WO2013011809A1 - 磁気ギア装置 - Google Patents
磁気ギア装置 Download PDFInfo
- Publication number
- WO2013011809A1 WO2013011809A1 PCT/JP2012/066329 JP2012066329W WO2013011809A1 WO 2013011809 A1 WO2013011809 A1 WO 2013011809A1 JP 2012066329 W JP2012066329 W JP 2012066329W WO 2013011809 A1 WO2013011809 A1 WO 2013011809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- row
- magnet
- magnet row
- gear device
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H49/00—Other gearings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K49/00—Dynamo-electric clutches; Dynamo-electric brakes
- H02K49/10—Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
- H02K49/102—Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K49/00—Dynamo-electric clutches; Dynamo-electric brakes
- H02K49/10—Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
Definitions
- the present invention is arranged between a first magnet row and a second magnet row, a first magnet row and a second magnet row in which a plurality of magnetic pole pairs are respectively arranged at substantially equal intervals along a specific direction
- the present invention relates to a magnetic gear device including a magnetic body row in which a plurality of magnetic bodies are arranged at substantially equal intervals along a specific direction.
- Patent Document 1 and Non-Patent Document 1 disclose a magnetic gear device.
- the magnetic gear device includes a cylindrical first movable element and a second movable element each having a plurality of magnetic pole pairs arranged at substantially equal intervals along the circumferential direction, and between the first movable element and the second movable element. And a cylindrical intermediate yoke in which a plurality of magnetic bodies are respectively arranged at substantially equal intervals along the circumferential direction. The plurality of magnetic bodies are arranged at substantially the center of the gap between the first mover and the second mover.
- the inventor of the present application has arranged that the magnetic material of the intermediate yoke is arranged closer to the mover rotating at a low speed than the center of the gap between the first mover and the second mover. Found the fact that is expensive.
- the magnetic gear device has a first magnet row in which a plurality of magnetic pole pairs are arranged at substantially equal intervals along a specific direction, and is opposed to the first magnet row, and the first magnet
- a second magnet row in which a plurality of magnetic pole pairs are arranged at substantially equal intervals along the specific direction at a shorter pitch (or longer pitch) than the row, and between the first magnet row and the second magnet row
- a magnetic gear device comprising a plurality of magnetic bodies arranged at substantially equal intervals along the specific direction, wherein the plurality of magnetic bodies and the second magnet row The distance in the facing direction is shorter (or longer) than the distance between the plurality of magnetic bodies and the first magnet row.
- the plurality of magnetic bodies when the first magnet row rotates or moves at a high speed and the second magnet row rotates at a low speed, the plurality of magnetic bodies are the second magnet on the low speed side compared to the first magnet row on the high speed side. It is arranged near the row side. As will be described later, the plurality of magnetic bodies are disposed between the first magnet row and the second magnet row, as compared with the case where the plurality of magnetic bodies are arranged in the substantially central portion of the gap between the first magnet row and the second magnet row. The torque to be transmitted is large.
- the plurality of magnetic bodies are closer to the first magnet array side on the low speed side than the second magnet array on the high speed side. It is arranged. As will be described later, the plurality of magnetic bodies are disposed between the first magnet row and the second magnet row, as compared with the case where the plurality of magnetic bodies are arranged in the substantially central portion of the gap between the first magnet row and the second magnet row. The torque to be transmitted is large.
- a plurality of The magnetic body should be on the low speed side.
- the magnetic gear device is characterized in that the magnetic body row holds the plurality of magnetic bodies and includes a partition wall that separates the first magnet row side from the second magnet row side. To do.
- the partition wall separating the first magnet row side and the second magnet row side is provided, the atmosphere on the first magnet row side and the atmosphere on the second magnet row side can be separated. Is possible.
- the magnetic gear device is characterized in that the plurality of magnetic bodies are held by the partition so as to be exposed to the second magnet row side (or the first magnet row side).
- the magnetic body when the first magnet row rotates or moves at a high speed and the second magnet row rotates at a low speed, the magnetic body is exposed from the partition of the magnetic body row to the second magnet row side. Therefore, the distance between the magnetic body and the second magnet array can be shortened as much as possible, and the transmission torque can be improved. Further, it is possible to prevent the magnetic body from being exposed to the atmosphere on the first magnet row side.
- the first magnet row rotates or moves at a low speed and the second magnet row rotates at a high speed the magnetic body is exposed from the partition of the magnetic body row to the first magnet row side. Therefore, the distance between the magnetic body and the first magnet array can be shortened as much as possible, and the transmission torque can be improved. Further, it is possible to prevent the magnetic body from being exposed to the atmosphere on the second magnet row side.
- the magnetic gear device according to the present invention is characterized in that the plurality of magnetic bodies are buried in the partition wall.
- the magnetic body since the magnetic body is buried in the partition wall, it is possible to prevent the magnetic body from being exposed to the atmosphere on the first magnet row side and the second magnet row side.
- the magnetic body row includes a connecting portion that connects the plurality of adjacent magnetic bodies, and the plurality of magnetic bodies and the connecting portion are integrally formed. .
- the plurality of magnetic bodies are connected by the connecting portion and are integrally formed, the arrangement of the magnetic body rows is easy.
- the magnetic gear device is characterized in that a distance in the facing direction between the connecting portion and the first magnet row is shorter (or longer) than a distance between the connecting portion and the second magnet row.
- the distance between the connecting portion and the first magnet row in the facing direction is the connecting portion and the second magnet row.
- the connecting portion is magnetically saturated because it is shorter than the distance between the two. For this reason, the ratio of the ineffective magnetic flux that does not contribute to the transmission force decreases.
- the distance between the connecting portion and the second magnet row in the facing direction is the distance between the connecting portion and the first magnet row. Since it is shorter than that, it is magnetically saturated. For this reason, the ratio of the ineffective magnetic flux that does not contribute to the transmission force decreases.
- the magnetic gear device according to the present invention is characterized in that the plurality of magnetic bodies include laminated steel plates.
- eddy current is unlikely to occur in the magnetic material.
- the magnetic gear device is characterized in that the first magnet row includes a sintered magnet (or bonded magnet), and the second magnet row includes a bonded magnet (or sintered magnet).
- the low speed side where eddy current is likely to be generated is constituted by a bonded magnet
- the high speed side where eddy current is difficult to be generated is constituted by a sintered magnet. Since a sintered magnet has a larger magnetic force than a bonded magnet, this combination can ensure transmission torque while suppressing loss due to eddy currents.
- the first magnet row, the second magnet row, and the magnetic body row are cylindrical, and the specific direction is defined by the first magnet row, the second magnet row, and the It is characterized by the circumferential direction of the magnetic body row.
- a cylindrical magnetic gear device can be configured.
- the first magnet row, the second magnet row, and the magnetic body row are disk-shaped, and the specific direction is the first magnet row, the second magnet row, and It is the circumferential direction of the magnetic body row.
- the first magnet row, the second magnet row, and the magnetic body row have a long plate shape, and the specific direction is the first magnet row, the second magnet row. And the longitudinal direction of the magnetic row.
- a long plate-like linear magnetic gear device can be configured.
- the first magnet row, the second magnet row, and the magnetic body row are cylindrical, and the specific direction is defined by the first magnet row, the second magnet row, and the It is the direction of the central axis of the magnetic body row.
- the first magnet row, the second magnet row, and the magnetic row are compared to the case where the magnetic row is arranged in the approximate center of the gap between the first magnet row and the second magnet row.
- the force transmitted between them can be improved.
- FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification 1.
- FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification 2.
- FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification 3.
- FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification Example 4.
- FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification Example 5.
- FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification Example 1.
- FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification Example 6.
- FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification 7.
- FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification Example 8.
- FIG. 6 is a side cross-sectional view illustrating a configuration example of a magnetic gear device according to a second embodiment.
- FIG. 6 is an exploded perspective view showing a configuration example of a magnetic gear device according to a third embodiment.
- FIG. 6 is a side sectional view of a magnetic gear device according to a third embodiment.
- FIG. 6 is an exploded perspective view showing a configuration example of a magnetic gear device according to a fourth embodiment.
- FIG. 6 is a side sectional view of a magnetic gear device according to a fourth embodiment.
- FIG. 10 is an exploded perspective view showing a configuration example of a magnetic gear device according to a fifth embodiment.
- FIG. 10 is a side sectional view of a magnetic gear device according to a fifth embodiment.
- FIG. 1 is a side sectional view showing an example of the configuration of the magnetic gear device according to the first embodiment.
- the magnetic gear device according to the first embodiment of the present invention is a rotating cylindrical type, and includes a cylindrical first movable element 1 and a cylinder arranged coaxially with a gap outside the first movable element 1. And a cylindrical intermediate yoke 2 disposed coaxially with a gap between the first and second movers 1 and 3.
- the first mover 1 has an inner cylindrical portion 11 made of a magnetic material, and an outer peripheral surface of the inner cylindrical portion 11 is magnetized in the thickness direction on the outer peripheral surface side N pole magnet 12a and the outer peripheral surface side.
- Three magnetic pole pairs 12 composed of S-pole magnets 12b are arranged at substantially equal intervals along the circumferential direction.
- the second mover 3 has an outer cylindrical portion 31 made of a magnetic material, and an inner peripheral surface side N-pole magnet 32a magnetized in the thickness direction on the inner peripheral surface of the outer cylindrical portion 31 and an inner surface. Seven magnetic pole pairs 32 each including a magnet 32b having S poles on the circumferential surface side are arranged at substantially equal intervals along the circumferential direction.
- the magnet magnetized in the thickness direction means that the outer peripheral surface side and the inner peripheral surface side are magnetized so as to have different polarities.
- the magnet 12a is magnetized on the N and S poles on the outer circumferential surface side and the inner circumferential surface side
- the magnet 12b is magnetized on the S and N poles on the outer circumferential surface side and the inner circumferential surface side, respectively.
- the magnetic pole pairs 12 and 32 are formed of rare earth-transition metal magnets (for example, Nd-Fe-B magnets).
- the magnetic pole pair 12 on the first mover 1 side may be composed of a sintered magnet
- the magnetic pole pair 32 on the second mover 3 side may be composed of a bonded magnet.
- the bond magnet is obtained by mixing fine magnet particles or fine powder with a binder such as a resin and molding and solidifying it, and can reduce the generation of eddy currents.
- the sintered magnet is a magnet made by a so-called powder metallurgy method, and has a property that the eddy current loss is larger than that of the bonded magnet, but the magnetic force is strong. Therefore, by configuring in this way, the generation of eddy currents can be suppressed as much as possible while securing the force acting between the first mover 1 and the second mover 3.
- oxide magnets for example, ferrite magnets
- the generation of eddy current is extremely small, so that any manufacturing method can be used for the first and second movers in consideration of assembly efficiency and cost. Whether to arrange the magnets may be set as appropriate.
- the intermediate yoke 2 separates the first movable element 1 side from the second movable element 3 side, and the number of magnetic pole pairs 12 and magnetic pole pairs 32 of the first movable element 1 and the second movable element 3 is 3 and 7.
- a cylindrical partition wall 21 for holding a total of 10 magnetic bodies 22 is provided, and 10 magnetic bodies 22 are arranged on the partition wall 21 at substantially equal intervals along the circumferential direction. Further, the partition wall 21 holds the magnetic body 22 so that the distance in the radial direction between each magnetic body 22 and the second mover 3 is shorter than the distance between each magnetic body 22 and the first mover 1. ing.
- the magnetic body 22 has a shape obtained by cutting a part of a cylinder along the longitudinal direction, and the partition wall 21 has a recess on the outer peripheral surface into which each magnetic body 22 is fitted.
- the intermediate yoke 2 is disposed at a substantially central portion of the gap between the first movable element 1 and the second movable element 3, and the outer periphery of the partition wall 21 so that each magnetic body 22 is exposed to the second movable element 3 side. It fits into the surface. In addition, you may coat the surface by the side of the 2nd needle
- the intermediate yoke 2 is manufactured, for example, by fixing each magnetic body 22 to a resin formed in a cylindrical shape (see, for example, pamphlet of International Publication No. 2009/087408).
- An alternating magnetic field including a third harmonic component, a seventh harmonic component, and a thirteenth harmonic component generated by the magnetic pole pair 32 intersects the intermediate yoke 2 along the radial direction.
- the magnetic body 22 for example, a magnetic metal, a laminated steel plate made of a plurality of laminated magnetic plates, and a soft magnetic body made of magnetic powder compacts may be used.
- the material of the magnetic body 22 is preferably a laminated steel plate because eddy current loss can be suppressed.
- the first mover 1 rotates due to the magnetic interaction between the magnetic pole pairs 12 and 32 of the first mover 1 and the second mover 3.
- the first mover 1 having a smaller number of magnetic poles than the second mover 3 rotates at a higher rotational speed than the second mover 3 in the direction opposite to the rotation direction of the second mover 3 (Tetsuya Ikeda -See Kenji Nakamura and Osamu Ichinokura, "A Study on Efficiency Improvement of Permanent Magnet Type Magnetic Gear," Journal of the Magnetic Society, 2009, Vol. 33, No. 2, pp. 130-134).
- the ratio Ph / Pl between the number Ph of the magnetic pole pairs arranged on the first movable element 1 and the number Pl of the magnetic pole pairs arranged on the second movable element 3 is the first movable element 1 with respect to the second movable element 3. It becomes the gear ratio. And when the 2nd needle
- FIG. 2 is a graph showing a simulation result regarding the transmission torque of the magnetic gear device.
- the execution conditions of this simulation are as follows.
- the number of magnetic pole pairs 12 included in the first mover 1 is 7
- the number of magnetic bodies 22 included in the intermediate yoke 2 is 26, and the number of magnetic pole pairs 32 included in the second mover 3 is 19.
- the magnetic body 22 has a radial width of 3 mm and a circumferential width of about 4 mm.
- the horizontal axis of the graph shown in FIG. 2 indicates the phase of the first movable element 1, and the vertical axis indicates the torque acting between the first and second movable elements 1, 3 and the intermediate yoke 2.
- the solid line indicates the torque acting between the second mover 3 and the intermediate yoke 2, and the broken line indicates the torque acting between the first mover 1 and the intermediate yoke 2.
- the thick line graph shows the torque when the gap between the first mover 1 and the intermediate yoke 2 is 2 mm, and the gap between the second mover 3 and the intermediate yoke 2 is 1 mm (hereinafter, referred to as “thickness”). Called pattern 1).
- the middle thick line graph shows the torque when the gap between the first mover 1 and the intermediate yoke 2 is 1.5 mm, and the gap between the second mover 3 and the intermediate yoke 2 is 1.5 mm. (Hereinafter referred to as pattern 2).
- the thin line graph shows the torque when the gap between the first mover 1 and the intermediate yoke 2 is 1 mm, and the gap between the second mover 3 and the intermediate yoke 2 is 2 mm (hereinafter referred to as pattern 3). Called).
- pattern 3 the result of the pattern 1 is the best, and the torque acting between the first mover 1, the second mover 3, and the intermediate yoke 2 is the maximum.
