WO2013011965A1 - 内燃機関、及びプラズマ生成装置 - Google Patents

内燃機関、及びプラズマ生成装置 Download PDF

Info

Publication number
WO2013011965A1
WO2013011965A1 PCT/JP2012/068008 JP2012068008W WO2013011965A1 WO 2013011965 A1 WO2013011965 A1 WO 2013011965A1 JP 2012068008 W JP2012068008 W JP 2012068008W WO 2013011965 A1 WO2013011965 A1 WO 2013011965A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
electromagnetic wave
combustion engine
internal combustion
electromagnetic waves
Prior art date
Application number
PCT/JP2012/068008
Other languages
English (en)
French (fr)
Inventor
池田 裕二
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to EP12814392.2A priority Critical patent/EP2743494B1/en
Priority to JP2013524711A priority patent/JP6064138B2/ja
Publication of WO2013011965A1 publication Critical patent/WO2013011965A1/ja
Priority to US14/155,987 priority patent/US9599089B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/40Sparking plugs structurally combined with other devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/50Sparking plugs having means for ionisation of gap
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/463Microwave discharges using antennas or applicators

Definitions

  • the present invention relates to an internal combustion engine that promotes combustion of an air-fuel mixture using electromagnetic waves, and a plasma generator that generates plasma using electromagnetic waves.
  • Patent Document 1 discloses this type of internal combustion engine.
  • the internal combustion engine described in Japanese Patent Application Laid-Open No. 2007-113570 includes an ignition device that emits microwaves to a combustion chamber before and after ignition of an air-fuel mixture to generate plasma discharge.
  • the ignition device creates a local plasma using the discharge of the ignition plug so that the plasma is generated in a high pressure field, and this plasma is grown by the microwave. Local plasma is generated in the discharge gap between the tip of the anode terminal and the ground terminal.
  • strong electric field region a region having a relatively strong electric field strength (hereinafter referred to as “strong electric field region”) is formed in the vicinity of the radiation antenna in the combustion chamber. That is, the electric field due to the electromagnetic waves is concentrated near the radiation antenna. Electromagnetic energy can be used only near the radiation antenna.
  • the present invention has been made in view of such a point, and an object of the present invention is to use electromagnetic energy in a wider range in a combustion chamber in an internal combustion engine that promotes combustion of an air-fuel mixture in the combustion chamber using electromagnetic waves. There is to do.
  • a first invention includes a combustion cycle in which an internal combustion engine body having a combustion chamber formed therein and an ignition device that ignites an air-fuel mixture in the combustion chamber, and the air-fuel mixture is ignited by the ignition device to burn the air-fuel mixture.
  • the internal combustion engine is repeatedly operated, and is provided in an electromagnetic radiation device that radiates electromagnetic waves to the combustion chamber and a partition member that partitions the combustion chamber, and resonates with the electromagnetic waves radiated from the electromagnetic radiation device to the combustion chamber.
  • a switching means for switching between the plurality of receiving antennas, the receiving antenna that resonates with the electromagnetic waves radiated from the electromagnetic wave radiation device to the combustion chamber.
  • the partition member is provided with a plurality of receiving antennas.
  • the switching means switches the reception antenna that resonates with the electromagnetic wave radiated from the electromagnetic wave radiation device to the combustion chamber among the plurality of reception antennas.
  • the receiving antenna that resonates with the electromagnetic wave is switched, the position of the strong electric field region changes.
  • the switching means by providing the switching means, the position of the strong electric field region can be changed in the combustion chamber.
  • the electromagnetic wave radiation device is configured to be capable of adjusting a frequency of an electromagnetic wave radiated to the combustion chamber, and the plurality of receiving antennas have different resonance frequencies for the electromagnetic wave,
  • the switching means switches the receiving antenna that resonates with the electromagnetic wave by controlling the frequency of the electromagnetic wave radiated to the combustion chamber by the electromagnetic wave radiation device.
  • each of the plurality of receiving antennas is grounded via a switching element, and the switching means controls the switching element provided for each of the receiving antennas. Switch the receiving antenna that resonates with electromagnetic waves.
  • the switching means switches the receiving antenna that resonates with the electromagnetic wave so that the receiving antenna resonates in order in accordance with the passage timing of the flame.
  • a combustion cycle includes an internal combustion engine body having a combustion chamber formed therein and an ignition device that ignites an air-fuel mixture in the combustion chamber, and the air-fuel mixture is ignited by the ignition device to burn the air-fuel mixture.
  • the internal combustion engine is repeatedly operated, and is provided in an electromagnetic radiation device that radiates electromagnetic waves to the combustion chamber and a partition member that partitions the combustion chamber, and resonates with the electromagnetic waves radiated from the electromagnetic radiation device to the combustion chamber.
  • a plurality of switching elements provided corresponding to the plurality of receiving antennas and connected between the corresponding receiving antenna and a ground point.
  • a sixth aspect of the invention is a plasma generation apparatus that includes an electromagnetic wave emission device that radiates electromagnetic waves to a target space, and that generates plasma by the electromagnetic waves radiated by the electromagnetic wave irradiation device in the target space, and is emitted to the target space
  • an electromagnetic wave emission device that radiates electromagnetic waves to a target space, and that generates plasma by the electromagnetic waves radiated by the electromagnetic wave irradiation device in the target space, and is emitted to the target space
  • a plurality of receiving antennas that resonate with the electromagnetic waves, and a switching unit that switches between the plurality of receiving antennas, the receiving antennas that resonate with the electromagnetic waves radiated to the target space.
  • the position of the strong electric field region can be changed in the combustion chamber by providing switching means for switching the receiving antenna that resonates with electromagnetic waves among the plurality of receiving antennas. Therefore, compared with the conventional internal combustion engine in which the electric field due to the electromagnetic waves is concentrated in the vicinity of the radiation antenna, the energy of the electromagnetic waves can be used in a wider range in the combustion chamber.
  • FIG. 1 is a longitudinal sectional view of an internal combustion engine according to an embodiment. It is a front view of the ceiling surface of the combustion chamber of the internal combustion engine which concerns on embodiment. It is a block diagram of the ignition device and electromagnetic wave radiation device concerning an embodiment. It is a front view of the piston top surface concerning an embodiment. It is a front view of the piston top surface concerning the modification 1 of an embodiment.
  • the present embodiment is an internal combustion engine 10 according to the present invention.
