WO2013012060A1 - 冷却装置、熱延鋼板の製造装置、及び熱延鋼板の製造方法 - Google Patents

冷却装置、熱延鋼板の製造装置、及び熱延鋼板の製造方法 Download PDF

Info

Publication number
WO2013012060A1
WO2013012060A1 PCT/JP2012/068438 JP2012068438W WO2013012060A1 WO 2013012060 A1 WO2013012060 A1 WO 2013012060A1 JP 2012068438 W JP2012068438 W JP 2012068438W WO 2013012060 A1 WO2013012060 A1 WO 2013012060A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
hot
steel sheet
pass line
surface guide
Prior art date
Application number
PCT/JP2012/068438
Other languages
English (en)
French (fr)
Inventor
一暁 小林
知史 寶諸
桂輔 松田
原口 洋一
裕二 池本
堀井 健治
Original Assignee
新日鐵住金株式会社
三菱日立製鉄機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, 三菱日立製鉄機械株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201280032705.0A priority Critical patent/CN103635267B/zh
Priority to JP2012544368A priority patent/JP5181137B2/ja
Priority to BR112014000684A priority patent/BR112014000684A2/pt
Priority to KR1020147000542A priority patent/KR101514932B1/ko
Priority to US14/131,028 priority patent/US9486847B2/en
Priority to IN104DEN2014 priority patent/IN2014DN00104A/en
Priority to EP12814490.4A priority patent/EP2735383B1/en
Publication of WO2013012060A1 publication Critical patent/WO2013012060A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices

