WO2013011809A1 - 磁気ギア装置 - Google Patents

磁気ギア装置 Download PDF

Info

Publication number
WO2013011809A1
WO2013011809A1 PCT/JP2012/066329 JP2012066329W WO2013011809A1 WO 2013011809 A1 WO2013011809 A1 WO 2013011809A1 JP 2012066329 W JP2012066329 W JP 2012066329W WO 2013011809 A1 WO2013011809 A1 WO 2013011809A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
row
magnet
magnet row
gear device
Prior art date
Application number
PCT/JP2012/066329
Other languages
English (en)
French (fr)
Inventor
淳一 酢谷
弘光 大橋
正裕 三田
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to KR1020157020015A priority Critical patent/KR101627479B1/ko
Priority to US14/232,183 priority patent/US9729040B2/en
Priority to EP12814557.0A priority patent/EP2733387B1/en
Priority to KR1020137033790A priority patent/KR20140013087A/ko
Priority to JP2013524641A priority patent/JP5958466B2/ja
Priority to CN201280033104.1A priority patent/CN103635716A/zh
Publication of WO2013011809A1 publication Critical patent/WO2013011809A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type

Definitions

  • the present invention is arranged between a first magnet row and a second magnet row, a first magnet row and a second magnet row in which a plurality of magnetic pole pairs are respectively arranged at substantially equal intervals along a specific direction
  • the present invention relates to a magnetic gear device including a magnetic body row in which a plurality of magnetic bodies are arranged at substantially equal intervals along a specific direction.
  • Patent Document 1 and Non-Patent Document 1 disclose a magnetic gear device.
  • the magnetic gear device includes a cylindrical first movable element and a second movable element each having a plurality of magnetic pole pairs arranged at substantially equal intervals along the circumferential direction, and between the first movable element and the second movable element. And a cylindrical intermediate yoke in which a plurality of magnetic bodies are respectively arranged at substantially equal intervals along the circumferential direction. The plurality of magnetic bodies are arranged at substantially the center of the gap between the first mover and the second mover.
  • the inventor of the present application has arranged that the magnetic material of the intermediate yoke is arranged closer to the mover rotating at a low speed than the center of the gap between the first mover and the second mover. Found the fact that is expensive.
  • the magnetic gear device has a first magnet row in which a plurality of magnetic pole pairs are arranged at substantially equal intervals along a specific direction, and is opposed to the first magnet row, and the first magnet
  • a second magnet row in which a plurality of magnetic pole pairs are arranged at substantially equal intervals along the specific direction at a shorter pitch (or longer pitch) than the row, and between the first magnet row and the second magnet row
  • a magnetic gear device comprising a plurality of magnetic bodies arranged at substantially equal intervals along the specific direction, wherein the plurality of magnetic bodies and the second magnet row The distance in the facing direction is shorter (or longer) than the distance between the plurality of magnetic bodies and the first magnet row.
  • the plurality of magnetic bodies when the first magnet row rotates or moves at a high speed and the second magnet row rotates at a low speed, the plurality of magnetic bodies are the second magnet on the low speed side compared to the first magnet row on the high speed side. It is arranged near the row side. As will be described later, the plurality of magnetic bodies are disposed between the first magnet row and the second magnet row, as compared with the case where the plurality of magnetic bodies are arranged in the substantially central portion of the gap between the first magnet row and the second magnet row. The torque to be transmitted is large.
  • the plurality of magnetic bodies are closer to the first magnet array side on the low speed side than the second magnet array on the high speed side. It is arranged. As will be described later, the plurality of magnetic bodies are disposed between the first magnet row and the second magnet row, as compared with the case where the plurality of magnetic bodies are arranged in the substantially central portion of the gap between the first magnet row and the second magnet row. The torque to be transmitted is large.
  • a plurality of The magnetic body should be on the low speed side.
  • the magnetic gear device is characterized in that the magnetic body row holds the plurality of magnetic bodies and includes a partition wall that separates the first magnet row side from the second magnet row side. To do.
  • the partition wall separating the first magnet row side and the second magnet row side is provided, the atmosphere on the first magnet row side and the atmosphere on the second magnet row side can be separated. Is possible.
  • the magnetic gear device is characterized in that the plurality of magnetic bodies are held by the partition so as to be exposed to the second magnet row side (or the first magnet row side).
  • the magnetic body when the first magnet row rotates or moves at a high speed and the second magnet row rotates at a low speed, the magnetic body is exposed from the partition of the magnetic body row to the second magnet row side. Therefore, the distance between the magnetic body and the second magnet array can be shortened as much as possible, and the transmission torque can be improved. Further, it is possible to prevent the magnetic body from being exposed to the atmosphere on the first magnet row side.
  • the first magnet row rotates or moves at a low speed and the second magnet row rotates at a high speed the magnetic body is exposed from the partition of the magnetic body row to the first magnet row side. Therefore, the distance between the magnetic body and the first magnet array can be shortened as much as possible, and the transmission torque can be improved. Further, it is possible to prevent the magnetic body from being exposed to the atmosphere on the second magnet row side.
  • the magnetic gear device according to the present invention is characterized in that the plurality of magnetic bodies are buried in the partition wall.
  • the magnetic body since the magnetic body is buried in the partition wall, it is possible to prevent the magnetic body from being exposed to the atmosphere on the first magnet row side and the second magnet row side.
  • the magnetic body row includes a connecting portion that connects the plurality of adjacent magnetic bodies, and the plurality of magnetic bodies and the connecting portion are integrally formed. .
  • the plurality of magnetic bodies are connected by the connecting portion and are integrally formed, the arrangement of the magnetic body rows is easy.
  • the magnetic gear device is characterized in that a distance in the facing direction between the connecting portion and the first magnet row is shorter (or longer) than a distance between the connecting portion and the second magnet row.
  • the distance between the connecting portion and the first magnet row in the facing direction is the connecting portion and the second magnet row.
  • the connecting portion is magnetically saturated because it is shorter than the distance between the two. For this reason, the ratio of the ineffective magnetic flux that does not contribute to the transmission force decreases.
  • the distance between the connecting portion and the second magnet row in the facing direction is the distance between the connecting portion and the first magnet row. Since it is shorter than that, it is magnetically saturated. For this reason, the ratio of the ineffective magnetic flux that does not contribute to the transmission force decreases.
  • the magnetic gear device according to the present invention is characterized in that the plurality of magnetic bodies include laminated steel plates.
  • eddy current is unlikely to occur in the magnetic material.
  • the magnetic gear device is characterized in that the first magnet row includes a sintered magnet (or bonded magnet), and the second magnet row includes a bonded magnet (or sintered magnet).
  • the low speed side where eddy current is likely to be generated is constituted by a bonded magnet
  • the high speed side where eddy current is difficult to be generated is constituted by a sintered magnet. Since a sintered magnet has a larger magnetic force than a bonded magnet, this combination can ensure transmission torque while suppressing loss due to eddy currents.
  • the first magnet row, the second magnet row, and the magnetic body row are cylindrical, and the specific direction is defined by the first magnet row, the second magnet row, and the It is characterized by the circumferential direction of the magnetic body row.
  • a cylindrical magnetic gear device can be configured.
  • the first magnet row, the second magnet row, and the magnetic body row are disk-shaped, and the specific direction is the first magnet row, the second magnet row, and It is the circumferential direction of the magnetic body row.
  • the first magnet row, the second magnet row, and the magnetic body row have a long plate shape, and the specific direction is the first magnet row, the second magnet row. And the longitudinal direction of the magnetic row.
  • a long plate-like linear magnetic gear device can be configured.
  • the first magnet row, the second magnet row, and the magnetic body row are cylindrical, and the specific direction is defined by the first magnet row, the second magnet row, and the It is the direction of the central axis of the magnetic body row.
  • the first magnet row, the second magnet row, and the magnetic row are compared to the case where the magnetic row is arranged in the approximate center of the gap between the first magnet row and the second magnet row.
  • the force transmitted between them can be improved.
  • FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification 1.
  • FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification 2.
  • FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification 3.
  • FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification Example 4.
  • FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification Example 5.
  • FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification Example 1.
  • FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification Example 6.
  • FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification 7.
  • FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification Example 8.
  • FIG. 6 is a side cross-sectional view illustrating a configuration example of a magnetic gear device according to a second embodiment.
  • FIG. 6 is an exploded perspective view showing a configuration example of a magnetic gear device according to a third embodiment.
  • FIG. 6 is a side sectional view of a magnetic gear device according to a third embodiment.
  • FIG. 6 is an exploded perspective view showing a configuration example of a magnetic gear device according to a fourth embodiment.
  • FIG. 6 is a side sectional view of a magnetic gear device according to a fourth embodiment.
  • FIG. 10 is an exploded perspective view showing a configuration example of a magnetic gear device according to a fifth embodiment.
  • FIG. 10 is a side sectional view of a magnetic gear device according to a fifth embodiment.
  • FIG. 1 is a side sectional view showing an example of the configuration of the magnetic gear device according to the first embodiment.
  • the magnetic gear device according to the first embodiment of the present invention is a rotating cylindrical type, and includes a cylindrical first movable element 1 and a cylinder arranged coaxially with a gap outside the first movable element 1. And a cylindrical intermediate yoke 2 disposed coaxially with a gap between the first and second movers 1 and 3.
  • the first mover 1 has an inner cylindrical portion 11 made of a magnetic material, and an outer peripheral surface of the inner cylindrical portion 11 is magnetized in the thickness direction on the outer peripheral surface side N pole magnet 12a and the outer peripheral surface side.
  • Three magnetic pole pairs 12 composed of S-pole magnets 12b are arranged at substantially equal intervals along the circumferential direction.
  • the second mover 3 has an outer cylindrical portion 31 made of a magnetic material, and an inner peripheral surface side N-pole magnet 32a magnetized in the thickness direction on the inner peripheral surface of the outer cylindrical portion 31 and an inner surface. Seven magnetic pole pairs 32 each including a magnet 32b having S poles on the circumferential surface side are arranged at substantially equal intervals along the circumferential direction.
  • the magnet magnetized in the thickness direction means that the outer peripheral surface side and the inner peripheral surface side are magnetized so as to have different polarities.
  • the magnet 12a is magnetized on the N and S poles on the outer circumferential surface side and the inner circumferential surface side
  • the magnet 12b is magnetized on the S and N poles on the outer circumferential surface side and the inner circumferential surface side, respectively.
  • the magnetic pole pairs 12 and 32 are formed of rare earth-transition metal magnets (for example, Nd-Fe-B magnets).
  • the magnetic pole pair 12 on the first mover 1 side may be composed of a sintered magnet
  • the magnetic pole pair 32 on the second mover 3 side may be composed of a bonded magnet.
  • the bond magnet is obtained by mixing fine magnet particles or fine powder with a binder such as a resin and molding and solidifying it, and can reduce the generation of eddy currents.
  • the sintered magnet is a magnet made by a so-called powder metallurgy method, and has a property that the eddy current loss is larger than that of the bonded magnet, but the magnetic force is strong. Therefore, by configuring in this way, the generation of eddy currents can be suppressed as much as possible while securing the force acting between the first mover 1 and the second mover 3.
  • oxide magnets for example, ferrite magnets