- Pattern 1 is a result when the magnetic body 22 is arranged close to the second movable element 3 side where the magnetic pole pair 32 is arranged at a short pitch.
- the result of the pattern 3 is the worst, and the torque acting between the first mover 1, the second mover 3 and the intermediate yoke 2 is the smallest.
- Pattern 3 is the result when the magnetic body 22 is arranged close to the first mover 1 side where the magnetic pole pair 12 is arranged at a long pitch.
- the first movable element 1 and the second movable element are arranged when the magnetic body 22 is arranged close to the second movable element 3 side where the second magnetic pole row is arranged at a short pitch.
- the transmission torque can be improved as compared with the case where the magnetic body 22 is arranged in the center of the gap of the child 3 or the case where the magnetic body 22 is arranged on the first mover 1 side.
- the principle that the transmission torque is improved when the magnetic body 22 is arranged close to the second mover 3 side where the magnetic pole pair 32 is arranged at a short pitch is as follows.
- the magnetic pole pairs 12 of the first mover 1 on the high speed rotation side have a longer pitch than the second mover 3 on the low speed rotation side.
- the magnetic flux from the magnets 12a and 12b arranged at a long pitch on the high-speed rotation side spreads larger than the magnets 32a and 32b on the low-speed rotation side, and a strong magnetic force reaches the second mover 3, but the short pitch
- the magnetic body 22 of the intermediate yoke 2 modulates the magnetic flux from the magnets 12a, 12b, 32a, 32b
- the magnetic body 22 is arranged close to the low-speed rotation side magnets 32a, 32b
- both the magnetic flux caused by the magnets 32a and 32b on the low-speed rotation side that closes in the vicinity and the magnetic flux caused by the magnets 12a and 12b on the high-speed rotation side reaching far away are affected, It is considered that the magnetic flux is more strongly modulated, and as a result, a larger torque transmission is possible.
- the first mover 1 and the first mover 1 are compared with the case where the magnetic body 22 is arranged at the approximate center of the gap between the first mover 1 and the second mover 3.
- the torque transmitted to and from the second mover 3 can be improved.
- the air friction resistance acting between the intermediate yoke 2 and the first movable element 1 and the second movable element 3 increases as the relative speed of each member increases. Since it is arranged close to the second mover 3 rotating at a low speed, it is preferable from the viewpoint of air frictional resistance, and the transmission torque can be improved.
- the magnetic gear device using the inner magnet row and the outer magnet row as the mover has been described.
- the inner or outer magnet row is fixed and the intermediate yoke 2 is rotated. May be.
- FIG. 3 is a side sectional view showing an example of the configuration of the magnetic gear device according to the first modification.
- the magnetic gear device according to the modified example 1 is different from the first embodiment in that the magnetic body 122 is buried in the partition wall 121 of the intermediate yoke 102.
- the magnetic body 122 since the magnetic body 122 is not exposed to either the first mover 1 side or the second mover 3 side, the atmosphere on the first mover 1 side and the second mover 3 side are exposed.
- the magnetic body 122 can be shielded from the atmosphere.
- FIG. 4 is a side sectional view showing a configuration example of the magnetic gear device according to the second modification.
- the magnetic gear device according to the modification 2 is different from the first embodiment in that a plurality of adjacent magnetic bodies 222 are connected by a connecting portion 222a.
- the connecting portion 222 a is a plate material that is thinner in the radial direction than the magnetic body 222, and is integrally formed with the plurality of magnetic bodies 222.
- the magnetic bodies 222 are formed in a state in which a plurality of magnetic bodies 222 arranged at substantially equal intervals in the circumferential direction are connected by the connecting portions 222a.
- the work of arranging in 221 can be omitted, and it can be manufactured efficiently.
- FIG. 5 is a side sectional view showing a configuration example of the magnetic gear device according to the third modification.
- the magnetic gear device according to Modification 3 is implemented in that a plurality of adjacent magnetic bodies 322 in the intermediate yoke 302 are connected to each other by a connecting portion 322a, and the magnetic body 322 and the connecting portion 322a are buried in a partition wall 321.
- the connecting portion 322 a is a plate material whose width in the radial direction is thinner than that of the magnetic body 322, and is integrally formed with the plurality of magnetic bodies 322.
- the magnetic body 322 and the connecting portion 322a are not exposed on either the first mover 1 side or the second mover 3 side, so the atmosphere on the first mover 1 side and the second The magnetic body 322 and the connecting portion 322a can be blocked from the atmosphere on the side of the mover 3.
- FIG. 6 is a side sectional view showing a configuration example of the magnetic gear device according to the fourth modification.
- the magnetic gear device according to the modified example 4 is implemented in that a plurality of adjacent magnetic bodies 422 are connected by a connecting portion 422a, and the connecting portion 422a is arranged near the first movable element 1 on the high-speed rotation side. Different from Form 1.
- the connecting portion 422a is a cylindrical plate member having a radial width thinner than that of the magnetic body 422, and is integrally formed with the plurality of magnetic bodies 422.
- the connecting portion 422a and the magnetic body 422 function as a partition that separates the first movable element 1 and the second movable element 3. .
- the holding member 421 is provided between the magnetic bodies 422 in order to hold the positional relationship between the magnetic bodies 422. Note that the holding member 421 may be eliminated if there is no problem with the strength of the connecting portion 422a that connects the magnetic bodies 422.
- the radial distance between the connecting portion 422a and the first mover 1 is shorter than the distance between the connecting portion 422a and the second mover 3, so the transmission torque of the magnetic gear device is reduced. Can be improved.
- the reason why the connecting portion 422a is preferably arranged close to the first movable element 1 side on the high-speed rotation side is as follows.
- the magnetic pole pairs 12 of the first mover 1 on the high speed rotation side have a longer pitch than the second mover 3 on the low speed rotation side.
- the amount of magnetic flux from the magnets 12a and 12b arranged at a long pitch on the high speed rotation side tends to be larger than that on the low speed rotation side magnets 32a and 32b.
- connection part 422a which connects the magnetic bodies 422 corresponds to a short-circuit magnetic path when viewed from the magnet.
- the short-circuited magnetic flux becomes a reactive magnetic flux that does not contribute to the interaction between the magnets 12a and 12b on the high speed rotation side and the magnets 32a and 32b on the low speed rotation side.
- the amount of reactive magnetic flux should be as small as possible.
- the short-circuit magnetic flux flows until the magnetic flux of the connecting portion 422a is saturated. That is, the amount of reactive magnetic flux generated by the connecting portion 422a is a constant value determined by the cross-sectional area of the connecting portion 422a.
- the coupling portion 422a is disposed on the side of the magnetic pole pair 32 arranged at a long pitch, and the coupling portion 422a is magnetically saturated with the magnetic flux from the magnets 12a and 12b, thereby reducing the proportion of the ineffective magnetic flux and transmitting torque. Can be prevented.
- FIG. 7 is a side sectional view showing a configuration example of the magnetic gear device according to the fifth modification.
- a plurality of adjacent magnetic bodies 522 in the intermediate yoke 502 are connected to each other by a connecting portion 522a, and the connecting portion 522a is disposed near the first movable element 1 on the high-speed rotation side.
- buried in the partition 521 differs from Embodiment 1.
- the connecting portion 522 a is a cylindrical plate member having a radial width thinner than that of the magnetic body 522, and is integrally formed with the plurality of magnetic bodies 522.
- the magnetic body 522 and the connecting portion 522a can be cut off from the atmosphere on the first mover 1 side and the atmosphere on the second mover 3 side. Further, as described above, the transmission torque of the magnetic gear device can be improved.