Definitions

  • the present invention relates to a cooling device, a hot-rolled steel plate manufacturing apparatus, and a manufacturing method, and more specifically, a cooling device that is excellent in drainage of cooling water and can ensure a high cooling capacity, a hot-rolled steel plate manufacturing device, and a heat
  • the present invention relates to a method for producing a rolled steel sheet.
  • Steel materials used for automobiles and structural materials are required to have excellent mechanical properties such as strength, workability, and toughness.
  • the structure of the steel material is refined. It is effective. Therefore, many methods for obtaining a steel material having a fine structure have been sought.
  • miniaturization of a structure even if it reduces the addition amount of an alloy element, it becomes possible to manufacture the high intensity
  • the austenite grains are refined by performing high-pressure rolling in the latter stage of hot finish rolling (one of the downstream steel plates when a plurality of rolling mills are arranged in parallel). At the same time, it is known to accumulate rolling strain in the steel sheet and to refine the ferrite grains obtained after rolling. Furthermore, from the viewpoint of promoting ferrite transformation by suppressing recrystallization and recovery of austenite, it is effective to cool the steel sheet to 600 ° C. to 750 ° C. within the shortest possible time after rolling. That is, following the hot finish rolling, it is preferable to install a cooling device capable of cooling earlier than before and rapidly cool the rolled steel sheet.
  • cooling water amount density the amount of cooling water injected per unit area on the steel plate, that is, the amount of cooling water. It is effective to increase the size.
  • the problem is that the high cooling capacity cannot be exhibited due to such a problem, and there is a case where it is impossible to effectively increase the water density of the cooling water sprayed onto the steel sheet.
  • Patent Documents 1 and 2 For drainage on the upper surface side of the steel sheet, techniques such as Patent Documents 1 and 2 are disclosed.
  • a hole is provided in the upper surface guide, and cooling water is supplied through the hole, and the hole also functions as a hole that overflows the accumulated water. Yes.
  • a hole for supplying cooling water to the upper surface guide and a slit for overflow are separately provided to smooth the drainage of stagnant water and reduce cooling capacity. Can be suppressed.
  • the upper surface guide is placed at a high position, the possibility of overflow can be reduced, but the upper surface guide is positioned lower than the injection nozzle of the cooling nozzle to avoid damage to the cooling nozzle due to contact between the steel plate and the cooling nozzle. It is necessary to provide in.
  • the cooling nozzle is desirably provided at a position (low) as close to the steel plate as possible in order to suppress a decrease in cooling capacity. Therefore, it is preferable that the upper surface guide is also arranged at a position as low as possible.
  • the present invention provides a steel sheet cooling device that can appropriately drain water in response to an increase in the density of cooling water, thereby ensuring a high cooling capacity. Let it be an issue. Moreover, the manufacturing apparatus of a hot-rolled steel plate using this and the manufacturing method of a hot-rolled steel plate are provided.
  • the invention according to claim 1 is arranged on the downstream side of the hot finish rolling mill row, can supply cooling water from above the pass line toward the pass line, and has a plurality of cooling devices arranged in parallel in the direction of the pass line.
  • a cooling device comprising a nozzle and an upper surface guide disposed between the pass line and the cooling nozzle, wherein the cooling nozzle has a cooling water density of 0.16 (m 3 / (m 2 ⁇ sec)) or more.
  • Cooling water can be injected, the cooling water volume density to be injected is q m (m 3 / (m 2 ⁇ sec)), the cooling nozzle pass line direction pitch is L (m), the lower surface of the upper surface guide and the pass line H p (m), uniform cooling width W u (m), and virtual flow channel cross-sectional area of drainage flowing in the steel plate width direction per pitch in the pass line direction of the cooling nozzle, S (m 2 )
  • the upper surface guide has a form in which the distance between the pass line and the top guide changes in the pass line direction, instead of h p, the upper surface The equivalent height hp ′ of the guide is applied.
  • the invention according to claim 3 is characterized in that in the cooling device according to claim 1 or 2, at least one of the upper surface guide and the cooling nozzle is movable in the vertical direction.
  • the invention according to claim 4 includes the hot finish rolling mill row and the cooling device according to any one of claims 1 to 3 arranged downstream of the hot finish rolling mill train,
  • the upstream end is an apparatus for producing a hot-rolled steel sheet, which is arranged inside a final stand of a hot finish rolling mill row.
  • the invention according to claim 5 includes a step of cooling the steel plate by supplying cooling water to at least the upper surface of the steel plate after finish rolling by a cooling device disposed downstream of the hot finish rolling mill row.
  • Q a (m 3 / (m 2 ⁇ sec), wherein the cooling water density from the cooling nozzle provided in the cooling device is 0.16 (m 3 / (m 2 ⁇ sec)) or more.
  • the pitch of the cooling nozzle in the plate direction is L (m)
  • the distance between the lower surface of the upper surface guide disposed in the cooling device and the upper surface of the steel plate to be passed is h a (m)
  • the plate width is W a (m)
  • the virtual channel cross-sectional area of the drainage flowing in the steel plate width direction per pitch in the plate direction of the cooling nozzle is S a (m 2 )
  • the invention according to claim 7 is the method for producing a hot-rolled steel sheet according to claim 5 or 6, wherein at least one of the upper surface guide and the cooling nozzle is movable in the vertical direction. .
  • the cooling device in the method for producing a hot-rolled steel sheet according to any one of the fifth to seventh aspects, includes an end on the upstream side of the hot finish rolling mill at the upstream end of the cooling device. It is arrange
  • the present invention it is possible to increase the water density of cooling water and to cool it using a large amount of cooling water, to produce a hot-rolled steel sheet that is smoothly drained and whose structure is refined. Is possible. That is, as a result of smooth drainage, the upper surface of the staying water can be prevented from reaching the upper surface guide, and the steel sheet can be effectively cooled. Moreover, such smooth drainage suppresses uneven cooling in the sheet width direction of the steel sheet, and enables more uniform cooling.
  • FIG. 2A is an enlarged view of FIG. 1 to include the entire cooling device at a portion where the cooling device is disposed.
  • FIG. 2B is a diagram focusing on the upstream side in FIG. It is the figure seen from the arrow III of Fig.2 (a). It is a figure for demonstrating a cooling nozzle. It is another figure for demonstrating a cooling nozzle. It is a figure for demonstrating Formula (1). It is a figure explaining the site
  • FIG. 1 is a diagram schematically showing a part of a hot-rolled steel sheet manufacturing apparatus 10 including a steel sheet cooling apparatus 20 (hereinafter, sometimes referred to as “cooling apparatus 20”) according to one embodiment. It is.
  • the steel sheet 1 is conveyed from the left side (upstream side, upper process side) to the right side (downstream side, lower process side) of the paper surface, and the top and bottom of the paper surface is the vertical direction.
  • the upstream side (upper process side) / downstream side (lower process side) direction may be described as the passing plate direction, and the direction of the plate width of the steel plate to be passed is the direction perpendicular to this direction. May be described.
  • repeated reference numerals may be omitted.
  • a line through which a steady rolling portion (a portion other than the front end portion and the rear end portion) of the steel plate 1 passes is represented as a pass line P. Therefore, the steady rolling portion of the steel sheet passes through the pass line P.
  • a hot rolled steel sheet manufacturing apparatus 10 includes a hot finish rolling mill row 11, a cooling device 20, transport rolls 12, 12,..., A pinch roll 13. Although illustration and explanation are omitted, a heating furnace, a rough rolling mill row, and the like are arranged upstream from the hot finish rolling mill row 11 to adjust the conditions of the steel sheet for entering the hot finish rolling mill row 11. ing. On the other hand, another cooling device and a winder are provided on the downstream side of the pinch roll 13, and various facilities for shipping as a steel plate coil are arranged.
  • Hot-rolled steel sheets are generally manufactured as follows. That is, the rough bar extracted from the heating furnace and rolled to a predetermined thickness by the rough rolling mill is continuously rolled to the predetermined thickness by the hot finish rolling mill row 11 while the temperature is controlled. Thereafter, it is rapidly cooled in the cooling device 20.
  • the cooling device 20 has the rolling rolls 11gw and 11gw (see FIG. 2) of the final stand 11g inside the housing 11gh that supports the rolling roll (work roll). ) As close as possible. And it passes through the pinch roll 13, is cooled to a predetermined winding temperature by another cooling device, and is wound up in a coil shape by a winder.
  • FIG. 2 is an enlarged view of a portion of FIG. 1 where the cooling device 20 is provided.
  • FIG. 2A is an enlarged view so that the entire cooling device 20 appears, and
  • FIG. 2B is a view paying attention to the vicinity of the final stand 11g.
  • FIG. 3 is a schematic view of the manufacturing apparatus 10 viewed from the downstream side of the final stand 11g, and is a view of the manufacturing apparatus 10 viewed from the direction indicated by the arrow III in FIG. Accordingly, in FIG. 3, the upper and lower sides of the drawing are the vertical direction of the manufacturing apparatus 10, the left and right sides of the drawing are the steel plate width direction, and the back / front direction of the drawing is the sheet passing direction.
  • each of the stands 11a, 11b,..., 11g is equipped with a rolling mill included in each stand, and can satisfy conditions such as thickness, mechanical properties, surface quality, and the like required for the final product.
  • rolling conditions such as a rolling reduction are set.
  • the reduction ratio of each of the stands 11a, 11b,..., 11g is set so as to satisfy the performance that the steel sheet to be manufactured should have. It is preferable that the rolling reduction is large in the final stand 11g from the viewpoint of refining the ferrite grains obtained after rolling.
  • Each of the stands 11a,..., 11f, 11g has a pair of work rolls 11aw, 11aw,..., 11fw, 11fw, 11gw, 11gw, and the work rolls 11aw, 11aw,.
  • a pair of backup rolls 11ab, 11ab,..., 11fb, 11fb, 11gb, and 11gb arranged so that the outer circumferences are in contact with 11fw, 11fw, 11gw, and 11gw.
  • the rolling mill includes work rolls 11aw, 11aw, ..., 11fw, 11fw, 11gw, 11gw and backup rolls 11ab, 11ab, ..., 11fb, 11fb, 11gb, 11gb on the inside, and stands 11a, ..., 11f, 11g , 11fw, 11fw, 11gw, 11gw and backup rolls 11ab, 11ab,..., 11fb, 11fb, 11gb, 11gb, and housings 11ah,. ing.
  • the housings 11ah,..., 11fh, 11gh have standing portions (for example, the standing portions 11gr, 11gr shown in FIG. 3 in the final stand 11g) that face each other.
  • the standing part of the housing is erected so as to sandwich the steel plate 1 (pass line P) in the steel plate width direction, as can be seen from FIG. Further, the standing portions 11gr and 11gr of the final stand 11g are erected so as to sandwich a part of the cooling device 20 and the steel plate 1 (pass line P) in the steel plate width direction.
  • the distance between the shaft center of the work roll 11gw and the downstream end surface of the housing standing portions 11gr, 11gr, which is indicated by L1 in FIG. 2A, is larger than the radius r1 of the work roll 11gw.
  • a part of the cooling device 20 can be disposed at a portion corresponding to L1-r1 as described later. That is, it is possible to install a part of the cooling device 20 so as to be inserted inside the housing 11gh.
  • the housing standing portions 11gr and 11gr are provided on both sides of the cooling device 20 in the steel plate width direction. It exists as a side wall.
  • a predetermined gap is formed between the end portion of the cooling device 20 in the width direction of the steel plate and the housing standing portions 11gr, 11gr.
  • the cooling device 20 includes upper surface water supply means 21, 21, ..., lower surface water supply means 22, 22, ..., upper surface guides 30, 30, ..., and lower surface guides 35, 35, ....
  • the upper surface water supply means 21, 21,... Are means for supplying cooling water to the upper surface side of the steel sheet 1, that is, from above to the pass line P, and to the cooling headers 21 a, 21 a,. , And cooling nozzles 21c, 21c,... Attached to the tips of the conduits 21b, 21b,.
  • the cooling header 21a is a pipe extending in the steel plate width direction, and such cooling headers 21a, 21a,.
  • the conduit 21b is a plurality of thin pipes branched from the respective cooling headers 21a, and the opening ends thereof are directed to the upper surface side (pass line P) of the steel plate 1.
  • a plurality of conduits 21b, 21b,... Are provided in a comb-teeth shape along the tube length direction of the cooling header 21a, that is, in the steel plate width direction.
  • a cooling nozzle 21c, 21c,... Is attached to the tip of each conduit 21b, 21b,.
  • the cooling nozzles 21c, 21c,... Of the present embodiment are flat type spray nozzles capable of forming a fan-shaped cooling water jet (for example, a thickness of about 5 mm to 30 mm).
  • 4 and 5 are schematic views of a cooling water jet formed on the steel plate surface by the cooling nozzles 21c, 21c,...
  • FIG. 4 is a perspective view.
  • FIG. 5 is a diagram schematically showing a collision mode when the jet collides with the steel plate surface.
  • white circles represent the positions immediately below the cooling nozzles 21 c, 21 c,...
  • Thick lines represent the collision positions of the cooling water jets on the steel plate 1 and the outline.
  • one nozzle row (for example, nozzle row A, nozzle row B, nozzle row C) is formed by the cooling nozzles 21c, 21c,... Arranged in a certain cooling header 21a.
  • the positions of the steel plate width direction are shifted in the adjacent nozzle rows (for example, nozzle row A and nozzle row B, nozzle row B and nozzle row C).
  • the adjacent nozzle rows (for example, nozzle row A and nozzle row C) are arranged in a so-called staggered arrangement so that the positions in the width direction of the steel plate are the same.
  • the cooling nozzle is arranged so that the cooling water jet can pass at least twice over all positions in the steel plate width direction on the surface of the steel plate 1.
  • a point ST of the steel plate 1 to be passed moves along a straight arrow in FIG.
  • C jets from the cooling nozzles 21c, 21c,... Belonging to the nozzle rows A, B, C collide twice.
  • the collision width L f of the cooling water jet, and the torsion angle ⁇ , L f 2P W / cos ⁇
  • the cooling nozzles 21c, 21c,... are arranged so that the above relationship is established.
  • the collision occurs twice, but the present invention is not limited to this, and the collision may be performed three or more times.
  • the cooling nozzles 21c, 21c,... Were twisted in directions opposite to each other in the nozzle rows adjacent in the sheet passing direction.
  • the “uniform cooling width” for cooling is determined by the arrangement of the cooling nozzles. This means the size in the plate width direction of the steel plate 1 that can uniformly cool the conveyed steel plate due to the properties of the plurality of cooling nozzles arranged. Specifically, it often coincides with the maximum width of the steel sheet that can be manufactured in the steel sheet manufacturing apparatus. Specifically, for example, the size is indicated by W u in FIG.
  • the present invention in the adjacent nozzle rows A, B, and C as described above, the configuration in which the cooling nozzles are twisted in the opposite directions to each other has been described.
  • the present invention is not necessarily limited thereto. All may be twisted in the same direction.
  • the twist angle ( ⁇ above) is not particularly limited, and can be appropriately determined from the viewpoint of required cooling capacity, accommodation of equipment arrangement, and the like.
  • the cooling nozzles are arranged in a staggered arrangement in the nozzle rows A, B, and C adjacent to each other in the sheet passing direction from the viewpoint of the above advantages, but the present invention is not limited to this. May be arranged in a straight line in the plate passing direction.
  • the position in the sheet passing direction (direction of the pass line P) of the steel sheet is not particularly limited, but is preferably configured as follows. That is, immediately after the final stand 11g in the hot finish rolling mill row 11, a part of the cooling device 20 is arranged as close as possible to the work roll 11gw of the final stand 11g from the inside of the housing 11gh of the final stand 11g. . As a result, the steel plate 1 immediately after rolling by the hot finish rolling mill 11 can be rapidly cooled, and the tip of the steel plate 1 can be stably guided to the cooling device 20.