  • the generation of eddy current is extremely small, so that any manufacturing method can be used for the first and second movers in consideration of assembly efficiency and cost. Whether to arrange the magnets may be set as appropriate.
  • the intermediate yoke 2 separates the first movable element 1 side from the second movable element 3 side, and the number of magnetic pole pairs 12 and magnetic pole pairs 32 of the first movable element 1 and the second movable element 3 is 3 and 7.
  • a cylindrical partition wall 21 for holding a total of 10 magnetic bodies 22 is provided, and 10 magnetic bodies 22 are arranged on the partition wall 21 at substantially equal intervals along the circumferential direction. Further, the partition wall 21 holds the magnetic body 22 so that the distance in the radial direction between each magnetic body 22 and the second mover 3 is shorter than the distance between each magnetic body 22 and the first mover 1. ing.
  • the magnetic body 22 has a shape obtained by cutting a part of a cylinder along the longitudinal direction, and the partition wall 21 has a recess on the outer peripheral surface into which each magnetic body 22 is fitted.
  • the intermediate yoke 2 is disposed at a substantially central portion of the gap between the first movable element 1 and the second movable element 3, and the outer periphery of the partition wall 21 so that each magnetic body 22 is exposed to the second movable element 3 side. It fits into the surface. In addition, you may coat the surface by the side of the 2nd needle
  • the intermediate yoke 2 is manufactured, for example, by fixing each magnetic body 22 to a resin formed in a cylindrical shape (see, for example, pamphlet of International Publication No. 2009/087408).
  • An alternating magnetic field including a third harmonic component, a seventh harmonic component, and a thirteenth harmonic component generated by the magnetic pole pair 32 intersects the intermediate yoke 2 along the radial direction.
  • the magnetic body 22 for example, a magnetic metal, a laminated steel plate made of a plurality of laminated magnetic plates, and a soft magnetic body made of magnetic powder compacts may be used.
  • the material of the magnetic body 22 is preferably a laminated steel plate because eddy current loss can be suppressed.
  • the first mover 1 rotates due to the magnetic interaction between the magnetic pole pairs 12 and 32 of the first mover 1 and the second mover 3.
  • the first mover 1 having a smaller number of magnetic poles than the second mover 3 rotates at a higher rotational speed than the second mover 3 in the direction opposite to the rotation direction of the second mover 3 (Tetsuya Ikeda -See Kenji Nakamura and Osamu Ichinokura, "A Study on Efficiency Improvement of Permanent Magnet Type Magnetic Gear," Journal of the Magnetic Society, 2009, Vol. 33, No. 2, pp. 130-134).
  • the ratio Ph / Pl between the number Ph of the magnetic pole pairs arranged on the first movable element 1 and the number Pl of the magnetic pole pairs arranged on the second movable element 3 is the first movable element 1 with respect to the second movable element 3. It becomes the gear ratio. And when the 2nd needle
  • FIG. 2 is a graph showing a simulation result regarding the transmission torque of the magnetic gear device.
  • the execution conditions of this simulation are as follows.
  • the number of magnetic pole pairs 12 included in the first mover 1 is 7
  • the number of magnetic bodies 22 included in the intermediate yoke 2 is 26, and the number of magnetic pole pairs 32 included in the second mover 3 is 19.
  • the magnetic body 22 has a radial width of 3 mm and a circumferential width of about 4 mm.
  • the horizontal axis of the graph shown in FIG. 2 indicates the phase of the first movable element 1, and the vertical axis indicates the torque acting between the first and second movable elements 1, 3 and the intermediate yoke 2.
  • the solid line indicates the torque acting between the second mover 3 and the intermediate yoke 2, and the broken line indicates the torque acting between the first mover 1 and the intermediate yoke 2.
  • the thick line graph shows the torque when the gap between the first mover 1 and the intermediate yoke 2 is 2 mm, and the gap between the second mover 3 and the intermediate yoke 2 is 1 mm (hereinafter, referred to as “thickness”). Called pattern 1).
  • the middle thick line graph shows the torque when the gap between the first mover 1 and the intermediate yoke 2 is 1.5 mm, and the gap between the second mover 3 and the intermediate yoke 2 is 1.5 mm. (Hereinafter referred to as pattern 2).
  • the thin line graph shows the torque when the gap between the first mover 1 and the intermediate yoke 2 is 1 mm, and the gap between the second mover 3 and the intermediate yoke 2 is 2 mm (hereinafter referred to as pattern 3). Called).
  • pattern 3 the result of the pattern 1 is the best, and the torque acting between the first mover 1, the second mover 3, and the intermediate yoke 2 is the maximum.
  • Pattern 1 is a result when the magnetic body 22 is arranged close to the second movable element 3 side where the magnetic pole pair 32 is arranged at a short pitch.
  • the result of the pattern 3 is the worst, and the torque acting between the first mover 1, the second mover 3 and the intermediate yoke 2 is the smallest.
  • Pattern 3 is the result when the magnetic body 22 is arranged close to the first mover 1 side where the magnetic pole pair 12 is arranged at a long pitch.
  • the first movable element 1 and the second movable element are arranged when the magnetic body 22 is arranged close to the second movable element 3 side where the second magnetic pole row is arranged at a short pitch.
  • the transmission torque can be improved as compared with the case where the magnetic body 22 is arranged in the center of the gap of the child 3 or the case where the magnetic body 22 is arranged on the first mover 1 side.
  • the principle that the transmission torque is improved when the magnetic body 22 is arranged close to the second mover 3 side where the magnetic pole pair 32 is arranged at a short pitch is as follows.
  • the magnetic pole pairs 12 of the first mover 1 on the high speed rotation side have a longer pitch than the second mover 3 on the low speed rotation side.
  • the magnetic flux from the magnets 12a and 12b arranged at a long pitch on the high-speed rotation side spreads larger than the magnets 32a and 32b on the low-speed rotation side, and a strong magnetic force reaches the second mover 3, but the short pitch
  • the magnetic body 22 of the intermediate yoke 2 modulates the magnetic flux from the magnets 12a, 12b, 32a, 32b
  • the magnetic body 22 is arranged close to the low-speed rotation side magnets 32a, 32b
  • both the magnetic flux caused by the magnets 32a and 32b on the low-speed rotation side that closes in the vicinity and the magnetic flux caused by the magnets 12a and 12b on the high-speed rotation side reaching far away are affected, It is considered that the magnetic flux is more strongly modulated, and as a result, a larger torque transmission is possible.
  • the first mover 1 and the first mover 1 are compared with the case where the magnetic body 22 is arranged at the approximate center of the gap between the first mover 1 and the second mover 3.
  • the torque transmitted to and from the second mover 3 can be improved.
  • the air friction resistance acting between the intermediate yoke 2 and the first movable element 1 and the second movable element 3 increases as the relative speed of each member increases. Since it is arranged close to the second mover 3 rotating at a low speed, it is preferable from the viewpoint of air frictional resistance, and the transmission torque can be improved.
  • the magnetic gear device using the inner magnet row and the outer magnet row as the mover has been described.
  • the inner or outer magnet row is fixed and the intermediate yoke 2 is rotated. May be.
  • FIG. 3 is a side sectional view showing an example of the configuration of the magnetic gear device according to the first modification.
  • the magnetic gear device according to the modified example 1 is different from the first embodiment in that the magnetic body 122 is buried in the partition wall 121 of the intermediate yoke 102.
  • the magnetic body 122 since the magnetic body 122 is not exposed to either the first mover 1 side or the second mover 3 side, the atmosphere on the first mover 1 side and the second mover 3 side are exposed.
  • the magnetic body 122 can be shielded from the atmosphere.
  • FIG. 4 is a side sectional view showing a configuration example of the magnetic gear device according to the second modification.
  • the magnetic gear device according to the modification 2 is different from the first embodiment in that a plurality of adjacent magnetic bodies 222 are connected by a connecting portion 222a.
  • the connecting portion 222 a is a plate material that is thinner in the radial direction than the magnetic body 222, and is integrally formed with the plurality of magnetic bodies 222.
  • the magnetic bodies 222 are formed in a state in which a plurality of magnetic bodies 222 arranged at substantially equal intervals in the circumferential direction are connected by the connecting portions 222a.
  • the work of arranging in 221 can be omitted, and it can be manufactured efficiently.
  • FIG. 5 is a side sectional view showing a configuration example of the magnetic gear device according to the third modification.
  • the magnetic gear device according to Modification 3 is implemented in that a plurality of adjacent magnetic bodies 322 in the intermediate yoke 302 are connected to each other by a connecting portion 322a, and the magnetic body 322 and the connecting portion 322a are buried in a partition wall 321.
  • the connecting portion 322 a is a plate material whose width in the radial direction is thinner than that of the magnetic body 322, and is integrally formed with the plurality of magnetic bodies 322.
  • the magnetic body 322 and the connecting portion 322a are not exposed on either the first mover 1 side or the second mover 3 side, so the atmosphere on the first mover 1 side and the second The magnetic body 322 and the connecting portion 322a can be blocked from the atmosphere on the side of the mover 3.
  • FIG. 6 is a side sectional view showing a configuration example of the magnetic gear device according to the fourth modification.
  • the magnetic gear device according to the modified example 4 is implemented in that a plurality of adjacent magnetic bodies 422 are connected by a connecting portion 422a, and the connecting portion 422a is arranged near the first movable element 1 on the high-speed rotation side. Different from Form 1.
  • the connecting portion 422a is a cylindrical plate member having a radial width thinner than that of the magnetic body 422, and is integrally formed with the plurality of magnetic bodies 422.
  • the connecting portion 422a and the magnetic body 422 function as a partition that separates the first movable element 1 and the second movable element 3. .
  • the holding member 421 is provided between the magnetic bodies 422 in order to hold the positional relationship between the magnetic bodies 422. Note that the holding member 421 may be eliminated if there is no problem with the strength of the connecting portion 422a that connects the magnetic bodies 422.
  • the radial distance between the connecting portion 422a and the first mover 1 is shorter than the distance between the connecting portion 422a and the second mover 3, so the transmission torque of the magnetic gear device is reduced. Can be improved.
  • the reason why the connecting portion 422a is preferably arranged close to the first movable element 1 side on the high-speed rotation side is as follows.
  • the magnetic pole pairs 12 of the first mover 1 on the high speed rotation side have a longer pitch than the second mover 3 on the low speed rotation side.
  • the amount of magnetic flux from the magnets 12a and 12b arranged at a long pitch on the high speed rotation side tends to be larger than that on the low speed rotation side magnets 32a and 32b.
  • connection part 422a which connects the magnetic bodies 422 corresponds to a short-circuit magnetic path when viewed from the magnet.
  • the short-circuited magnetic flux becomes a reactive magnetic flux that does not contribute to the interaction between the magnets 12a and 12b on the high speed rotation side and the magnets 32a and 32b on the low speed rotation side.
  • the amount of reactive magnetic flux should be as small as possible.
  • the short-circuit magnetic flux flows until the magnetic flux of the connecting portion 422a is saturated. That is, the amount of reactive magnetic flux generated by the connecting portion 422a is a constant value determined by the cross-sectional area of the connecting portion 422a.
  • the coupling portion 422a is disposed on the side of the magnetic pole pair 32 arranged at a long pitch, and the coupling portion 422a is magnetically saturated with the magnetic flux from the magnets 12a and 12b, thereby reducing the proportion of the ineffective magnetic flux and transmitting torque. Can be prevented.
  • FIG. 7 is a side sectional view showing a configuration example of the magnetic gear device according to the fifth modification.
  • a plurality of adjacent magnetic bodies 522 in the intermediate yoke 502 are connected to each other by a connecting portion 522a, and the connecting portion 522a is disposed near the first movable element 1 on the high-speed rotation side.
  • buried in the partition 521 differs from Embodiment 1.
  • the connecting portion 522 a is a cylindrical plate member having a radial width thinner than that of the magnetic body 522, and is integrally formed with the plurality of magnetic bodies 522.
  • the magnetic body 522 and the connecting portion 522a can be cut off from the atmosphere on the first mover 1 side and the atmosphere on the second mover 3 side. Further, as described above, the transmission torque of the magnetic gear device can be improved.
  • FIG. 8 is a side sectional view showing a configuration example of the magnetic gear device according to the sixth modification.
  • the plurality of magnetic bodies 622 in the intermediate yoke 602 are held by the holding members 621 so as to be arranged at substantially equal intervals along the circumferential direction.