- FIG. 8 is a side sectional view showing a configuration example of the magnetic gear device according to the sixth modification.
- the plurality of magnetic bodies 622 in the intermediate yoke 602 are held by the holding members 621 so as to be arranged at substantially equal intervals along the circumferential direction.
- mover 3 side differs.
- the transmission torque of the magnetic gear device can be improved by arranging the magnetic body 622 close to the second mover 3 on the low-speed rotation side.
- FIG. 9 is a side sectional view showing a configuration example of a magnetic gear device according to Modification 7.
- the magnetic gear device according to the modified example 7 is different from the first embodiment in that the first movable element 701 is configured to rotate at a low speed and the second movable element 703 is rotated at a high speed.
- the first movable element 701 has an inner cylindrical portion 711 made of a magnetic material, and an outer peripheral surface of the inner cylindrical portion 711 is magnetized in the thickness direction on the outer peripheral surface side N pole magnet 712a and the outer peripheral surface side. Seven magnetic pole pairs 712 composed of S-pole magnets 712b are arranged at substantially equal intervals along the circumferential direction.
- the second mover 703 has an outer cylindrical portion 731 made of a magnetic material, and an inner peripheral surface side N-pole magnet 732a magnetized in the thickness direction and an inner inner surface of the outer cylindrical portion 731 are provided. Three magnetic pole pairs 732 composed of the S-side magnets 732b on the circumferential surface side are arranged at substantially equal intervals along the circumferential direction.
- the intermediate yoke 702 includes a cylindrical partition 721 that separates the first mover 701 side and the second mover 703 side and holds ten magnetic bodies 722.
- the partition 721 includes ten magnetic bodies. 722 are arranged at substantially equal intervals along the circumferential direction.
- the partition wall 721 holds the magnetic body 722 such that the distance between each magnetic body 722 and the first mover 701 in the radial direction is shorter than the distance between each magnetic body 722 and the second mover 703. ing. That is, each magnetic body 722 is disposed near the first mover 701 on the low-speed rotation side.
- the first movable element 701 is compared with the case where the magnetic body 722 is arranged at the approximate center of the gap between the first movable element 701 and the second movable element 703. And the torque transmitted between the 2nd needle
- FIG. 10 is a side sectional view showing a configuration example of a magnetic gear device according to Modification 8.
- the magnetic gear device according to the modified example 8 is configured such that the first movable element 801 rotates at a low speed and the second movable element 803 rotates at a high speed as in the modified example 7, and the magnetic bodies 822 are connected to each other.
- the second embodiment is different from the first embodiment in that it is connected by a portion 822a and the connecting portion 822a is disposed closer to the second movable element 803 on the high-speed rotation side.
- the first mover 801 has an inner cylindrical portion 811 made of a magnetic material. On the outer peripheral surface of the inner cylindrical portion 811, the outer peripheral surface side N-pole magnet 812 a magnetized in the thickness direction and the outer peripheral surface side. Seven magnetic pole pairs 812 composed of S-pole magnets 812b are arranged at substantially equal intervals along the circumferential direction.
- the second movable element 803 has an outer cylindrical portion 831 made of a magnetic material, and an inner peripheral surface side N-pole magnet 832a magnetized in the thickness direction and an inner inner surface of the outer cylindrical portion 831. Three magnetic pole pairs 832 made up of magnets 832b having S poles on the circumferential surface side are arranged at substantially equal intervals along the circumferential direction.
- each magnetic body 822 connected by the connecting portion 822a is arranged at substantially equal intervals along the circumferential direction.
- a holding member 821 that holds the positional relationship of each magnetic body 822 is provided.
- the magnetic body 822 is held such that the distance between each magnetic body 822 and the first movable element 801 in the radial direction is shorter than the distance between each magnetic body 822 and the second movable element 803. That is, each magnetic body 822 is disposed near the first mover 801 on the low-speed rotation side.
- FIG. 11 is a side sectional view showing an example of the configuration of the magnetic gear device according to the second embodiment.
- the pump according to Embodiment 2 includes a substantially bottomed cylindrical housing 4 whose one side wall is recessed in a cylindrical shape.
- the housing 4 includes a cylindrical body 42, a side wall large disc portion 41 that closes one opening of the cylindrical body 42, an annular portion 43 provided on the other side of the cylindrical body 42, A cylindrical partition wall 44 extending from the inner peripheral edge of the portion 43 to the center side in the longitudinal direction of the cylindrical body 42, and a side wall small disk portion 45 provided so as to close the center side of the partition wall 44.
- the side wall large disc portion 41 is formed with an inflow port 41a through which a fluid flows, and an outflow port 42a through which the fluid flows out is provided at an appropriate position of the cylindrical body.
- a cylindrical first movable element 5 and a second movable element 6 are arranged coaxially with the partition wall 44 on the inner peripheral side and the outer peripheral side of the partition wall 44 constituting the housing 4, and will be described later. 46 and a rotating cylindrical magnetic gear device.
- the first armature 5 has an inner cylindrical portion 51 having a smaller diameter than the partition wall 44, and the outer peripheral surface side N magnetized in the thickness direction is formed on the outer peripheral surface of the inner cylindrical portion 51 as in the first embodiment.
- Three magnetic pole pairs 52 are arranged at substantially equal intervals along the circumferential direction.
- An input shaft 71 of the motor 7 is inserted and fixed to the inner cylindrical portion 51.
- the second mover 6 has an outer cylindrical portion 61 having a diameter larger than that of the partition wall 44, and an inner peripheral surface side N-pole magnet magnetized in the thickness direction and an inner peripheral surface of the outer cylindrical portion 61 and Seven magnetic pole pairs 62 composed of S-pole magnets on the inner peripheral surface side are arranged at substantially equal intervals along the circumferential direction.
- a rotating disk portion 63 is provided on one end side of the outer cylindrical portion 61, that is, on the side of the side wall large disk portion 41, and the input shaft 71 and the rotating shaft coincide with a substantially central portion of the rotating disk portion 63.
- an output shaft 64 is provided.
- a rotary blade 8 is provided at the tip of the output shaft 64.
- Ten magnetic bodies 46 are buried inside the partition wall 44, and the magnetic bodies 46 are arranged at substantially equal intervals along the circumferential direction.
- the partition wall 44 holds the magnetic body 46 so that the distance between each magnetic body 46 and the second mover 6 in the radial direction is shorter than the distance between each magnetic body 46 and the first mover 5.
- a partition wall 44 having a magnetic body 46 disposed therein functions as an intermediate yoke.
- the torque of the motor 7 can be decelerated and transmitted from the first mover 5 to the second mover 6.
- the motor 7 on the first movable element 5 side uses the fluid on the second movable element 6 side. It can be prevented from being exposed.
- the transmission is performed as compared with the conventional technique in which the magnetic body 46 is disposed in the substantially central portion of the partition wall 44. Torque can be improved.
- FIG. 12 is an exploded perspective view showing a configuration example of the magnetic gear device according to the third embodiment
- FIG. 13 is a side sectional view of the magnetic gear device according to the third embodiment.
- the magnetic gear device according to the third embodiment has a disk shape, and has a disk-shaped first movable element 3001 and a disk-shaped disk disposed coaxially with a gap above the first movable element 3001.
- a second mover 3003 and a disk-shaped intermediate yoke 3002 arranged coaxially with a gap between the first mover 3001 and the second mover 3003 are provided.
- the first mover 3001 has a first disk 3011 made of a magnetic material, and a magnetic pole pair 3012 made up of an upper N-pole magnet 3012a and an upper S-pole magnet 3012b is formed on the upper surface of the first disk 3011. Six pieces are arranged at substantially equal intervals along the circumferential direction.
