水性等の耐候性が低下する傾向がある。また、熱膨張係数が大きくなって、耐熱衝撃性が低下するおそれがある。したがって、LiOの含有量は20%以下、特に15%以下であることが好ましい。
 ZrOは耐酸性や耐水性等の耐候性を飛躍的に向上させる効果がある成分である。ZrOの含有量は0.1%以上、特に1%以上であることが好ましい。ZrOの含有量が少なすぎると、前記効果が得られにくくなる。なお、上限は特に限定されないが、ZrOの含有量が多すぎると、粘度が高くなって失透しやすくなるため、15%以下、10%以下、特に5%以下であることが好ましい。
 光学素子4を構成するガラスは、上記成分に加えて、さらに、CaO 0~20%、SrO 0~20%、BaO 0~20%、MgO 0~20%、ZnO 0~20%、NaO 0~20%、KO 0~20%、TiO 0~10%を含有することができる。
 CaO、SrO、BaO、MgOおよびZnOは融剤として作用して軟化点を低下させるとともに、液相温度を低下させる効果がある。その含有量は各々0~20%、特に0.1~10%であることが好ましい。これらの成分の含有量が多すぎると、耐酸性や耐水性等の耐候性が低下しやすくなる。
 なお、軟化点を低下させる効果を十分に得るとともに、良好な耐候性を確保するためには、CaO、SrO、BaO、MgOおよびZnOの合量を適宜調整することが好ましい。具体的には、CaO+SrO+BaO+MgO+ZnOは0.1~50%、1~40%、特に3~35%であることが好ましい。これらの成分の合量が少なすぎると、軟化点を低下させる効果が得られにくくなり、一方、多すぎると、耐候性が低下しやすくなる。
 NaOおよびKOは融剤として作用して軟化点を低下させるとともに、液相温度を低下させる効果がある。その含有量は各々0~20%、特に0.1~10%であることが好ましい。これらの成分の含有量が多すぎると、耐酸性や耐水性等の耐候性が低下しやすくなる。また、熱膨張係数が大きくなって耐熱衝撃性が低下するおそれがある。
 なお、軟化点を十分に低下させる効果を得るとともに、良好な耐候性および耐熱衝撃性を確保するためには、アルカリ金属酸化物成分であるLiO、NaOおよびKOの合量を適宜調整することが好ましい。具体的には、LiO+NaO+KOは0.1~30%、1~25%、特に3~20%であることが好ましい。これらの成分の合量が少なすぎると、軟化点を低下させる効果が得られにくくなり、一方、多すぎると、耐候性が低下しやすくなったり、熱膨張係数が大きくなって耐熱衝撃性が低下しやすくなる。
 TiOは融剤として作用して軟化点を低下させるとともに、紫外線による着色を抑制する効果や、耐酸性や耐水性等の耐候性を向上させる効果がある。TiOの含有量は0~10%、特に0.1~5%であることが好ましい。TiOの含有量が多すぎると、透過率曲線において、紫外領域の透過率が長波長側にシフトして着色が起こりやすくなったり、屈折率が高くなる傾向がある。
 なお、Bi、La、Gd、Ta、TiO、NbおよびWOの合量を適宜調整することにより、紫外線による着色を効果的に抑制することができる。具体的には、Bi+La+Gd+Ta+TiO+Nb+WOは0~20%、0~10%、0.1~8%、特に1~5%であることが好ましい。これらの成分の合量が多すぎると、可視域の透過率が低下するおそれがある。
 また、低粘度かつ耐侯性に優れたガラスとするには、以下のように各成分の合量や比率を調整することが好ましい。
 SiO+Al+ZrOは35~80%、特に37~75%であることが好ましい。これらの成分の合量が多すぎると、粘度が高くなりやすく、一方、少なすぎると、耐侯性に劣る傾向がある。
 (SiO+Al)/ZrOは、質量比で、700以下、特に650以下であることが好ましい。当該比率が大きすぎると、耐侯性に劣る傾向がある。
 BaO+ZnOが1.5~40%、特に2~30%であることが好ましい。これらの成分の合量が少なすぎると、粘度が高くなる傾向があり、一方、多すぎると、耐侯性に劣る傾向がある。