  • mover 3 side differs.
  • the transmission torque of the magnetic gear device can be improved by arranging the magnetic body 622 close to the second mover 3 on the low-speed rotation side.
  • FIG. 9 is a side sectional view showing a configuration example of a magnetic gear device according to Modification 7.
  • the magnetic gear device according to the modified example 7 is different from the first embodiment in that the first movable element 701 is configured to rotate at a low speed and the second movable element 703 is rotated at a high speed.
  • the first movable element 701 has an inner cylindrical portion 711 made of a magnetic material, and an outer peripheral surface of the inner cylindrical portion 711 is magnetized in the thickness direction on the outer peripheral surface side N pole magnet 712a and the outer peripheral surface side. Seven magnetic pole pairs 712 composed of S-pole magnets 712b are arranged at substantially equal intervals along the circumferential direction.
  • the second mover 703 has an outer cylindrical portion 731 made of a magnetic material, and an inner peripheral surface side N-pole magnet 732a magnetized in the thickness direction and an inner inner surface of the outer cylindrical portion 731 are provided. Three magnetic pole pairs 732 composed of the S-side magnets 732b on the circumferential surface side are arranged at substantially equal intervals along the circumferential direction.
  • the intermediate yoke 702 includes a cylindrical partition 721 that separates the first mover 701 side and the second mover 703 side and holds ten magnetic bodies 722.
  • the partition 721 includes ten magnetic bodies. 722 are arranged at substantially equal intervals along the circumferential direction.
  • the partition wall 721 holds the magnetic body 722 such that the distance between each magnetic body 722 and the first mover 701 in the radial direction is shorter than the distance between each magnetic body 722 and the second mover 703. ing. That is, each magnetic body 722 is disposed near the first mover 701 on the low-speed rotation side.
  • the first movable element 701 is compared with the case where the magnetic body 722 is arranged at the approximate center of the gap between the first movable element 701 and the second movable element 703. And the torque transmitted between the 2nd needle
  • FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification 8.
  • the magnetic gear device according to the modified example 8 is configured such that the first movable element 801 rotates at a low speed and the second movable element 803 rotates at a high speed as in the modified example 7, and the magnetic bodies 822 are connected to each other.
  • the second embodiment is different from the first embodiment in that it is connected by a portion 822a and the connecting portion 822a is disposed closer to the second movable element 803 on the high-speed rotation side.
  • the first mover 801 has an inner cylindrical portion 811 made of a magnetic material. On the outer peripheral surface of the inner cylindrical portion 811, the outer peripheral surface side N-pole magnet 812 a magnetized in the thickness direction and the outer peripheral surface side. Seven magnetic pole pairs 812 composed of S-pole magnets 812b are arranged at substantially equal intervals along the circumferential direction.
  • the second movable element 803 has an outer cylindrical portion 831 made of a magnetic material, and an inner peripheral surface side N-pole magnet 832a magnetized in the thickness direction and an inner inner surface of the outer cylindrical portion 831. Three magnetic pole pairs 832 made up of magnets 832b having S poles on the circumferential surface side are arranged at substantially equal intervals along the circumferential direction.
  • each magnetic body 822 connected by the connecting portion 822a is arranged at substantially equal intervals along the circumferential direction.
  • a holding member 821 that holds the positional relationship of each magnetic body 822 is provided.
  • the magnetic body 822 is held such that the distance between each magnetic body 822 and the first movable element 801 in the radial direction is shorter than the distance between each magnetic body 822 and the second movable element 803. That is, each magnetic body 822 is disposed near the first mover 801 on the low-speed rotation side.
  • FIG. 11 is a side sectional view showing an example of the configuration of the magnetic gear device according to the second embodiment.
  • the pump according to Embodiment 2 includes a substantially bottomed cylindrical housing 4 whose one side wall is recessed in a cylindrical shape.
  • the housing 4 includes a cylindrical body 42, a side wall large disc portion 41 that closes one opening of the cylindrical body 42, an annular portion 43 provided on the other side of the cylindrical body 42, A cylindrical partition wall 44 extending from the inner peripheral edge of the portion 43 to the center side in the longitudinal direction of the cylindrical body 42, and a side wall small disk portion 45 provided so as to close the center side of the partition wall 44.
  • the side wall large disc portion 41 is formed with an inflow port 41a through which a fluid flows, and an outflow port 42a through which the fluid flows out is provided at an appropriate position of the cylindrical body.
  • a cylindrical first movable element 5 and a second movable element 6 are arranged coaxially with the partition wall 44 on the inner peripheral side and the outer peripheral side of the partition wall 44 constituting the housing 4, and will be described later. 46 and a rotating cylindrical magnetic gear device.
  • the first armature 5 has an inner cylindrical portion 51 having a smaller diameter than the partition wall 44, and the outer peripheral surface side N magnetized in the thickness direction is formed on the outer peripheral surface of the inner cylindrical portion 51 as in the first embodiment.
  • Three magnetic pole pairs 52 are arranged at substantially equal intervals along the circumferential direction.
  • An input shaft 71 of the motor 7 is inserted and fixed to the inner cylindrical portion 51.
  • the second mover 6 has an outer cylindrical portion 61 having a diameter larger than that of the partition wall 44, and an inner peripheral surface side N-pole magnet magnetized in the thickness direction and an inner peripheral surface of the outer cylindrical portion 61 and Seven magnetic pole pairs 62 composed of S-pole magnets on the inner peripheral surface side are arranged at substantially equal intervals along the circumferential direction.
  • a rotating disk portion 63 is provided on one end side of the outer cylindrical portion 61, that is, on the side of the side wall large disk portion 41, and the input shaft 71 and the rotating shaft coincide with a substantially central portion of the rotating disk portion 63.
  • an output shaft 64 is provided.
  • a rotary blade 8 is provided at the tip of the output shaft 64.
  • Ten magnetic bodies 46 are buried inside the partition wall 44, and the magnetic bodies 46 are arranged at substantially equal intervals along the circumferential direction.
  • the partition wall 44 holds the magnetic body 46 so that the distance between each magnetic body 46 and the second mover 6 in the radial direction is shorter than the distance between each magnetic body 46 and the first mover 5.
  • a partition wall 44 having a magnetic body 46 disposed therein functions as an intermediate yoke.
  • the torque of the motor 7 can be decelerated and transmitted from the first mover 5 to the second mover 6.
  • the motor 7 on the first movable element 5 side uses the fluid on the second movable element 6 side. It can be prevented from being exposed.
  • the transmission is performed as compared with the conventional technique in which the magnetic body 46 is disposed in the substantially central portion of the partition wall 44. Torque can be improved.
  • FIG. 12 is an exploded perspective view showing a configuration example of the magnetic gear device according to the third embodiment
  • FIG. 13 is a side sectional view of the magnetic gear device according to the third embodiment.
  • the magnetic gear device according to the third embodiment has a disk shape, and has a disk-shaped first movable element 3001 and a disk-shaped disk disposed coaxially with a gap above the first movable element 3001.
  • a second mover 3003 and a disk-shaped intermediate yoke 3002 arranged coaxially with a gap between the first mover 3001 and the second mover 3003 are provided.
  • the first mover 3001 has a first disk 3011 made of a magnetic material, and a magnetic pole pair 3012 made up of an upper N-pole magnet 3012a and an upper S-pole magnet 3012b is formed on the upper surface of the first disk 3011. Six pieces are arranged at substantially equal intervals along the circumferential direction.
  • the second mover 3003 has a second disk 3031 made of a magnetic material, and a magnetic pole pair made up of a lower N-pole magnet 3032a and a lower S-pole magnet 3032b on the lower surface of the second disk 3031. Fourteen 3032 are arranged at substantially equal intervals along the circumferential direction.
  • the intermediate yoke 3002 is a disk-shaped holding member 3021 that holds 20 magnetic bodies 3022 that are the sum of the numbers 6 and 14 of the magnetic pole pairs 3012 and the magnetic pole pairs 3032 included in the first movable element 3001 and the second movable element 3003.
  • 20 magnetic bodies 3022 are arranged at substantially equal intervals along the circumferential direction.
  • the holding member 3021 has the magnetic body 3022 so that the distance in the rotation axis direction between each magnetic body 3022 and the second movable element 3003 is shorter than the distance between each magnetic body 3022 and the first movable element 3001. keeping.
  • the same effect as in the first embodiment is obtained. Further, the technical ideas of the first to eighth modifications can be applied to the magnetic gear device according to the third embodiment.
  • FIG. 14 is an exploded perspective view showing a configuration example of the magnetic gear device according to the fourth embodiment
  • FIG. 15 is a side sectional view of the magnetic gear device according to the fourth embodiment.
  • each constituent member is a long plate-like linear type, and has a long plate-like first mover 4001 and a gap above the first mover 4001.
  • a long plate-like second movable element 4003 arranged and a long plate-shaped intermediate yoke 4002 arranged with a gap between the first movable element 4001 and the second movable element 4003 are provided.
  • the longitudinal directions of the first mover 4001, the second mover 4003, and the intermediate yoke 4002 are substantially the same.
  • the first mover 4001 includes a first long plate portion 4011 made of a magnetic material.
  • the upper surface of the first long plate portion 4011 includes an upper N-pole magnet 4012a and an upper S-pole magnet 4012b.
  • Six magnetic pole pairs 4012 are arranged at substantially equal intervals per unit distance ⁇ L along the longitudinal direction.
  • the second mover 4003 has a second long plate portion 4031 made of a magnetic material, and a lower N-pole magnet 4032a and a lower S-pole magnet 4032b are formed on the lower surface of the second long plate portion 4031.
  • Fourteen magnetic pole pairs 4032 are arranged at substantially equal intervals per unit distance ⁇ L along the longitudinal direction.
  • the intermediate yoke 4002 is a long plate-shaped holder that holds 20 magnetic members 4022 that is the sum of the number of magnetic pole pairs 4012 and the number of magnetic pole pairs 4032 of the first and second movable elements 4001 and 4003.
  • a member 4021 is provided, and 20 magnetic bodies 4022 per unit distance ⁇ L are arranged on the holding member 4021 at substantially equal intervals along the longitudinal direction.
  • the holding member 4021 holds the magnetic body 4022 such that the distance between the magnetic bodies 4022 and the second mover 4003 in the separation direction is shorter than the distance between the magnetic bodies 4022 and the first mover 4001. is doing.
  • FIG. 16 is an exploded perspective view showing a configuration example of the magnetic gear device according to the fifth embodiment
  • FIG. 17 is a side sectional view of the magnetic gear device according to the fifth embodiment.
  • each constituent member is a cylindrical linear type
  • the cylindrical first movable element 5001 is arranged coaxially with a gap on the outer peripheral side of the first movable element 5001.
  • a cylindrical intermediate yoke 5002 arranged coaxially with a gap between the first movable element 5001 and the second movable element 5003.
  • the first mover 5001 has an inner cylindrical portion 5011 made of a magnetic material, and a magnetic pole pair 5012 consisting of an outer N-pole magnet 5012a and an outer S-pole magnet 5012b is centered on the outer peripheral surface of the inner cylindrical portion 5011. Six units are arranged at substantially equal intervals per unit distance ⁇ L along the axial direction.
  • the second mover 5003 has an outer cylindrical portion 5031 made of a magnetic material, and a magnetic pole pair 5032 consisting of an inner N-pole magnet 5032a and an inner S-pole magnet 5032b is formed on the inner peripheral surface of the outer cylindrical portion 5031. 14 units are arranged at substantially equal intervals per unit distance ⁇ L along the central axis direction.
  • the intermediate yoke 5002 has a cylindrical holding member 5021 that holds 20 magnetic bodies 5022 that are the sum of the numbers 6 and 14 of the magnetic pole pairs 5012 and the magnetic pole pairs 5032 included in the first movable element 5001 and the second movable element 5003.
  • 20 magnetic bodies 5022 per unit distance ⁇ L are arranged at substantially equal intervals along the central axis direction.
  • the holding member 5021 holds the magnetic body 5022 so that the distance between each magnetic body 5022 and the second mover 5003 in the radial direction is shorter than the distance between each magnetic body 5022 and the first mover 5001. is doing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