  • the internal combustion engine 10 is a reciprocating type internal combustion engine in which a piston 23 reciprocates.
  • the internal combustion engine 10 includes an internal combustion engine body 11, an ignition device 12, an electromagnetic wave emission device 13, and a control device 35. In the internal combustion engine 10, a combustion cycle in which the air-fuel mixture is ignited by the ignition device 12 and the air-fuel mixture is combusted is repeatedly performed.
  • -Internal combustion engine body
  • the internal combustion engine main body 11 includes a cylinder block 21, a cylinder head 22, and a piston 23 as shown in FIG.
  • a plurality of cylinders 24 having a circular cross section are formed in the cylinder block 21.
  • a piston 23 is provided in each cylinder 24 so as to reciprocate.
  • the piston 23 is connected to the crankshaft via a connecting rod (not shown).
  • the crankshaft is rotatably supported by the cylinder block 21.
  • the cylinder head 22 is placed on the cylinder block 21 with the gasket 18 in between.
  • the cylinder head 22, together with the cylinder 24, the piston 23, and the gasket 18, constitutes a partition member that partitions the combustion chamber 20 having a circular cross section.
  • the diameter of the combustion chamber 20 is, for example, about half the wavelength of the microwave that the electromagnetic wave emission device 13 radiates to the combustion chamber 20.
  • the cylinder head 22 is provided with one spark plug 40 that constitutes a part of the ignition device 12 for each cylinder 24.
  • the tip exposed to the combustion chamber 20 is positioned at the center of the ceiling surface 51 of the combustion chamber 20 (the surface exposed to the combustion chamber 20 in the cylinder head 22).
  • the outer periphery of the distal end portion of the spark plug 40 is circular as viewed from the axial direction.
  • a center electrode 40 a and a ground electrode 40 b are provided at the tip of the spark plug 40.
  • a discharge gap is formed between the tip of the center electrode 40a and the tip of the ground electrode 40b.
  • An intake port 25 and an exhaust port 26 are formed in the cylinder head 22 for each cylinder 24.
  • the intake port 25 is provided with an intake valve 27 that opens and closes an intake side opening 25a of the intake port 25, and an injector 29 that injects fuel.
  • the exhaust port 26 is provided with an exhaust valve 28 for opening and closing the exhaust side opening 26 a of the exhaust port 26.
  • the intake port 25 is designed so that a strong tumble flow is formed in the combustion chamber 20.
  • each ignition device 12 is provided for each combustion chamber 20. As shown in FIG. 3, each ignition device 12 includes an ignition coil 14 that outputs a high voltage pulse, and an ignition plug 40 that is supplied with the high voltage pulse output from the ignition coil 14.
  • the ignition coil 14 is connected to a DC power source (not shown).
  • the ignition coil 14 boosts the voltage applied from the DC power supply, and outputs the boosted high voltage pulse to the center electrode 40 a of the spark plug 40.
  • the spark plug 40 when a high voltage pulse is applied to the center electrode 40a, dielectric breakdown occurs in the discharge gap and spark discharge occurs. A discharge plasma is generated in the discharge path of the spark discharge. A negative voltage is applied to the center electrode 40a as a high voltage pulse.
  • the ignition device 12 may include a plasma expansion unit that supplies electric energy to the discharge plasma to expand the discharge plasma.
  • a plasma expansion part expands a spark discharge by supplying high frequency (for example, microwave) energy to discharge plasma, for example. According to the plasma expansion part, it is possible to improve the stability of ignition with respect to a lean air-fuel mixture.
  • the electromagnetic wave emission device 13 may be used as the plasma expansion unit.
  • the electromagnetic wave radiation device 13 includes an electromagnetic wave generator 31, an electromagnetic wave switch 32, and a radiation antenna 16.
  • the electromagnetic wave generation device 31 and the electromagnetic wave switch 32 are provided one by one, and the radiation antenna 16 is provided for each combustion chamber 20.
  • the electromagnetic wave generator 31 When receiving the electromagnetic wave drive signal from the control device 35, the electromagnetic wave generator 31 repeatedly outputs a microwave pulse at a predetermined duty ratio.
  • the electromagnetic wave drive signal is a pulse signal.
  • the electromagnetic wave generator 31 repeatedly outputs the microwave pulse over the time of the pulse width of the electromagnetic wave drive signal.
  • a semiconductor oscillator In the electromagnetic wave generator 31, a semiconductor oscillator generates a microwave pulse. In place of the semiconductor oscillator, another oscillator such as a magnetron may be used.
  • the electromagnetic wave switch 32 includes one input terminal and a plurality of output terminals provided for each radiation antenna 16.
  • the input terminal is connected to the electromagnetic wave generator 31.
  • Each output terminal is connected to a corresponding radiation antenna 16.
  • the electromagnetic wave switch 32 is controlled by the control device 35 and sequentially switches the supply destination of the microwaves output from the electromagnetic wave generator 31 between the plurality of radiation antennas 16.
  • the radiation antenna 16 is provided on the ceiling surface 51 of the combustion chamber 20.
  • the radiation antenna 16 is formed in an annular shape in a front view of the ceiling surface 51 of the combustion chamber 20 and surrounds the tip of the spark plug 40.
  • the radiating antenna 16 may be formed in a C shape in a front view of the ceiling surface 51 of the combustion chamber 20.
  • the radiation antenna 16 is laminated on an annular insulating layer 19 formed around the mounting hole of the spark plug 40 in the ceiling surface 51 of the combustion chamber 20.
  • the insulating layer 19 is formed, for example, by spraying an insulator by thermal spraying.
  • the radiating antenna 16 is electrically insulated from the cylinder head 22 by the insulating layer 19.
  • the length in the circumferential direction of the radiation antenna 16 (the length of the center line between the outer circumference and the inner circumference) is set to a length that is half the wavelength of the microwave radiated from the radiation antenna 16.
  • the radiation antenna 16 is electrically connected to the output terminal of the electromagnetic wave switch 32 through a microwave transmission line 33 embedded in the cylinder head 22.
  • the electromagnetic wave radiation device 13 is configured to be able to adjust the frequency of the microwave radiated from the radiation antenna 16 to the combustion chamber 20.
  • the electromagnetic wave generator 31 is configured to be able to adjust the oscillation frequency of the microwave.
  • the oscillation frequency can be continuously adjusted.
  • X (Hz) is a value of several to several tens (Hz), for example, 10 (Hz).
  • the electromagnetic wave emission device 13 may include a plurality of electromagnetic wave generation devices 31 having different oscillation frequencies, and the frequency of the microwave radiated to the combustion chamber 20 may be adjusted by switching the electromagnetic wave generation device 31 to be used.
  • a plurality of receiving antennas 52 a and 52 b that resonate with microwaves radiated from the electromagnetic wave emission device 13 to the combustion chamber 20 are provided on a partition member that partitions the combustion chamber 20.
  • two receiving antennas 52 a and 52 b are provided on the top of the piston 23.
  • Each of the receiving antennas 52 a and 52 b is formed in an annular shape, and the center thereof coincides with the central axis of the piston 23.
  • Each receiving antenna 52a, 52b is provided in a region near the outer periphery of the top of the piston 23.