- the second mover 3003 has a second disk 3031 made of a magnetic material, and a magnetic pole pair made up of a lower N-pole magnet 3032a and a lower S-pole magnet 3032b on the lower surface of the second disk 3031. Fourteen 3032 are arranged at substantially equal intervals along the circumferential direction.
- the intermediate yoke 3002 is a disk-shaped holding member 3021 that holds 20 magnetic bodies 3022 that are the sum of the numbers 6 and 14 of the magnetic pole pairs 3012 and the magnetic pole pairs 3032 included in the first movable element 3001 and the second movable element 3003.
- 20 magnetic bodies 3022 are arranged at substantially equal intervals along the circumferential direction.
- the holding member 3021 has the magnetic body 3022 so that the distance in the rotation axis direction between each magnetic body 3022 and the second movable element 3003 is shorter than the distance between each magnetic body 3022 and the first movable element 3001. keeping.
- the same effect as in the first embodiment is obtained. Further, the technical ideas of the first to eighth modifications can be applied to the magnetic gear device according to the third embodiment.
- FIG. 14 is an exploded perspective view showing a configuration example of the magnetic gear device according to the fourth embodiment
- FIG. 15 is a side sectional view of the magnetic gear device according to the fourth embodiment.
- each constituent member is a long plate-like linear type, and has a long plate-like first mover 4001 and a gap above the first mover 4001.
- a long plate-like second movable element 4003 arranged and a long plate-shaped intermediate yoke 4002 arranged with a gap between the first movable element 4001 and the second movable element 4003 are provided.
- the longitudinal directions of the first mover 4001, the second mover 4003, and the intermediate yoke 4002 are substantially the same.
- the first mover 4001 includes a first long plate portion 4011 made of a magnetic material.
- the upper surface of the first long plate portion 4011 includes an upper N-pole magnet 4012a and an upper S-pole magnet 4012b.
- Six magnetic pole pairs 4012 are arranged at substantially equal intervals per unit distance ⁇ L along the longitudinal direction.
- the second mover 4003 has a second long plate portion 4031 made of a magnetic material, and a lower N-pole magnet 4032a and a lower S-pole magnet 4032b are formed on the lower surface of the second long plate portion 4031.
- Fourteen magnetic pole pairs 4032 are arranged at substantially equal intervals per unit distance ⁇ L along the longitudinal direction.
- the intermediate yoke 4002 is a long plate-shaped holder that holds 20 magnetic members 4022 that is the sum of the number of magnetic pole pairs 4012 and the number of magnetic pole pairs 4032 of the first and second movable elements 4001 and 4003.
- a member 4021 is provided, and 20 magnetic bodies 4022 per unit distance ⁇ L are arranged on the holding member 4021 at substantially equal intervals along the longitudinal direction.
- the holding member 4021 holds the magnetic body 4022 such that the distance between the magnetic bodies 4022 and the second mover 4003 in the separation direction is shorter than the distance between the magnetic bodies 4022 and the first mover 4001. is doing.
- FIG. 16 is an exploded perspective view showing a configuration example of the magnetic gear device according to the fifth embodiment
- FIG. 17 is a side sectional view of the magnetic gear device according to the fifth embodiment.
- each constituent member is a cylindrical linear type
- the cylindrical first movable element 5001 is arranged coaxially with a gap on the outer peripheral side of the first movable element 5001.
- a cylindrical intermediate yoke 5002 arranged coaxially with a gap between the first movable element 5001 and the second movable element 5003.
- the first mover 5001 has an inner cylindrical portion 5011 made of a magnetic material, and a magnetic pole pair 5012 consisting of an outer N-pole magnet 5012a and an outer S-pole magnet 5012b is centered on the outer peripheral surface of the inner cylindrical portion 5011. Six units are arranged at substantially equal intervals per unit distance ⁇ L along the axial direction.
- the second mover 5003 has an outer cylindrical portion 5031 made of a magnetic material, and a magnetic pole pair 5032 consisting of an inner N-pole magnet 5032a and an inner S-pole magnet 5032b is formed on the inner peripheral surface of the outer cylindrical portion 5031. 14 units are arranged at substantially equal intervals per unit distance ⁇ L along the central axis direction.