 第1磁石列と、第2磁石列と、磁性体列との間で伝達される力を向上させる磁気ギア装置を提供する。 特定の方向に沿って略等間隔に複数の磁極対がそれぞれ配されている第1磁石列と、該第1磁石列に対向しており、前記第1磁石列よりも短ピッチ(又は長ピッチ)で前記特定の方向に沿って略等間隔に複数の磁極対がそれぞれ配されている第2磁石列と、前記第1磁石列及び第2磁石列間に配置してあり、前記特定の方向に沿って略等間隔に複数の磁性体がそれぞれ配されている磁性体列とを備える磁気ギア装置において、前記複数の磁性体と前記第2磁石列との対向方向における距離を、前記複数の磁性体と前記第1磁石列との距離に比べて短く(又は長く)構成する。

Description

磁気ギア装置
 本発明は、特定の方向に沿って略等間隔に複数の磁極対がそれぞれ配されている第1及び第2磁石列と、第1磁石列及び第2磁石列間に配置してあり、前記特定の方向に沿って略等間隔に複数の磁性体がそれぞれ配されている磁性体列とを備えた磁気ギア装置に関する。
 特許文献1及び非特許文献1には磁気ギア装置が開示されている。磁気ギア装置は、周方向に沿って略等間隔に複数の磁極対がそれぞれ配されている円筒状の第1可動子及び第2可動子と、該第1可動子及び第2可動子の間に配置してあり、周方向に沿って略等間隔に複数の磁性体がそれぞれ配されている筒状の中間ヨークとを備える。複数の磁性体は、第1可動子及び第2可動子の間隙の略中央に配されている。
国際公開第2009/087409号
池田哲也・中村健二・一ノ倉理、「永久磁石式磁気ギアの効率向上に関する一考察」、磁気学会論文誌、2009年、33巻、2号、130-134頁
 本願発明者は、中間ヨークの磁性体を第1可動子及び第2可動子の間隙の略中央に配するよりも、低速で回転する可動子側に寄せて配置した方が、トルクの伝達効率が高いという事実を発見した。
 本発明に係る磁気ギア装置は、特定の方向に沿って略等間隔に複数の磁極対がそれぞれ配されている第1磁石列と、該第1磁石列に対向しており、前記第1磁石列よりも短ピッチ(又は長ピッチ)で前記特定の方向に沿って略等間隔に複数の磁極対がそれぞれ配されている第2磁石列と、前記第1磁石列及び第2磁石列間に配置してあり、前記特定の方向に沿って略等間隔に複数の磁性体がそれぞれ配されている磁性体列とを備える磁気ギア装置において、前記複数の磁性体と前記第2磁石列との対向方向における距離は、前記複数の磁性体と前記第1磁石列との距離に比べて短い(又は長い)ことを特徴とする。
 本発明にあっては、第1磁石列が高速、第2磁石列が低速で回転又は移動する場合、複数の磁性体は、高速側の第1磁石列に比べて、低速側の第2磁石列側寄りに配されている。後述するように、複数の磁性体を、第1磁石列と、第2磁石列との間隙の略中央部に配する場合に比べて、第1磁石列と、第2磁石列との間で伝達させるトルクは大きい。
 同様に、第1磁石列が低速、第2磁石列が高速で回転又は移動する場合、複数の磁性体は、高速側の第2磁石列に比べて、低速側の第1磁石列側寄りに配されている。後述するように、複数の磁性体を、第1磁石列と、第2磁石列との間隙の略中央部に配する場合に比べて、第1磁石列と、第2磁石列との間で伝達させるトルクは大きい。対向方向における第1磁石列と第2磁石列との間隔が同じでかつ磁性体の厚さが同じ場合、つまり該間隔及び厚さが一定の設計値に固定されている場合には、複数の磁性体は低速側にあるほうが良い。
 本発明に係る磁気ギア装置は、前記磁性体列は、前記複数の磁性体を保持しており、前記第1磁石列側と、前記第2磁石列側とを隔てる隔壁を備えることを特徴とする。
 本発明にあっては、第1磁石列側と、第2磁石列側とを隔てる隔壁を備えているため、第1磁石列側の雰囲気と、第2磁石列側の雰囲気とを隔てることが可能である。
 本発明に係る磁気ギア装置は、前記複数の磁性体は、前記第2磁石列側(又は第1磁石列側)に露出するように前記隔壁に保持されていることを特徴とする。
 本発明にあっては、第1磁石列が高速、第2磁石列が低速で回転又は移動する場合、磁性体列の隔壁から第2磁石列側に磁性体が露出している。従って、磁性体と、第2磁石列との距離を極力短くすることができ、伝達トルクを向上させることが可能である。また、磁性体が第1磁石列側の雰囲気に露出されることを防ぐことが可能である。
 同様に、第1磁石列が低速、第2磁石列が高速で回転又は移動する場合、磁性体列の隔壁から第1磁石列側に磁性体が露出している。従って、磁性体と、第1磁石列との距離を極力短くすることができ、伝達トルクを向上させることが可能である。また、磁性体が第2磁石列側の雰囲気に露出されることを防ぐことが可能である。
 本発明に係る磁気ギア装置は、前記複数の磁性体は、前記隔壁に埋没していることを特徴とする。
 本発明にあっては、磁性体は隔壁に埋没しているため、磁性体が第1磁石列側及び第2磁石列側の雰囲気に露出されることを防ぐことが可能である。
 本発明に係る磁気ギア装置は、前記磁性体列は、隣り合う前記複数の磁性体同士を連結する連結部を備え、前記複数の磁性体及び連結部は一体形成されていることを特徴とする。
 本発明にあっては、複数の磁性体は連結部で連結してあり、一体形成されるため、磁性体列の配列が容易である。
 本発明に係る磁気ギア装置は、前記連結部と前記第1磁石列との前記対向方向における距離は、前記連結部と前記第2磁石列との距離に比べて短い(又は長い)ことを特徴とする。
 本発明にあっては、第1磁石列が高速、第2磁石列が低速で回転又は移動する場合、連結部と第1磁石列との前記対向方向における距離は、連結部と第2磁石列との距離に比べて短いため、連結部は磁気的に飽和する。このため、伝達力に寄与しない無効磁束の割合が減少する。
 同様に、第1磁石列が低速、第2磁石列が高速で回転又は移動する場合、連結部と第2磁石列との前記対向方向における距離は、連結部と第1磁石列との距離に比べて短いため、磁気的に飽和する。このため、伝達力に寄与しない無効磁束の割合が減少する。
 本発明に係る磁気ギア装置は、前記複数の磁性体は積層鋼板を含むことを特徴とする。
 本発明にあっては、磁性体に渦電流が発生しにくい。
 本発明に係る磁気ギア装置は、前記第1磁石列は焼結磁石(又はボンド磁石)を含み、前記第2磁石列はボンド磁石(又は焼結磁石)を含むことを特徴とする。
 本発明にあっては、渦電流が発生しやすい低速側をボンド磁石で構成し、渦電流が発生しにくい高速側を焼結磁石で構成している。焼結磁石はボンド磁石に比べて磁力が大きいため、この組み合わせにより、渦電流による損失を抑えつつ、伝達トルクを担保することができる。
 本発明に係る磁気ギア装置は、前記第1磁石列、前記第2磁石列及び前記磁性体列は円筒状をなし、前記特定の方向は、前記第1磁石列、前記第2磁石列及び前記磁性体列の周方向であることを特徴とする。
 本発明にあっては、円筒状の磁気ギア装置を構成することが可能である。
 本発明に係る磁気ギア装置は、前記第1磁石列、前記第2磁石列及び前記磁性体列は円板状をなし、前記特定の方向は、前記第1磁石列、前記第2磁石列及び前記磁性体列の円周方向であることを特徴とする。
 本発明にあっては、円板状の磁気ギア装置を構成することが可能である。
 本発明に係る磁気ギア装置は、前記第1磁石列、前記第2磁石列及び前記磁性体列は長尺板状をなし、前記特定の方向は、前記第1磁石列、前記第2磁石列及び前記磁性体列の長手方向であることを特徴とする。
 本発明にあっては、長尺板状のリニア磁気ギア装置を構成することが可能である。
 本発明に係る磁気ギア装置は、前記第1磁石列、前記第2磁石列及び前記磁性体列は円筒状をなし、前記特定の方向は、前記第1磁石列、前記第2磁石列及び前記磁性体列の中心軸方向であることを特徴とする。
 本発明にあっては、円筒状のリニア磁気ギア装置を構成することが可能である。
 本発明によれば、第1磁石列と、第2磁石列との間隙の略中央に磁性体列を配する場合に比べて、第1磁石列と、第2磁石列と、磁性体列との間で伝達される力を向上させることができる。
本実施の形態1に係る磁気ギア装置の一構成例を示した側断面図である。 磁気ギア装置の伝達トルクに関するシミュレーション結果を示したグラフである。 変形例1に係る磁気ギア装置の一構成例を示した側断面図である。 変形例2に係る磁気ギア装置の一構成例を示した側断面図である。 変形例3に係る磁気ギア装置の一構成例を示した側断面図である。 変形例4に係る磁気ギア装置の一構成例を示した側断面図である。 変形例5に係る磁気ギア装置の一構成例を示した側断面図である。 変形例6に係る磁気ギア装置の一構成例を示した側断面図である。 変形例7に係る磁気ギア装置の一構成例を示した側断面図である。 変形例8に係る磁気ギア装置の一構成例を示した側断面図である。 実施の形態2に係る磁気ギア装置の一構成例を示した側断面図である。 実施の形態3に係る磁気ギア装置の一構成例を示した分解斜視図である。 実施の形態3に係る磁気ギア装置の側断面図である。 実施の形態4に係る磁気ギア装置の一構成例を示した分解斜視図である。 実施の形態4に係る磁気ギア装置の側断面図である。 実施の形態5に係る磁気ギア装置の一構成例を示した分解斜視図である。 実施の形態5に係る磁気ギア装置の側断面図である。
(実施の形態1)
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。
 図1は、本実施の形態1に係る磁気ギア装置の一構成例を示した側断面図である。本発明の実施の形態1に係る磁気ギア装置は、回転円筒型であり、円筒状の第1可動子1と、該第1可動子1の外側に間隙を有して同軸に配された円筒状の第2可動子3と、第1可動子1及び第2可動子3の間に間隙を有して同軸に配された円筒状の中間ヨーク2とを備える。
 第1可動子1は、磁性体材料からなる内側円筒部11を有し、内側円筒部11の外周面には、厚さ方向に着磁された外周面側N極の磁石12a及び外周面側S極の磁石12bからなる磁極対12が円周方向に沿って略等間隔に3個配置されている。
 第2可動子3は、磁性体材料からなる外側円筒部31を有し、外側円筒部31の内周面には、厚さ方向に着磁された内周面側N極の磁石32a及び内周面側S極の磁石32bからなる磁極対32が円周方向に沿って略等間隔に7個配置されている。ここで厚さ方向に着磁された磁石とは、外周面側及び内周面側が異極となるよう着磁されていることを意味する。例えば、磁石12aは、外周面側及び内周面側夫々がN極及びS極に着磁され、磁石12bは、外周面側及び内周面側夫々がS極及びN極に着磁されている。
 また、渦電流の発生する割合は、低速回転側の方が高速回転側に比べて大きいため、磁極対12,32を希土類―遷移金属系磁石(例えばNd-Fe-B系磁石等)で形成する場合、第1可動子1側の磁極対12を焼結磁石で構成し、第2可動子3側の磁極対32をボンド磁石で構成すると良い。ボンド磁石は、微小な磁石粒ないしは微粉を樹脂等のバインダと混ぜ合わせて、成型固化したものであり、渦電流の発生を低減することが可能である。焼結磁石は、いわゆる粉末冶金法によって作られる磁石であり、ボンド磁石に比べて、渦電流損が大きいが、磁力が強いという性質を有する。従って、このように、構成することによって、第1可動子1と、第2可動子3との間に働く力を担保しつつ、渦電流の発生を極力抑えることができる。
 なお磁極対12,32として酸化物磁石(例えばフェライト磁石)を用いる場合には渦電流の発生は極めて少ないため組立て効率やコスト等を考慮し第1可動子と第2可動子にどのような製法の磁石を配置するかは適宜設定すれば良い。
