WO2013014965A1 - 作業部動作制御装置および作業部動作制御方法および作業部動作制御プログラム - Google Patents
作業部動作制御装置および作業部動作制御方法および作業部動作制御プログラム Download PDFInfo
- Publication number
- WO2013014965A1 WO2013014965A1 PCT/JP2012/056266 JP2012056266W WO2013014965A1 WO 2013014965 A1 WO2013014965 A1 WO 2013014965A1 JP 2012056266 W JP2012056266 W JP 2012056266W WO 2013014965 A1 WO2013014965 A1 WO 2013014965A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- work
- obstacle
- working unit
- dimensional position
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1674—Programme controls characterised by safety, monitoring, diagnostic
- B25J9/1676—Avoiding collision or forbidden zones
Definitions
- the present invention relates to a work unit operation control device, a work unit operation control method, and a work unit operation control program, and more particularly to operation control of an arm unit provided in a robot.
- a conventional robot that grips a work object using an arm unit for example, as a device that works on the work object
- the three-dimensional position of the work object is recognized and the recognized three-dimensional position is recognized.
- the operation of gripping by the arm portion at the three-dimensional position of the work object is performed.
- the robots disclosed in Patent Document 1 and Patent Document 2 Prior to moving the arm unit, the robots disclosed in Patent Document 1 and Patent Document 2 perform image recognition of a work object using a camera, and the distance from the camera to the work object and the three-dimensional work object. Recognize posture. And based on those information, the arm part is moved to the three-dimensional position of the work object, and the picking operation is performed.
- the work object is moved to the three-dimensional position, and the work object is picked. Until it is equal, the operation of the arm unit is controlled based on the information (that is, information on the three-dimensional position of the work object).
- An object of the present invention is to provide a working unit operation control device, a method thereof, and a program.
- the working unit operation control device includes a working unit that works on a work target, and a control unit that controls the operation of the working unit.
- the control unit controls the operation of the working unit so as to avoid contact between the working unit and the obstacle.
- the invention according to claim 2 is the working unit operation control device according to claim 1, wherein when the obstacle is detected during the movement of the working unit, the control unit stops the movement of the working unit. It is characterized by making it.
- the invention according to claim 3 is the working unit operation control device according to claim 1 or 2, wherein when the obstacle is detected during movement of the working unit, the control unit moves the working unit to the working unit. It is characterized by moving in a direction orthogonal to the course.
- Invention of Claim 4 is a work part operation control apparatus of Claim 3, Comprising: The said control part moved to the direction orthogonal to the said path
- the invention according to claim 5 is the working unit operation control device according to any one of claims 1 to 4, wherein when the obstacle is detected during the movement of the working unit, the control unit The approach angle of the part with respect to the work object is changed.
- a sixth aspect of the present invention is the working unit motion control device according to any one of the first to fifth aspects, wherein the detection unit detects a three-dimensional position of the obstacle, and the control unit detects the obstacle. Based on the three-dimensional position of the object, the operation of the working unit is controlled so as to avoid contact between the working unit and the obstacle.
- a seventh aspect of the invention is the working unit operation control device according to any one of the first to sixth aspects, wherein the detection unit is attached to the working unit.
- the invention of claim 8 is the working unit motion control device according to any one of claims 1 to 7, further comprising a measuring unit that measures at least a three-dimensional position of the work object, wherein the control unit comprises: A course passing through the three-dimensional position of the working unit and the three-dimensional position of the work object measured by the measuring unit is determined, and the working unit is moved in the course.
- the invention of claim 9 is the working unit operation control device according to claim 8, wherein the measuring unit is attached to the working unit.
- Invention of Claim 10 is a work part operation
- the said measurement part is further the said work object, when the said work part arrives at the three-dimensional position vicinity of the said work object The three-dimensional position and orientation are measured, and the control unit causes the working unit to work on the work target based on the three-dimensional position and posture of the work target.
- the invention according to claim 11 is a work unit motion control method, wherein the work unit motion control device controls the operation of the work unit working on a work object. Determining a path that passes through a position and a three-dimensional position of the work object; (b) moving the working unit in the path; and (c) detecting an obstacle in the path. And (d) controlling the operation of the working unit so as to avoid contact between the working unit and the obstacle when the obstacle is detected in the step (c). And
- a twelfth aspect of the invention is a work unit operation control program that is installed in a computer and executed to control the work unit by the computer. It is made to function as a working part operation control device of a statement.
- the working unit for working on the work object and the control unit for controlling the operation of the working unit are provided, and the control unit moves the working unit in the course, After the work unit starts moving by further controlling the operation of the work unit so that the control unit avoids contact between the work unit and the obstacle. Even when an obstacle is detected, the contact between the working unit and the obstacle can be avoided and the work object can be approached.
- the contact between the working unit and the obstacle is prevented by stopping the movement of the working unit, bypassing the obstacle, or changing the approach angle to the work target. It can be avoided.
- FIG. 1 conceptually shows the configuration of the working unit operation control apparatus according to the present embodiment.
- the work unit motion control device is configured to work through a work unit 1 (for example, a robot arm unit) that performs a work such as picking on the work target 100, and a path that passes through the work unit 1 and the work target 100.
- a detection unit 3 for detecting an obstacle and a control unit 2 for controlling the operation of the working unit 1 are provided inside, a detection unit 3 for detecting an obstacle and a control unit 2 for controlling the operation of the working unit 1 are provided.
- the measurement part 4 which can measure the at least three-dimensional position of the work target object 100, desirably a three-dimensional position and attitude
- the measurement part 4 may be provided in the work part operation control apparatus.
- the control unit 2 may be provided with the result of measuring the three-dimensional position and posture of the work target 100 provided outside the work unit motion control device.
- the detection unit 3 and the measurement unit 4 can be an imaging device.
- an imaging device for example, a stereo camera or the like
- the three-dimensional position and orientation of the work object 100 can be obtained by stereo image recognition.