  • the first receiving antenna 52a is located near the outer periphery of the piston 23, and the second receiving antenna 52b is located inside thereof.
  • the region near the outer periphery of the top portion of the piston 23 is a region outside the center of the top portion of the piston 23 and the middle of the outer periphery. A period during which the flame passes through the region near the outer periphery is referred to as a “second half period of flame propagation”.
  • Each receiving antenna 52a, 52b is provided on an insulating layer 56 formed on the top surface of the piston 23.
  • Each of the receiving antennas 52a and 52b is electrically insulated from the piston 23 by the insulating layer 56, and is provided in an electrically floating state.
  • the first receiving antenna 52a and the second receiving antenna 52b have different resonance frequencies for microwaves.
  • the first receiving antenna 52a is configured to resonate with microwaves having the frequency of the first set value f1.
  • the length L1 of the first receiving antenna 52a satisfies the relationship of Equation 1 when the wavelength of the microwave having the frequency of the first setting value f1 is ⁇ 1 (n1 is a natural number).
  • Formula 1: L1 (n1 ⁇ ⁇ 1) / 2
  • the second receiving antenna 52b is configured to resonate with the microwave having the frequency of the second set value f2.
  • the length L2 of the second receiving antenna 52b satisfies the relationship of Expression 2 (n2 is a natural number) when the wavelength of the microwave having the frequency of the second set value f2 is ⁇ 2.
  • Formula 2: L2 (n2 ⁇ ⁇ 2) / 2 -Control device operation-
  • the operation of the control device 35 will be described.
  • the control device 35 performs a first operation for instructing the ignition device 12 to ignite the air-fuel mixture in one combustion cycle for each combustion chamber 20, and a microwave is applied to the electromagnetic wave emission device 13 after the ignition of the air-fuel mixture.
  • a second operation for instructing radiation is performed.
  • control device 35 performs the first operation at the ignition timing at which the piston 23 is positioned before the compression top dead center.
  • the control device 35 outputs an ignition signal as the first operation.
  • spark discharge occurs in the discharge gap of the spark plug 40 as described above.
  • the air-fuel mixture is ignited by spark discharge.
  • the flame spreads from the ignition position of the air-fuel mixture at the center of the combustion chamber 20 toward the wall surface of the cylinder 24.
  • the control device 35 performs the second operation after the air-fuel mixture has ignited, for example, at the start timing of the second half period of flame propagation.
  • the control device 35 outputs an electromagnetic wave drive signal as the second operation.
  • the electromagnetic wave radiation device 13 When receiving the electromagnetic wave drive signal, the electromagnetic wave radiation device 13 repeatedly radiates the microwave pulse from the radiation antenna 16 as described above. The microwave pulse is emitted repeatedly over the second half of the flame propagation.
  • the control device 35 sets the oscillation frequency of the electromagnetic wave generator 31 to the second set value f2 so that the second receiving antenna 52b resonates with the microwave over the first half from the beginning to the middle in the second half of the flame propagation period. To do. A strong electric field region is formed in the vicinity of the second receiving antenna 52b over the first half of the second half period of flame propagation. The propagation speed of the flame passing through the installation location of the second receiving antenna 52b is increased by receiving electric field energy from the strong electric field region.
  • the control device 35 sets the oscillation frequency of the electromagnetic wave generator 31 to the first set value f1 so that the first receiving antenna 52a resonates with the microwave from the middle to the last half of the flame propagation period. To do. A strong electric field region is formed in the vicinity of the first receiving antenna 52a over the latter half of the second half period of the flame propagation. The propagation speed of the flame passing through the installation location of the first receiving antenna 52a is increased by receiving electric field energy from the strong electric field region.
  • the control device 35 constitutes switching means for switching the reception antennas 52a and 52b that resonate with the microwaves radiated from the electromagnetic wave radiation device 13 to the combustion chamber 20 between the plurality of reception antennas 52a and 52b.
  • the control device 35 switches the reception antenna 52 that resonates with the microwave so that the reception antenna 52 resonates in order in accordance with the passage timing of the flame.
  • microwave plasma When the microwave energy is large, microwave plasma is generated in the strong electric field region. Active species (for example, OH radicals) are generated in the generation region of the microwave plasma. The propagation speed of the flame passing through the strong electric field region is increased by the active species.
  • the electromagnetic wave radiation device 13, the plurality of reception antennas 52, and the control device 35 constitute a plasma generation device.
  • each receiving antenna 52 is grounded via a ground circuit 53 provided with a switch element 55.
  • the control device 35 constitutes a switching unit that switches the reception antenna 52 that resonates with the microwaves by controlling the switch element 55 provided for each reception antenna 52.
  • the frequency of the microwave radiated from the radiation antenna 16 to the combustion chamber 20 cannot be adjusted.
  • each receiving antenna has the same resonance frequency with respect to the microwave.
  • the length L of each receiving antenna 52 satisfies the relationship of Equation 3 when the wavelength of the microwave radiated to the combustion chamber 20 by the electromagnetic wave radiation device 13 is ⁇ .
  • Formula 3: L (n ⁇ ⁇ ) / 2
  • the receiving antenna 52 set to such a length resonates with the microwave when in an electrically floating state.
  • the control device 35 sets the switch element 55 corresponding to the reception antenna 52 that resonates with the microwave among the three reception antennas 52 to OFF, and sets the remaining switch elements 55 to ON.
  • the control device 35 may simultaneously resonate the two receiving antennas 52 with microwaves. Due to the mutual effect of the two receiving antennas 52, the electric field strength in the vicinity of the receiving antenna 52 that resonates with the microwave is increased. ⁇ Other Embodiments >>
  • the embodiment may be configured as follows.
  • the receiving antenna 52 may have a shape other than an annular shape (for example, a polygonal annular shape).
  • the radiating antenna 16 may be covered with an insulator or a dielectric.
  • the receiving antenna 52 may be covered with an insulator or a dielectric.
  • the center electrode 40a of the spark plug 40 may also serve as a radiation antenna.
  • the center electrode 40a of the spark plug 40 is electrically connected to the output terminal of the mixing circuit.
  • the mixing circuit receives the high voltage pulse from the ignition coil 14 and the microwave from the electromagnetic wave switch 32 at separate input terminals, and outputs the high voltage pulse and the microwave from the same output terminal.
  • the gasket 18 may be provided with the ring-shaped radiation antenna 16.
  • the present invention is useful for an internal combustion engine that promotes combustion of an air-fuel mixture using electromagnetic waves and a plasma generator that generates plasma using electromagnetic waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Plasma Technology (AREA)