 (SiO+Al)/LiOは、質量比で、700以下、特に600以下であることが好ましい。当該比率が大きすぎると、粘度が高くなる傾向がある。
 (NaO+KO)/LiOは、質量比で、0.1~100、特に0.2~50であることが好ましい。当該比率が小さすぎると、熱膨張係数が大きくなって耐熱衝撃性が低下するおそれがある。また、粘度が高くなる傾向がある。一方、当該比率が大きすぎると、耐侯性に劣る傾向がある。
 光学素子4を構成するガラスは、上記成分に加えて、さらに、質量%の合量で、CeO+Nd+Pr+Eu+Tb+Er+Y+Ybを0~5%を含有することができる。
 CeO、Pr、Nd、Eu、Tb、Er、Y
およびYbは、可視~紫外域付近の光を照射することにより強い発光が生じる成分であり、これらの成分を添加することにより、太陽電池セルへの光照射量が増大して発電効率が向上することが期待できる。具体的には、CeO+Pr+Nd+Eu+Tb+Er+Y+Ybは0~5%、0.1~3%、特に0.1~1%であることが好ましい。
 鉛成分(例えばPbO)、ヒ素成分(As)およびフッ素成分(例えばF)は、環境上の理由から、実質的なガラスへの導入は避けるべきである。よって、光学素子4を構成するガラスはこれらの成分を実質的に含有しないことが好ましい。
 また、着色成分であるFeを多く含有すると、透過率が低下して発電効率低下の原因になる。よって、Feの含有量は0.1%以下、0.05%以下、特に0.01%以下であることが好ましい。
 上記成分以外に、清澄剤、酸化剤または還元剤としてSb、SO、NOおよびカーボン等を合量で1%以下添加することができる。
 本発明のガラスの屈折率(nd)は特に限定されないが、例えば1.5~1.7、特に1.5~1.6であることが好ましい。屈折率が低すぎると、光学素子4の側面43a~43dにおいて、光が外部に漏れやすくなる。一方、屈折率が高すぎると、光学素子4の端面41において光が反射して光学素子4の内部に入射しにくくなる。
 光学素子4の表面40の表面粗さは、JIS B0601で規定される算術表面粗さ(Ra)で200nm以下、100nm以下、50nm以下、20nm以下、特に10nm以下であることが好ましい。
 光学素子4は、30~300℃における平均線熱膨張係数が120×10-7/℃以下、110×10-7/℃以下、特に100×10-7/℃以下であることが好ましい。平均線熱膨張係数が高すぎると、成形後の冷却時や、屋外で使用した際の温度変化に対応できず、破損するおそれがある。なお、下限については特に限定されないが、現実的には30×10-7/℃以上、特に50×10-7/℃以上である。
 光学素子4は、102.0Pa・sの粘度に相当する温度が1300℃以下、特に1200℃以下であることが好ましい。102.0Pa・sの粘度に相当する温度が高すぎると、溶融性及び成形性が低下し、溶融時における耐火物あるいは成形時における金型が劣化しやすくなる。
 光学素子4は、軟化点が750℃以下、700℃以下、特に650℃以下であることが好ましい。軟化点が高すぎると、成形時に金型が劣化しやすくなる。
 光学素子4は、肉厚10mmかつ波長400nmにおける内部透過率が90%以上、92.5%以上、特に95%以上であることが好ましい。内部透過率が低すぎると、集光型太陽光発電装置の発電効率に劣る傾向がある。
 また、肉厚10mmかつ波長300nmにおける内部透過率が40%以下、30%以下、20%以下、10%以下、特に0%であることが好ましい。さらに、肉厚10mmかつ波長315nmにおける内部透過率が60%以下、40%以下、20%以下、特に0%であることが好ましい。波長300nmまたは315nmにおける内部透過率が高すぎると、光学素子を透過する紫外線量が多くなり、その結果、光学素子周辺に使用される樹脂製接着剤が劣化しやすくなる。
 以下、光学素子4の製造方法の一例について説明する。
 (光学素子の製造方法)