  • the height position of the upper surface water supply means 21 is assumed to be along the upper surface guide 30 arranged so as to satisfy the formula (1) described later.
  • the height of the upper surface water supply means 21 is within the housing 11gh of the final stand 11g.
  • part it is provided so that it may approach the pass line P (steel plate 1), ie, it may become low.
  • the injection direction of the cooling water injected from the cooling water injection ports of the respective cooling nozzles 21c, 21c,... Is based on the vertical direction, while the injection of the cooling water from the cooling nozzle closest to the work roll 11gw of the final stand 11g is performed.
  • the lower surface water supply means 22, 22,... are means for supplying cooling water to the lower surface side of the steel plate 1, that is, supplying cooling water from below the pass line P.
  • the lower surface water supply means 22, 22,... Are provided opposite to the upper surface water supply means 21, 21,..., And are substantially the same as the upper surface water supply means 21, 21,. The description is omitted here.
  • the upper surface guides 30, 30, ... are arranged between the upper surface water supply means 21 and the pass line P (steel plate 1), and when passing the front end of the steel plate 1, the front end of the steel plate 1 is connected to the conduits 21 b, 21 b,. It is a plate-like member provided so as not to be caught by the cooling nozzles 21c, 21c. Also, the upper surface guides 30, 30,... Are provided with inflow holes through which the jet flow from the upper surface water supply means 21 passes. Thereby, the jet flow from the upper surface water supply means 21 passes through the upper surface guides 30, 30,..., Reaches the upper surface of the steel plate 1, and can be appropriately cooled.
  • the shape of the upper surface guide 30 used here is not particularly limited, and a known upper surface guide can be used.
  • the upper surface guides 30, 30,... are arranged as shown in FIG. In the present embodiment, three upper surface guides 30, 30, 30 are used and are arranged in the line direction of the pass line P. All of the upper surface guides 30, 30, 30 are arranged so as to correspond to the height direction positions of the cooling nozzles 21c, 21c,.
  • the height positions of the upper surface guides 30, 30,... are arranged so as to satisfy the expression (1) described later, but as can be seen from FIGS. 2 (a) and 2 (b), the housing 11gh of the final stand 11g. About the inside part, it inclines so that it may approach the pass line P (steel plate 1) according to the height position of the nozzles 21c, 21c,.
  • the lower surface guides 35, 35,... are plate-like members arranged between the lower surface water supply means 22 and the pass line P (steel plate 1). Thereby, especially when letting the steel plate 1 pass through the manufacturing apparatus 10, it is possible to prevent the leading edge of the steel plate 1 from being caught by the lower surface water supply means 22, 22,. Further, the lower surface guides 35, 35,... Are provided with inflow holes through which the jets from the lower surface water supply means 22, 22,. Thereby, the jet flow from the lower surface water supply means 22, 22,... Passes through the lower surface guide 35 and reaches the lower surface of the steel plate 1, so that the steel plate 1 can be appropriately cooled.
  • the shape of the lower surface guide 35 used here is not particularly limited, and a known lower surface guide can be used.
  • lower surface guides 35, 35,... are arranged as shown in FIG. In this embodiment, four lower surface guides 35, 35,... Are used, and are arranged between the work roll 11gw, the pinch roller 13, and the transport rolls 12, 12, 12. All of the lower surface guides 35, 35,... Are arranged at a height that is not so low with respect to the upper ends of the transport rolls 12, 12,.
  • the lower surface guide is not necessarily provided.
  • the transport rolls 12, 12,... Of the manufacturing apparatus 10 are rolls for transporting the steel sheet 1 to the downstream side, and are arranged at predetermined intervals in the line direction of the pass line P.
  • the pinch roller 13 also serves as a drainer and is provided on the downstream side of the cooling device 20. Thereby, it is possible to prevent the cooling water injected in the cooling device 20 from flowing out to the downstream side. Furthermore, the waviness of the steel plate 1 in the cooling device 20 can be suppressed, and in particular, the plate-through property of the steel plate 1 before the tip of the steel plate 1 is bitten by the winding device can be improved.
  • the upper roll 13a is movable up and down as shown in FIG.
  • the above-described hot-rolled steel sheet manufacturing apparatus 10 manufactures a steel sheet as follows. That is, the injection of the cooling water in the cooling device 20 is stopped during the non-rolling time until the steel plate 1 is taken up by the winder and rolling of the next steel plate 1 is started. And the pinch roller 13 arranged on the downstream side of the cooling device 20 moves the upper roll 13a to a position higher than the upper surface guide 30 of the cooling device 20 during the non-rolling time. Rolling is started. When the leading end of the next steel plate 1 reaches the pinch roller 13, cooling by injection of cooling water is started. Moreover, immediately after the front-end
  • the length of the unsteady cooling part at the front end of the steel plate 1 can be shortened, and the injection is performed. It becomes possible to stabilize the plate-passability of the steel plate 1 by the cooling water. That is, when the steel plate 1 floats and approaches the upper surface guide 30, the collision force that the steel plate 1 receives from the cooling water jets injected from the cooling nozzles 21 c, 21 c,. Force acts. Therefore, even when the steel plate 1 collides with the upper surface guide 30, the impact force is mitigated by the collision force received from the cooling water jet, and the frictional heat between the steel plate 1 and the upper surface guide 30 is reduced.
  • a hot-rolled steel sheet is manufactured by the hot-rolled steel sheet manufacturing apparatus 10 provided with the cooling device 20 operated in this way on the downstream side of the hot finish rolling mill row 11, a high cooling water density and a large amount of cooling water can be obtained. Can be used and cooled. That is, by manufacturing a hot-rolled steel sheet by such a manufacturing method, it becomes possible to manufacture a hot-rolled steel sheet having a refined structure.
  • the plate passing speed in the hot finish rolling mill row may be constant except for the plate start portion. Thereby, the steel plate with which mechanical strength was raised over the steel plate full length can be manufactured.
  • the cooling device 20 of the present embodiment further has the following characteristics. This will be described with reference to the diagram shown in FIG. FIG. FIG. 6 is a diagram schematically showing an enlarged part of the cooling device 20, and shows the positional relationship between the upper surface water supply means 21, 21,..., The upper surface guide 30, and the pass line P.
  • the left side of the drawing is the upstream side
  • the right side of the drawing is the downstream side
  • the vertical direction of the drawing is the vertical direction of the manufacturing apparatus 10. Accordingly, the back / front direction of the paper is the steel plate width direction.
  • the pitch between the upper surface water supply means 21, 21 adjacent to each other in the line direction of the pass line P is L (m)
  • the amount of cooling water sprayed from the nozzle 21c is q m (m 3 / m 2 ⁇ sec)
  • Uniform cooling width W u (m) (see FIG. 5)
  • S (m 2 ) the cross-sectional area of the virtual flow path from which water jetted from one upper surface water supply means 21 shown by oblique lines in FIG.
  • the cross-sectional area S (m 2 ) of the virtual flow path can be obtained as follows.
  • the cross-sectional area S all in which the cooling water sprayed on the upper surface of the steel plate 1 may be drained in the width direction of the steel plate is expressed by the following equation (2) per one upper surface water supply means 21.
  • the said S all includes a portion where the cooling water injected traverses the portion crossing substantially the it is necessary to exclude from the flow path cross-sectional area for drainage. Therefore, if the excluded area is S j (m 2 ), this can be expressed by the following equation (3).
  • L j1 is the length (m) of the cross-sectional direction of the cross section of the jet flow in the jet direction cross section at a portion passing through the upper surface guide 30.
  • L j2 is the same length (m) on the pass line P. Therefore, the virtual channel cross-sectional area S can be calculated from the following equation (4).
  • Expression (4) and Expression (1) obtained by substituting this can be applied to any type of nozzle.
  • the nozzle is a flat nozzle and the spread angle in the plate passing direction is ⁇ n .
  • the above-mentioned L j1 and L j2 can be expressed as in the equations (5) and (6).
  • h n (m) means the distance between the tip of the nozzle and the pass line P.
  • the water flow density q m is 0.16 m 3 / (m 2 ⁇ sec). (10 m 3 / (m 2 ⁇ min)) or more.
  • the amount of high cooling water is high. It was found that the water can be cooled using a large amount of density and cooling water, and the drainage can be performed smoothly. That is, it is possible to manufacture a hot-rolled steel sheet having a refined structure by manufacturing the hot-rolled steel sheet using such a hot-rolled steel sheet manufacturing apparatus. Specifically, as a result of smooth drainage, it is possible to prevent the upper surface of the staying water from reaching the upper surface guide 30 and to effectively cool the steel plate 1. Further, such smooth drainage prevents uneven cooling in the width direction of the steel sheet 1 and enables more uniform cooling.
  • FIG. 7 shows a diagram corresponding to FIG.
  • the equivalent height hp ′ is obtained from the following equation (7).
  • hp1 is the distance from the pass line P on the upper process side to the lower surface of the upper surface guide 30 among the parts constituting S a11 as can be seen from FIG.
  • hp2 is the distance from the pass line P on the lower process side to the lower surface of the upper surface guide 30 among the parts constituting S a11 .
  • the expression (1) is obtained from the flow rate of the cooling water flowing between the pass line P (steel plate 1) and the upper surface guide 30 and the virtual flow path cross-sectional area through which the cooling water flows. Since the distance to the upper surface guide 30 is determined, the concept can be applied even when the upper surface guide 30 is not arranged in parallel to the pass line P (steel plate 1).
  • the rapid cooling of the portion shown in FIG. 2B is important for the refinement of ferrite grains, but it does not simply increase the water volume density of the cooling water, but expresses the upper limit of the water volume density of the cooling water. Since the overflow of stagnant water can be suppressed by limiting to the range of (1), it is effective for effective cooling.
  • FIG. 8 shows an example in which the upper surface guide 30 ′ is applied.
  • FIG. 8 is a diagram corresponding to FIGS. 6 and 7.
  • S 1 of the formula (8) ' is a virtual flow path cross-sectional area at the site of the height h p as indicated by hatching in FIG. 8 is similar to S in formula (1).
  • S 2 ′ in the equation (8) is a virtual flow path cross-sectional area at a portion having a height h ′ as represented by light ink in FIG. Therefore, in the case of the upper surface guide 30 ′, the changed virtual channel cross-sectional area S ′ obtained by the equation (8) is substituted for the virtual channel cross-sectional area S in the equation (1).
  • Equation (9) is an equation for calculating the 'height equivalent h p' in top guide 30.
  • r is the area expansion ratio of the virtual channel cross-sectional area, and is calculated as S ′ / S 1 ′ in this embodiment.
  • the cross-sectional area for draining the cooling water is enlarged, and the drainage performance can be further improved.
  • FIG. 9 also shows an example of a top guide having irregularities.
  • FIG. 9 shows an example in which the upper surface guide 30 ′′ is applied and corresponds to FIGS.
  • S 1 of the formula (10) is a virtual flow path cross-sectional area at the site of the height h p as indicated by hatching in FIG. 9 is similar to S in formula (1).
  • the formula S 2 ′′ in (10) is a virtual flow path cross-sectional area at a height h ′′ as represented by light ink in FIG. 9. Therefore, in the case of the upper surface guide 30 ′′, the virtual equation is expressed in Equation (1). Instead of the channel cross-sectional area S, the changed virtual channel cross-sectional area S ′ obtained by the equation (10) is substituted.
  • Expression (11) is an expression for calculating the equivalent height hp ′ of the upper surface guide 30 ′′.
  • r is the area expansion ratio of the virtual channel cross-sectional area, and in this embodiment, S ′ / S 1 ′′. Is calculated by Therefore, it is possible to apply the formula (1) by using the equivalent height hp ′ even in the upper surface guide 30 ′′.
  • S a (m 2) shows the above-mentioned equations (2) to (7), based on the distance h a and the steel sheet 1 in place of the distance h p of the top guide 30 and pass line P You can ask for it to change.
  • Figure 7 As shown in to 9, even when the distance between the pass line P and the upper surface guide changes in sheet passing direction (pass line direction), S a corresponding to the changed virtual channel cross-sectional area S '
  • the equivalent height h a ′ corresponding to the above-described equivalent height h p ′ may be used.
  • the amount of cooling water quantity q a is 0.16 m 3 / (m 2 ⁇ sec). (10 m 3 / (m 2 ⁇ min)) or more.
  • the manufacturing conditions for satisfying the above formula (12) and / or the injection of cooling water while complying with the relationship with other parts of the manufacturing apparatus and the constraints of the surrounding environment it becomes possible to give conditions and the like.
  • the manufacturing device 10 including the same, and the method for manufacturing a hot-rolled steel sheet, for example, the cooling water density, the width of the steel sheet, and the pitch of the cooling nozzles for obtaining the required cooling capacity are determined.
  • the position of the upper surface guide can be set so as to satisfy the expressions (1) and (12).
  • the cooling water density and the pitch of the cooling nozzle can be changed so as to satisfy the expressions (1) and (12), and it is possible to know in advance how much to do so.
  • the upper limit of the height position of the upper surface guide 30 is preferably 1 m from the viewpoint of sheet passability.
  • the height position of at least one of the upper surface guide and the cooling nozzle of the cooling device may be configured to be movable.
  • the equation (1), h p in equation (12), the h a can be changed according to circumstances, to ensure additional adequate drainage, be to utilize the high cooling capacity It becomes possible.
  • the lower surface of the upper surface guide is assumed not to be higher than the lower end of the cooling nozzle of the upper surface water supply means. This is because the plate is affected.
  • the means for moving the upper surface guide in the vertical direction is not particularly limited.
  • an arm that retracts the upper surface guide when replacing the work roll, a cylinder at the connecting portion between the rail and the upper surface guide, or the arm or rail itself This can be done by moving up and down.
  • Tables 1 to 5 show the conditions and results.
  • Tables 1 to 3 show examples in which the upper surface guide has a flat plate shape, and the distance between the pass line P and the upper surface guide is constant in the plate passing direction (pass line direction).
  • Table 1 shows the case where the steel plate width is 1.0 m
  • Table 2 shows the case where the steel plate width is 1.6 m
  • Table 3 shows the case where the steel plate width is 2.0 m.
  • Tables 4 and 5 are examples in which the upper surface guide has irregularities as shown in FIG.
  • the width of each steel plate was 2.0 m.
  • the drainage evaluation was performed as follows. That is, the case where the tip of the cooling nozzle was submerged by the backflow drainage from the hole provided in the upper surface guide through which the cooling water jet passes was marked as ⁇ , and the case where it was not marked as ⁇ . This is because when the tip of the cooling nozzle is submerged, the jet form of the cooling water changes from an air-liquid jet (jet that passes through the air) to a liquid-liquid jet (jet that passes through the water), and the jet is attenuated. This is because the impact force on the hot-rolled steel sheet is greatly reduced.
  • Tables 4 and 5 are examples in which the upper surface guide is uneven as described above. Therefore, the virtual flow path cross-sectional area S a ′ changed using Expression (8) and Expression (9) is used. (S ′) and the equivalent height h a ′ (h p ′) were calculated, and based on this, the left side of the equation (12) was calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