Abstract

 電磁波を利用して燃焼室における混合気の燃焼を促進させる内燃機関において、燃焼室においてより広い範囲で電磁波のエネルギーを利用する。内燃機関は、内燃機関本体と点火装置に加えて、電磁波放射装置と複数の受信アンテナと制御装置を備えている。電磁波放射装置は、燃焼室へ電磁波を放射する。複数の受信アンテナは、燃焼室を区画する区画部材に設けられ、電磁波放射装置から燃焼室へ放射された電磁波に共振する。制御装置は、複数の受信アンテナの間で、電磁波放射装置から燃焼室へ放射された電磁波に共振する受信アンテナを切り替える。

Description

内燃機関、及びプラズマ生成装置
 本発明は、電磁波を利用して混合気の燃焼を促進させる内燃機関、及び電磁波を利用してプラズマを生成するプラズマ生成装置に関するものである。
 従来から、電磁波を利用して混合気の燃焼を促進させる内燃機関が知られている。例えば特許文献1には、この種の内燃機関が開示されている。
 特開2007-113570号公報に記載の内燃機関は、混合気の着火前や着火後に燃焼室にマイクロ波を放射して、プラズマ放電を起こす点火装置を備えている。点火装置は、高圧場においてプラズマが生成されるように、点火プラグの放電を用いて局所的なプラズマを作り、このプラズマをマイクロ波により成長させる。局所的なプラズマは、陽極端子の先端部とグランド端子部との間の放電ギャップに生成される。
特開2007-113570号公報
 ところで、従来の内燃機関では、燃焼室において相対的に電界強度が強い領域(以下、「強電界領域」という。)が、放射アンテナの近傍に形成される。つまり、電磁波による電界が放射アンテナの近傍に集中する。電磁波のエネルギーを放射アンテナの近傍でしか利用できない。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、電磁波を利用して燃焼室における混合気の燃焼を促進させる内燃機関において、燃焼室においてより広い範囲で電磁波のエネルギーを利用することにある。
 第1の発明は、燃焼室が形成された内燃機関本体と、前記燃焼室において混合気に点火する点火装置とを備え、前記点火装置により混合気に点火して該混合気を燃焼させる燃焼サイクルが繰り返し行われる内燃機関であって、前記燃焼室へ電磁波を放射する電磁波放射装置と、前記燃焼室を区画する区画部材に設けられ、前記電磁波放射装置から前記燃焼室へ放射された電磁波に共振する複数の受信アンテナと、複数の受信アンテナの間で、前記電磁波放射装置から前記燃焼室へ放射された電磁波に共振する受信アンテナを切り替える切替手段とを備えている。
 第1の発明では、区画部材に複数の受信アンテナが設けられている。切替手段は、複数の受信アンテナの間で、電磁波放射装置から燃焼室へ放射された電磁波に共振する受信アンテナを切り替える。電磁波に共振する受信アンテナが切り替わると、強電界領域の位置が変化する。第1の発明では、切替手段を設けることで、燃焼室において強電界領域の位置を変化させることができるようにしている。
 第2の発明は、第1の発明において、前記電磁波放射装置は、前記燃焼室へ放射する電磁波の周波数を調節可能に構成され、前記複数の受信アンテナでは、電磁波に対する共振周波数が互いに異なり、前記切替手段は、前記電磁波放射装置が前記燃焼室へ放射する電磁波の周波数を制御することにより、電磁波に共振する受信アンテナを切り替える。
 第3の発明は、第1の発明において、前記複数の受信アンテナの各々は、スイッチ素子を介して接地され、前記切替手段は、前記受信アンテナ毎に設けられたスイッチ素子を制御することにより、電磁波に共振する受信アンテナを切り替える。
 第4の発明は、第1、第2又は第3の発明において、前記燃焼室では、混合気を燃焼させる際に、前記区画部材における複数の受信アンテナの設置箇所を火炎が順番に通過し、前記切替手段は、火炎の通過タイミングに合わせて受信アンテナが順番に共振するように、電磁波に共振する受信アンテナを切り替える。
 第5の発明は、燃焼室が形成された内燃機関本体と、前記燃焼室において混合気に点火する点火装置とを備え、前記点火装置により混合気に点火して該混合気を燃焼させる燃焼サイクルが繰り返し行われる内燃機関であって、前記燃焼室へ電磁波を放射する電磁波放射装置と、前記燃焼室を区画する区画部材に設けられ、前記電磁波放射装置から前記燃焼室へ放射された電磁波に共振する複数の受信アンテナと、前記複数の受信アンテナに対応してそれぞれ設けられ、対応する受信アンテナと接地点との間に接続された複数のスイッチ素子とを備えている。
 第6の発明は、対象空間へ電磁波を放射する電磁波放射装置を備え、前記対象空間において前記電磁波照射装置が放射する電磁波によりプラズマを生成するプラズマ生成装置であって、前記対象空間に放射された電磁波に共振する複数の受信アンテナと、複数の受信アンテナの間で、前記対象空間へ放射された電磁波に共振する受信アンテナを切り替える切替手段とを備えている。
 本発明では、複数の受信アンテナの間で電磁波に共振する受信アンテナを切り替える切替手段を設けることで、燃焼室において強電界領域の位置を変化させることができるようにしている。従って、電磁波による電界が放射アンテナの近傍に集中する従来の内燃機関に比べて、燃焼室においてより広い範囲で電磁波のエネルギーを利用することができる。
実施形態に係る内燃機関の縦断面図である。 実施形態に係る内燃機関の燃焼室の天井面の正面図である。 実施形態に係る点火装置および電磁波放射装置のブロック図である。 実施形態に係るピストン頂面の正面図である。 実施形態の変形例1に係るピストン頂面の正面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 本実施形態は、本発明に係る内燃機関10である。内燃機関10は、ピストン23が往復動するレシプロタイプの内燃機関である。内燃機関10は、内燃機関本体11と点火装置12と電磁波放射装置13と制御装置35とを備えている。内燃機関10では、点火装置12により混合気に点火して混合気を燃焼させる燃焼サイクルが繰り返し行われる。
 -内燃機関本体-
 内燃機関本体11は、図1に示すように、シリンダブロック21とシリンダヘッド22とピストン23とを備えている。シリンダブロック21には、横断面が円形のシリンダ24が複数形成されている。各シリンダ24内には、ピストン23が往復自在に設けられている。ピストン23は、コネクティングロッドを介して、クランクシャフトに連結されている(図示省略)。クランクシャフトは、シリンダブロック21に回転自在に支持されている。各シリンダ24内においてシリンダ24の軸方向にピストン23が往復運動すると、コネクティングロッドがピストン23の往復運動をクランクシャフトの回転運動に変換する。