- the intermediate yoke 5002 has a cylindrical holding member 5021 that holds 20 magnetic bodies 5022 that are the sum of the numbers 6 and 14 of the magnetic pole pairs 5012 and the magnetic pole pairs 5032 included in the first movable element 5001 and the second movable element 5003.
- 20 magnetic bodies 5022 per unit distance ⁇ L are arranged at substantially equal intervals along the central axis direction.
- the holding member 5021 holds the magnetic body 5022 so that the distance between each magnetic body 5022 and the second mover 5003 in the radial direction is shorter than the distance between each magnetic body 5022 and the first mover 5001. is doing.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
Abstract
Description
同様に、第1磁石列が低速、第2磁石列が高速で回転又は移動する場合、複数の磁性体は、高速側の第2磁石列に比べて、低速側の第1磁石列側寄りに配されている。後述するように、複数の磁性体を、第1磁石列と、第2磁石列との間隙の略中央部に配する場合に比べて、第1磁石列と、第2磁石列との間で伝達させるトルクは大きい。対向方向における第1磁石列と第2磁石列との間隔が同じでかつ磁性体の厚さが同じ場合、つまり該間隔及び厚さが一定の設計値に固定されている場合には、複数の磁性体は低速側にあるほうが良い。
同様に、第1磁石列が低速、第2磁石列が高速で回転又は移動する場合、磁性体列の隔壁から第1磁石列側に磁性体が露出している。従って、磁性体と、第1磁石列との距離を極力短くすることができ、伝達トルクを向上させることが可能である。また、磁性体が第2磁石列側の雰囲気に露出されることを防ぐことが可能である。
同様に、第1磁石列が低速、第2磁石列が高速で回転又は移動する場合、連結部と第2磁石列との前記対向方向における距離は、連結部と第1磁石列との距離に比べて短いため、磁気的に飽和する。このため、伝達力に寄与しない無効磁束の割合が減少する。
以下、本発明をその実施の形態を示す図面に基づいて詳述する。
図1は、本実施の形態1に係る磁気ギア装置の一構成例を示した側断面図である。本発明の実施の形態1に係る磁気ギア装置は、回転円筒型であり、円筒状の第1可動子1と、該第1可動子1の外側に間隙を有して同軸に配された円筒状の第2可動子3と、第1可動子1及び第2可動子3の間に間隙を有して同軸に配された円筒状の中間ヨーク2とを備える。
第2可動子3は、磁性体材料からなる外側円筒部31を有し、外側円筒部31の内周面には、厚さ方向に着磁された内周面側N極の磁石32a及び内周面側S極の磁石32bからなる磁極対32が円周方向に沿って略等間隔に7個配置されている。ここで厚さ方向に着磁された磁石とは、外周面側及び内周面側が異極となるよう着磁されていることを意味する。例えば、磁石12aは、外周面側及び内周面側夫々がN極及びS極に着磁され、磁石12bは、外周面側及び内周面側夫々がS極及びN極に着磁されている。
また、渦電流の発生する割合は、低速回転側の方が高速回転側に比べて大きいため、磁極対12,32を希土類―遷移金属系磁石(例えばNd-Fe-B系磁石等)で形成する場合、第1可動子1側の磁極対12を焼結磁石で構成し、第2可動子3側の磁極対32をボンド磁石で構成すると良い。ボンド磁石は、微小な磁石粒ないしは微粉を樹脂等のバインダと混ぜ合わせて、成型固化したものであり、渦電流の発生を低減することが可能である。焼結磁石は、いわゆる粉末冶金法によって作られる磁石であり、ボンド磁石に比べて、渦電流損が大きいが、磁力が強いという性質を有する。従って、このように、構成することによって、第1可動子1と、第2可動子3との間に働く力を担保しつつ、渦電流の発生を極力抑えることができる。
なお磁極対12,32として酸化物磁石(例えばフェライト磁石)を用いる場合には渦電流の発生は極めて少ないため組立て効率やコスト等を考慮し第1可動子と第2可動子にどのような製法の磁石を配置するかは適宜設定すれば良い。
中間ヨーク2は、例えば円筒状に形成された樹脂に各磁性体22を固定して作製される(例えば、国際公開第2009/087408号パンフレット参照)。中間ヨーク2には、磁極対32により発生した3次調波成分、7次調波成分及び13次調波成分を含む交番磁界が径方向に沿って交差する。磁性体22には、例えば、磁性金属、積層した複数の磁性板からなる積層鋼板及び磁性粉の圧粉体等からなる軟磁性体を用いるとよい。特に、磁性体22の材質としては、渦電流損を抑えることができるため、積層鋼板が好ましい。
図2は、磁気ギア装置の伝達トルクに関するシミュレーション結果を示したグラフである。本シミュレーションの実施条件は以下の通りである。第1可動子1が有する磁極対12の数を7対、中間ヨーク2が有する磁性体22の数を26個、第2可動子3が有する磁極対32の数を19対とする。磁性体22の径方向の幅は3mm、周方向の幅は約4mmである。そして、第2可動子3及び中間ヨーク2を固定し、第1可動子1を回転させた場合に、第1可動子1及び第2可動子3と、中間ヨーク2との間に働くトルクをシミュレーションした。図2に示したグラフの横軸は第1可動子1の位相、縦軸は第1及び第2可動子1,3と、中間ヨーク2との間に働くトルクを示している。
実線は第2可動子3と、中間ヨーク2との間に働くトルクを示し、破線は第1可動子1と、中間ヨーク2との間に働くトルクを示している。また、太線のグラフは、第1可動子1と、中間ヨーク2との間隙が2mm、第2可動子3と、中間ヨーク2との間隙が1mmである場合のトルクを示している(以下、パターン1という)。中太線のグラフは、第1可動子1と、中間ヨーク2との間隙が1.5mm、第2可動子3と、中間ヨーク2との間隙が1.5mmである場合のトルクを示している(以下、パターン2という)。細線のグラフは、第1可動子1と、中間ヨーク2との間隙が1mm、第2可動子3と、中間ヨーク2との間隙が2mmである場合のトルクを示している(以下、パターン3という)。
図2に示すように、パターン1の結果が最も良好であり、第1可動子1、第2可動子3及び中間ヨーク2の間に働くトルクが最大である。パターン1は磁性体22を、短ピッチで磁極対32が配された第2可動子3側に寄せて配置した場合の結果である。逆に、パターン3の結果が最も悪く、第1可動子1、第2可動子3及び中間ヨーク2の間に働くトルクが最小である。パターン3は磁性体22を、長ピッチで磁極対12が配された第1可動子1側に寄せて配置した場合の結果である。
図3は、変形例1に係る磁気ギア装置の一構成例を示した側断面図である。変形例1に係る磁気ギア装置は、中間ヨーク102の隔壁121に磁性体122が埋没している点が実施の形態1と異なる。
図4は、変形例2に係る磁気ギア装置の一構成例を示した側断面図である。変形例2に係る磁気ギア装置は、隣り合う複数の磁性体222同士が連結部222aによって連結されている点が実施の形態1と異なる。連結部222aは、磁性体222よりも径方向の幅が薄い板材であり、複数の磁性体222と共に一体形成されている。
図5は、変形例3に係る磁気ギア装置の一構成例を示した側断面図である。変形例3に係る磁気ギア装置は、中間ヨーク302における隣り合う複数の磁性体322同士が連結部322aによって連結され、かつ磁性体322及び連結部322aが隔壁321に埋没している点が実施の形態1と異なる。連結部322aは、磁性体322よりも径方向の幅が薄い板材であり、複数の磁性体322と共に一体形成されている。
図6は、変形例4に係る磁気ギア装置の一構成例を示した側断面図である。変形例4に係る磁気ギア装置は、隣り合う複数の磁性体422同士が連結部422aによって連結され、かつ連結部422aが高速回転側の第1可動子1寄りに配されている点が実施の形態1と異なる。連結部422aは、磁性体422よりも径方向の幅が薄い円筒状の板材であり、複数の磁性体422と共に一体形成されている。
なお、連結部422aを中間ヨーク402の中心軸方向の両端に亘るように形成することによって、連結部422a及び磁性体422が、第1可動子1及び第2可動子3を隔てる隔壁として機能する。この場合においても、各磁性体422の位置関係を保持するために保持部材421が、各磁性体422の間に設けられる。なお、磁性体422同士を連結する連結部422aの強度的な問題が無ければ、保持部材421を廃しても良い。
連結部422aを高速回転側の第1可動子1側に寄せて配置した方が好ましい理由は以下の通りである。高速回転側の第1可動子1の磁極対12は、低速回転側の第2可動子3に比べて、長ピッチである。高速回転側の長ピッチで配された磁石12a,12bからの磁束の量は、低速回転側の磁石32a,32bに比べて大きい傾向がある。
ここで、磁性体422同士を連結する連結部422aは、磁石から見ると短絡磁路に相当する。短絡した磁束は高速回転側の磁石12a,12bと、低速回転側の磁石32a,32bとの相互作用に寄与しない無効磁束となる。無効磁束量はなるべく小さい方が良い。ところで、短絡磁束は連結部422aの磁束が飽和するまで流れ込む。即ち、連結部422aによって発生する無効磁束量は、連結部422aの断面積によって定まる一定の値であるため、磁性体422に対向する磁石の磁束量が大きい程、該磁束量に対する無効磁束量の比率が小さくなる。従って、長ピッチで配された磁極対32側に連結部422aを配置し、磁石12a,12bからの磁束で連結部422aを磁気的に飽和させることで、無効磁束の割合を小さくし、伝達トルクの低下を防止することが可能になる。