 冷却水の水量密度の増加にも対応して排水が適切に行われ、高い冷却能力を確保する冷却装置を提供する。 熱間仕上げ圧延機列より下流側に配置され、上方からパスラインに向けて冷却水を供給可能で、パスラインの方向に並列された複数の冷却ノズル、及び、パスラインと冷却ノズルとの間に配置される上面ガイド、を備える冷却装置であって、噴射する冷却水量密度をq(m/(m・秒))、冷却ノズルのパスライン方向ピッチをL(m)、上面ガイドの下面とパスラインとの距離をh(m)、均一冷却幅をW(m)、冷却ノズルのパスライン方向1ピッチあたりの、鋼板幅方向に流れる排水の仮想流路断面積をS(m)、としたとき、所定の関係が成立することを特徴とする。

Description

冷却装置、熱延鋼板の製造装置、及び熱延鋼板の製造方法
 本発明は、冷却装置、熱延鋼板の製造装置、及び製造方法に関し、詳しくは冷却水の排水性に優れ、高い冷却能力を確保することができる冷却装置、熱延鋼板の製造装置、及び熱延鋼板の製造方法に関する。
 自動車用や構造材用等として用いられる鋼材は、強度、加工性、靭性といった機械的特性に優れることが求められ、これらの機械的特性を総合的に高めるには、鋼材の組織を微細化することが有効である。そのため、微細な組織を有する鋼材を得るための方法が数多く模索されている。また、組織の微細化によれば、合金元素の添加量を削減しても優れた機械的性質を具備した高強度熱延鋼板を製造することが可能となる。
 組織の微細化方法としては、熱間仕上げ圧延の特に後段(複数の圧延機が並列された時の下流側鋼板のいずれかの圧延機)において、高圧下圧延を行ってオーステナイト粒を微細化するとともに鋼板に圧延歪を蓄積させ、圧延後に得られるフェライト粒の微細化を図ることが知られている。さらに、オーステナイトの再結晶や回復を抑制してフェライト変態を促進させるという観点から、圧延後のできるだけ短時間内に鋼板を600℃~750℃にまで冷却することが有効である。すなわち、熱間仕上げ圧延に引き続き、従来よりも早く冷却することが可能な冷却装置を設置し、圧延後の鋼板を急冷することがよい。そして、このように圧延後の鋼板を急冷するには、冷却能力を高めるために、鋼板に噴射される単位面積当りの冷却水量、すなわち、冷却水の水量密度(「冷却水量密度」と記載することもある。)を大きくすることが効果的である。
 しかしながら、このように冷却水量密度を大きくすると、給水と排水との関係で、鋼板上面には該鋼板の上面に溜まる水(滞留水)が増加してしまう問題がある。滞留水の増加により、鋼板と冷却ノズルとの間に配置され、冷却ノズルから噴射された冷却水を通過させる孔を有する上面ガイドに、上記滞留水が達していわゆるオーバーフローを生じることがある。オーバーフローが生じると次のような不具合を起こすことがある。
 (1)滞留水が厚く形成されることにより、冷却ノズルからの冷却水の噴流が減衰する。さらに滞留水が厚くなり、冷却ノズルの噴射口にまで冷却水が達すれば、噴流の減衰も大きくなる。
  (2)滞留水の排出に際し、上面ガイドとの接触による流動抵抗が生じるので排水性が低下する。
  (3)オーバーフローした水は制御し難いため、他の部位へ流れ込む等して予期せぬ弊害を招く虞がある。
 すなわち、このような不具合により、高い冷却能力を発揮することができなくなる点が問題となり、鋼板に噴射する冷却水の水量密度を大きくすることが効果的に行えなくなる場合がある。
 鋼板上面側の排水に関しては、特許文献1、2のような技術が開示されている。特許文献1に記載の熱延鋼帯の冷却装置では、上面ガイドに孔を設け、ここを通じて冷却水が供給されるとともに、当該孔が滞留水をオーバーフローさせる孔としても機能するように構成されている。
  また、特許文献2に記載の鋼板の冷却装置では、上面ガイドに冷却水を供給するための孔とオーバーフローのためのスリットを別個に設け、滞留水の排水の円滑を図り、冷却能力の低下を抑制することができる。
特許第3770216号公報 特許第4029871号公報
 しかしながら、上記した上面ガイドの構成を備える冷却装置では、オーバーフローが生じること、すなわち、滞留水が上面ガイドにまで達することが前提である。これに対してさらに供給する冷却水の水量密度や供給量を増加させて、冷却能力を向上させることを考えると、排水性向上に対してさらなる技術を提供する必要があった。
 上面ガイドを高い位置に配置すれば、オーバーフローの可能性を低減することはできるが、鋼板と冷却ノズルとの接触による冷却ノズルの破損を避けるため、上面ガイドは冷却ノズルの噴射口よりも低い位置に設ける必要がある。そして当該冷却ノズルは冷却能力の低下を抑えるためにできるだけ鋼板に近い位置(低く)設けることが望まれる。従って、上面ガイドも可能な限り低い位置に配置されることが好ましい。
 そこで本発明は、上記問題点に鑑み、冷却水の水量密度の増加にも対応して排水が適切に行われ、これにより高い冷却能力を確保することができる鋼板の冷却装置を提供することを課題とする。また、これを用いた熱延鋼板の製造装置、及び熱延鋼板の製造方法を提供する。
 以下、本発明について説明する。
 請求項1に記載の発明は、熱間仕上げ圧延機列より下流側に配置され、パスラインの上方からパスラインに向けて冷却水を供給可能で、パスラインの方向に並列された複数の冷却ノズル、及び、パスラインと冷却ノズルとの間に配置される上面ガイド、を備える冷却装置であって、冷却ノズルは、冷却水量密度0.16(m/(m・秒))以上で冷却水を噴射可能であるとともに、噴射する冷却水量密度をq(m/(m・秒))、冷却ノズルのパスライン方向ピッチをL(m)、上面ガイドの下面とパスラインとの距離をh(m)、均一冷却幅をW(m)、冷却ノズルのパスライン方向1ピッチあたりの、鋼板幅方向に流れる排水の仮想流路断面積をS(m)、としたとき、
Figure JPOXMLDOC01-appb-I000003
が成立することを特徴とする冷却装置である。
 請求項2に記載の発明は、請求項1に記載の冷却装置において、上面ガイドが、パスラインと上面ガイドとの距離がパスライン方向で変化する形態を有し、hの代わりに、上面ガイドの相当高さh’が適用される。
 請求項3に記載の発明は、請求項1又は2に記載の冷却装置において、上面ガイド及び冷却ノズルの少なくとも一方が、上下方向に移動可能とされていることを特徴とする。
 請求項4に記載の発明は、熱間仕上げ圧延機列、及び該熱間仕上げ圧延機列の下流側に配置される請求項1~3のいずれかに記載の冷却装置を備え、冷却装置の上流側端部は熱間仕上げ圧延機列の最終スタンドの内側に配置されていることを特徴とする熱延鋼板の製造装置である。
 請求項5に記載の発明は、熱間仕上げ圧延機列より下流側に配置された冷却装置により、仕上げ圧延後に鋼板の少なくとも上面に冷却水を供給し、鋼板を冷却する工程を含む熱延鋼板の製造方法であって、冷却装置に設けられる冷却ノズルからの冷却水量密度を、0.16(m/(m・秒))以上であるq(m/(m・秒))とし、冷却ノズルの通板方向ピッチをL(m)、冷却装置に配置された上面ガイドの下面と通板される鋼板の上面との距離をh(m)、通板される鋼板の板幅をW(m)、冷却ノズルの通板方向1ピッチあたりの、鋼板幅方向に流れる排水の仮想流路断面積をS(m)、としたとき、
Figure JPOXMLDOC01-appb-I000004
が成立することを特徴とする熱延鋼板の製造方法である。
 請求項6に記載の発明は、請求項5に記載の熱延鋼板の製造方法において、上面ガイドが、鋼板と上面ガイドとの距離が通板方向で変化する形態を有するときには、hの代わりに、上面ガイドの相当高さh’を適用する。
 請求項7に記載の発明は、請求項5又は6に記載の熱延鋼板の製造方法において、上面ガイド、及び冷却ノズルの少なくとも一方が、上下方向に移動可能とされていることを特徴とする。
 請求項8に記載の発明は、請求項5~7のいずれかに記載の熱延鋼板の製造方法において、冷却装置は、該冷却装置の上流側端部が熱間仕上げ圧延機列の最終スタンドの内側に配置されることを特徴とする。
 本発明により、冷却水の水量密度を高くし、また、大量の冷却水を用いて冷却することができるとともに、その排水も円滑に行われ、組織が微細化された熱延鋼板を製造することが可能になる。すなわち、排水が円滑に行われる結果、滞留水の上面が上面ガイドにまで達することを防止でき、鋼板を効果的に冷却することが可能となる。また、このような円滑な排水は、鋼板の板幅方向の冷却ムラを抑制し、より均一な冷却を可能とする。
1つの実施形態にかかる鋼板の冷却装置が備えられる熱延鋼板の製造装置の一部を模式的に示した図である。 図2(a)は図1のうち、冷却装置が配置される部分で該冷却装置全体を含むように拡大した図である。図2(b)は、図2(a)のうち上流側に注目した図である。 図2(a)の矢印IIIから見た図である。 冷却ノズルの説明をするための図である。 冷却ノズルの説明をするための他の図である。 式(1)を説明するための図である。 上面ガイドが傾斜した部位について説明する図である。 上面ガイドが凹凸を有している例について説明する図である。 上面ガイドが凹凸を有している他の例について説明する図である。
 本発明の上記した作用および利得は、次に説明する発明を実施するための形態から明らかにされる。以下本発明を図面に示す実施形態に基づき説明する。ただし本発明はこれら実施形態に限定されるものではない。
 図1は、1つの実施形態にかかる鋼板の冷却装置20(以下、「冷却装置20」と記載することがある。)を含む熱延鋼板の製造装置10の一部を概略的に示した図である。図1では、鋼板1は紙面左(上流側、上工程側)から右(下流側、下工程側)の方向へと搬送されており、紙面上下が鉛直方向である。当該上流側(上工程側)・下流側(下工程側)方向を通板方向と記載することがあり、これに直交する方向で、通板される鋼板の板幅の方向を鋼板板幅方向と記載することがある。また、図において見易さのため、繰り返しとなる符号の記載は省略することがある。また、図1の視点において、鋼板1の定常圧延部分(先端部及び後端部以外の部分)が通過するラインをパスラインPとして表わしている。従って、鋼板の定常圧延部分は、パスラインPを通過する。
 図1に示すように、熱延鋼板の製造装置10は、熱間仕上げ圧延機列11、冷却装置20、搬送ロール12、12、…、ピンチロール13を備えている。また図示及び説明は省略するが、熱間仕上げ圧延機列11より上流側には、加熱炉や粗圧延機列等が配置され、熱間仕上げ圧延機列11に入るための鋼板の条件を整えている。一方、ピンチロール13の下流側には他の冷却装置や巻き取り機が設けられ、鋼板コイルとして出荷するための各種設備が配置されている。
 熱延鋼板は概ね次のように製造される。すなわち、加熱炉から抽出され、粗圧延機で所定の厚さにまで圧延された粗バーが、温度を制御されながら連続的に熱間仕上げ圧延機列11で所定の厚さに圧延される。その後、冷却装置20内で急速に冷却される。ここに、冷却装置20は、熱間仕上げ圧延機列11の最終スタンド11gにおいて、圧延ロール(ワークロール)を支持するハウジング11ghの内側に、当該最終スタンド11gの圧延ロール11gw、11gw(図2参照)に極力近接するようにして設置されている。そして、ピンチロール13を通過して他の冷却装置により所定の巻き取り温度まで冷却され、巻き取り機によりコイル状に巻き取られる。
 以下、冷却装置20を含め、熱延鋼板の製造装置10(以下「製造装置10」と記載することがある。)について詳しく説明する。図2は、図1のうち冷却装置20が備えられた部位を拡大して示した図である。図2(a)は冷却装置20の全体が表れるように拡大した図、図2(b)は、さらに最終スタンド11gの近傍に注目した図である。図3は、最終スタンド11gの下流側から製造装置10を見た模式図で、図2(a)に矢印IIIで示した方向から製造装置10を見た図である。従って図3では紙面上下が製造装置10の鉛直方向、紙面左右が鋼板板幅方向、及び紙面奥/手前方向が通板方向となる。
 本実施形態における熱間仕上げ圧延機列11は、図1からわかるように7機のスタンド11a、11b、…、11gが通板方向に沿って配列されている。ぞれぞれのスタンド11a、11b、…、11gは、各スタンドに含まれる圧延機が備えられ、最終製品において必要とされる厚さ、機械的性質、表面品質等の条件を満たすことができるように圧下率等の圧延条件が設定されている。ここで、各スタンド11a、11b、…、11gの圧下率は製造される鋼板が有するべき性能を満たすように設定されるが、高圧下圧延を行ってオーステナイト粒を微細化するとともに鋼板に圧延歪を蓄積させ、圧延後に得られるフェライト粒の微細化を図る観点から最終スタンド11gにおいて圧下率が大きいことが好ましい。
  各スタンド11a、…、11f、11gの圧延機は、実際に鋼板を挟んで圧下する一対のワークロール11aw、11aw、…、11fw、11fw、11gw、11gwと、該ワークロール11aw、11aw、…、11fw、11fw、11gw、11gwに外周同士を接するように配置された一対のバックアップロール11ab、11ab、…、11fb、11fb、11gb、11gbとを有している。また、圧延機はワークロール11aw、11aw、…、11fw、11fw、11gw、11gw及びバックアップロール11ab、11ab、…、11fb、11fb、11gb、11gbを内側に含み、スタンド11a、…、11f、11gの外殻を形成し、ワークロール11aw、11aw、…、11fw、11fw、11gw、11gw及びバックアップロール11ab、11ab、…、11fb、11fb、11gb、11gbを支持するハウジング11ah、…、11fh、11ghを備えている。該ハウジング11ah、…、11fh、11ghは対向して立設された立設部(例えば最終スタンド11gにおいては図3に表れている立設部11gr、11gr)を有している。すなわち、ハウジングの立設部は、図3からわかるように、鋼板1(パスラインP)を鋼板板幅方向に挟むように立設されている。また最終スタンド11gの立設部11gr、11grは、冷却装置20の一部及び鋼板1(パスラインP)を鋼板板幅方向に挟むように立設されている。