 シリンダヘッド22は、ガスケット18を挟んで、シリンダブロック21上に載置されている。シリンダヘッド22は、シリンダ24、ピストン23及びガスケット18と共に、円形断面の燃焼室20を区画する区画部材を構成している。燃焼室20の直径は、例えば、電磁波放射装置13が燃焼室20へ放射するマイクロ波の波長の半分程度である。
 シリンダヘッド22には、各シリンダ24に対して、点火装置12の一部を構成する点火プラグ40が1つずつ設けられている。図2に示すように、点火プラグ40では、燃焼室20に露出する先端部が、燃焼室20の天井面51(シリンダヘッド22における燃焼室20に露出する面)の中心部に位置している。点火プラグ40の先端部の外周は、その軸方向から見て円形である。点火プラグ40の先端部には、中心電極40a及び接地電極40bが設けられている。中心電極40aの先端と接地電極40bの先端部との間には、放電ギャップが形成されている。
 シリンダヘッド22には、各シリンダ24に対して、吸気ポート25及び排気ポート26が形成されている。吸気ポート25には、吸気ポート25の吸気側開口25aを開閉する吸気バルブ27と、燃料を噴射するインジェクター29とが設けられている。一方、排気ポート26には、排気ポート26の排気側開口26aを開閉する排気バルブ28が設けられている。なお、内燃機関10は、燃焼室20において強いタンブル流が形成されるように吸気ポート25が設計されている。
 -点火装置-
 点火装置12は、燃焼室20毎に設けられている。図3に示すように、各点火装置12は、高電圧パルスを出力する点火コイル14と、点火コイル14から出力された高電圧パルスが供給される点火プラグ40とを備えている。
 点火コイル14は、直流電源(図示省略)に接続されている。点火コイル14は、制御装置35から点火信号を受けると、直流電源から印加された電圧を昇圧し、昇圧後の高電圧パルスを点火プラグ40の中心電極40aに出力する。点火プラグ40では、高電圧パルスが中心電極40aに印加されると、放電ギャップにおいて絶縁破壊が生じてスパーク放電が生じる。スパーク放電の放電経路には、放電プラズマが生成される。中心電極40aには、高電圧パルスとしてマイナスの電圧が印加される。
 なお、点火装置12は、放電プラズマに電気エネルギーを供給して放電プラズマを拡大させるプラズマ拡大部を備えていてもよい。プラズマ拡大部は、例えば、放電プラズマに高周波(例えばマイクロ波)のエネルギーを供給することによりスパーク放電を拡大させる。プラズマ拡大部によれば、希薄な混合気に対して着火の安定性を向上させることができる。プラズマ拡大部として、電磁波放射装置13を利用してもよい。
 -電磁波放射装置-
 電磁波放射装置13は、図3に示すように、電磁波発生装置31と電磁波切替器32と放射アンテナ16とを備えている。電磁波放射装置13では、電磁波発生装置31と電磁波切替器32が1つずつ設けられ、燃焼室20毎に放射アンテナ16が設けられている。
 電磁波発生装置31は、制御装置35から電磁波駆動信号を受けると、所定のデューティー比でマイクロ波パルスを繰り返し出力する。電磁波駆動信号はパルス信号である。電磁波発生装置31は、電磁波駆動信号のパルス幅の時間に亘って、マイクロ波パルスを繰り返し出力する。電磁波発生装置31では、半導体発振器がマイクロ波パルスを生成する。なお、半導体発振器の代わりに、マグネトロン等の他の発振器を使用してもよい。
 電磁波切替器32は、1つの入力端子と、放射アンテナ16毎に設けられた複数の出力端子とを備えている。入力端子は、電磁波発生装置31に接続されている。各出力端子は、対応する放射アンテナ16に接続されている。電磁波切替器32は、制御装置35により制御されて、複数の放射アンテナ16の間で、電磁波発生装置31から出力されたマイクロ波の供給先を順番に切り替える。
 放射アンテナ16は、燃焼室20の天井面51に設けられている。放射アンテナ16は、燃焼室20の天井面51の正面視において、円環状に形成され、点火プラグ40の先端部を囲っている。なお、放射アンテナ16は、燃焼室20の天井面51の正面視において、C字状に形成されていてもよい。
 放射アンテナ16は、燃焼室20の天井面51における点火プラグ40の取付孔の周囲に形成された環状の絶縁層19の上に積層されている。絶縁層19は、例えば溶射により絶縁体を吹き付けることにより形成されている。放射アンテナ16は、絶縁層19によりシリンダヘッド22から電気的に絶縁されている。放射アンテナ16の周方向の長さ(外周と内周の真ん中の中心線の長さ)は、放射アンテナ16から放射されるマイクロ波の波長の2分の1の長さに設定されている。放射アンテナ16は、シリンダヘッド22に埋設されたマイクロ波の伝送線路33を介して、電磁波切替器32の出力端子に電気的に接続されている。
 本実施形態では、電磁波放射装置13が、放射アンテナ16から燃焼室20へ放射するマイクロ波の周波数を調節可能に構成されている。具体的に、電磁波発生装置31は、マイクロ波の発振周波数を調節可能に構成されている。電磁波発生装置31は、例えば、2.45GHzを発振周波数の中心値fとして、低周波側の第1設定値f1(f1=f-X)から高周波側の第2設定値f2(f2=f+X)の間で、発振周波数を連続的に調節可能に構成されている。X(Hz)は、数~数十(Hz)の値であり、例えば10(Hz)である。
 なお、電磁波放射装置13が、発振周波数が互いに異なる複数の電磁波発生装置31を備え、使用する電磁波発生装置31を切り替えることにより、燃焼室20へ放射するマイクロ波の周波数を調節してもよい。
 内燃機関本体11では、燃焼室20を区画する区画部材に、電磁波放射装置13から燃焼室20へ放射されたマイクロ波に共振する複数の受信アンテナ52a,52bが設けられている。本実施形態では、図1及び図4に示すように、2個の受信アンテナ52a,52bがピストン23の頂部に設けられている。各受信アンテナ52a,52bは、円環状に形成され、その中心がピストン23の中心軸に一致している。
 各受信アンテナ52a,52bは、ピストン23の頂部の外周寄りの領域に設けられている。2つの受信アンテナ52a,52bのうち、第1受信アンテナ52aは、ピストン23の外周近傍に位置し、その内側に第2受信アンテナ52bが位置している。なお、ピストン23の頂部の外周寄りの領域とは、ピストン23の頂部における中心と外周の真ん中よりも外側の領域である。この外周寄りの領域を火炎が通過する期間を、「火炎伝播の後半期間」という。
 各受信アンテナ52a,52bは、ピストン23の頂面に形成された絶縁層56上に設けられている。各受信アンテナ52a,52bは、絶縁層56によりピストン23から電気的に絶縁され、電気的にフローティングの状態で設けられている。