- the three-dimensional position and posture of the work object 100 can be obtained using a three-dimensional model that is a point group in which the three-dimensional position is set in advance. It is not limited to that based on image recognition, and may be one using a sensor or the like.
- the position where the detection unit 3 and the measurement unit 4 are provided is not particularly limited, but at least one of them may be attached to the working unit 1.
- the work unit 1 is an arm unit of a robot
- the work target 100 can be captured from a viewpoint closer to the work target 100 by being attached to the tip portion (see FIG. 2) of the arm unit. It is possible to recognize the three-dimensional position and posture with higher accuracy. It is also preferable when determining the route to the work object 100, and it is easy to determine whether or not an obstacle has occurred in the route.
- FIG. 2 shows an example of the hardware structure of the working unit operation control apparatus according to the present embodiment.
- the working unit motion control device includes a working unit 1 (corresponding to the arm unit 1R and the arm unit 1L of the robot) that performs operations such as picking on the work target 100 (parts, etc.)
- a detection unit 3 corresponding to the camera 102 provided in the arm unit
- a control unit 2 corresponding to the CPU 103 that controls the operation of the working unit 1
- the work object 100 is shown as a set of a plurality of parts in FIG. 2, it may be a case where a single part is shown.
- the center coordinates of the plurality of parts can be calculated, and the path to the three-dimensional position can be determined.
- a dual-arm robot is shown as the working unit motion control device, but a single-arm robot may be used.
- the path 200 passing through the arm portion 1R and the work object 100 is shown as a vertical direction, it may be a path formed in the horizontal direction.
- the camera 102 provided in the arm 1R can also serve as the measuring unit 4 capable of measuring the three-dimensional position and posture of the work object 100.
- FIG. 3 and FIG. 3 (a) to 3 (c) show the state of the arm 1R that gradually approaches the work object 100. From the state of FIG. 3 (a), FIG. 3 (b) and FIG. Transition to the state of (c).
- stereo image recognition of the work object 100 is performed using the camera 102 as the measurement unit 4. Thereby, at least a three-dimensional position of the work object 100 is measured (see, for example, FIG. 3A).
- the measurement is in a state where the camera 102 is stationary, a more accurate measurement can be realized, but if a three-dimensional position with a predetermined accuracy can be measured by appropriately performing correction or the like, Even when the camera 102, that is, in this case, the arm unit 1R is moving, the three-dimensional position of the work object 100 can be measured.
- the three-dimensional position and posture recognition for precise work such as picking is performed up to the vicinity of the three-dimensional position of the work object 100. Since it is desirable to perform the measurement after moving the arm portion 1R because it is possible to perform measurement with higher accuracy, it is not always necessary to perform such measurement with high accuracy at this stage.
- the path 200 passing through the three-dimensional position of the arm unit 1R and the three-dimensional position of the work object 100 at the current stage is determined (step S1 in FIG. 4).
- the three-dimensional positions of the arm unit 1R and the work object 100 can be set to, for example, the respective center coordinates or the center of gravity.
- the course 200 to be determined is preferably a straight line connecting the arm portion 1R and the work object 100, but is not necessarily a straight line, and may be a curve or the like that changes the traveling direction on the way.
- control unit 2 moves the arm unit 1R along the path 200 that reaches the three-dimensional position (and posture) of the work object 100 as shown in FIGS. 3A to 3B. (Step S2 in FIG. 4).
- step S3 in FIG. 4 If the obstacle 101 can be detected as shown in FIG. 3B, the process proceeds to step S4. If the obstacle 101 cannot be detected, the process proceeds to step S5.
- the present invention is not necessarily limited to the time when the arm portion 1R is actually moving.
- the obstacle 101 is an object that can come into contact with the arm unit 1R when moving in the path 200 (for example, an object whose distance from the moving arm unit 1R is within a predetermined range at a certain time).
- the obstacle 101 is an object that can come into contact with the arm unit 1R when moving in the path 200 (for example, an object whose distance from the moving arm unit 1R is within a predetermined range at a certain time).
- items that occurred in the course 200 while the arm portion 1R is moving but also those that existed in the route 200 before the arm portion 1R started to move relative to the work object 100 are included.
- Shall be Specifically, an invading animal, a hand of a person who has worked, a member that has fallen, or the like can be assumed.
- the detection of the obstacle 101 it is desirable to measure the three-dimensional position as described above using the camera 102.
- it is determined only by image recognition, or the path taken before a predetermined time It may be determined that the obstacle 101 has occurred when the difference from the image above becomes a certain level or more.
- the detection operation may always be performed, but may be performed every time the arm portion 1R moves a certain distance, or may be performed every time a certain time elapses.
- a plurality of obstacles 101 can be detected in the course 200, all of them may be detected, or for example, the obstacle 101 located at the closest distance from the arm portion 1R may be detected.
- step S4 the CPU 103 as the control unit 2 performs operation control for avoiding contact with the obstacle 101 on the arm unit 1R.
- the movement of the arm unit 1R is stopped, and the apparatus is kept on the spot for a predetermined time. And after predetermined time passes, it returns to step S3 again and the obstruction 101 is detected.
- the gripping portion located at the tip of the arm portion 1R is operated to change the approach angle of the gripping portion with respect to the work object 100, resulting in the obstacle 101.
- the CPU 103 may avoid the contact by performing such operation control.
- the angle can be changed to the angle with the least change from the approach angle of the gripper at the present time.
- the approach angle is defined by three-dimensional polar coordinates, for example, the approach angle can be changed to a different approach angle while the zenith angle remains the same.
- a warning such as an operator call is issued to end the operation and prompt the user to remove the obstacle 101. Is possible.
- the moving direction of the arm portion 1R is changed to the direction 201 orthogonal to the course 200, and after moving a predetermined distance, the process returns to step S1 again. Then, a course (corrected course 202) passing through the three-dimensional position of the moved arm portion 1R and the three-dimensional position of the work object 100 is determined.