 中間ヨーク2は、第1可動子1側と、第2可動子3側を隔てると共に、第1可動子1及び第2可動子3夫々が有する磁極対12及び磁極対32の個数3及び7の合計となる10個の磁性体22を保持する円筒状の隔壁21を備え、隔壁21には、10個の磁性体22が円周方向に沿って略等間隔に配されている。また、隔壁21は、各磁性体22と第2可動子3との径方向における距離が、各磁性体22と第1可動子1との距離に比べて短くなるように磁性体22を保持している。具体的には、磁性体22は、円筒の一部を長手方向に沿って切断したような形状をなし、隔壁21は各磁性体22が嵌り込むような凹部を外周面に有している。中間ヨーク2は、第1可動子1と、第2可動子3との間隙の略中央部に配されており、各磁性体22が第2可動子3側に露出するように隔壁21の外周面に嵌り込んでいる。なお、必要に応じて、磁性体22の第2可動子3側の表面をコーティングしても良い。
 中間ヨーク2は、例えば円筒状に形成された樹脂に各磁性体22を固定して作製される(例えば、国際公開第2009/087408号パンフレット参照)。中間ヨーク2には、磁極対32により発生した3次調波成分、7次調波成分及び13次調波成分を含む交番磁界が径方向に沿って交差する。磁性体22には、例えば、磁性金属、積層した複数の磁性板からなる積層鋼板及び磁性粉の圧粉体等からなる軟磁性体を用いるとよい。特に、磁性体22の材質としては、渦電流損を抑えることができるため、積層鋼板が好ましい。
 第2可動子3が回転した場合、第1可動子1及び第2可動子3夫々が有する磁極対12,32間の磁気的相互作用により、第1可動子1が回転する。この場合、第2可動子3よりも磁極数の少ない第1可動子1は、第2可動子3よりも高い回転数で、第2可動子3の回転方向と逆方向に回転する(池田哲也・中村健二・一ノ倉理、「永久磁石式磁気ギアの効率向上に関する一考察」、磁気学会論文誌、2009年、33巻、2号、130-134頁参照)。第1可動子1に配置してある磁極対の個数Phと、第2可動子3に配置してある磁極対の個数Plとの比Ph/Plが第2可動子3に対する第1可動子1のギア比となる。そして、第2可動子3が左回りに1回転した場合、第1可動子1が右回りに7/3回転する。
 次に、磁性体22の配置と、磁気ギア装置における伝達トルクとの関係を説明する。
 図2は、磁気ギア装置の伝達トルクに関するシミュレーション結果を示したグラフである。本シミュレーションの実施条件は以下の通りである。第1可動子1が有する磁極対12の数を7対、中間ヨーク2が有する磁性体22の数を26個、第2可動子3が有する磁極対32の数を19対とする。磁性体22の径方向の幅は3mm、周方向の幅は約4mmである。そして、第2可動子3及び中間ヨーク2を固定し、第1可動子1を回転させた場合に、第1可動子1及び第2可動子3と、中間ヨーク2との間に働くトルクをシミュレーションした。図2に示したグラフの横軸は第1可動子1の位相、縦軸は第1及び第2可動子1,3と、中間ヨーク2との間に働くトルクを示している。
 実線は第2可動子3と、中間ヨーク2との間に働くトルクを示し、破線は第1可動子1と、中間ヨーク2との間に働くトルクを示している。また、太線のグラフは、第1可動子1と、中間ヨーク2との間隙が2mm、第2可動子3と、中間ヨーク2との間隙が1mmである場合のトルクを示している(以下、パターン1という)。中太線のグラフは、第1可動子1と、中間ヨーク2との間隙が1.5mm、第2可動子3と、中間ヨーク2との間隙が1.5mmである場合のトルクを示している(以下、パターン2という)。細線のグラフは、第1可動子1と、中間ヨーク2との間隙が1mm、第2可動子3と、中間ヨーク2との間隙が2mmである場合のトルクを示している(以下、パターン3という)。
 図2に示すように、パターン1の結果が最も良好であり、第1可動子1、第2可動子3及び中間ヨーク2の間に働くトルクが最大である。パターン1は磁性体22を、短ピッチで磁極対32が配された第2可動子3側に寄せて配置した場合の結果である。逆に、パターン3の結果が最も悪く、第1可動子1、第2可動子3及び中間ヨーク2の間に働くトルクが最小である。パターン3は磁性体22を、長ピッチで磁極対12が配された第1可動子1側に寄せて配置した場合の結果である。
 以上のシミュレーション結果から分かるように、磁性体22を、短ピッチで第2磁極列が配された第2可動子3側に寄せて配置した場合の方が、第1可動子1及び第2可動子3の間隙の中央に磁性体22を配置した場合、又は磁性体22を第1可動子1側に配置した場合に比べて、伝達トルクを向上させることができる。
 磁性体22を短ピッチで磁極対32が配された第2可動子3側に寄せて配置した方が、伝達トルクが向上する原理は以下の通りである。高速回転側の第1可動子1の磁極対12は、低速回転側の第2可動子3に比べて、長ピッチである。高速回転側の長ピッチで配された磁石12a,12bからの磁束は、低速回転側の磁石32a,32bに比べて、より大きく広がって、強い磁力が第2可動子3まで達するが、短ピッチで配された低速回転側の磁石32a,32bからの磁束は第2可動子3の近傍で閉じてしまい、強い磁力が第1可動子1まで達しない傾向がある。従って、中間ヨーク2の磁性体22によって、磁石12a,12b,32a,32bからの磁束に変調をかける場合、低速回転側の磁石32a,32b側に寄せて磁性体22を配して、磁束の変調をおこなった方が、近傍で閉じてしまう低速回転側の磁石32a,32bに起因する磁束と、遠くに達する高速回転側の磁石12a,12bに起因する磁束との両方の作用を受けて、より強力に磁束の変調がかけられ、その結果、より大きなトルク伝達が可能になると考えられている。
 実施の形態1に係る磁気ギア装置にあっては、第1可動子1と、第2可動子3との間隙の略中央に磁性体22を配する場合に比べて、第1可動子1と、第2可動子3との間で伝達されるトルクを向上させることができる。
 また、一般的に、中間ヨーク2と、第1可動子1及び第2可動子3との間に働く空気摩擦抵抗は、各部材の相対速度が大きくなる程、大きくなるところ、中間ヨーク2は、低速回転する第2可動子3側に寄せて配置しているため、空気摩擦抵抗という観点からも好ましく、伝達トルクを向上させることができる。
 なお、実施の形態1では、内側の磁石列、外側の磁石列を可動子とした磁気ギア装置を説明したが、内側又は外側の磁石列を固定し、中間ヨーク2を回転させるように構成しても良い。
(変形例1)
 図3は、変形例1に係る磁気ギア装置の一構成例を示した側断面図である。変形例1に係る磁気ギア装置は、中間ヨーク102の隔壁121に磁性体122が埋没している点が実施の形態1と異なる。
 変形例1にあっては、磁性体122が第1可動子1側と、第2可動子3側とのいずれにも露出しないため、第1可動子1側の雰囲気及び第2可動子3側の雰囲気から磁性体122を遮断することができる。
(変形例2)
 図4は、変形例2に係る磁気ギア装置の一構成例を示した側断面図である。変形例2に係る磁気ギア装置は、隣り合う複数の磁性体222同士が連結部222aによって連結されている点が実施の形態1と異なる。連結部222aは、磁性体222よりも径方向の幅が薄い板材であり、複数の磁性体222と共に一体形成されている。
 変形例2にあっては、中間ヨーク202を製造する際、円周方向に略等間隔に配列した複数の磁性体222を連結部222aで連結した状態で形成するため、各磁性体222を隔壁221に配列させる作業を省略することができ、効率的に製造することができる。
(変形例3)
 図5は、変形例3に係る磁気ギア装置の一構成例を示した側断面図である。変形例3に係る磁気ギア装置は、中間ヨーク302における隣り合う複数の磁性体322同士が連結部322aによって連結され、かつ磁性体322及び連結部322aが隔壁321に埋没している点が実施の形態1と異なる。連結部322aは、磁性体322よりも径方向の幅が薄い板材であり、複数の磁性体322と共に一体形成されている。
 変形例3にあっては、磁性体322及び連結部322aが第1可動子1側と、第2可動子3側とのいずれにも露出しないため、第1可動子1側の雰囲気及び第2可動子3側の雰囲気から磁性体322及び連結部322aを遮断することができる。
(変形例4)
 図6は、変形例4に係る磁気ギア装置の一構成例を示した側断面図である。変形例4に係る磁気ギア装置は、隣り合う複数の磁性体422同士が連結部422aによって連結され、かつ連結部422aが高速回転側の第1可動子1寄りに配されている点が実施の形態1と異なる。連結部422aは、磁性体422よりも径方向の幅が薄い円筒状の板材であり、複数の磁性体422と共に一体形成されている。
 なお、連結部422aを中間ヨーク402の中心軸方向の両端に亘るように形成することによって、連結部422a及び磁性体422が、第1可動子1及び第2可動子3を隔てる隔壁として機能する。この場合においても、各磁性体422の位置関係を保持するために保持部材421が、各磁性体422の間に設けられる。なお、磁性体422同士を連結する連結部422aの強度的な問題が無ければ、保持部材421を廃しても良い。
 変形例4にあっては、連結部422aと第1可動子1との径方向の距離は、連結部422aと第2可動子3との距離に比べて短いため、磁気ギア装置の伝達トルクを向上させることができる。
 連結部422aを高速回転側の第1可動子1側に寄せて配置した方が好ましい理由は以下の通りである。高速回転側の第1可動子1の磁極対12は、低速回転側の第2可動子3に比べて、長ピッチである。高速回転側の長ピッチで配された磁石12a,12bからの磁束の量は、低速回転側の磁石32a,32bに比べて大きい傾向がある。
 ここで、磁性体422同士を連結する連結部422aは、磁石から見ると短絡磁路に相当する。短絡した磁束は高速回転側の磁石12a,12bと、低速回転側の磁石32a,32bとの相互作用に寄与しない無効磁束となる。無効磁束量はなるべく小さい方が良い。ところで、短絡磁束は連結部422aの磁束が飽和するまで流れ込む。即ち、連結部422aによって発生する無効磁束量は、連結部422aの断面積によって定まる一定の値であるため、磁性体422に対向する磁石の磁束量が大きい程、該磁束量に対する無効磁束量の比率が小さくなる。従って、長ピッチで配された磁極対32側に連結部422aを配置し、磁石12a,12bからの磁束で連結部422aを磁気的に飽和させることで、無効磁束の割合を小さくし、伝達トルクの低下を防止することが可能になる。
(変形例5)
 図7は、変形例5に係る磁気ギア装置の一構成例を示した側断面図である。変形例5に係る磁気ギア装置は、中間ヨーク502における隣り合う複数の磁性体522同士が連結部522aによって連結され、かつ連結部522aが高速回転側の第1可動子1寄りに配されており、更に、磁性体522及び連結部522aが隔壁521に埋没している点が実施の形態1と異なる。連結部522aは、磁性体522よりも径方向の幅が薄い円筒状の板材であり、複数の磁性体522と共に一体形成されている。
 変形例5にあっては、第1可動子1側の雰囲気及び第2可動子3側の雰囲気から磁性体522及び連結部522aを遮断することができる。また、上述したように、磁気ギア装置の伝達トルクを向上させることができる。
(変形例6)
 図8は、変形例6に係る磁気ギア装置の一構成例を示した側断面図である。変形例6に係る磁気ギア装置は、中間ヨーク602における複数の各磁性体622が円周方向に沿って略等間隔に配されるように保持部材621によって保持されており、各磁性体622は第1可動子1側及び第2可動子3側の双方に露出している点が異なる。この場合においても、磁性体622が低速回転側の第2可動子3側に寄せて配することによって、磁気ギア装置の伝達トルクを向上させることができる。
(変形例7)
 図9は、変形例7に係る磁気ギア装置の一構成例を示した側断面図である。変形例7に係る磁気ギア装置は、第1可動子701が低速回転、第2可動子703が高速回転するように構成されている点が実施の形態1と異なる。