 本実施形態では、第1受信アンテナ52aと第2受信アンテナ52bとで、マイクロ波に対する共振周波数が異なる。第1受信アンテナ52aは、第1設定値f1の周波数のマイクロ波に共振するように構成されている。第1受信アンテナ52aの長さL1は、第1設定値f1の周波数のマイクロ波の波長をλ1とした場合に、式1の関係を満たす(n1は自然数)。
 式1:L1=(n1×λ1)/2
 一方、第2受信アンテナ52bは、第2設定値f2の周波数のマイクロ波に共振するように構成されている。第2受信アンテナ52bの長さL2は、第2設定値f2の周波数のマイクロ波の波長をλ2とした場合に、式2の関係を満たす(n2は自然数)。
 式2:L2=(n2×λ2)/2
 -制御装置の動作-
 制御装置35の動作について説明する。制御装置35は、各燃焼室20に対して、1回の燃焼サイクルに、点火装置12に混合気への点火を指示する第1動作と、混合気の着火後に電磁波放射装置13にマイクロ波の放射を指示する第2動作とを行う。
 具体的に、制御装置35は、ピストン23が圧縮上死点の手前に位置する点火タイミングに第1動作を行う。制御装置35は、第1動作として点火信号を出力する。
 点火装置12は、点火信号を受けると、上述したように、点火プラグ40の放電ギャップにおいてスパーク放電が生じる。混合気は、スパーク放電により着火する。混合気が着火すると、燃焼室20の中心部の混合気の着火位置からシリンダ24の壁面へ向かって火炎が広がる。
 制御装置35は、混合気が着火した後に、例えば火炎伝播の後半期間の開始タイミングに第2動作を行う。制御装置35は、第2動作として電磁波駆動信号を出力する。
 電磁波放射装置13は、電磁波駆動信号を受けると、上述したように、放射アンテナ16からマイクロ波パルスを繰り返し放射する。マイクロ波パルスは、火炎伝播の後半期間に亘って繰り返し放射される。
 制御装置35は、火炎伝播の後半期間において最初から真ん中までの前半に亘って、第2受信アンテナ52bがマイクロ波に共振するように、電磁波発生装置31の発振周波数を第2設定値f2に設定する。第2受信アンテナ52bの近傍には、火炎伝播の後半期間の前半に亘って強電界領域が形成される。第2受信アンテナ52bの設置箇所を通過する火炎の伝播速度は、強電界領域から電界のエネルギーを受けて増大する。
 制御装置35は、火炎伝播の後半期間において真ん中から最後までの後半に亘って、第1受信アンテナ52aがマイクロ波に共振するように、電磁波発生装置31の発振周波数を第1設定値f1に設定する。第1受信アンテナ52aの近傍には、火炎伝播の後半期間の後半に亘って強電界領域が形成される。第1受信アンテナ52aの設置箇所を通過する火炎の伝播速度は、強電界領域から電界のエネルギーを受けて増大する。
 制御装置35は、複数の受信アンテナ52a,52bの間で、電磁波放射装置13から燃焼室20へ放射されたマイクロ波に共振する受信アンテナ52a,52bを切り替える切替手段を構成している。制御装置35は、火炎の通過タイミングに合わせて受信アンテナ52が順番に共振するように、マイクロ波に共振する受信アンテナ52を切り替える。
 なお、マイクロ波のエネルギーが大きい場合には、強電界領域においてマイクロ波プラズマが生成される。マイクロ波プラズマの生成領域では活性種(例えば、OHラジカル)が生成される。強電界領域を通過する火炎の伝播速度は、活性種により増大する。マイクロ波プラズマが生成される場合は、電磁波放射装置13、複数の受信アンテナ52及び制御装置35が、プラズマ生成装置を構成する。
 -実施形態の効果-
 本実施形態では、複数の受信アンテナ52の間でマイクロ波に共振する受信アンテナ52を切り替える制御装置35を設けることで、燃焼室20において強電界領域の位置を変化させることができるようにしている。従って、マイクロ波による電界が放射アンテナの近傍に集中する従来の内燃機関に比べて、燃焼室20においてより広い範囲で電磁波のエネルギーを利用することができる。
 -実施形態の変形例1-
 実施形態の変形例1では、図5に示すように、各受信アンテナ52が、スイッチ素子55が設けられた接地回路53を介して接地されている。制御装置35は、受信アンテナ52毎に設けられたスイッチ素子55を制御することにより、マイクロ波に共振する受信アンテナ52を切り替える切替手段を構成している。なお、変形例1の電磁波放射装置13は、放射アンテナ16から燃焼室20へ放射するマイクロ波の周波数が調節不能である。
 具体的に、各受信アンテナは、マイクロ波に対する共振周波数が同じである。各受信アンテナ52の長さLは、電磁波放射装置13が燃焼室20へ放射するマイクロ波の波長をλとした場合に、式3の関係を満たす。
 式3:L=(n×λ)/2
 このような長さに設定された受信アンテナ52は、電気的にフローティングの状態のときにマイクロ波に共振する。制御装置35は、3つの受信アンテナ52のうち、マイクロ波に共振させる受信アンテナ52に対応するスイッチ素子55をOFFに設定し、残りのスイッチ素子55をONに設定する。なお、制御装置35は、同時に2つの受信アンテナ52をマイクロ波に共振させてもよい。2つの受信アンテナ52の相互効果により、マイクロ波に共振させる受信アンテナ52の近傍の電界強度が強くなる。
 《その他の実施形態》
 前記実施形態は、以下のように構成してもよい。
 前記実施形態において、受信アンテナ52は、円環状以外の形状(例えば、多角形の環状)であってもよい。
 また、前記実施形態において、放射アンテナ16が絶縁体または誘電体により被覆されていてもよい。また、受信アンテナ52が絶縁体または誘電体により被覆されていてもよい。
 また、前記実施形態において、点火プラグ40の中心電極40aが、放射アンテナを兼ねていてもよい。点火プラグ40の中心電極40aは、混合回路の出力端子に電気的に接続される。混合回路は、別々の入力端子で点火コイル14からの高電圧パルスと電磁波切替器32からのマイクロ波とを受けて、同じ出力端子から高電圧パルスとマイクロ波を出力する。
 また、前記実施形態において、ガスケット18にリング状の放射アンテナ16を設けてもよい。
 以上説明したように、本発明は、電磁波を利用して混合気の燃焼を促進させる内燃機関、及び電磁波を利用してプラズマを生成するプラズマ生成装置について有用である。
              10       内燃機関
              11       内燃機関本体
              12       点火装置
              13       電磁波放射装置
              16       放射アンテナ
              20       燃焼室
              35       制御装置(切替手段)
              52       受信アンテナ
 