- step S2 When the course (corrected path 202) is determined, the movement in the path (corrected path 202) is started (step S2), while the obstacle 101 is detected (step S3). If the obstacle 101 is still detected on the corrected route 202, the same operation (step S4) may be repeated to start moving on the new corrected route.
- a warning such as an operator call may be issued to end the operation and prompt the user to remove the obstacle 101. It is.
- the obstacle 101 is bypassed by moving only in the direction 201 orthogonal to the path 200, and the arm portion 1R and the obstacle 101 are avoided from contacting each other. As long as the component of the direction 201 orthogonal to the course 200 is included, what is necessary is just to change the advancing direction appropriately.
- the direction 201 orthogonal to the path 200 exists innumerably radially on the plane orthogonal to the path 200, but is not limited to one of these.
- movement directions such as a vertical upward direction and a direction toward the outside of the work area from the viewpoint of safety.
- a direction close to these directions can be selected on the basis of, for example, a vertically upward direction or a work area outer side direction.
- step S5 the arm portion 1R is made to reach the vicinity of the work object 100 (see FIG. 3C). Then, in order to perform an operation such as picking, the camera 102 as the measurement unit 4 is again used to measure the three-dimensional position and orientation of the work object 100.
- step S1 when the three-dimensional position and orientation of the work object 100 are measured with sufficient accuracy, it is possible to omit performing the measurement again.
- the measurement of the three-dimensional position and posture of the work object 100 is desirably performed using the camera 102 provided in the arm unit 1R, and it is desirable to perform the measurement while the arm unit 1R is stationary in order to further improve the measurement accuracy. .
- the measurement satisfying the predetermined accuracy can be performed by correction or the like, it does not have to be stationary.
- the three-dimensional position and orientation of the work object 100 may be measured with a camera different from the camera used when determining the course 200 to the work object 100 (in step S1). That is, the detection unit 3 and the measurement unit 4 can be realized by different means.
- step S6 picking information is generated so that the arm unit 1R can perform operations such as picking on the work target 100, and the CPU 103 controls the operation of the arm unit 1R based on the picking information.
- the picking information includes information on the three-dimensional position and posture of the work object 100, information on the approach angle of the arm unit 1R, and the like.
- FIG. 6 shows a transition from the state (a) to (b).
- the work object 100 when the movement amount of the work object 100 is relatively small, the work object is reached after reaching the vicinity of the three-dimensional position of the work object 100 (the three-dimensional position already measured in step S1) in step S5 of FIG.
- the three-dimensional position and orientation of 100 it is possible to perform remeasurement including the small movement amount.
- the three-dimensional position of the work object 100 after the movement is determined at that time. And the course to reach the three-dimensional position may be determined again.