 ここで、図2(a)にL1で示した、ワークロール11gwの軸中心とハウジング立設部11gr、11grの下流側端面との距離は、ワークロール11gwの半径r1よりも大きいことが好ましい。これにより、L1-r1に相当する部位には、後述するように冷却装置20の一部を配置することができる。すなわち当該冷却装置20の一部をハウジング11ghの内側に挿入するように設置することが可能である。
  また、図3に示すように、冷却装置20がハウジング立設部11gr、11grの間に挿入された部位において、冷却装置20の鋼板板幅方向の両側部にはハウジング立設部11gr、11grが側壁として存在する。そして冷却装置20の鋼板板幅方向端部とハウジング立設部11gr、11grとの間には所定の間隙が形成されている。
 次に冷却装置20について説明する。冷却装置20は、上面給水手段21、21、…、下面給水手段22、22、…、上面ガイド30、30、…、及び下面ガイド35、35、…を備えている。
 上面給水手段21、21、…は、鋼板1の上面側に、すなわちパスラインPに上方から冷却水を供給する手段であり、冷却ヘッダ21a、21a、…、各冷却ヘッダ21a、21a、…に複数列をなして設けられた導管21b、21b、…、及び該導管21b、21b、…の先端に取り付けられた冷却ノズル21c、21c、…を備えている。
  本実施形態では、図2、図3からわかるように冷却ヘッダ21aは鋼板板幅方向に延在する配管であり、このような冷却ヘッダ21a、21a、…が通板方向に配列されている。
  導管21bは各冷却ヘッダ21aから分岐する複数の細い配管であり、その開口端部が鋼板1の上面側(パスラインP)に向けられている。導管21b、21b、…は、冷却ヘッダ21aの管長方向に沿って、すなわち鋼板板幅方向に複数、櫛歯状に設けられている。
 各導管21b、21b、…の先端には冷却ノズル21c、21c、…が取り付けられている。本実施形態の冷却ノズル21c、21c、…は、扇状の冷却水噴流(例えば、5mm~30mm程度の厚さ)を形成可能なフラットタイプのスプレーノズルである。図4、図5に当該冷却ノズル21c、21c、…により鋼板表面に形成される冷却水噴流の模式図を示した。図4は斜視図である。図5は当該噴流が鋼板表面に衝突したときの衝突態様を概略的に示した図である。図5において、白丸で表したのは冷却ノズル21c、21c、…の直下の位置、太線で示したのは冷却水噴流の鋼板1への衝突位置、及び概形である。図4、図5には通板方向と鋼板板幅方向を併せて示している。また、図5に示した「……」は記載を省略した旨を表わしている。図5からわかるように、ある1つの冷却ヘッダ21aに配置される冷却ノズル21c、21c、…により1つのノズル列(例えばノズル列A、ノズル列B、ノズル列C)が形成される。
  また、図4、図5からわかるように本実施形態では、隣り合うノズル列(例えばノズル列Aとノズル列B、ノズル列Bとノズル列C)では、鋼板板幅方向の位置をずらすように配置し、さらにその隣のノズル列(例えばノズル列Aとノズル列C)とは鋼板板幅方向位置が同じとなるように、いわゆる千鳥状配列としている。
 本実施形態では、鋼板1の表面における鋼板板幅方向の全ての位置にわたって冷却水噴流を少なくとも2回通過できるように冷却ノズルを配置した。すなわち、通板される鋼板1のある点STは、図5の直線矢印に沿って移動する。その際にノズル列Aで2回(A1、A2)、ノズル列Bで2回(B1、B2)、ノズル列Cで2回(C1、C2)、…というように、各ノズル列A、B、Cにおいて当該ノズル列A、B、Cに属する冷却ノズル21c、21c、…からの噴流が2回衝突する。そのために、冷却ノズル21c、21c、…の間隔P、冷却水噴流の衝突幅L、ねじり角βとの間に、
    L=2P/cosβ
の関係が成り立つように、冷却ノズル21c、21c、…を配置した。ここでは2回衝突するとしたが、これに限定されることはなく、3回以上衝突するように構成してもよい。なお、鋼板板幅方向における冷却能の均一化を図るという観点から、通板方向で隣り合うノズル列では、互いに逆の方向に冷却ノズル21c、21c、…を捻った。
 また、冷却ノズルの配列により冷却に関する「均一冷却幅」が定まる。これは、配置される複数の冷却ノズルの性質上、搬送される鋼板を均一に冷却することが可能である鋼板1の板幅方向の大きさを意味する。具体的には、鋼板の製造装置において製造できる最大の鋼板の幅と一致することが多い。具体的には例えば図5にWで示した大きさである。
 ここで、本実施形態では、上記のように隣り合うノズル列A、B、Cでは、互いに逆の方向に冷却ノズルを捻じった形態を説明したが、必ずしもこれに限定されるものではなく、全てが同じ方向に捻じってある形態であってもよい。また、捻じり角(上記β)も特に限定されるものではなく、必要とされる冷却能力や設備配置の納まり等の観点から適宜決定することができる。
  また、本実施形態では、上記利点の観点から通板方向に隣り合うノズル列A、B、Cで冷却ノズルを千鳥状配列とする形態としたが、これに限定されるものではなく、冷却ノズルが通板方向に直線上に配列される形態であってもよい。
 上面給水手段21が備えられる位置のうち、鋼板の通板方向(パスラインPの方向)の位置については特に限定されるものではないが、次のように構成されていることが好ましい。すなわち、熱間仕上げ圧延機列11における最終スタンド11gの直後に、該最終スタンド11gのハウジング11ghの内側から当該最終スタンド11gのワークロール11gwに極力近接するように冷却装置20の一部を配置させる。これにより、熱間仕上げ圧延機列11による圧延直後の鋼板1を急冷することが可能になるとともに、鋼板1の先端部を安定して冷却装置20に誘導することができる。
  上面給水手段21の高さ位置については、後述する式(1)を満たすように配置された上面ガイド30に沿ったものとされるが、図2からわかるように最終スタンド11gのハウジング11gh内の部位についてはパスラインP(鋼板1)に近づくように、すなわち低くなるように設けられている。
 各冷却ノズル21c、21c、…の冷却水噴射口から噴射される冷却水の噴射方向は鉛直方向を基本とする一方、最終スタンド11gのワークロール11gwに最も近い冷却ノズルからの冷却水の噴射は、鉛直よりもワークロール11gwの方向に傾けられることが好ましい。これにより、鋼板1が最終スタンド11gで圧下されてから冷却が開始されるまでの時間をより一層短くし、圧延で蓄積された圧延歪が回復する時間をほぼゼロにすることも可能となる。従って、より微細な組織を有する鋼板を製造することができる。
 下面給水手段22、22、…は、鋼板1の下面側に冷却水を供給する、すなわちパスラインPの下方から冷却水を供給する手段であり、冷却ヘッダ22a、22a、…、各冷却ヘッダ22a、22a、…に複数列をなして設けられた導管22b、22b、…、及び該導管22b、22b、…の先端に取り付けられた冷却ノズル22c、22c、…を備えている。下面給水手段22、22、…は、上記した上面給水手段21、21、…に対向して設けられ、冷却水の噴射方向が異なるが、概ね上面給水手段21、21、…と同様であるのでここでは説明を省略する。
 次に上面ガイド30、30、…について説明する。上面ガイド30、30、…は、上面給水手段21とパスラインP(鋼板1)との間に配置され、鋼板1の先端を通すときに、該鋼板1の先端が導管21b、21b、…や冷却ノズル21c、21cに引っ掛からないように設けられた板状の部材である。また、上面ガイド30、30、…には上面給水手段21からの噴流を通過させる流入孔が設けられている。これにより、上面給水手段21からの噴流が上面ガイド30、30、…を通過して鋼板1の上面に達し、適切な冷却をすることが可能となる。ここで用いられる上面ガイド30の形状は特に限定されるものではなく公知の上面ガイドを用いることが可能である。
 上面ガイド30、30、…は、図2に示したように配置される。本実施形態では3つの上面ガイド30、30、30が用いられ、これがパスラインPのライン方向に配列される。いずれの上面ガイド30、30、30も冷却ノズル21c、21c、…の高さ方向位置に対応するように配置されている。
  上面ガイド30、30、…の高さ位置については、後述する式(1)を満たすように配置されるが、図2(a)、図2(b)からわかるように最終スタンド11gのハウジング11gh内の部位については、ノズル21c、21c、…の高さ位置に合わせてパスラインP(鋼板1)に近づくように傾斜して設けられている。
 下面ガイド35、35、…は、下面給水手段22とパスラインP(鋼板1)との間に配置される板状の部材である。これにより、特に鋼板1を製造装置10に通す際に、鋼板1の最先端が下面給水手段22、22、…や搬送ロール12、12、…に引っ掛かることを防止できる。また、下面ガイド35、35、…には下面給水手段22、22、…からの噴流を通過させる流入孔が設けられている。これにより、下面給水手段22、22、…からの噴流が該下面ガイド35を通過して鋼板1の下面に達し、鋼板1の適切な冷却をすることが可能となる。ここで用いられる下面ガイド35の形状は特に限定されるものではなく公知の下面ガイドを用いることが可能である。
 このような下面ガイド35、35、…は、図2に示したように配置される。本実施形態では4つの下面ガイド35、35、…が用いられ、ワークロール11gw、ピンチローラ13、搬送ロール12、12、12間のそれぞれに配置される。いずれの下面ガイド35、35、…も搬送ロール12、12、…の上端部に対してあまり低くならない高さに配置される。
 本実施形態では下面ガイドを備えた例を説明したが、下面ガイドは必ずしも設けられなくてもよい。
 製造装置10の搬送ロール12、12、…は、鋼板1を下流側に搬送するためのロールであり、パスラインPのライン方向に所定の間隔で配列されている。
 ピンチローラ13は、水切りを兼ねており、冷却装置20の下流側に設けられている。これにより、冷却装置20内で噴射された冷却水が下流側へと流出することを防止できる。さらには、冷却装置20における鋼板1の波打ちを抑制して、特に、鋼板1の先端が巻き取り装置に噛み込まれる前の時点における鋼板1の通板性を向上させることができる。ここでピンチローラ13のロールのうち上側のロール13aは図2(a)に示したように上下に移動可能とされている。
 上記した熱延鋼板の製造装置10により例えば次のように鋼板の製造をおこなう。すなわち、鋼板1が巻き取り機により巻き取られ、次の鋼板1の圧延が開始されるまでの非圧延時間では冷却装置20における冷却水の噴射は停止される。そして、冷却装置20の下流側に配置されたピンチローラ13は、上記非圧延時間中に、冷却装置20の上面ガイド30よりも高い位置まで上側ロール13aが移動され、その後、次の鋼板1の圧延が開始される。
  当該次の鋼板1の先端がピンチローラ13に到達したときに冷却水の噴射による冷却を開始する。また、鋼板1の先端がピンチローラ13を通過した直後に上側ロール13aを下降させ、鋼板1のピンチを開始する。このとき鋼板1の上面側に供給された冷却水は、鋼板1の冷却に供された後、図3にD、Dで示したように、鋼板1の鋼板板幅方向両端から排水される。
 鋼板1の先端が冷却装置20内へと搬送される前から冷却水の噴射を開始することで、鋼板1の先端における非定常冷却部の長さを短くすることが可能になるほか、噴射される冷却水により、鋼板1の通板性を安定化させることが可能になる。すなわち、鋼板1が浮き上がって上面ガイド30へと近づこうとする場合には、鋼板1が冷却ノズル21c、21c、…より噴射される冷却水噴流から受ける衝突力が増し、鋼板1に鉛直方向下向きの力が作用する。そのため、鋼板1が上面ガイド30へと衝突した場合であっても、冷却水噴流から受ける衝突力によりによりその衝撃力が緩和されるとともに、鋼板1と上面ガイド30との摩擦熱が低減されるため、鋼板表面に生じる擦り疵を低減することが可能になる。
  従って、このように操業される冷却装置20を熱間仕上げ圧延機列11の下流側に備える熱延鋼板の製造装置10により熱延鋼板を製造すれば、高い冷却水量密度、大量の冷却水を用いて冷却することが可能になる。すなわち、かかる製造方法により熱延鋼板を製造することで、組織が微細化された熱延鋼板を製造することが可能になる。
 また、熱間仕上げ圧延機列での通板速度は通板開始部分を除いて一定としてもよい。これにより、鋼板全長に亘って機械的強度が高められた鋼板を製造することができる。
 本実施形態の冷却装置20は、さらに次のような特徴を有する。図6に示した図を参照しつつ説明する。図6は、冷却装置20の一部を拡大して模式的に表わした図であり、上面給水手段21、21、…、上面ガイド30、及びパスラインPの位置関係を示している。図6では紙面左が上流側、紙面右が下流側であり、紙面上下が製造装置10の鉛直方向である。従って紙面奥/手前方向が鋼板板幅方向となる。
 パスラインPのライン方向に隣り合う上面給水手段21、21間のピッチをL(m)、ノズル21cから噴射する冷却水の水量密度をq(m/m・秒)、冷却装置の均一冷却幅W(m)(図5参照)、図6に斜線で示した1つの上面給水手段21から噴射された水が排水される仮想流路の断面積をS(m)、及びパスラインPと上面ガイド30の下面までの距離をh(m)としたとき、以下の式(1)を満たす。
Figure JPOXMLDOC01-appb-M000005
 ここで仮想流路の断面積S(m)は次のように求めることができる。
  鋼板1の上面に噴射された冷却水が鋼板板幅方向へ排水される可能性のある断面積Sallは1つの上面給水手段21当たり、次式(2)で表わされる。
Figure JPOXMLDOC01-appb-M000006