 光学素子4は、機械研磨による研磨加工またはプレス成形により得られる。プレス成形は、溶融ガラスを直接金型に流し込み、加圧成形を行うダイレクトプレスや、一旦ガラス化して得られた成形体を再加熱し、軟化変形させるリヒートプレス等が挙げられる。特に上下面が曲面形状であったり、複雑な形状の光学素子を得る場合は、機械研磨よりプレス成型が有利である。
 プレス成型により光学素子4を作製する場合、低軟化点あるいは低粘度のガラスを用いることで、金型の劣化を抑制することができる。
 プレス成型後、例えば火炎研磨を行なうことにより、容易に良好な表面粗さを得ることができる。また、光学素子4の稜線部や角部に対し、R面取り加工を施してもよい。
 なお、本実施形態では、光学素子4が角錐台形状である場合について説明したが、この構成に限定されず、太陽電池への集光が可能な形状を有するものであれば特に限定されない。また端面41,42は平面状でなくてもよく、凸状や凹状であってもよい。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではない。本発明の要旨を変更しない範囲において適宜変更して実施することが可能である。
 表1~5は本発明の実施例(No.1~32および36~43)および比較例(No.33~35)をそれぞれ示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 各試料は次のようにして調製した。
 まず、表に示す各組成になるようにガラス原料を調合し、白金ルツボを用いて1000~1400℃で4時間溶融した。溶融後、ガラス融液をカーボン板上に流し出し、さらにアニール後、各測定に適した試料を作製した。
 得られた試料について、熱膨張係数、軟化点、102.0Pa・sの粘度に相当する温度、内部透過率を測定した。また、耐侯性について評価した。結果を表1~5に示す。
 表から明らかなように、実施例であるNo.1~32および36~43の試料は、熱膨張係数が119×10-7/℃以下、軟化点が730℃以下、102.0Pa・sの粘度に相当する温度が1295℃以下、肉厚10mmかつ波長400nmにおける内部透過率90.3%以上と、各特性に優れていた。また、いずれも良好な耐失透性を示していた。
 一方、比較例であるNo.33の試料は軟化点が765℃と高く、リヒートプレス成形に適していなかった。また、102.0Pa・sの粘度に相当する温度が1300℃を超えており、ダイレクトプレス成形に適していなかった。No.34の試料は耐候性に劣っており、長期間屋外で使用するのが困難であると考えられえる。また、肉厚10mmかつ波長400nmにおける内部透過率が86%と低く、太陽電池の発電効率に劣ると考えられる。No.35の試料は熱膨張係数が129×10-7/℃と高いため、プレス成形時や屋外での使用において、破損が生じやすいと考えられる。また、耐候性にも劣っていた。
 なお、各特性は以下の方法により測定および評価した。
 熱膨張係数は熱膨張測定装置(dilato meter)を用いて測定した。
 軟化点はASTM 338-93に基づくファイバー法により測定した。
 102.0Pa・sの粘度に相当する温度は白金球引き上げ法により測定した。
 内部透過率は、まず分光光度計(株式会社島津製作所製UV-3100)を用いて、厚さ5mm±0.1mmおよび10mm±0.1mmの光学研磨された各試料について、波長200~800nmの範囲における表面反射損失を含む透過率を0.5nm間隔で測定し、得られた測定値から波長400nm、315nmおよび300nmにおける内部透過率を算出した。また、内部透過率が0%となる波長を読み取った。
 耐候性は、試料を温度85℃および相対湿度85%の恒温恒湿槽に2000時間放置した後、試料表面を顕微鏡で観察し、表面に白濁や析出物が確認されなかったものを「○」、白濁や表面析出物が確認されたものを「×」として評価した。
 1…集光型太陽光発電装置
 2…集光光学系
 3…集光部材
 4…光学素子
 40…表面
 41、42…端面
 43a、43b、43c、43d…側面
 5…太陽電池
 50…受光面