- the work unit operation control apparatus includes the arm unit 1R that works on the work object 100 and the control unit 2 that controls the operation of the arm unit 1R.
- the arm unit 1R is further moved in the path 200, and further includes a detection unit 3 that detects the obstacle 101 in the path 200, so that the control unit 2 avoids contact between the arm unit 1R and the obstacle 101.
- the control unit 2 stops the movement of the arm unit 1R. Therefore, it is possible to wait until the obstacle 101 is eliminated, and contact between the arm portion 1R and the obstacle 101 can be avoided.
- the control unit 2 when the obstacle 101 is detected during the movement of the arm unit 1R in the work unit operation control device, the control unit 2 causes the arm unit 1R to be orthogonal to the path 200. By moving in the direction 201, the obstacle 101 generated during the course can be detoured and the work object 100 can be approached.
- the control unit 2 has the three-dimensional position of the arm unit 1 ⁇ / b> R moved in the direction 201 orthogonal to the course 200, and 3 of the work object 100. Even if the obstacle 101 is detected in the course by determining the corrected course 202 that passes through the dimension position and moving the arm unit 1R in the corrected course 202, the work object from other courses is detected. 100 can be approached.
- the control unit 2 when the obstacle 101 is detected during the movement of the arm unit 1R, the control unit 2 enters the work target 100 of the arm unit 1R. As a result, the contact with the obstacle 101 may be avoided by changing the angle. If it respond
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
本発明は、作業部が作業対象物近傍に到達するまでの進路中に障害物が存在する場合にも、適切に対処し作業可能な作業部動作制御装置および、その方法、プログラムの提供を目的とする。 本発明にかかる作業部動作制御装置は、作業対象物(100)に対して作業するアーム部(1R)と、アーム部(1R)の動作を制御する制御部(2)とを備え、制御部(2)は、アーム部(1R)を進路(200)中において移動させ、進路(200)中における障害物(101)を検出する検出部(3)をさらに備え、制御部(2)が、アーム部(1R)と障害物(101)との接触を回避するように、アーム部(1R)の動作を制御する。
Description
本発明は作業部動作制御装置および作業部動作制御方法および作業部動作制御プログラムに関し、特に、ロボットに備えられるアーム部の動作制御に関するものである。
従来の、作業対象物に対して作業する装置としての、例えばアーム部を用いて作業対象物を把持するロボットにおいては、まず、作業対象物の3次元位置を認識し、認識した当該3次元位置までアーム部を移動させることによって、作業対象物の3次元位置においてアーム部で把持するという動作を行う。
特許文献1および特許文献2に開示されるロボットは、アーム部を移動させる前に、カメラを用いて作業対象物の画像認識を行い、カメラから作業対象物までの距離や作業対象物の3次元姿勢を認識する。そして、それらの情報をもとに、アーム部を作業対象物の3次元位置まで移動させ、ピッキング動作を行っている。
上記のような装置においては、アーム部を作業対象物に向かって移動させる前に、作業対象物の画像認識を一度行うと、作業対象物の3次元位置まで移動し、その作業対象物をピッキング等するまで、その情報(すなわち作業対象物の3次元位置の情報)に基づいてアーム部の動作を制御することになる。
よって、この移動の間に、アーム部と作業対象物とを通る進路中に障害物が生じた場合であっても、アーム部の動作は修正されず、障害物とアーム部とが接触してしまい作業が妨害されてしまうおそれがあった。
本発明は、上記のような問題を解決するためになされたものであり、作業部が作業対象物近傍に到達するまでの進路中に障害物が存在する場合にも、適切に対処し作業可能な作業部動作制御装置および、その方法、プログラムの提供を目的とする。
請求項1の発明である作業部動作制御装置は、作業対象物に対して作業する作業部と、前記作業部の動作を制御する制御部とを備え、前記制御部は、前記作業部の3次元位置と前記作業対象物の3次元位置とを通る進路を決定し、前記作業部を当該進路中において移動させ、前記進路中における障害物を検出する検出部をさらに備え、前記作業部の移動中に前記障害物が検出された場合、前記制御部が、前記作業部と前記障害物との接触を回避するように、前記作業部の動作を制御することを特徴とする。
請求項2の発明は、請求項1に記載の作業部動作制御装置であって、前記作業部の移動中に前記障害物が検出された場合、前記制御部が、前記作業部の移動を停止させることを特徴とする。
請求項3の発明は、請求項1または2に記載の作業部動作制御装置であって、前記作業部の移動中に前記障害物が検出された場合、前記制御部が、前記作業部を前記進路とは直交する方向に移動させることを特徴とする。
請求項4の発明は、請求項3に記載の作業部動作制御装置であって、前記制御部が、前記進路とは直交する方向に移動した前記作業部の3次元位置と、前記作業対象物の3次元位置とを通る修正進路を決定し、前記作業部を当該修正進路中において移動させることを特徴とする。
請求項5の発明は、請求項1~4のいずれかに記載の作業部動作制御装置であって、前記作業部の移動中に前記障害物が検出された場合、前記制御部が、前記作業部の前記作業対象物に対する進入角度を変更させることを特徴とする。
請求項6の発明は、請求項1~5のいずれかに記載の作業部動作制御装置であって、前記検出部は、前記障害物の3次元位置を検出し、前記制御部が、前記障害物の3次元位置に基づいて、前記作業部と前記障害物との接触を回避するように、前記作業部の動作を制御することを特徴とする。