Claims (6)

  1.  燃焼室が形成された内燃機関本体と、
     前記燃焼室において混合気に点火する点火装置とを備え、
     前記点火装置により混合気に点火して該混合気を燃焼させる燃焼サイクルが繰り返し行われる内燃機関であって、
     前記燃焼室へ電磁波を放射する電磁波放射装置と、
     前記燃焼室を区画する区画部材に設けられ、前記電磁波放射装置から前記燃焼室へ放射された電磁波に共振する複数の受信アンテナと、
     複数の受信アンテナの間で、前記電磁波放射装置から前記燃焼室へ放射された電磁波に共振する受信アンテナを切り替える切替手段とを備えている
    ことを特徴とする内燃機関。
  2.  請求項1において、
     前記電磁波放射装置は、前記燃焼室へ放射する電磁波の周波数を調節可能に構成され、
     前記複数の受信アンテナでは、電磁波に対する共振周波数が互いに異なり、
     前記切替手段は、前記電磁波放射装置が前記燃焼室へ放射する電磁波の周波数を制御することにより、電磁波に共振する受信アンテナを切り替える
    ことを特徴とする内燃機関。
  3.  請求項1において、
     前記複数の受信アンテナの各々は、スイッチ素子を介して接地され、
     前記切替手段は、前記受信アンテナ毎に設けられたスイッチ素子を制御することにより、電磁波に共振する受信アンテナを切り替える
    ことを特徴とする内燃機関。
  4.  請求項1、請求項2又は請求項3において
     前記燃焼室では、混合気を燃焼させる際に、前記区画部材における複数の受信アンテナの設置箇所を火炎が順番に通過し、
     前記切替手段は、火炎の通過タイミングに合わせて受信アンテナが順番に共振するように、電磁波に共振する受信アンテナを切り替える
    ことを特徴とする内燃機関。
  5.  燃焼室が形成された内燃機関本体と、
     前記燃焼室において混合気に点火する点火装置とを備え、
     前記点火装置により混合気に点火して該混合気を燃焼させる燃焼サイクルが繰り返し行われる内燃機関であって、
     前記燃焼室へ電磁波を放射する電磁波放射装置と、
     前記燃焼室を区画する区画部材に設けられ、前記電磁波放射装置から前記燃焼室へ放射された電磁波に共振する複数の受信アンテナと、
     前記複数の受信アンテナに対応してそれぞれ設けられ、対応する受信アンテナと接地点との間に接続された複数のスイッチ素子とを備えている
    ことを特徴とする内燃機関。
  6.  対象空間へ電磁波を放射する電磁波放射装置を備え、
     前記対象空間において前記電磁波照射装置が放射する電磁波によりプラズマを生成するプラズマ生成装置であって、
     前記対象空間に放射された電磁波に共振する複数の受信アンテナと、
     複数の受信アンテナの間で、前記対象空間へ放射された電磁波に共振する受信アンテナを切り替える切替手段とを備えている
    ことを特徴とするプラズマ生成装置。
     
PCT/JP2012/068008 2011-07-16 2012-07-13 内燃機関、及びプラズマ生成装置 WO2013011965A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12814392.2A EP2743494B1 (en) 2011-07-16 2012-07-13 Internal combustion engine, and plasma generating device
JP2013524711A JP6064138B2 (ja) 2011-07-16 2012-07-13 内燃機関、及びプラズマ生成装置
US14/155,987 US9599089B2 (en) 2011-07-16 2014-01-15 Internal combustion engine and plasma generation provision

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011157285 2011-07-16
JP2011-157285 2011-07-16
JP2011-175442 2011-08-10
JP2011175442 2011-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/155,987 Continuation US9599089B2 (en) 2011-07-16 2014-01-15 Internal combustion engine and plasma generation provision

Publications (1)

Publication Number Publication Date
WO2013011965A1 true WO2013011965A1 (ja) 2013-01-24

Family

ID=47558142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068008 WO2013011965A1 (ja) 2011-07-16 2012-07-13 内燃機関、及びプラズマ生成装置

Country Status (4)