Claims (13)

  1.  集光型太陽光発電装置用光学素子に用いられるガラスであって、質量%で、SiO 30~80%、B 0~40%、Al 0~20%、LiO 0.1%以上およびZrO 0.1%以上を含有することを特徴とするガラス。
  2.  さらに、質量%で、CaO 0~20%、SrO 0~20%、BaO 0~20%、MgO 0~20%、ZnO 0~20%、NaO 0~20%、KO 0~20%およびTiO 0~10%を含有することを特徴とする請求項1に記載のガラス。
  3.  さらに、質量%で、Bi+La+Gd+Ta+TiO+Nb+WOを0~20%含有することを特徴とする請求項1または2に記載のガラス。
  4.  さらに、質量%で、CeO+Pr+Nd+Eu+Tb+Er+Y+Ybを0~5%含有することを特徴とする請求項1~3のいずれかに記載のガラス。
  5.  Feの含有量が0.1%以下であることを特徴とする請求項1~4のいずれかに記載のガラス。
  6.  鉛成分、ヒ素成分およびフッ素成分を実質的に含有しないことを特徴とする請求項1~5のいずれかに記載のガラス。
  7.  30~300℃における平均線熱膨張係数が120×10-7/℃以下であることを特徴とする請求項1~6のいずれかに記載のガラス。
  8.  102.0Pa・sの粘度に相当する温度が1300℃以下であることを特徴とする請求項1~7のいずれかに記載のガラス。
  9.  軟化点が750℃以下であることを特徴とする請求項1~8のいずれかに記載のガラス。
  10.  肉厚10mmかつ波長400nmにおける内部透過率が90%以上であることを特徴とする請求項1~9のいずれかに記載のガラス。
  11.  肉厚10mmかつ波長300nmにおける内部透過率が40%以下であることを特徴とする請求項1~10のいずれかに記載のガラス。
  12.  請求項1~11のいずれかに記載のガラスからなる集光型太陽光発電装置用光学素子。
  13.  太陽電池と、太陽電池に集光する集光光学系とを備え、集光光学系が請求項12に記載の光学素子を有することを特徴とする集光型太陽光発電装置。
PCT/JP2012/065840 2011-07-26 2012-06-21 集光型太陽光発電装置用光学素子に用いられるガラス、それを用いた集光型太陽光発電装置用光学素子および集光型太陽光発電装置 WO2013015051A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/131,209 US20140144505A1 (en) 2011-07-26 2012-06-21 Glass used in optical element for concentrating photovoltaic power generation apparatus, optical element for concentrating photovoltaic power generation apparatus using glass, and concentrating photovoltaic power generation apparatus
CN2012800107417A CN103415478A (zh) 2011-07-26 2012-06-21 聚光型太阳光发电装置用光学元件中使用的玻璃、使用其的聚光型太阳光发电装置用光学元件和聚光型太阳光发电装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011162951 2011-07-26
JP2011-162951 2011-07-26
JP2011196671A JP5910851B2 (ja) 2011-07-26 2011-09-09 集光型太陽光発電装置用光学素子に用いられるガラス、それを用いた集光型太陽光発電装置用光学素子および集光型太陽光発電装置
JP2011-196671 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013015051A1 true WO2013015051A1 (ja) 2013-01-31