請求項7の発明は、請求項1~6のいずれかに記載の作業部動作制御装置であって、前記検出部が、前記作業部に取り付けられることを特徴とする。
請求項8の発明は、請求項1~7のいずれかに記載の作業部動作制御装置であって、前記作業対象物の少なくとも3次元位置を測定する測定部をさらに備え、前記制御部が、前記作業部の3次元位置と、前記測定部において測定した前記作業対象物の3次元位置とを通る進路を決定し、前記作業部を当該進路中において移動させることを特徴とする。
請求項9の発明は、請求項8に記載の作業部動作制御装置であって、前記測定部が、前記作業部に取り付けられることを特徴とする。
請求項10の発明は、請求項9に記載の作業部動作制御装置であって、前記測定部は、前記作業部が前記作業対象物の3次元位置近傍に到達した場合、さらに前記作業対象物の3次元位置および姿勢を測定し、前記制御部が、前記作業対象物の3次元位置および姿勢に基づいて、前記作業部に前記作業対象物に対して作業させることを特徴とする。
また、請求項11の発明は、作業部動作制御方法であって、作業対象物に対して作業する作業部の動作を制御する、作業部動作制御装置において、(a)前記作業部の3次元位置と前記作業対象物の3次元位置とを通る進路を決定する工程と、(b)前記作業部を当該進路中において移動させる工程と、(c)前記進路中における障害物を検出する工程と、(d)前記工程(c)において前記障害物が検出された場合、前記作業部と前記障害物との接触を回避するように、前記作業部の動作を制御する工程とを備えることを特徴とする。
また、請求項12の発明は、作業部動作制御プログラムであって、コンピュータにインストールされて実行されることにより、前記作業部を前記コンピュータによって制御する装置を、請求項1~10のいずれかに記載の作業部動作制御装置として機能させることを特徴とする。
請求項1~10の発明によれば、作業対象物に対して作業する作業部と、作業部の動作を制御する制御部とを備え、制御部は、作業部を進路中において移動させ、進路中における障害物を検出する検出部をさらに備え、制御部が、作業部と障害物との接触を回避するように、作業部の動作を制御することにより、作業部が移動を開始したあとに障害物を検出した場合であっても、作業部と障害物との接触を回避し、作業対象物に接近することができる。
特に請求項2~5の発明によれば、作業部の移動を停止する、または障害物を迂回する、または作業対象物への進入角度の変更させることにより、作業部と障害物との接触を回避することができる。
この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
<A.第1実施形態>
<A-1.構成>
図1は、本実施形態にかかる作業部動作制御装置の構成を概念的に示すものである。
<A-1.構成>
図1は、本実施形態にかかる作業部動作制御装置の構成を概念的に示すものである。
図1に示すように作業部動作制御装置は、作業対象物100に対しピッキング等の作業を行う作業部1(例えばロボットのアーム部等)と、作業部1と作業対象物100とを通る進路中において、障害物を検出する検出部3と、作業部1の動作を制御する制御部2とを備える。
また、作業対象物100の少なくとも3次元位置、望ましくは3次元位置および姿勢を測定可能な測定部4を備えることができるが、測定部4は、作業部動作制御装置に備えられていてもよいし、作業部動作制御装置の外部に備えられ、作業対象物100の3次元位置および姿勢を測定した結果を、制御部2に与えるものであってもよい。
検出部3および測定部4は、撮像装置とすることができる。撮像装置である場合、例えばステレオカメラ等であれば、作業対象物100の3次元位置および姿勢を、ステレオ画像認識により求めることができる。さらに、3次元位置があらかじめ設定された点群である3次元モデルを用いて、作業対象物100の3次元位置および姿勢を求めることもできる。画像認識によるものに限られず、センサー等を用いたものであってもよい。
検出部3および測定部4は備えられる位置が特に限定されることはないが、そのうちの少なくとも一方が作業部1に取り付けられていてもよい。具体的には、作業部1がロボットのアーム部である場合、アーム部の先端部分(図2参照)に取り付けられることで、より作業対象物100に近い視点から作業対象物100を捉えることができ、より精度の高い3次元位置および姿勢の認識が可能となる。また、作業対象物100までの進路を決定する際にも好ましく、当該進路中に障害物が生じているか否かの判断も容易となる。
図2は、本実施形態にかかる作業部動作制御装置のハードウェア構造の例を示すものである。
図2に示すように作業部動作制御装置は、作業対象物100(部品等)に対しピッキング等の作業を行う作業部1(ロボットのアーム部1R、アーム部1Lに対応)と、作業対象物100までの進路200中において、障害物101を検出する検出部3(アーム部に備えられたカメラ102に対応)と、作業部1の動作を制御する制御部2(CPU103に対応)とを備える。ここで、図2において作業対象物100は複数の部品の集合として示しているが、単一の部品を示す場合であってもよい。また、複数の部品の集合としての作業対象物100への進路を決定する場合には、例えば複数の部品の中心座標等を算出し、その3次元位置までの進路を決定することができる。
図2においては、作業部動作制御装置として双腕のロボットを示しているが、単腕のロボットであってもよい。また、アーム部1Rと作業対象物100とを通る進路200は鉛直方向として示しているが、水平方向に形成された進路であってもよい。
また、作業対象物100の3次元位置および姿勢を測定可能な測定部4を、アーム部1Rに備えられたカメラ102が兼ねることができる。
<A-2.動作>
次に、図3および図4を用いて、本実施形態にかかる作業部動作制御装置の動作を説明する。図3(a)~(c)は、作業対象物100に徐々に接近していくアーム部1Rの様子を示すものであり、図3(a)の状態から図3(b)、さらに図3(c)の状態へと推移する。
次に、図3および図4を用いて、本実施形態にかかる作業部動作制御装置の動作を説明する。図3(a)~(c)は、作業対象物100に徐々に接近していくアーム部1Rの様子を示すものであり、図3(a)の状態から図3(b)、さらに図3(c)の状態へと推移する。
まず、測定部4としてのカメラ102を用いて、作業対象物100のステレオ画像認識を行う。これにより、作業対象物100の少なくとも3次元位置を測定する(例えば図3(a)参照)。測定の際、カメラ102が静止している状態である方が、より精度の高い測定を実現できるが、適切に補正等を行うことで所定の精度の3次元位置の測定ができるのであれば、カメラ102、すなわちこの場合はアーム部1Rが移動中であっても、作業対象物100の3次元位置測定は可能である。
この段階で作業対象物100の3次元姿勢まで精度よく測定することも可能であるが、ピッキング等の精密な作業のための3次元位置および姿勢認識は、作業対象物100の3次元位置近傍までアーム部1Rを移動させてから行う方が、より高い精度で測定でき望ましいので、必ずしも現段階でそのような精度の高い測定をする必要はない。
作業対象物100の3次元位置が測定できたら、現段階でのアーム部1Rの3次元位置と作業対象物100の3次元位置とを通る進路200を決定する(図4のステップS1)。アーム部1Rおよび作業対象物100の3次元位置は、例えばそれぞれの中心座標または重心位置とすることができる。また、決定する進路200は、アーム部1Rと作業対象物100とを結ぶ直線であることが望ましいが、必ずしも直線である必要はなく、途中進行方向を変える曲線等であってもよい。
次に、制御部2が、作業対象物100の3次元位置(及び姿勢)に到達する進路200に沿って、図3(a)から図3(b)に示すようにアーム部1Rを移動させる(図4のステップS2)。