 しかしながら、当該Sallには、噴射された冷却水が横切る部分を含んでおり、実質的に当該横切る部分は排水のための流路断面積から除外することが必要である。そこで、除外する面積をS(m)とするとこれは次式(3)で表わすことができる。
Figure JPOXMLDOC01-appb-M000007
 ここで、Lj1は、図6に表わしたように、噴流の噴流方向断面のうち、上面ガイド30を通過する部位における該断面の通板方向長さ(m)である。一方、Lj2は、パスラインP上における同様の長さ(m)である。従って、仮想流路断面積Sは次の式(4)から算出することができる。
Figure JPOXMLDOC01-appb-M000008
 式(4)及びこれを代入した式(1)は、どのような形式のノズルについても適用することができる。
  例としてノズルをフラットノズルとし、その通板方向の広がり角をθとすれば、上記Lj1、及びLj2は式(5)、式(6)のように表わすことができる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 ここで、h(m)は、ノズルの先端とパスラインPとの距離を意味する。
 また、式(1)において、機械的性質のよい、組織が微細化された熱延鋼板を製造する観点から冷却水の水量密度qの大きさは0.16m/(m・秒)(10m/(m・分))以上とする。
  上記の考え方に基づき、後述する実施例等の各種実験等によって、上記式(1)を満たすような鋼板の冷却装置、及びこれを備える熱延鋼板の製造装置によれば、高い冷却水の水量密度、大量の冷却水を用いて冷却することができるとともに、その排水も円滑に行われることがわかった。すなわち、かかる熱延鋼板の製造装置により熱延鋼板を製造することで、組織が微細化された熱延鋼板を製造することが可能になる。具体的には、排水が円滑に行われる結果、滞留水の上面が上面ガイド30にまで達することを防止することができ、鋼板1を効果的に冷却することが可能となる。また、このような円滑な排水は、鋼板1の鋼板板幅方向の冷却ムラを防止し、より均一な冷却が可能となる。
 式(1)の左辺は、供給される冷却水の水量に対する確保される排水路断面積の比率、すなわち排水される流速と、鋼板1の上面から上面ガイド30の下面までの距離hとの関係で決まる値と、の比率が高まると、排水が困難となることを表している。
 上記式(1)~式(6)では上面ガイド30がパスラインPと略平行に配置された部位について説明した。これに対して図2(b)に示したように上面ガイド30が傾斜して配置された部位についても同様に考えることができる。図7に、当該部位における図6に相当する図を示した。
 このように上面ガイド30が傾斜して配置された場合には、式(1)~式(6)において、パスラインPと上面ガイド30の下面までの距離hの値の代わりに相当高さh’を適用する。本形態では相当高さh’は次式(7)から求まる。
Figure JPOXMLDOC01-appb-M000011
 ここで、hp1は、図7からわかるようにSa11を構成する部位のうち上工程側におけるパスラインPと上面ガイド30の下面までの距離である。一方、hp2は、Sa11を構成する部位のうち下工程側におけるパスラインPと上面ガイド30の下面までの距離である。
 このように、式(1)は、パスラインP(鋼板1)と上面ガイド30の間を流れる冷却水の流量と、冷却水が流れる仮想流路断面積より、パスラインP(鋼板1)と上面ガイド30との距離を決めるものであることから、パスラインP(鋼板1)に対して上面ガイド30が平行に配置されていない場合に対しても、その考え方を適用できる。特に図2(b)に示した部位の急冷は、フェライト粒の微細化を図る上で重要であるが、単に冷却水の水量密度を大きくするのではなく、冷却水の水量密度の上限を式(1)の範囲に抑えることで滞留水のオーバーフローを抑制できるため、効果的な冷却に有効である。
 ここまでは上面ガイド30が平板状である例を説明したが、排水性を向上させる観点から凹凸形状を有する上面ガイドを適用してもよい。図8に、上面ガイド30’を適用した1つの例を示した。図8は、図6、図7に相当する図である。
 図8の例では、上面ガイド30’において、冷却ノズル21cが配置される部位ではパスラインPと上面ガイド30’下面との距離がhである。一方、隣接する冷却ノズル21c、21c間ではパスラインPと上面ガイド30’とはh+h’の高さとされている。
  このような上面ガイド30’が適用された場合にも、基本的には式(1)~式(7)と同様の考え方を適用することができる。ただし、上面ガイド30’を適用したことによる排水のための仮想流路断面積の増加を考慮し、式(1)のS、hに代えて、変更された仮想流路断面積S’、及び相当高さh’を適用する。本形態では、S’は式(8)、h’は式(9)からそれぞれ求めることができる。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 ここで式(8)のS’は、図8にハッチングで示したように高さhの部位における仮想流路断面積であり、式(1)のSと同様である。一方、式(8)のS’は、図8に薄墨で表したように高さh’の部位における仮想流路断面積である。従って、上面ガイド30’の場合には、式(1)に仮想流路断面積Sの代わりに式(8)により求まる変更された仮想流路断面積S’を代入する。
 式(9)は、上面ガイド30’における相当高さh’を算出する式である。ここで、rは仮想流路断面積の面積拡大率であり、本形態ではS’/S’で算出される。従って上面ガイド30’でも相当高さh’を用いることにより式(1)を適用することが可能である。
 このように上面ガイド30’が適用されていることにより冷却水の排水のための断面積が拡大され、さらに排水性を向上させることができる。
 図9にも凹凸を有する上面ガイドの例を示した。図9は上面ガイド30”を適用した例で、図6、図7に相当する図である。
 図9の例では、上面ガイド30”において、隣り合う冷却ノズル21c、21c間の部位でパスラインPと上面ガイド30”下面との距離がhである。一方、冷却ノズル21cが配置された部位ではパスラインPと上面ガイド30”とはh+h”の高さとされている。
  このような上面ガイド30”が適用された場合にも、基本的には式(1)~式(7)と同様の考え方を適用することができる。ただし、上面ガイド30”を適用したことによる排水のための仮想流路断面積の増加を考慮し、式(1)のS、hに代えて、変更された仮想流路断面積S’、及び相当高さh’を適用する。本形態では、S’は式(10)、h’は式(11)からそれぞれ求めることができる。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 ここで式(10)のS”は、図9にハッチングで示したように高さhの部位における仮想流路断面積であり、式(1)のSと同様である。一方、式(10)のS”は、図9に薄墨で表したように高さh”の部位における仮想流路断面積である。従って、上面ガイド30”の場合には、式(1)に仮想流路断面積Sの代わりに、式(10)により求まる変更された仮想流路断面積S’を代入する。
 式(11)は、上面ガイド30”における相当高さh’を算出する式である。ここで、rは仮想流路断面積の面積拡大率であり、本形態ではS’/S”で算出される。従って上面ガイド30”でも相当高さh’を用いることにより式(1)を適用することが可能である。
 このように上面ガイド30”が適用されていることにより冷却水の排水のための断面積が拡大され、さらに排水性を向上させることができる。
 図7~図9で示したように、パスラインPと上面ガイドとの距離が通板方向(パスライン方向)で変化するときには、上記のように相当高さh’を用いることにより式(1)の関係を適用することができる。
 また、冷却装置20を用いて熱延鋼板を製造する際には、式(12)を満たすように製造することができる。すなわち、通板方向に隣り合う上面給水手段21、21間のピッチをL(m)、ノズル21cから噴射される冷却水の水量密度をq(m/m・秒)、通板される鋼板の板幅W(m)、図6に斜線で示した1つの上面給水手段21から噴射された水が排水される仮想流路の断面積をS(m)、及び通板される鋼板1の上面から上面ガイド30の下面までの距離をh(m)としたとき以下の式(12)を満たすように冷却する。
Figure JPOXMLDOC01-appb-M000016
 ここで、S(m)は、上記した式(2)~式(7)において、上面ガイド30とパスラインPとの距離hに代えて鋼板1との距離hに基づいて算出するように変更して求めることができる。
  図7~図9で示したように、パスラインPと上面ガイドとの距離が通板方向(パスライン方向)で変化するときも、変更された仮想流路断面積S’に対応するS’を用い、上記した相当高さh’に対応する相当高さh’を用いればよい。
 また、式(12)において、機械的性質のよい、組織が微細化された熱延鋼板を製造する観点から冷却水の水量密度qの大きさは0.16m/(m・秒)(10m/(m・分))以上とする。
 かかる熱延鋼板の製造方法によれば、製造装置の他の部位との関係や周辺環境の制約に対応しつつ、上記式(12)を満たすための製造の条件、及び/又は冷却水の噴射条件等を与えることが可能となる。
 以上説明した冷却装置20、これを備える製造装置10、及び熱延鋼板の製造方法によれば、例えば、必要な冷却能力を得るための冷却水量密度、鋼板の幅、及び冷却ノズルのピッチが決まっていた場合には、上面ガイドの位置を式(1)、式(12)を満たすように設定することができる。
  また、冷却装置20のように、その上流側で上面ガイド30をパスラインPに近付ける必要がある場合、すなわち式(1)におけるh、式(12)におけるhが決まっているときがある。かかる場合には、式(1)、式(12)を満たすように冷却水量密度、冷却ノズルのピッチを変更することができ、それをどの程度行えば良いかについて予め知ることが可能である。
 また、上面ガイド30の高さ位置の上限については、通板性の観点から1mであることが好ましい。
 以上のように、本実施形態の鋼板の冷却装置、熱延鋼板の製造装置、及び熱延鋼板の製造方法により、熱延鋼板の製造において、高い冷却水量密度による冷却が必要なときにも、適切な排水が可能となり、その高い冷却能力を効率良く活かすことができる。
 さらに上記実施形態の鋼板の冷却装置、熱延鋼板の製造装置、及び熱延鋼板の製造方法の変形例として次のような形態を挙げることができる。すなわち、冷却装置の上面ガイド及び冷却ノズルの少なくとも一方の高さ位置を移動可能に構成してもよい。これによれば、上記式(1)、式(12)におけるh、hを、状況に応じて変更することができ、さらなる適切な排水性を確保して、高い冷却能力を活かすことが可能となる。
  ただし、このときには、上面ガイドの下面が上面給水手段の冷却ノズルの下端よりも高くならないものとする。通板に影響を及ぼすからである。
 上面ガイドを上下方向に移動させる手段は特に限定されるものではないが、例えばワークロールの交換時に上面ガイドを退避させるアーム、レールと上面ガイドとの連結部にシリンダを設ける、又はアームやレールそのものを上下移動させること等によりおこなうことができる。
 以下、実施例により本発明をさらに詳しく説明する。ただし、本発明はこれに限定されるものではない。実施例では、上記した式(12)について各要素を変更し、排水性との関係を明らかにした。表1~表5に条件及び結果を示した。
  表1~表3は上面ガイドが平板状であり、パスラインPと上面ガイドとの距離が通板方向(パスライン方向)で一定の例である。表1は鋼板の幅が1.0m、表2は鋼板の幅が1.6m、および表3は鋼板の幅が2.0mの場合である。
  表4、表5は、図8に示したように上面ガイドが凹凸を有している例であり、パスラインPと上面ガイドとの距離が通板方向(パスライン方向)で変化する例である。表4が図8のh’=0.1mの例、表5が図8のh’=0.2mの例である。鋼板の幅はいずれも2.0mとした。
 また、各表において、排水性の評価は次のようにおこなった。すなわち、上面ガイドに設けられた、冷却水噴流が通過する孔からの逆流した排水により、冷却ノズルの先端が水没したときを×、しなかったときを○とした。これは、冷却ノズルの先端が水没すると、冷却水の噴流の形態が気中液ジェット(空気中を通過するジェット)から液中液ジェット(水中を通過するジェット)に変化し、噴流の減衰が著しくなって、熱延鋼板への衝突力が大きく低下するためである。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表4、表5の例では、上記したように上面ガイドに凹凸が形成されている例であるから、式(8)、式(9)を用いて変更された仮想流路断面積S’(S’)、及び相当高さh’(h’)を算出し、これに基づいて式(12)の左辺の計算を行った。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 以上表1~表5からわかるように、式(12)の左辺が1を超えるときには、排水性に問題が生じることがわかった。また、パスラインと上面ガイドとの距離が通板方向(パスライン方向)で変化する上面ガイドである場合には、上記説明したように相当高さha’(h’)を用いて排水性を予め知ることができることがわかる。
  また、表4、表5の結果を表3の結果と比較すると、仮想流路断面積の拡大により排水性が向上していることもわかる。
  1 鋼板
  10 製造装置
  11 圧延機列
  11g 最終スタンド
  11gh ハウジング
  11gr (ハウジング)立設部(側壁)
  12 搬送ロール
  13 ピンチロール
  20 冷却装置
  21 上面給水手段
  21a 冷却ヘッダ
  21b 導管
  21c 冷却ノズル
  22 下面給水手段
  22a 冷却ヘッダ
  22b 導管
  22c 冷却ノズル
  30 上面ガイド
  35 下面ガイド
  P パスライン