 第1可動子701は、磁性体材料からなる内側円筒部711を有し、内側円筒部711の外周面には、厚さ方向に着磁された外周面側N極の磁石712a及び外周面側S極の磁石712bからなる磁極対712が円周方向に沿って略等間隔に7個配置されている。第2可動子703は、磁性体材料からなる外側円筒部731を有し、外側円筒部731の内周面には、厚さ方向に着磁された内周面側N極の磁石732a及び内周面側S極の磁石732bからなる磁極対732が円周方向に沿って略等間隔に3個配置されている。中間ヨーク702は、第1可動子701側と、第2可動子703側を隔てると共に、10個の磁性体722を保持する円筒状の隔壁721を備え、隔壁721には、10個の磁性体722が円周方向に沿って略等間隔に配されている。また、隔壁721は、各磁性体722と第1可動子701との径方向における距離が、各磁性体722と第2可動子703との距離に比べて短くなるように磁性体722を保持している。つまり、各磁性体722は、低速回転側の第1可動子701寄りに配されている。
 変形例7にあっては、実施の形態1と同様、第1可動子701と、第2可動子703との間隙の略中央に磁性体722を配する場合に比べて、第1可動子701と、第2可動子703との間で伝達されるトルクを向上させることができる。
(変形例8)
 図10は、変形例8に係る磁気ギア装置の一構成例を示した側断面図である。変形例8に係る磁気ギア装置は、変形例7と同様、第1可動子801が低速回転、第2可動子803が高速回転するように構成されており、更に、各磁性体822同士が連結部822aで連結され、かつ該連結部822aが高速回転側の第2可動子803寄りに配されている点が実施の形態1と異なる。
 第1可動子801は、磁性体材料からなる内側円筒部811を有し、内側円筒部811の外周面には、厚さ方向に着磁された外周面側N極の磁石812a及び外周面側S極の磁石812bからなる磁極対812が円周方向に沿って略等間隔に7個配置されている。第2可動子803は、磁性体材料からなる外側円筒部831を有し、外側円筒部831の内周面には、厚さ方向に着磁された内周面側N極の磁石832a及び内周面側S極の磁石832bからなる磁極対832が円周方向に沿って略等間隔に3個配置されている。中間ヨーク802は、連結部822aで連結された10個の磁性体822が円周方向に沿って略等間隔に配されている。各磁性体822の間には、各磁性体822の位置関係を保持する保持部材821が設けられている。各磁性体822と第1可動子801との径方向における距離が、各磁性体822と第2可動子803との距離に比べて短くなるように磁性体822を保持している。つまり、各磁性体822は、低速回転側の第1可動子801寄りに配されている。
 変形例8にあっては、実施の形態1及び変形例1と同様、第1可動子801と、第2可動子803との間隙の略中央に磁性体822を配する場合に比べて、第1可動子801と、第2可動子803との間で伝達されるトルクを向上させることができる。
 なお、変形例7,8では、第1可動子701、801を低速回転するように構成する例において、実施の形態1と、変形例4に対応する構成を説明したが、言うまでもなく、その他変形例1~3、5、6に対応する構成を適用することもできる。
(実施の形態2)
 図11は、実施の形態2に係る磁気ギア装置の一構成例を示した側断面図である。実施の形態2では、ポンプにトルクコンバータとしての磁気ギア装置を適用した例を説明する。実施の形態2に係るポンプは、一方の側壁が円筒状に窪んだ略有底円筒状の筐体4を備える。筐体4は、筒体42と、該筒体42の一方の開口を閉鎖している側壁大円板部41と、該筒体42の他方側に設けられた円環部43と、円環部43の内周縁から筒体42の長手方向中央側へ延設された円筒状の隔壁44と、隔壁44の前記中央側を塞ぐように設けられた側壁小円板部45とを有する。側壁大円板部41には流体が流入する流入口41aが形成され、筒体42の適宜箇所に流体が流出する流出口42aが設けられている。
 筐体4を構成している隔壁44の内周側及び外周側にはそれぞれ円筒状の第1可動子5と、第2可動子6とが、隔壁44と同軸に配され、後述する磁性体46と共に回転円筒型の磁気ギア装置を構成している。
 第1可動子5は、隔壁44よりも小径の内側円筒部51を有し、実施の形態1と同様、内側円筒部51の外周面には、厚さ方向に着磁された外周面側N極の磁石及び外周面側S極の磁石からなる磁極対52が円周方向に沿って略等間隔に3個配置されている。内側円筒部51には、モータ7の入力軸71が挿入され固定されている。
 第2可動子6は、隔壁44よりも大径の外側円筒部61を有し、外側円筒部61の内周面には、厚さ方向に着磁された内周面側N極の磁石及び内周面側S極の磁石からなる磁極対62が円周方向に沿って略等間隔に7個配置されている。外側円筒部61の一端側、即ち、側壁大円板部41側には回転円板部63が設けられており、回転円板部63の略中央部には、入力軸71と回転軸が一致するように出力軸64が設けられている。出力軸64の先端には回転翼8が設けられている。
 隔壁44の内部には、10個の磁性体46が埋没しており、各磁性体46は円周方向に沿って略等間隔に配されている。また、隔壁44は、各磁性体46と第2可動子6との径方向における距離が、各磁性体46と第1可動子5との距離に比べて短くなるように磁性体46を保持している。内部に磁性体46を配した隔壁44は、中間ヨークとして機能している。
 このように構成されたポンプによれば、モータ7のトルクを第1可動子5から第2可動子6へ減速伝達することができる。また、隔壁44によって、第1可動子5側と、第2可動子6側とが完全に隔離されているため、第1可動子5側のモータ7が、第2可動子6側の流体に晒されることを防ぐことができる。更に、本実施の形態2では、磁性体46が低速回転側の第2可動子6寄りに配されているため、磁性体46を隔壁44の略中央部に配した従来技術に比べて、伝達トルクを向上させることができる。
(実施の形態3)
 図12は、実施の形態3に係る磁気ギア装置の一構成例を示した分解斜視図、図13は、実施の形態3に係る磁気ギア装置の側断面図である。実施の形態3に係る磁気ギア装置は円板形であり、円板状の第1可動子3001と、該第1可動子3001の上方に間隙を有して同軸に配された円板状の第2可動子3003と、第1可動子3001及び第2可動子3003の間に間隙を有して同軸に配された円板状の中間ヨーク3002とを備える。
 第1可動子3001は、磁性体材料からなる第1円板3011を有し、第1円板3011の上面には、上側N極の磁石3012a及び上側S極の磁石3012bからなる磁極対3012が円周方向に沿って略等間隔に6個配置されている。
 第2可動子3003は、磁性体材料からなる第2円板3031を有し、第2円板3031の下面には、下側N極の磁石3032a及び下側S極の磁石3032bからなる磁極対3032が円周方向に沿って略等間隔に14個配置されている。
 中間ヨーク3002は、第1可動子3001及び第2可動子3003夫々が有する磁極対3012及び磁極対3032の個数6及び14の合計となる20個の磁性体3022を保持する円盤状の保持部材3021を備え、保持部材3021には、20個の磁性体3022が円周方向に沿って略等間隔に配されている。また、保持部材3021は、各磁性体3022と第2可動子3003との回転軸方向における距離が、各磁性体3022と第1可動子3001との距離に比べて短くなるように磁性体3022を保持している。
 実施の形態3のように構成された磁気ギア装置においても実施の形態1と同様の効果を奏する。また、変形例1~8の技術的思想を実施の形態3に係る磁気ギア装置に適用することも可能である。
(実施の形態4)
 図14は、実施の形態4に係る磁気ギア装置の一構成例を示した分解斜視図、図15は、実施の形態4に係る磁気ギア装置の側断面図である。実施の形態4に係る磁気ギア装置は各構成部材が長尺板状のリニア型であり、長尺板状の第1可動子4001と、該第1可動子4001の上方に間隙を有して配された長尺板状の第2可動子4003と、第1可動子4001及び第2可動子4003の間に間隙を有して配された長尺板状の中間ヨーク4002とを備える。第1可動子4001、第2可動子4003及び中間ヨーク4002の長手方向は略一致している。
 第1可動子4001は、磁性体材料からなる第1長尺板部4011を有し、第1長尺板部4011の上面には、上側N極の磁石4012a及び上側S極の磁石4012bからなる磁極対4012が長手方向に沿って、単位距離ΔL当たり略等間隔に6個配置されている。
 第2可動子4003は、磁性体材料からなる第2長尺板部4031を有し、第2長尺板部4031の下面には、下側N極の磁石4032a及び下側S極の磁石4032bからなる磁極対4032が長手方向に沿って、単位距離ΔL当たり略等間隔に14個配置されている。
 中間ヨーク4002は、第1可動子4001及び第2可動子4003夫々が有する磁極対4012及び磁極対4032の個数6及び14の合計となる20個の磁性体4022を保持する長尺板状の保持部材4021を備え、保持部材4021には、単位距離ΔL当たり20個の磁性体4022が長手方向に沿って略等間隔に配されている。また、保持部材4021は、各磁性体4022と第2可動子4003との離隔方向における距離が、各磁性体4022と第1可動子4001との距離に比べて短くなるように磁性体4022を保持している。
 実施の形態4のように構成された磁気ギア装置においても実施の形態1と同様の効果を奏する。また、変形例1~8の技術的思想を実施の形態4に係る磁気ギア装置に適用することも可能である。
(実施の形態5)
 図16は、実施の形態5に係る磁気ギア装置の一構成例を示した分解斜視図、図17は、実施の形態5に係る磁気ギア装置の側断面図である。実施の形態5に係る磁気ギア装置は各構成部材が円筒状のリニア型であり、円筒状の第1可動子5001と、該第1可動子5001の外周側に間隙を有して同軸に配された円筒状の第2可動子5003と、第1可動子5001及び第2可動子5003の間に間隙を有して同軸に配された円筒状の中間ヨーク5002とを備える。
 第1可動子5001は、磁性体材料からなる内側円筒部5011を有し、内側円筒部5011の外周面には、外側N極の磁石5012a及び外側S極の磁石5012bからなる磁極対5012が中心軸方向に沿って、単位距離ΔL当たり略等間隔に6個配置されている。
 第2可動子5003は、磁性体材料からなる外側円筒部5031を有し、外側円筒部5031の内周面には、内側N極の磁石5032a及び内側S極の磁石5032bからなる磁極対5032が中心軸方向に沿って、単位距離ΔL当たり略等間隔に14個配置されている。
 中間ヨーク5002は、第1可動子5001及び第2可動子5003夫々が有する磁極対5012及び磁極対5032の個数6及び14の合計となる20個の磁性体5022を保持する筒状の保持部材5021を備え、保持部材5021には、単位距離ΔL当たり20個の磁性体5022が中心軸方向に沿って略等間隔に配されている。また、保持部材5021は、各磁性体5022と第2可動子5003との径方向における距離が、各磁性体5022と第1可動子5001との距離に比べて短くなるように磁性体5022を保持している。
 実施の形態5のように構成された磁気ギア装置においても実施の形態1と同様の効果を奏する。また、変形例1~8の技術的思想を実施の形態4に係る磁気ギア装置に適用することも可能である。
 今回開示された実施の形態はすべての点で例示であって、制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した意味では無く、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 第1可動子
 2 中間ヨーク
 3 第2可動子
 11 内側円筒部
 12 磁極対
 21 隔壁
 22 磁性体
 31 外側円筒部
 32 磁極対