一方、作業対象物100の3次元位置(及び姿勢)に到達する進路200をアーム部1Rが移動している間に、検出部3としてのカメラ102を用いて、進路200中の障害物101の検出を行う(図4のステップS3)。図3(b)のように障害物101が検出できた場合はステップS4へ、検出できない場合はステップS5へそれぞれ進む。
なお、アーム部1Rが移動している間とは、アーム部1Rが作業対象物100へ向かって進路200上の移動を開始してから、作業対象物100の3次元位置近傍に到達するまでの間を示すものであり、必ずしもアーム部1Rが現実に移動している間に限られるものではない。
ここで、障害物101とは、進路200中をアーム部1Rが移動する際に接触し得る物(例えば、ある時刻に、移動するアーム部1Rからの距離が所定の範囲内となる物等)で、アーム部1Rが移動している間に進路200中に生じた物だけでなく、アーム部1Rが作業対象物100に対して移動を始める前から進路200中に存在していた物も含むものとする。具体的には、侵入してきた動物、作業していた人の手、倒れてきた部材等が想定できる。
障害物101の検出については、カメラ102を用いて前述のような3次元位置の測定を行うことが望ましいが、作業効率を高めるために画像認識のみで判断したり、所定時間前に撮像した進路上の画像との差異が一定以上となった場合に、障害物101が生じたものと判断したりしてもよい。また検出動作は常に行っていてもよいが、アーム部1Rが一定距離移動する毎に行ってもよいし、一定時間が経過する毎に行ってもよい。
また、進路200中に複数の障害物101が検出できる場合には、全て検出してもよいし、例えばアーム部1Rから最も近い距離に位置する障害物101について検出してもよい。
次にステップS4において、制御部2としてのCPU103は、障害物101との接触を避けるための動作制御を、アーム部1Rに対して行う。
具体的には、アーム部1Rの移動を停止し、所定時間その場で待機させる。そして所定時間が経過した後、再びステップS3に戻り、障害物101の検出を行う。
なお、アーム部1Rの移動を停止しなくとも、アーム部1Rの先端に位置する把持部を稼動させて、把持部の作業対象物100に対する進入角度を変更することで、結果的に障害物101との接触が回避できる場合には、CPU103でそのような動作制御をすることにより接触を回避してもよい。具体的には、把持部の、作業対象物100を把持できる進入角度範囲のうち、例えば現時点での把持部の進入角度からの変化が最も少ない角度へ変更することができる。進入角度を3次元極座標で定義する場合、例えば天頂角が等しいままで、偏角が異なる進入角度へ変更することができる。
所定の回数ステップS3に戻って停止動作を繰り返しても、障害物101が検出され続けるような場合には、オペレーターコール等の警告を行って動作を終了し、障害物101の除去を促すことも可能である。
また、移動方向を進路200とは直交する方向201に変更することで、障害物101との接触を回避することも可能である(図5参照)。
すなわち、アーム部1Rの移動方向を進路200とは直交する方向201に変更し、所定距離移動したところで、再びステップS1に戻る。そして移動したアーム部1Rの3次元位置と作業対象物100の3次元位置とを通る進路(修正進路202)を決定する。
進路(修正進路202)を決定したら進路(修正進路202)中の移動を開始する一方で(ステップS2)、障害物101の検出を行う(ステップS3)。この修正進路202上でも未だ障害物101が検出される場合には、さらに同様の動作(ステップS4)を繰り返し、新たな修正進路上で移動を開始すればよい。
この場合、進路200とは直交する方向201にカメラ102を向ける等の動作により、その方向、すなわち進路200とは直交する方向201にも、障害物となるものが存在しないことを確認することが望ましい。
なお、修正進路202を用いる当該動作を繰り返し行った場合でも、障害物101が検出され続ける場合には、オペレーターコール等の警告を行って動作を終了し、障害物101の除去を促すことも可能である。
上記の動作においては、進路200と直交する方向201のみに移動することによって障害物101を迂回し、アーム部1Rと障害物101との接触を避けているが、迂回するために移動する方向は、進路200と直交する方向201の成分が含まれればよく、進行方向を適切に変更するものであればよい。
また、進路200と直交する方向201は、進路200と直交する面に放射状に無数に存在するが、これらのうちの1つに限定されるものではない。ただし、ロボットのアーム部等を用いて当該動作を行う場合には、安全性の観点から、鉛直上方向や作業領域の外側に向かう方向等、望ましい移動方向が存在する。そのような場合に、移動可能な直交する方向201のうち、例えば鉛直上方向や作業領域外側方向を基準として、それらの方向に近い方向を選択するようにすることも可能である。
次にステップS5においては、アーム部1Rを作業対象物100近傍に到達させる(図3(c)参照)。そして、ピッキング等の動作を行うために、再度、測定部4としてのカメラ102を用いて、作業対象物100の3次元位置および姿勢の測定を行う。ここで、ステップS1において、十分な精度で作業対象物100の3次元位置および姿勢が測定されている場合には、再度測定を行うことを省略することも可能である。
作業対象物100の3次元位置および姿勢の測定は、アーム部1Rに備えられたカメラ102を用いて行うことが望ましく、さらに測定の精度を高めるため、アーム部1Rを静止させて行うことが望ましい。ただし、補正等により所定の精度を満たす測定ができるのであれば、静止しなくともよい。
また、作業対象物100への進路200を決定する際(ステップS1の際)に用いたカメラとは異なるカメラで作業対象物100の3次元位置および姿勢を測定してもよい。すなわち、検出部3と測定部4とを、異なる手段で実現することも可能である。
次にステップS6において、アーム部1Rが作業対象物100に対してピッキング等の作業を行えるようにピッキング情報を生成し、当該ピッキング情報に基づいてCPU103はアーム部1Rの動作を制御する。ピッキング情報には、作業対象物100の3次元位置および姿勢の情報、アーム部1Rの進入角度の情報等が含まれる。
ここで、作業対象物100の3次元位置が、アーム部1Rの移動中に変化した場合における動作について以下の図6に示す。図3と同様の内容であるものについては、同一の符合を付して示している。図6は(a)の状態から(b)へ推移する様子を示すものである。
図6(a)および(b)に示すように、作業対象物100の3次元位置が、アーム部1Rの移動中に変化した場合、すなわち作業対象物100が移動した場合にも、図4のフローチャートに示す動作で適宜対応し、作業対象物100に対し適切に作業することができる。
すなわち、作業対象物100の移動量が比較的小さい場合、図4のステップS5において、作業対象物100の3次元位置(ステップS1において既に測定した3次元位置)近傍に到達してから作業対象物100の3次元位置および姿勢を認識する際に、当該小さな移動量を包含して再測定することができる。
また、作業対象物100の移動量が比較的大きい場合にも、障害物101検出のため再度進路を決定する必要がある場合にはその際に、移動した後の作業対象物100の3次元位置を測定し、その3次元位置へ到達する進路を再度決定すればよい。
なお上記の実施形態では、作業対象物100に接近中の障害物101を検出する場合についてのみ示しているが、同様の方法で作業対象物100からロボットのアーム部1R収納位置までの進路を決定し、当該進路中を移動中に障害物101が検出される場合についても応用することができる。
<A-3.効果>
本発明にかかる実施形態によれば、作業部動作制御装置において、作業対象物100に対して作業するアーム部1Rと、アーム部1Rの動作を制御する制御部2とを備え、制御部2は、アーム部1Rを進路200中において移動させ、進路200中における障害物101を検出する検出部3をさらに備え、制御部2が、アーム部1Rと障害物101との接触を回避するように、アーム部1Rの動作を制御することで、アーム部1Rが移動を開始したあとに障害物101を検出した場合であっても、アーム部1Rと障害物101との接触を回避し、作業対象物100に接近することができる。