図7は、変形例5に係る磁気ギア装置の一構成例を示した側断面図である。変形例5に係る磁気ギア装置は、中間ヨーク502における隣り合う複数の磁性体522同士が連結部522aによって連結され、かつ連結部522aが高速回転側の第1可動子1寄りに配されており、更に、磁性体522及び連結部522aが隔壁521に埋没している点が実施の形態1と異なる。連結部522aは、磁性体522よりも径方向の幅が薄い円筒状の板材であり、複数の磁性体522と共に一体形成されている。
図8は、変形例6に係る磁気ギア装置の一構成例を示した側断面図である。変形例6に係る磁気ギア装置は、中間ヨーク602における複数の各磁性体622が円周方向に沿って略等間隔に配されるように保持部材621によって保持されており、各磁性体622は第1可動子1側及び第2可動子3側の双方に露出している点が異なる。この場合においても、磁性体622が低速回転側の第2可動子3側に寄せて配することによって、磁気ギア装置の伝達トルクを向上させることができる。
図9は、変形例7に係る磁気ギア装置の一構成例を示した側断面図である。変形例7に係る磁気ギア装置は、第1可動子701が低速回転、第2可動子703が高速回転するように構成されている点が実施の形態1と異なる。
図10は、変形例8に係る磁気ギア装置の一構成例を示した側断面図である。変形例8に係る磁気ギア装置は、変形例7と同様、第1可動子801が低速回転、第2可動子803が高速回転するように構成されており、更に、各磁性体822同士が連結部822aで連結され、かつ該連結部822aが高速回転側の第2可動子803寄りに配されている点が実施の形態1と異なる。
なお、変形例7,8では、第1可動子701、801を低速回転するように構成する例において、実施の形態1と、変形例4に対応する構成を説明したが、言うまでもなく、その他変形例1~3、5、6に対応する構成を適用することもできる。
(実施の形態2)
第2可動子6は、隔壁44よりも大径の外側円筒部61を有し、外側円筒部61の内周面には、厚さ方向に着磁された内周面側N極の磁石及び内周面側S極の磁石からなる磁極対62が円周方向に沿って略等間隔に7個配置されている。外側円筒部61の一端側、即ち、側壁大円板部41側には回転円板部63が設けられており、回転円板部63の略中央部には、入力軸71と回転軸が一致するように出力軸64が設けられている。出力軸64の先端には回転翼8が設けられている。
図12は、実施の形態3に係る磁気ギア装置の一構成例を示した分解斜視図、図13は、実施の形態3に係る磁気ギア装置の側断面図である。実施の形態3に係る磁気ギア装置は円板形であり、円板状の第1可動子3001と、該第1可動子3001の上方に間隙を有して同軸に配された円板状の第2可動子3003と、第1可動子3001及び第2可動子3003の間に間隙を有して同軸に配された円板状の中間ヨーク3002とを備える。
第2可動子3003は、磁性体材料からなる第2円板3031を有し、第2円板3031の下面には、下側N極の磁石3032a及び下側S極の磁石3032bからなる磁極対3032が円周方向に沿って略等間隔に14個配置されている。
図14は、実施の形態4に係る磁気ギア装置の一構成例を示した分解斜視図、図15は、実施の形態4に係る磁気ギア装置の側断面図である。実施の形態4に係る磁気ギア装置は各構成部材が長尺板状のリニア型であり、長尺板状の第1可動子4001と、該第1可動子4001の上方に間隙を有して配された長尺板状の第2可動子4003と、第1可動子4001及び第2可動子4003の間に間隙を有して配された長尺板状の中間ヨーク4002とを備える。第1可動子4001、第2可動子4003及び中間ヨーク4002の長手方向は略一致している。
第2可動子4003は、磁性体材料からなる第2長尺板部4031を有し、第2長尺板部4031の下面には、下側N極の磁石4032a及び下側S極の磁石4032bからなる磁極対4032が長手方向に沿って、単位距離ΔL当たり略等間隔に14個配置されている。
図16は、実施の形態5に係る磁気ギア装置の一構成例を示した分解斜視図、図17は、実施の形態5に係る磁気ギア装置の側断面図である。実施の形態5に係る磁気ギア装置は各構成部材が円筒状のリニア型であり、円筒状の第1可動子5001と、該第1可動子5001の外周側に間隙を有して同軸に配された円筒状の第2可動子5003と、第1可動子5001及び第2可動子5003の間に間隙を有して同軸に配された円筒状の中間ヨーク5002とを備える。
第2可動子5003は、磁性体材料からなる外側円筒部5031を有し、外側円筒部5031の内周面には、内側N極の磁石5032a及び内側S極の磁石5032bからなる磁極対5032が中心軸方向に沿って、単位距離ΔL当たり略等間隔に14個配置されている。
2 中間ヨーク
3 第2可動子
11 内側円筒部
12 磁極対
21 隔壁
22 磁性体
31 外側円筒部
32 磁極対
Claims (12)
- 特定の方向に沿って略等間隔に複数の磁極対がそれぞれ配されている第1磁石列と、該第1磁石列に対向しており、前記第1磁石列よりも短ピッチ(又は長ピッチ)で前記特定の方向に沿って略等間隔に複数の磁極対がそれぞれ配されている第2磁石列と、前記第1磁石列及び第2磁石列間に配置してあり、前記特定の方向に沿って略等間隔に複数の磁性体がそれぞれ配されている磁性体列とを備える磁気ギア装置において、
前記複数の磁性体と前記第2磁石列との対向方向における距離は、前記複数の磁性体と前記第1磁石列との距離に比べて短い(又は長い)ことを特徴とする磁気ギア装置。 - 前記磁性体列は、
前記複数の磁性体を保持しており、前記第1磁石列側と、前記第2磁石列側とを隔てる隔壁を備える
ことを特徴とする請求項1に記載の磁気ギア装置。 - 前記複数の磁性体は、前記第2磁石列側(又は第1磁石列側)に露出するように前記隔壁に保持されている
ことを特徴とする請求項2に記載の磁気ギア装置。 - 前記複数の磁性体は、前記隔壁に埋没している
ことを特徴とする請求項2に記載の磁気ギア装置。 - 前記磁性体列は、
隣り合う前記複数の磁性体を連結する連結部を備え、前記複数の磁性体及び連結部は一体形成されている
ことを特徴とする請求項1乃至請求項4のいずれか一つに記載の磁気ギア装置。 - 前記連結部と前記第1磁石列との前記対向方向における距離は、前記連結部と前記第2磁石列との距離に比べて短い(又は長い)ことを特徴とする
請求項5に記載の磁気ギア装置。 - 前記複数の磁性体は積層鋼板を含む
ことを特徴とする請求項1乃至請求項6のいずれか一つに記載の磁気ギア装置。 - 前記第1磁石列は焼結磁石(又はボンド磁石)を含み、
前記第2磁石列はボンド磁石(又は焼結磁石)を含む
ことを特徴とする請求項1乃至請求項7のいずれか一つに記載の磁気ギア装置。 - 前記第1磁石列、前記第2磁石列及び前記磁性体列は円筒状をなし、
前記特定の方向は、前記第1磁石列、前記第2磁石列及び前記磁性体列の周方向である
ことを特徴とする請求項1乃至請求項8のいずれか一つに記載の磁気ギア装置。 - 前記第1磁石列、前記第2磁石列及び前記磁性体列は円板状をなし、
前記特定の方向は、前記第1磁石列、前記第2磁石列及び前記磁性体列の円周方向である
ことを特徴とする請求項1乃至請求項8のいずれか一つに記載の磁気ギア装置。 - 前記第1磁石列、前記第2磁石列及び前記磁性体列は長尺板状をなし、
前記特定の方向は、前記第1磁石列、前記第2磁石列及び前記磁性体列の長手方向である
ことを特徴とする請求項1乃至請求項8のいずれか一つに記載の磁気ギア装置。 - 前記第1磁石列、前記第2磁石列及び前記磁性体列は円筒状をなし、
前記特定の方向は、前記第1磁石列、前記第2磁石列及び前記磁性体列の中心軸方向である
ことを特徴とする請求項1乃至請求項8のいずれか一つに記載の磁気ギア装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157020015A KR101627479B1 (ko) | 2011-07-15 | 2012-06-27 | 자기 기어 장치 |
US14/232,183 US9729040B2 (en) | 2011-07-15 | 2012-06-27 | Magnetic gear device having a plurality of magnetic bodies arranged in a particular configuration |
EP12814557.0A EP2733387B1 (en) | 2011-07-15 | 2012-06-27 | Magnetic gear device |
KR1020137033790A KR20140013087A (ko) | 2011-07-15 | 2012-06-27 | 자기 기어 장치 |
JP2013524641A JP5958466B2 (ja) | 2011-07-15 | 2012-06-27 | 磁気ギア装置 |
CN201280033104.1A CN103635716A (zh) | 2011-07-15 | 2012-06-27 | 磁力齿轮装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011156649 | 2011-07-15 | ||
JP2011-156649 | 2011-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013011809A1 true WO2013011809A1 (ja) | 2013-01-24 |
Family
ID=47557990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/066329 WO2013011809A1 (ja) | 2011-07-15 | 2012-06-27 | 磁気ギア装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9729040B2 (ja) |
EP (1) | EP2733387B1 (ja) |
JP (1) | JP5958466B2 (ja) |
KR (2) | KR20140013087A (ja) |