Family

ID=47600910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065840 WO2013015051A1 (ja) 2011-07-26 2012-06-21 集光型太陽光発電装置用光学素子に用いられるガラス、それを用いた集光型太陽光発電装置用光学素子および集光型太陽光発電装置

Country Status (5)

Country Link
US (1) US20140144505A1 (ja)
JP (1) JP5910851B2 (ja)
CN (1) CN103415478A (ja)
TW (1) TW201319000A (ja)
WO (1) WO2013015051A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013011918A1 (de) 2013-07-17 2015-01-22 Schott Ag Optisches Glas
CN105948487A (zh) * 2016-05-03 2016-09-21 东旭科技集团有限公司 玻璃、化学强化玻璃及其制备方法和显示装置用盖板玻璃和显示装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013102848B3 (de) * 2013-03-20 2014-02-06 Schott Ag Hochbrechende Dünngläser, Verfahren zu deren Herstellung, Schichtverbund und Verwendung
JP6365828B2 (ja) * 2014-07-02 2018-08-01 日本電気硝子株式会社 波長変換材料に用いられるガラス、波長変換材料、波長変換部材及び発光デバイス
JP6694229B2 (ja) * 2014-10-08 2020-05-13 株式会社オハラ ガラス
US10676389B2 (en) * 2015-09-29 2020-06-09 Corning Incorporated Glass article with high coefficient of thermal expansion
CN105731814B (zh) * 2016-02-29 2019-01-01 巨石集团有限公司 一种高模量玻璃纤维组合物及其玻璃纤维和复合材料
JP2019020723A (ja) 2017-07-12 2019-02-07 Hoya Candeo Optronics株式会社 導光板、画像表示装置
KR102642282B1 (ko) * 2017-07-12 2024-02-28 호야 가부시키가이샤 도광판 및 화상 표시 장치
JP7129782B2 (ja) * 2018-01-26 2022-09-02 株式会社松風 耐水性に優れた低融点ガラス組成物
JP7445186B2 (ja) * 2018-12-07 2024-03-07 日本電気硝子株式会社 ガラス
EP3733617B1 (de) 2019-05-03 2022-05-18 VITA-ZAHNFABRIK H. Rauter GmbH & Co. KG Niedrigschmelzende glaskeramik
CN112979168B (zh) * 2021-04-27 2021-07-13 山东墨匠新材料科技有限公司 一种高弹性模量玻璃纤维组合物及其制备方法
CN113562979B (zh) * 2021-07-09 2022-11-04 山东玻纤集团股份有限公司 一种低膨胀系数玻璃纤维组合物及其制备方法
CN113582539B (zh) * 2021-08-30 2023-06-16 郑州大学 一种铝硅酸盐玻璃和应用
CN118221350A (zh) * 2024-04-07 2024-06-21 中建材光子科技有限公司 强杂光吸收防光晕光电玻璃及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867529A (ja) * 1994-08-30 1996-03-12 Jenaer Glaswerk Gmbh ホウ酸低含有ホウケイ酸ガラス及びその応用
JP2011505323A (ja) * 2007-11-29 2011-02-24 コーニング インコーポレイテッド 改良された強靭性および引っかき抵抗性を有するガラス
JP2011079696A (ja) * 2009-10-06 2011-04-21 Central Glass Co Ltd フレネルレンズ用ガラス