Claims (12)

  1.  特定の方向に沿って略等間隔に複数の磁極対がそれぞれ配されている第1磁石列と、該第1磁石列に対向しており、前記第1磁石列よりも短ピッチ(又は長ピッチ)で前記特定の方向に沿って略等間隔に複数の磁極対がそれぞれ配されている第2磁石列と、前記第1磁石列及び第2磁石列間に配置してあり、前記特定の方向に沿って略等間隔に複数の磁性体がそれぞれ配されている磁性体列とを備える磁気ギア装置において、
     前記複数の磁性体と前記第2磁石列との対向方向における距離は、前記複数の磁性体と前記第1磁石列との距離に比べて短い(又は長い)ことを特徴とする磁気ギア装置。
  2.  前記磁性体列は、
     前記複数の磁性体を保持しており、前記第1磁石列側と、前記第2磁石列側とを隔てる隔壁を備える
     ことを特徴とする請求項1に記載の磁気ギア装置。
  3.  前記複数の磁性体は、前記第2磁石列側(又は第1磁石列側)に露出するように前記隔壁に保持されている
     ことを特徴とする請求項2に記載の磁気ギア装置。
  4.  前記複数の磁性体は、前記隔壁に埋没している
     ことを特徴とする請求項2に記載の磁気ギア装置。
  5.  前記磁性体列は、
     隣り合う前記複数の磁性体を連結する連結部を備え、前記複数の磁性体及び連結部は一体形成されている
     ことを特徴とする請求項1乃至請求項4のいずれか一つに記載の磁気ギア装置。
  6.  前記連結部と前記第1磁石列との前記対向方向における距離は、前記連結部と前記第2磁石列との距離に比べて短い(又は長い)ことを特徴とする
     請求項5に記載の磁気ギア装置。
  7.  前記複数の磁性体は積層鋼板を含む
     ことを特徴とする請求項1乃至請求項6のいずれか一つに記載の磁気ギア装置。
  8.  前記第1磁石列は焼結磁石(又はボンド磁石)を含み、
     前記第2磁石列はボンド磁石(又は焼結磁石)を含む
     ことを特徴とする請求項1乃至請求項7のいずれか一つに記載の磁気ギア装置。
  9.  前記第1磁石列、前記第2磁石列及び前記磁性体列は円筒状をなし、
     前記特定の方向は、前記第1磁石列、前記第2磁石列及び前記磁性体列の周方向である
     ことを特徴とする請求項1乃至請求項8のいずれか一つに記載の磁気ギア装置。
  10.  前記第1磁石列、前記第2磁石列及び前記磁性体列は円板状をなし、
     前記特定の方向は、前記第1磁石列、前記第2磁石列及び前記磁性体列の円周方向である
     ことを特徴とする請求項1乃至請求項8のいずれか一つに記載の磁気ギア装置。
  11.  前記第1磁石列、前記第2磁石列及び前記磁性体列は長尺板状をなし、
     前記特定の方向は、前記第1磁石列、前記第2磁石列及び前記磁性体列の長手方向である
     ことを特徴とする請求項1乃至請求項8のいずれか一つに記載の磁気ギア装置。
  12.  前記第1磁石列、前記第2磁石列及び前記磁性体列は円筒状をなし、
     前記特定の方向は、前記第1磁石列、前記第2磁石列及び前記磁性体列の中心軸方向である
     ことを特徴とする請求項1乃至請求項8のいずれか一つに記載の磁気ギア装置。
PCT/JP2012/066329 2011-07-15 2012-06-27 磁気ギア装置 WO2013011809A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157020015A KR101627479B1 (ko) 2011-07-15 2012-06-27 자기 기어 장치
US14/232,183 US9729040B2 (en) 2011-07-15 2012-06-27 Magnetic gear device having a plurality of magnetic bodies arranged in a particular configuration
EP12814557.0A EP2733387B1 (en) 2011-07-15 2012-06-27 Magnetic gear device
KR1020137033790A KR20140013087A (ko) 2011-07-15 2012-06-27 자기 기어 장치
JP2013524641A JP5958466B2 (ja) 2011-07-15 2012-06-27 磁気ギア装置
CN201280033104.1A CN103635716A (zh) 2011-07-15 2012-06-27 磁力齿轮装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011156649 2011-07-15
JP2011-156649 2011-07-15

Publications (1)

Publication Number Publication Date
WO2013011809A1 true WO2013011809A1 (ja) 2013-01-24

Family

ID=47557990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066329 WO2013011809A1 (ja) 2011-07-15 2012-06-27 磁気ギア装置

Country Status (6)