本発明にかかる実施形態によれば、作業部動作制御装置において、作業対象物100に対して作業するアーム部1Rと、アーム部1Rの動作を制御する制御部2とを備え、制御部2は、アーム部1Rを進路200中において移動させ、進路200中における障害物101を検出する検出部3をさらに備え、制御部2が、アーム部1Rと障害物101との接触を回避するように、アーム部1Rの動作を制御することで、アーム部1Rが移動を開始したあとに障害物101を検出した場合であっても、アーム部1Rと障害物101との接触を回避し、作業対象物100に接近することができる。
また、本発明にかかる実施形態によれば、作業部動作制御装置において、アーム部1Rの移動中に障害物101が検出された場合、制御部2が、アーム部1Rの移動を停止させることで、障害物101が排除されるまで待つことができ、アーム部1Rと障害物101との接触を回避することができる。
また、本発明にかかる実施形態によれば、作業部動作制御装置において、アーム部1Rの移動中に障害物101が検出された場合、制御部2が、アーム部1Rを進路200とは直交する方向201に移動させることで、進路中に生じた障害物101を迂回し、作業対象物100に接近することができる。
また、本発明にかかる実施形態によれば、作業部動作制御装置において、制御部2が、進路200とは直交する方向201に移動したアーム部1Rの3次元位置と、作業対象物100の3次元位置とを通る修正進路202を決定し、アーム部1Rを当該修正進路202中において移動させることで、進路中に障害物101が検出された場合であっても、他の進路から作業対象物100に接近することができる。
また、本発明にかかる実施形態によれば、作業部動作制御装置において、アーム部1Rの移動中に障害物101が検出された場合、制御部2が、アーム部1Rの作業対象物100に対する進入角度を変更させることで、結果的に障害物101との接触を回避することができる場合がある。このように対応すれば、アーム部1Rの移動を停止しなくとも、アーム部1Rと障害物101との接触を回避することができる。
この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
1 作業部
1L,1R アーム部
2 制御部
3 検出部
4 測定部
100 作業対象物
101 障害物
102 カメラ
200 進路
201 直交する方向
202 修正進路
1L,1R アーム部
2 制御部
3 検出部
4 測定部
100 作業対象物
101 障害物
102 カメラ
200 進路
201 直交する方向
202 修正進路
Claims (12)
- 作業対象物(100)に対して作業する作業部(1)と、
前記作業部(1)の動作を制御する制御部(2)とを備え、
前記制御部(2)は、前記作業部(1)の3次元位置と前記作業対象物(100)の3次元位置とを通る進路(200)を決定し、前記作業部(1)を当該進路(200)中において移動させ、
前記進路(200)中における障害物(101)を検出する検出部(3)をさらに備え、
前記作業部(1)の移動中に前記障害物(101)が検出された場合、前記制御部(2)が、前記作業部(1)と前記障害物(101)との接触を回避するように、前記作業部(1)の動作を制御することを特徴とする、
作業部動作制御装置。 - 前記作業部(1)の移動中に前記障害物(101)が検出された場合、前記制御部(2)が、前記作業部(1)の移動を停止させることを特徴とする、
請求項1に記載の作業部動作制御装置。 - 前記作業部(1)の移動中に前記障害物(101)が検出された場合、前記制御部(2)が、前記作業部(1)を前記進路(200)とは直交する方向(201)に移動させることを特徴とする、
請求項1または2に記載の作業部動作制御装置。 - 前記制御部(2)が、前記進路(200)とは直交する方向(201)に移動した前記作業部(1)の3次元位置と、前記作業対象物(100)の3次元位置とを通る修正進路(202)を決定し、前記作業部(1)を当該修正進路(202)中において移動させることを特徴とする、
請求項3に記載の作業部動作制御装置。 - 前記作業部(1)の移動中に前記障害物(101)が検出された場合、前記制御部(2)が、前記作業部(1)の前記作業対象物(100)に対する進入角度を変更させることを特徴とする、
請求項1または2に記載の作業部動作制御装置。 - 前記検出部(3)は、前記障害物(101)の3次元位置を検出し、
前記制御部(2)が、前記障害物(101)の3次元位置に基づいて、前記作業部(1)と前記障害物(101)との接触を回避するように、前記作業部(1)の動作を制御することを特徴とする、
請求項1または2に記載の作業部動作制御装置。 - 前記検出部(3)が、前記作業部(1)に取り付けられることを特徴とする、
請求項1または2に記載の作業部動作制御装置。 - 前記作業対象物(100)の少なくとも3次元位置を測定する測定部(4)をさらに備え、
前記制御部(2)が、前記作業部(1)の3次元位置と、前記測定部(4)において測定した前記作業対象物(100)の3次元位置とを通る進路(200)を決定し、前記作業部(1)を当該進路(200)中において移動させることを特徴とする、
請求項1または2に記載の作業部動作制御装置。 - 前記測定部(4)が、前記作業部(1)に取り付けられることを特徴とする、
請求項8に記載の作業部動作制御装置。 - 前記測定部(4)は、前記作業部(1)が前記作業対象物(100)の3次元位置近傍に到達した場合、さらに前記作業対象物(100)の3次元位置および姿勢を測定し、
前記制御部(2)が、前記作業対象物(100)の3次元位置および姿勢に基づいて、前記作業部(1)に前記作業対象物(100)に対して作業させることを特徴とする、
請求項9に記載の作業部動作制御装置。 - 作業対象物(100)に対して作業する作業部(1)の動作を制御する、作業部動作制御装置において、
(a)前記作業部(1)の3次元位置から前記作業対象物(100)の3次元位置に到達する進路(200)を決定する工程と、
(b)前記作業部(1)を当該進路(200)中において移動させる工程と、
(c)前記進路(200)中における障害物(101)を検出する工程と、
(d)前記工程(c)において前記障害物(101)が検出された場合、前記作業部(1)と前記障害物(101)との接触を回避するように、前記作業部(1)の動作を制御する工程とを備えることを特徴とする、
作業部動作制御方法。 - コンピュータにインストールされて実行されることにより、前記作業部(1)を前記コンピュータによって制御する装置を、請求項1~10のいずれかに記載の作業部動作制御装置として機能させることを特徴とする、
作業部動作制御プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-165555 | 2011-07-28 | ||
JP2011165555A JP2013027953A (ja) | 2011-07-28 | 2011-07-28 | 作業部動作制御装置および作業部動作制御方法および作業部動作制御プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013014965A1 true WO2013014965A1 (ja) | 2013-01-31 |
Family
ID=47600825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/056266 WO2013014965A1 (ja) | 2011-07-28 | 2012-03-12 | 作業部動作制御装置および作業部動作制御方法および作業部動作制御プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013027953A (ja) |