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255238B1 (en) * 1997-05-07 2001-07-03 Corning S.A. IR and UV absorbing brown solar glasses, ophthalmic lenses
CN100509674C (zh) * 2002-07-29 2009-07-08 伊万奈特纤维公司 玻璃组合物
DE102004027119A1 (de) * 2003-06-06 2004-12-30 Schott Ag UV-Strahlung absorbierendes Glas mit geringer Absorption im sichtbaren Bereich, ein Verfahren zu seiner Herstellung sowie dessen Verwendung
ES2306312T3 (es) * 2006-03-20 2008-11-01 Schott Ag Vidrio a base de silicato de litio y aluminio ceramizable, que contiene arsenico y antimonio, obtenido por flotacion y detectable optimamente.
JP5467490B2 (ja) * 2007-08-03 2014-04-09 日本電気硝子株式会社 強化ガラス基板の製造方法及び強化ガラス基板
JP5081866B2 (ja) * 2008-05-30 2012-11-28 石塚硝子株式会社 集光式太陽光発電用2次光学系ガラス部材ホモジナイザーの製造方法
JP5825703B2 (ja) * 2009-02-03 2015-12-02 日本電気硝子株式会社 化学強化ガラス
IL204034A (en) * 2009-02-24 2015-05-31 Schott Ag Photovoltaic device with central optics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867529A (ja) * 1994-08-30 1996-03-12 Jenaer Glaswerk Gmbh ホウ酸低含有ホウケイ酸ガラス及びその応用
JP2011505323A (ja) * 2007-11-29 2011-02-24 コーニング インコーポレイテッド 改良された強靭性および引っかき抵抗性を有するガラス
JP2011079696A (ja) * 2009-10-06 2011-04-21 Central Glass Co Ltd フレネルレンズ用ガラス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013011918A1 (de) 2013-07-17 2015-01-22 Schott Ag Optisches Glas
DE102013011918B4 (de) * 2013-07-17 2017-01-12 Schott Ag Optisches Glas und dessen Verwendung
CN105948487A (zh) * 2016-05-03 2016-09-21 东旭科技集团有限公司 玻璃、化学强化玻璃及其制备方法和显示装置用盖板玻璃和显示装置

Also Published As

Publication number Publication date
CN103415478A (zh) 2013-11-27
US20140144505A1 (en) 2014-05-29
JP2013047167A (ja) 2013-03-07
JP5910851B2 (ja) 2016-04-27
TW201319000A (zh) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5910851B2 (ja) 集光型太陽光発電装置用光学素子に用いられるガラス、それを用いた集光型太陽光発電装置用光学素子および集光型太陽光発電装置
JP5808069B2 (ja) 太陽電池用ガラス基板
US20030087746A1 (en) Alkali-containing aluminum borosilicate glass and utilization thereof
CN101814864B (zh) 带有聚光器的光伏器件
KR20140064860A (ko) 융합 형성가능한 알칼리가 없는 중간 열팽창계수 유리
CN102574724A (zh) 可熔合成形的无钠玻璃
JP5733811B2 (ja) 太陽電池用ガラス基板の製造方法
CN102171154A (zh) 中等热膨胀系数的玻璃
CN102574726A (zh) 可熔合成形的含钠玻璃
JP2008280189A (ja) 太陽電池用ガラス基板およびその製造方法
JP2014528889A5 (ja)
JPWO2011152414A1 (ja) ガラス基板およびその製造方法
CN104024170A (zh) 玻璃
JP2011522770A (ja) ソーラーユニット用ガラスプレートおよびガラス組成物
JPWO2012108345A1 (ja) ガラス組成物およびガラス組成物を用いた太陽電池用ガラス基板、並びにディスプレイパネル用ガラス基板
JP2008282863A (ja) 太陽電池用ガラス基板およびその製造方法
WO2013061905A1 (ja) 集光型太陽光発電装置用光学素子、その製造方法および集光型太陽光発電装置
JP2014108908A (ja) 集光型太陽光発電装置用フレネルレンズに用いられるガラス
WO2008096876A1 (ja) 太陽電池モジュール、結晶シリコン系太陽電池用カバーガラスおよび薄膜系太陽電池用ガラス基板
JP2013103846A (ja) 集光型太陽光発電装置用光学素子に用いられるガラス、それを用いた集光型太陽光発電装置用光学素子および集光型太陽光発電装置
JP2010116277A (ja) ガラス
JP5838608B2 (ja) 集光型太陽光発電装置の製造方法
JP5866873B2 (ja) 集光型太陽光発電装置
US20240300848A1 (en) Glass substrate for space-based solar power generation
JP7537437B2 (ja) 光学素子、ガラス及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817580

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14131209

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817580

Country of ref document: EP

Kind code of ref document: A1