Country Link
US (1) US9599089B2 (ja)
EP (1) EP2743494B1 (ja)
JP (1) JP6064138B2 (ja)
WO (1) WO2013011965A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10897308B2 (en) 2018-10-29 2021-01-19 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Integration of all components being necessary for transmitting/receiving electromagnetic radiation in a component carrier
US20220117600A1 (en) * 2020-10-19 2022-04-21 Covidien Lp Anvil buttress attachment for surgical stapling apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9860968B2 (en) * 2011-09-22 2018-01-02 Imagineering, Inc. Plasma generating device, and internal combustion engine
US20180313317A1 (en) * 2015-10-30 2018-11-01 Imagineering, Inc. Ignition plug and ignition device
CN112377322B (zh) * 2020-05-26 2021-10-22 北京礴德恒激光科技有限公司 用于等离子云激励均质均燃发动机的活塞放电结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230426A (ja) * 1999-02-09 2000-08-22 Honda Motor Co Ltd マイクロ波点火装置を備えた内燃機関
JP2001073920A (ja) * 1999-09-07 2001-03-21 Honda Motor Co Ltd マイクロ波点火装置
JP2006132518A (ja) * 2004-10-07 2006-05-25 Toyota Central Res & Dev Lab Inc 内燃機関及びその点火装置
JP2007113570A (ja) 2005-09-20 2007-05-10 Imagineering Kk 点火装置、内燃機関、点火プラグ、プラズマ装置、排ガス分解装置、オゾン発生・滅菌・消毒装置及び消臭装置
JP2008082286A (ja) * 2006-09-28 2008-04-10 Toyota Central R&D Labs Inc 内燃機関及びその点火装置
JP2009287549A (ja) * 2007-07-12 2009-12-10 Imagineering Inc 圧縮着火内燃機関、グロープラグ及びインジェクタ
JP2010101174A (ja) * 2008-10-21 2010-05-06 Daihatsu Motor Co Ltd 火花点火式内燃機関の点火プラグ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499872A (en) * 1983-01-10 1985-02-19 Combustion Electromagnetics, Inc. Ultra lean burn carburetted adiabatic engine
US4561406A (en) * 1984-05-25 1985-12-31 Combustion Electromagnetics, Inc. Winged reentrant electromagnetic combustion chamber
US4774914A (en) * 1985-09-24 1988-10-04 Combustion Electromagnetics, Inc. Electromagnetic ignition--an ignition system producing a large size and intense capacitive and inductive spark with an intense electromagnetic field feeding the spark
US6883507B2 (en) * 2003-01-06 2005-04-26 Etatech, Inc. System and method for generating and sustaining a corona electric discharge for igniting a combustible gaseous mixture
US7004120B2 (en) * 2003-05-09 2006-02-28 Warren James C Opposed piston engine
FR2860835B1 (fr) * 2003-10-10 2007-06-01 Peugeot Citroen Automobiles Sa Dispositif d'oxydation des hydrocarbures presents dans une chambre de combustion d'un moteur a combustion interne
US7182076B1 (en) * 2005-12-20 2007-02-27 Minker Gary A Spark-based igniting system for internal combustion engines
JP3984636B1 (ja) * 2006-03-07 2007-10-03 ミヤマ株式会社 多点点火エンジン
US9010293B2 (en) * 2006-04-07 2015-04-21 David A. Blank Combustion control via homogeneous combustion radical ignition (HCRI) or partial HCRI in cyclic IC engines
KR101335322B1 (ko) * 2006-09-20 2013-12-03 이마지니어링 가부시키가이샤 점화장치, 내연기관, 점화 플러그, 플라즈마장치, 배기가스분해장치, 오존 발생·멸균·소독장치 및 소취장치
US8424501B2 (en) * 2006-12-07 2013-04-23 Contour Hardening, Inc. Induction driven ignition system
EP2178181B1 (en) * 2007-07-12 2017-08-30 Imagineering, Inc. Ignition plug, and analyzing device
JP5374691B2 (ja) * 2008-03-14 2013-12-25 イマジニアリング株式会社 複数放電のプラズマ装置
JP5061310B2 (ja) * 2008-03-14 2012-10-31 イマジニアリング株式会社 バルブを用いたプラズマ装置
JP5061335B2 (ja) * 2008-03-14 2012-10-31 イマジニアリング株式会社 シリンダヘッドを用いたプラズマ装置
US9709019B2 (en) * 2011-01-18 2017-07-18 Imagineering, Inc. Plasma generation device and internal combustion engine
WO2012103112A2 (en) * 2011-01-24 2012-08-02 Goji Ltd. Em energy application for combustion engines
WO2012105569A2 (ja) * 2011-01-31 2012-08-09 イマジニアリング株式会社 プラズマ生成装置
EP2677163A4 (en) * 2011-02-15 2018-08-08 Imagineering, Inc. Internal combustion engine
WO2012111701A2 (ja) * 2011-02-15 2012-08-23 イマジニアリング株式会社 内燃機関
WO2013011967A1 (ja) * 2011-07-16 2013-01-24 イマジニアリング株式会社 内燃機関

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230426A (ja) * 1999-02-09 2000-08-22 Honda Motor Co Ltd マイクロ波点火装置を備えた内燃機関
JP2001073920A (ja) * 1999-09-07 2001-03-21 Honda Motor Co Ltd マイクロ波点火装置
JP2006132518A (ja) * 2004-10-07 2006-05-25 Toyota Central Res & Dev Lab Inc 内燃機関及びその点火装置
JP2007113570A (ja) 2005-09-20 2007-05-10 Imagineering Kk 点火装置、内燃機関、点火プラグ、プラズマ装置、排ガス分解装置、オゾン発生・滅菌・消毒装置及び消臭装置
JP2008082286A (ja) * 2006-09-28 2008-04-10 Toyota Central R&D Labs Inc 内燃機関及びその点火装置
JP2009287549A (ja) * 2007-07-12 2009-12-10 Imagineering Inc 圧縮着火内燃機関、グロープラグ及びインジェクタ
JP2010101174A (ja) * 2008-10-21 2010-05-06 Daihatsu Motor Co Ltd 火花点火式内燃機関の点火プラグ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10897308B2 (en) 2018-10-29 2021-01-19 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Integration of all components being necessary for transmitting/receiving electromagnetic radiation in a component carrier
US20220117600A1 (en) * 2020-10-19 2022-04-21 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11399833B2 (en) * 2020-10-19 2022-08-02 Covidien Lp Anvil buttress attachment for surgical stapling apparatus

Also Published As

Publication number Publication date
US20140216380A1 (en) 2014-08-07
JPWO2013011965A1 (ja) 2015-02-23
US9599089B2 (en) 2017-03-21
EP2743494A4 (en) 2015-04-22
EP2743494A1 (en) 2014-06-18
JP6064138B2 (ja) 2017-01-25
EP2743494B1 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2012124671A2 (ja) 内燃機関
JP6040362B2 (ja) 内燃機関
JP6082881B2 (ja) 内燃機関の点火装置及び内燃機関
JP6229121B2 (ja) 内燃機関
JP6082880B2 (ja) 高周波放射用プラグ
JP6064138B2 (ja) 内燃機関、及びプラズマ生成装置
JP6014864B2 (ja) 火花点火式内燃機関
JP6191030B2 (ja) プラズマ生成装置、及び内燃機関
JP6298961B2 (ja) 電磁波放射装置
WO2013021852A1 (ja) 内燃機関
JP6023966B2 (ja) 内燃機関
JP6086443B2 (ja) 内燃機関
WO2012161232A1 (ja) 点火プラグ、及び内燃機関
JP6145759B2 (ja) アンテナ構造、高周波放射用プラグ、及び内燃機関
JP6145760B2 (ja) 高周波放射用プラグ及び内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524711

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012814392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012814392

Country of ref document: EP