Country Link
US (1) US9729040B2 (ja)
EP (1) EP2733387B1 (ja)
JP (1) JP5958466B2 (ja)
KR (2) KR20140013087A (ja)
CN (1) CN103635716A (ja)
WO (1) WO2013011809A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109268A1 (ja) * 2013-01-11 2014-07-17 日立金属株式会社 磁気ギア装置
JP2014155253A (ja) * 2013-02-05 2014-08-25 Sanyo Denki Co Ltd 動力伝達装置
WO2015053005A1 (ja) * 2013-10-09 2015-04-16 日立金属株式会社 磁気歯車装置
WO2015115694A1 (ko) * 2014-01-28 2015-08-06 동아대학교 산학협력단 동축 마그네틱 기어
WO2015137392A1 (ja) * 2014-03-12 2015-09-17 株式会社Ihi 環状磁極部材及び磁気波動歯車装置
JP2016019365A (ja) * 2014-07-08 2016-02-01 日立金属株式会社 磁気ギア装置
WO2017051823A1 (ja) * 2015-09-24 2017-03-30 日立金属株式会社 磁気ギア装置
JP2019523196A (ja) * 2016-07-14 2019-08-22 フレックスリンク アーベー コンベヤのための磁気変速機
WO2024161532A1 (ja) * 2023-02-01 2024-08-08 三菱電機株式会社 回転装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862764B2 (ja) * 2012-03-27 2016-02-16 日立金属株式会社 周波数変換装置
WO2013149337A1 (en) 2012-04-02 2013-10-10 Hydrogenics Corporation Fuel cell start up method
WO2016165028A1 (en) * 2015-04-15 2016-10-20 Genesis Advanced Technology Inc. Wave actuator
CN106329859A (zh) * 2015-06-17 2017-01-11 香港理工大学 双转子对旋式永磁无刷风力发电机
KR101907249B1 (ko) * 2016-01-11 2018-10-11 한승주 고속 발전장치
GB2600011B (en) 2016-01-13 2022-10-05 Magnomatics Ltd Magnetic gearing with damping material in rotor
GB2549447A (en) * 2016-01-13 2017-10-25 Magnomatics Ltd A magnetically geared apparatus
EP3261238B1 (en) * 2016-06-23 2020-08-12 Goodrich Actuation Systems Limited Magnetic gear
US10700583B2 (en) * 2016-08-31 2020-06-30 Uti Limited Partnership Induction machine with integrated magnetic gear and related methods
KR101971190B1 (ko) * 2017-08-22 2019-08-27 주식회사 카펙발레오 하이브리드 및 전기차용 전자기 토크 컨버터
CN108365733B (zh) * 2018-05-02 2023-09-29 盐城永安科技有限公司 一种能够提高生产效率的磁齿轮结构
KR102103199B1 (ko) * 2018-09-11 2020-04-22 조선대학교산학협력단 브리지 일체형 폴 피스를 갖는 마그네틱 기어
KR102103200B1 (ko) * 2018-09-11 2020-04-22 조선대학교산학협력단 에어 베리어를 갖는 마그네틱 기어
CN110005782A (zh) * 2019-04-17 2019-07-12 艾德斯汽车电机无锡有限公司 磁齿轮变速器结构
WO2020237721A1 (zh) 2019-05-30 2020-12-03 苏州大学 平面关节型机器人及内转子关节装置
WO2022130882A1 (ja) * 2020-12-15 2022-06-23 株式会社デンソー 動力伝達装置
US11616430B2 (en) * 2021-02-04 2023-03-28 Louis J. Finkle Method of manufacturing a magnetic gear modulator of a concentric magnetic gear
WO2024004629A1 (ja) * 2022-06-28 2024-01-04 株式会社デンソー 動力伝達装置および膨張弁

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228735A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd トルク伝達装置
WO2009087408A2 (en) 2008-01-11 2009-07-16 Magnomatics Limited Magnetic drive systems
WO2009087409A1 (en) 2008-01-11 2009-07-16 Magnomatics Limited Drives for sealed systems
JP2010223340A (ja) * 2009-03-24 2010-10-07 Hitachi Metals Ltd 磁気歯車およびその製造方法
JP2011033166A (ja) * 2009-08-05 2011-02-17 Mitsubishi Electric Corp 磁気ギヤおよびそれを搭載した車両
JP2011094742A (ja) * 2009-10-30 2011-05-12 Toyota Central R&D Labs Inc 磁気的多段変速機構及び複合磁気的多段変速機構

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722617A (en) * 1951-11-28 1955-11-01 Hartford Nat Bank & Trust Comp Magnetic circuits and devices
US5402021A (en) * 1993-05-24 1995-03-28 Johnson; Howard R. Magnetic propulsion system
DE4405701A1 (de) * 1994-02-23 1995-08-24 Philips Patentverwaltung Magnetisches Getriebe mit mehreren magnetisch zusammenwirkenden, relativ zueinander beweglichen Teilen
US5821710A (en) 1996-09-30 1998-10-13 Hitachi Metals, Ltd. Brushless motor having permanent magnets
JP2004022925A (ja) 2002-06-19 2004-01-22 Toda Kogyo Corp 非接触電磁動力伝達用磁石
FR2865867B1 (fr) * 2004-01-29 2006-11-24 Renault Sas Coupleur electromagnetique
JP2006105210A (ja) 2004-10-01 2006-04-20 Usui Kokusai Sangyo Kaisha Ltd 渦電流式カップリング装置
US7528514B2 (en) * 2006-06-22 2009-05-05 International Business Machines Corporation Centrifugal magnetic clutch
JP4709711B2 (ja) * 2006-08-04 2011-06-22 本田技研工業株式会社 磁気式動力伝達装置
JP2008075666A (ja) 2006-09-19 2008-04-03 Nsk Ltd リニアモータ式テーブル装置
JP4870594B2 (ja) * 2007-03-01 2012-02-08 株式会社プロスパイン 磁気式動力伝達装置
JP2008245488A (ja) 2007-03-29 2008-10-09 Tdk Corp リング状磁石及びその製造方法、並びにモータ
JP5084445B2 (ja) * 2007-10-26 2012-11-28 三菱電機エンジニアリング株式会社 電磁変換器
GB2457682B (en) * 2008-02-21 2012-03-28 Magnomatics Ltd Variable magnetic gears
GB0814400D0 (en) * 2008-08-08 2008-09-10 Rolls Royce Plc Magnetic gear arrangement
GB0814399D0 (en) * 2008-08-08 2008-09-10 Rolls Royce Plc Variable gear ratio magnetic gearbox
GB0817046D0 (en) * 2008-09-18 2008-10-22 Rolls Royce Plc Magnectic Gear Arrangement
US10230292B2 (en) * 2008-09-26 2019-03-12 Clearwater Holdings, Ltd Permanent magnet operating machine
GB0905344D0 (en) * 2009-03-27 2009-05-13 Ricardo Uk Ltd A flywheel
JP5231498B2 (ja) * 2009-10-19 2013-07-10 株式会社キトー トルク伝達装置
US8446060B1 (en) * 2010-01-12 2013-05-21 Richard H. Lugg Magnetic advanced gas-turbine transmission with radial aero-segmented nanomagnetic-drive (MAGTRAN)
WO2012014596A1 (ja) * 2010-07-29 2012-02-02 日立金属株式会社 磁気ギア装置及び保持部材
JP5286373B2 (ja) * 2011-01-28 2013-09-11 株式会社日立製作所 磁気歯車
CN103370561B (zh) * 2011-02-21 2016-04-27 株式会社日立制作所 磁齿轮机构
JP5350438B2 (ja) * 2011-06-29 2013-11-27 株式会社日立製作所 磁気式歯車機構
JP6093592B2 (ja) * 2013-02-22 2017-03-08 株式会社Ihi 磁気波動歯車装置
JP2015061422A (ja) * 2013-09-19 2015-03-30 株式会社デンソー 動力伝達機構
WO2015053005A1 (ja) * 2013-10-09 2015-04-16 日立金属株式会社 磁気歯車装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228735A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd トルク伝達装置
WO2009087408A2 (en) 2008-01-11 2009-07-16 Magnomatics Limited Magnetic drive systems
WO2009087409A1 (en) 2008-01-11 2009-07-16 Magnomatics Limited Drives for sealed systems
JP2010223340A (ja) * 2009-03-24 2010-10-07 Hitachi Metals Ltd 磁気歯車およびその製造方法
JP2011033166A (ja) * 2009-08-05 2011-02-17 Mitsubishi Electric Corp 磁気ギヤおよびそれを搭載した車両
JP2011094742A (ja) * 2009-10-30 2011-05-12 Toyota Central R&D Labs Inc 磁気的多段変速機構及び複合磁気的多段変速機構

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2733387A4 *
TETSUYA IKEDA; KENJI NAKAMURA; OSAMU ICHINOKURA: "A Way to Improve Efficiency of Permanent-Magnet Magnetic Gears", JOURNAL OF THE MAGNETICS SOCIETY OF JAPAN, vol. 33, no. 2, 2009, pages 130 - 134, XP055135295, DOI: doi:10.3379/msjmag.0901RG8016

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109268A1 (ja) * 2013-01-11 2014-07-17 日立金属株式会社 磁気ギア装置
JP6020598B2 (ja) * 2013-01-11 2016-11-02 日立金属株式会社 磁気ギア装置
EP2763298A3 (en) * 2013-02-05 2017-05-17 Sanyo Denki Co., Ltd. Power transmission device
JP2014155253A (ja) * 2013-02-05 2014-08-25 Sanyo Denki Co Ltd 動力伝達装置
US10985642B2 (en) 2013-02-05 2021-04-20 Sanyo Denki Co., Ltd. Power transmission device
WO2015053005A1 (ja) * 2013-10-09 2015-04-16 日立金属株式会社 磁気歯車装置
US10050510B2 (en) 2013-10-09 2018-08-14 Hitachi Metals, Ltd. Magnetic gear device
WO2015115694A1 (ko) * 2014-01-28 2015-08-06 동아대학교 산학협력단 동축 마그네틱 기어
EP3118972A4 (en) * 2014-03-12 2018-01-03 IHI Corporation Annular magnetic pole member and magnetic wave gear device
WO2015137392A1 (ja) * 2014-03-12 2015-09-17 株式会社Ihi 環状磁極部材及び磁気波動歯車装置
JP2016019365A (ja) * 2014-07-08 2016-02-01 日立金属株式会社 磁気ギア装置
WO2017051823A1 (ja) * 2015-09-24 2017-03-30 日立金属株式会社 磁気ギア装置
JPWO2017051823A1 (ja) * 2015-09-24 2018-07-12 日立金属株式会社 磁気ギア装置
JP2019523196A (ja) * 2016-07-14 2019-08-22 フレックスリンク アーベー コンベヤのための磁気変速機
WO2024161532A1 (ja) * 2023-02-01 2024-08-08 三菱電機株式会社 回転装置

Also Published As

Publication number Publication date
KR20140013087A (ko) 2014-02-04
EP2733387A1 (en) 2014-05-21
JP5958466B2 (ja) 2016-08-02
EP2733387B1 (en) 2017-01-04
US20140167546A1 (en) 2014-06-19
KR101627479B1 (ko) 2016-06-03
EP2733387A4 (en) 2015-12-16
KR20150091187A (ko) 2015-08-07
CN103635716A (zh) 2014-03-12
JPWO2013011809A1 (ja) 2015-02-23
US9729040B2 (en) 2017-08-08

Similar Documents

Publication Publication Date Title
JP5958466B2 (ja) 磁気ギア装置
JP6020598B2 (ja) 磁気ギア装置
JP6280970B2 (ja) ロータ及びモータ
JP6423991B2 (ja) ローター及び駆動モータ
JP5985342B2 (ja) モータ及びモータ用ローター
JP2011130598A (ja) アキシャルギャップ型永久磁石モータ、それに用いるロータ、及びそのロータの製造方法
JP2007330025A (ja) モータ
JP4687687B2 (ja) アキシャルギャップ型回転電機及び界磁子
US20130113329A1 (en) Rotor and motor
JP6442887B2 (ja) 磁気ギア装置
US11894726B2 (en) Rotating electric machine
WO2013065275A1 (ja) モータの回転子およびそれを備えたモータ
JP6408766B2 (ja) アキシャル立体ギャップ式回転電機
CN107040107B (zh) 转子和马达
JP2007082300A (ja) コア及びそれを備える電動機
JP5852418B2 (ja) ロータ及びモータ
JP5353804B2 (ja) アキシャルギャップ型回転電機及びその製造方法
JP5077369B2 (ja) ブラシレスモータ
JP6121859B2 (ja) ロータ及びモータ
JP5844607B2 (ja) ロータ及びモータ
WO2022030031A1 (ja) 磁束変調型磁気歯車
JP2011055584A (ja) Ipmモータ用回転子
JP2017135923A (ja) モータ用ロータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137033790

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013524641

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14232183

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012814557

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012814557

Country of ref document: EP