Claims (8)

  1.  熱間仕上げ圧延機列より下流側に配置され、パスラインの上方からパスラインに向けて冷却水を供給可能で、前記パスラインの方向に並列された複数の冷却ノズル、及び、前記パスラインと前記冷却ノズルとの間に配置される上面ガイド、を備える冷却装置であって、
     前記冷却ノズルは、冷却水量密度0.16(m/(m・秒))以上で冷却水を噴射可能であるとともに、噴射する冷却水量密度をq(m/(m・秒))、前記冷却ノズルのパスライン方向ピッチをL(m)、前記上面ガイドの下面と前記パスラインとの距離をh(m)、均一冷却幅をW(m)、前記冷却ノズルの前記パスライン方向1ピッチあたりの、鋼板幅方向に流れる排水の仮想流路断面積をS(m)、としたとき、
    Figure JPOXMLDOC01-appb-I000001
    が成立することを特徴とする冷却装置。
  2.  前記上面ガイドが、前記パスラインと前記上面ガイドとの距離が前記パスライン方向で変化する形態を有し、
     前記hの代わりに、前記上面ガイドの相当高さh’が適用される請求項1に記載の冷却装置。
  3.  前記上面ガイド及び前記冷却ノズルの少なくとも一方が、上下方向に移動可能とされていることを特徴とする請求項1又は2に記載の冷却装置。
  4.  熱間仕上げ圧延機列、及び該熱間仕上げ圧延機列の下流側に配置される請求項1~3のいずれかに記載の冷却装置を備え、
     前記冷却装置の上流側端部は前記熱間仕上げ圧延機列の最終スタンドの内側に配置されていることを特徴とする熱延鋼板の製造装置。
  5.  熱間仕上げ圧延機列より下流側に配置された冷却装置により、仕上げ圧延後に鋼板の少なくとも上面に冷却水を供給し、前記鋼板を冷却する工程を含む熱延鋼板の製造方法であって、
     前記冷却装置に設けられる冷却ノズルからの冷却水量密度を、0.16(m/(m・秒))以上であるq(m/(m・秒))とし、前記冷却ノズルの通板方向ピッチをL(m)、前記冷却装置に配置された上面ガイドの下面と通板される鋼板の上面との距離をh(m)、通板される前記鋼板の板幅をW(m)、前記冷却ノズルの通板方向1ピッチあたりの、鋼板幅方向に流れる排水の仮想流路断面積をS(m)、としたとき、
    Figure JPOXMLDOC01-appb-I000002
    が成立することを特徴とする熱延鋼板の製造方法。
  6.  前記上面ガイドが、前記鋼板と前記上面ガイドとの距離が前記通板方向で変化する形態を有するときには、前記hの代わりに、前記上面ガイドの相当高さh’を適用する請求項5に記載の熱延鋼板の製造方法。
  7.  前記上面ガイド、及び前記冷却ノズルの少なくとも一方が、上下方向に移動可能とされていることを特徴とする請求項5又は6に記載の熱延鋼板の製造方法。
  8.  前記冷却装置は、該冷却装置の上流側端部が前記熱間仕上げ圧延機列の最終スタンドの内側に配置されることを特徴とする請求項5~7のいずれかに記載の熱延鋼板の製造方法。
PCT/JP2012/068438 2011-07-21 2012-07-20 冷却装置、熱延鋼板の製造装置、及び熱延鋼板の製造方法 WO2013012060A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201280032705.0A CN103635267B (zh) 2011-07-21 2012-07-20 冷却装置、热轧钢板的制造装置及热轧钢板的制造方法
JP2012544368A JP5181137B2 (ja) 2011-07-21 2012-07-20 冷却装置、熱延鋼板の製造装置、及び熱延鋼板の製造方法
BR112014000684A BR112014000684A2 (pt) 2011-07-21 2012-07-20 equipamento de resfriamento, e equipamento de produção e método de produção de chapa de aço laminada a quente
KR1020147000542A KR101514932B1 (ko) 2011-07-21 2012-07-20 냉각 장치, 열연 강판의 제조 장치, 및 열연 강판의 제조 방법
US14/131,028 US9486847B2 (en) 2011-07-21 2012-07-20 Cooling apparatus, and manufacturing apparatus and manufacturing method of hot-rolled steel sheet
IN104DEN2014 IN2014DN00104A (ja) 2011-07-21 2012-07-20
EP12814490.4A EP2735383B1 (en) 2011-07-21 2012-07-20 Cooling apparatus, and manufacturing apparatus and manufacturing method of hot-rolled steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-159943 2011-07-21
JP2011159943 2011-07-21