WO (1) | WO2013014965A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111699079A (zh) * | 2018-02-15 | 2020-09-22 | 罗伯特·博世有限公司 | 协调系统、操作设备和方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7364773B2 (ja) * | 2020-02-12 | 2023-10-18 | ファナック株式会社 | 教示システム及びロボット制御装置 |
JP7211682B2 (ja) | 2020-05-26 | 2023-01-27 | 將洋 鈴木 | 自走式電気掃除装置、自走式電気掃除装置用プログラム及び掃除システム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63150183A (ja) * | 1986-12-15 | 1988-06-22 | 富士通株式会社 | ロボツトの運動制御方法 |
JP2007245283A (ja) * | 2006-03-15 | 2007-09-27 | Nissan Motor Co Ltd | ワーク姿勢検知装置、ワーク姿勢検知方法、ピッキングシステム、およびピッキング方法 |
JP2009301295A (ja) * | 2008-06-12 | 2009-12-24 | Toyota Motor Corp | 歩行者シミュレーション装置、交通シミュレーション装置、歩行者シミュレーション方法 |
JP2010264560A (ja) * | 2009-05-15 | 2010-11-25 | Seiko Epson Corp | ロボットの干渉防止方法 |
-
2011
- 2011-07-28 JP JP2011165555A patent/JP2013027953A/ja not_active Withdrawn
-
2012
- 2012-03-12 WO PCT/JP2012/056266 patent/WO2013014965A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63150183A (ja) * | 1986-12-15 | 1988-06-22 | 富士通株式会社 | ロボツトの運動制御方法 |
JP2007245283A (ja) * | 2006-03-15 | 2007-09-27 | Nissan Motor Co Ltd | ワーク姿勢検知装置、ワーク姿勢検知方法、ピッキングシステム、およびピッキング方法 |
JP2009301295A (ja) * | 2008-06-12 | 2009-12-24 | Toyota Motor Corp | 歩行者シミュレーション装置、交通シミュレーション装置、歩行者シミュレーション方法 |
JP2010264560A (ja) * | 2009-05-15 | 2010-11-25 | Seiko Epson Corp | ロボットの干渉防止方法 |
Non-Patent Citations (1)
Title |
---|
SHO MORIKAWA: "Realtime collision avoindance with light-weight high-speed vision systems", THE 24TH ANNUAL CONFERENCE OF THE ROBOTICS SOCIETY OF JAPAN YOKOSHU CD-ROM 2006 NEN, THE 24TH ANNUAL CONFERENCE OF THE ROBOTICS SOCIETY OF JAPAN, 14 September 2006 (2006-09-14) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111699079A (zh) * | 2018-02-15 | 2020-09-22 | 罗伯特·博世有限公司 | 协调系统、操作设备和方法 |
CN111699079B (zh) * | 2018-02-15 | 2023-09-29 | 罗伯特·博世有限公司 | 协调系统、操作设备和方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2013027953A (ja) | 2013-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10894324B2 (en) | Information processing apparatus, measuring apparatus, system, interference determination method, and article manufacturing method | |
US9701014B2 (en) | Robot control device for preventing misjudgment by collision judging part | |
JP5849403B2 (ja) | ロボットコントローラー、ロボット、及び、ロボットシステム | |
JP6484213B2 (ja) | 複数のロボットを含むロボットシステム、ロボット制御装置、及びロボット制御方法 | |
EP3326038B1 (en) | System and method for determining a work offset | |
JP6496353B2 (ja) | ロボットシステム | |
JP2011115877A (ja) | 双腕ロボット | |
US20150120055A1 (en) | Robot control device, robot system, and robot | |
JP5849451B2 (ja) | ロボットの故障検出方法、制御装置およびロボット | |
JP6747665B2 (ja) | ロボット | |
JP6916157B2 (ja) | 人と協働作業を行うロボットシステム、及びロボット制御方法 | |
JP7364773B2 (ja) | 教示システム及びロボット制御装置 | |
JP2010094765A (ja) | ロボットの原点復帰装置 | |
US20190321967A1 (en) | Work robot system and work robot | |
WO2013014965A1 (ja) | 作業部動作制御装置および作業部動作制御方法および作業部動作制御プログラム | |
JP7502003B2 (ja) | 移動機械の移動軌跡のずれを取得する装置、及び方法 | |
JP5983506B2 (ja) | 把持対象物の把持パターン検出方法およびロボット | |
JP5803769B2 (ja) | 移動ロボット | |
JP2015016527A5 (ja) | ||
JP2020099969A (ja) | 位置合わせ装置 | |
JP2019136790A (ja) | ロボット | |
WO2017141569A1 (ja) | 制御装置、制御システム、制御方法およびプログラム | |
CN109866223B (zh) | Delta机器人扭矩找零点方法 | |
JP6176091B2 (ja) | 把持方法、運搬方法及びロボット | |
JP2013237125A (ja) | 移動体の移動制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12817014 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12817014 Country of ref document: EP Kind code of ref document: A1 |