Publications (1)

Publication Number Publication Date
WO2013012060A1 true WO2013012060A1 (ja) 2013-01-24

Family

ID=47558235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068438 WO2013012060A1 (ja) 2011-07-21 2012-07-20 冷却装置、熱延鋼板の製造装置、及び熱延鋼板の製造方法

Country Status (8)

Country Link
US (1) US9486847B2 (ja)
EP (1) EP2735383B1 (ja)
JP (1) JP5181137B2 (ja)
KR (1) KR101514932B1 (ja)
CN (1) CN103635267B (ja)
BR (1) BR112014000684A2 (ja)
IN (1) IN2014DN00104A (ja)
WO (1) WO2013012060A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103635267B (zh) * 2011-07-21 2015-08-05 新日铁住金株式会社 冷却装置、热轧钢板的制造装置及热轧钢板的制造方法
CN105772518B (zh) * 2014-12-19 2018-01-19 上海梅山钢铁股份有限公司 一种热轧高强钢应力减量化的两段稀疏层流冷却方法
CN104815852B (zh) * 2015-05-20 2016-08-24 山西太钢不锈钢股份有限公司 热连轧层流冷却带钢头部不冷却长度的控制方法
EP3302837B1 (de) * 2015-05-29 2020-03-11 voestalpine Stahl GmbH Verfahren zum homogenen kontaktlosen temperieren von temperierenden, nicht endlosen oberflächen und vorrichtung hierfür
WO2017193171A1 (en) * 2016-05-11 2017-11-16 Nucor Corporation Cross-strip temperature variation control
EP3663417B1 (en) * 2017-11-20 2022-01-05 Primetals Technologies Japan, Ltd. Cooling apparatus for metal strip and continuous heat treatment facility for metal strip
CN209139503U (zh) * 2019-03-11 2019-07-23 福建鼎信科技有限公司 带钢去除黑边循环清理设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066308A (ja) * 2002-08-08 2004-03-04 Jfe Steel Kk 熱延鋼帯の冷却装置および熱延鋼帯の製造方法ならびに熱延鋼帯製造ライン
JP4029871B2 (ja) 2004-07-22 2008-01-09 住友金属工業株式会社 鋼板の冷却装置、熱延鋼板の製造装置及び製造方法
JP2011011217A (ja) * 2009-06-30 2011-01-20 Sumitomo Metal Ind Ltd 鋼板の冷却装置、熱延鋼板の製造装置及び製造方法
JP2011020146A (ja) * 2009-07-15 2011-02-03 Sumitomo Metal Ind Ltd 熱延鋼板の製造装置、及び鋼板の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4355278B2 (ja) * 2004-11-22 2009-10-28 新日本製鐵株式会社 冷間圧延における潤滑油供給方法
JP4876781B2 (ja) * 2005-08-30 2012-02-15 Jfeスチール株式会社 鋼板の冷却設備および冷却方法
JP4853224B2 (ja) * 2006-10-19 2012-01-11 Jfeスチール株式会社 鋼板の冷却設備および冷却方法
JP4888124B2 (ja) * 2007-01-11 2012-02-29 Jfeスチール株式会社 鋼材の冷却装置および冷却方法
KR101337714B1 (ko) * 2009-06-30 2013-12-06 신닛테츠스미킨 카부시키카이샤 강판의 냉각 장치, 열연 강판의 제조 장치 및 제조 방법
JP5573837B2 (ja) * 2009-06-30 2014-08-20 新日鐵住金株式会社 熱延鋼板の冷却装置、冷却方法、製造装置、及び、製造方法
JP4674646B2 (ja) * 2009-06-30 2011-04-20 住友金属工業株式会社 鋼板の冷却装置、熱延鋼板の製造装置、及び鋼板の製造方法
EP2959984B1 (en) * 2009-11-24 2018-05-02 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of hot-rolled steel sheet
GB2484917A (en) * 2010-10-25 2012-05-02 Siemens Vai Metals Tech Ltd Method of cooling a longitudinally profiled plate
CN102228910A (zh) * 2011-07-19 2011-11-02 东北大学 一种用于热轧带钢生产线的轧后超快速冷却系统
CN103635267B (zh) * 2011-07-21 2015-08-05 新日铁住金株式会社 冷却装置、热轧钢板的制造装置及热轧钢板的制造方法
EP2969279B2 (en) * 2013-03-11 2024-04-03 Novelis Inc. Improving the flatness of a rolled strip
JP2016512174A (ja) * 2013-03-15 2016-04-25 ノベリス・インコーポレイテッドNovelis Inc. 熱間金属圧延における指向性潤滑のための製造方法および装置
US9180506B2 (en) * 2013-03-15 2015-11-10 Novelis Inc. Manufacturing methods and apparatus for targeted cooling in hot metal rolling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066308A (ja) * 2002-08-08 2004-03-04 Jfe Steel Kk 熱延鋼帯の冷却装置および熱延鋼帯の製造方法ならびに熱延鋼帯製造ライン
JP3770216B2 (ja) 2002-08-08 2006-04-26 Jfeスチール株式会社 熱延鋼帯の冷却装置および熱延鋼帯の製造方法ならびに熱延鋼帯製造ライン
JP4029871B2 (ja) 2004-07-22 2008-01-09 住友金属工業株式会社 鋼板の冷却装置、熱延鋼板の製造装置及び製造方法
JP2011011217A (ja) * 2009-06-30 2011-01-20 Sumitomo Metal Ind Ltd 鋼板の冷却装置、熱延鋼板の製造装置及び製造方法
JP2011020146A (ja) * 2009-07-15 2011-02-03 Sumitomo Metal Ind Ltd 熱延鋼板の製造装置、及び鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2735383A4 *

Also Published As

Publication number Publication date
EP2735383B1 (en) 2016-05-25
US20140138054A1 (en) 2014-05-22
JPWO2013012060A1 (ja) 2015-02-23
CN103635267A (zh) 2014-03-12
KR101514932B1 (ko) 2015-04-23
EP2735383A4 (en) 2015-04-15
EP2735383A1 (en) 2014-05-28
BR112014000684A2 (pt) 2017-02-14
KR20140016429A (ko) 2014-02-07
JP5181137B2 (ja) 2013-04-10
IN2014DN00104A (ja) 2015-05-15
CN103635267B (zh) 2015-08-05
US9486847B2 (en) 2016-11-08

Similar Documents

Publication Publication Date Title
JP5181137B2 (ja) 冷却装置、熱延鋼板の製造装置、及び熱延鋼板の製造方法
JP5573837B2 (ja) 熱延鋼板の冷却装置、冷却方法、製造装置、及び、製造方法
TWI432270B (zh) 鋼板之冷卻裝置、熱軋鋼板之製造裝置以及製造方法
JP4029871B2 (ja) 鋼板の冷却装置、熱延鋼板の製造装置及び製造方法
KR100976758B1 (ko) 열연 강대의 냉각 장치 및 방법
TWI449579B (zh) 熱軋鋼板之製造裝置、以及鋼板之製造方法
JP5673530B2 (ja) 熱延鋼板の冷却装置、冷却方法、製造装置、及び、製造方法
JP2007090428A (ja) 鋼板の熱間圧延設備および熱間圧延方法
JP3642031B2 (ja) 熱延鋼帯の冷却装置
TWI676507B (zh) 熱軋鋼板之冷卻裝置及冷卻方法
TWI446975B (zh) 鋼板之冷卻裝置、熱軋鋼板之製造裝置以及鋼板之製造方法
JP5458699B2 (ja) 鋼板の冷却装置、熱延鋼板の製造装置及び製造方法
JP5910597B2 (ja) 熱延鋼板の冷却装置
JP5613997B2 (ja) 熱延鋼板の冷却装置、熱延鋼板の製造装置及び製造方法
JP6074197B2 (ja) 鋼板の冷却装置、熱延鋼板の製造装置、及び熱延鋼板の製造方法
JP5663848B2 (ja) 熱延鋼板の冷却装置及びその動作制御方法
JP5421892B2 (ja) 鋼板の冷却装置、熱延鋼板の製造装置及び製造方法
JP5742507B2 (ja) 熱延鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012544368

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14131028

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012814490

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147000542

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014000684

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014000684

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140110