CN (1) | CN103635716A (ja) |
WO (1) | WO2013011809A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014109268A1 (ja) * | 2013-01-11 | 2014-07-17 | 日立金属株式会社 | 磁気ギア装置 |
JP2014155253A (ja) * | 2013-02-05 | 2014-08-25 | Sanyo Denki Co Ltd | 動力伝達装置 |
WO2015053005A1 (ja) * | 2013-10-09 | 2015-04-16 | 日立金属株式会社 | 磁気歯車装置 |
WO2015115694A1 (ko) * | 2014-01-28 | 2015-08-06 | 동아대학교 산학협력단 | 동축 마그네틱 기어 |
WO2015137392A1 (ja) * | 2014-03-12 | 2015-09-17 | 株式会社Ihi | 環状磁極部材及び磁気波動歯車装置 |
JP2016019365A (ja) * | 2014-07-08 | 2016-02-01 | 日立金属株式会社 | 磁気ギア装置 |
WO2017051823A1 (ja) * | 2015-09-24 | 2017-03-30 | 日立金属株式会社 | 磁気ギア装置 |
JP2019523196A (ja) * | 2016-07-14 | 2019-08-22 | フレックスリンク アーベー | コンベヤのための磁気変速機 |
WO2024161532A1 (ja) * | 2023-02-01 | 2024-08-08 | 三菱電機株式会社 | 回転装置 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5862764B2 (ja) * | 2012-03-27 | 2016-02-16 | 日立金属株式会社 | 周波数変換装置 |
WO2013149337A1 (en) | 2012-04-02 | 2013-10-10 | Hydrogenics Corporation | Fuel cell start up method |
WO2016165028A1 (en) * | 2015-04-15 | 2016-10-20 | Genesis Advanced Technology Inc. | Wave actuator |
CN106329859A (zh) * | 2015-06-17 | 2017-01-11 | 香港理工大学 | 双转子对旋式永磁无刷风力发电机 |
KR101907249B1 (ko) * | 2016-01-11 | 2018-10-11 | 한승주 | 고속 발전장치 |
GB2600011B (en) | 2016-01-13 | 2022-10-05 | Magnomatics Ltd | Magnetic gearing with damping material in rotor |
GB2549447A (en) * | 2016-01-13 | 2017-10-25 | Magnomatics Ltd | A magnetically geared apparatus |
EP3261238B1 (en) * | 2016-06-23 | 2020-08-12 | Goodrich Actuation Systems Limited | Magnetic gear |
US10700583B2 (en) * | 2016-08-31 | 2020-06-30 | Uti Limited Partnership | Induction machine with integrated magnetic gear and related methods |
KR101971190B1 (ko) * | 2017-08-22 | 2019-08-27 | 주식회사 카펙발레오 | 하이브리드 및 전기차용 전자기 토크 컨버터 |
CN108365733B (zh) * | 2018-05-02 | 2023-09-29 | 盐城永安科技有限公司 | 一种能够提高生产效率的磁齿轮结构 |
KR102103199B1 (ko) * | 2018-09-11 | 2020-04-22 | 조선대학교산학협력단 | 브리지 일체형 폴 피스를 갖는 마그네틱 기어 |
KR102103200B1 (ko) * | 2018-09-11 | 2020-04-22 | 조선대학교산학협력단 | 에어 베리어를 갖는 마그네틱 기어 |
CN110005782A (zh) * | 2019-04-17 | 2019-07-12 | 艾德斯汽车电机无锡有限公司 | 磁齿轮变速器结构 |
WO2020237721A1 (zh) | 2019-05-30 | 2020-12-03 | 苏州大学 | 平面关节型机器人及内转子关节装置 |
WO2022130882A1 (ja) * | 2020-12-15 | 2022-06-23 | 株式会社デンソー | 動力伝達装置 |
US11616430B2 (en) * | 2021-02-04 | 2023-03-28 | Louis J. Finkle | Method of manufacturing a magnetic gear modulator of a concentric magnetic gear |
WO2024004629A1 (ja) * | 2022-06-28 | 2024-01-04 | 株式会社デンソー | 動力伝達装置および膨張弁 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007228735A (ja) * | 2006-02-23 | 2007-09-06 | Matsushita Electric Works Ltd | トルク伝達装置 |
WO2009087408A2 (en) | 2008-01-11 | 2009-07-16 | Magnomatics Limited | Magnetic drive systems |
WO2009087409A1 (en) | 2008-01-11 | 2009-07-16 | Magnomatics Limited | Drives for sealed systems |
JP2010223340A (ja) * | 2009-03-24 | 2010-10-07 | Hitachi Metals Ltd | 磁気歯車およびその製造方法 |
JP2011033166A (ja) * | 2009-08-05 | 2011-02-17 | Mitsubishi Electric Corp | 磁気ギヤおよびそれを搭載した車両 |
JP2011094742A (ja) * | 2009-10-30 | 2011-05-12 | Toyota Central R&D Labs Inc | 磁気的多段変速機構及び複合磁気的多段変速機構 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2722617A (en) * | 1951-11-28 | 1955-11-01 | Hartford Nat Bank & Trust Comp | Magnetic circuits and devices |
US5402021A (en) * | 1993-05-24 | 1995-03-28 | Johnson; Howard R. | Magnetic propulsion system |
DE4405701A1 (de) * | 1994-02-23 | 1995-08-24 | Philips Patentverwaltung | Magnetisches Getriebe mit mehreren magnetisch zusammenwirkenden, relativ zueinander beweglichen Teilen |
US5821710A (en) | 1996-09-30 | 1998-10-13 | Hitachi Metals, Ltd. | Brushless motor having permanent magnets |
JP2004022925A (ja) | 2002-06-19 | 2004-01-22 | Toda Kogyo Corp | 非接触電磁動力伝達用磁石 |
FR2865867B1 (fr) * | 2004-01-29 | 2006-11-24 | Renault Sas | Coupleur electromagnetique |
JP2006105210A (ja) | 2004-10-01 | 2006-04-20 | Usui Kokusai Sangyo Kaisha Ltd | 渦電流式カップリング装置 |
US7528514B2 (en) * | 2006-06-22 | 2009-05-05 | International Business Machines Corporation | Centrifugal magnetic clutch |
JP4709711B2 (ja) * | 2006-08-04 | 2011-06-22 | 本田技研工業株式会社 | 磁気式動力伝達装置 |
JP2008075666A (ja) | 2006-09-19 | 2008-04-03 | Nsk Ltd | リニアモータ式テーブル装置 |
JP4870594B2 (ja) * | 2007-03-01 | 2012-02-08 | 株式会社プロスパイン | 磁気式動力伝達装置 |
JP2008245488A (ja) | 2007-03-29 | 2008-10-09 | Tdk Corp | リング状磁石及びその製造方法、並びにモータ |
JP5084445B2 (ja) * | 2007-10-26 | 2012-11-28 | 三菱電機エンジニアリング株式会社 | 電磁変換器 |
GB2457682B (en) * | 2008-02-21 | 2012-03-28 | Magnomatics Ltd | Variable magnetic gears |
GB0814400D0 (en) * | 2008-08-08 | 2008-09-10 | Rolls Royce Plc | Magnetic gear arrangement |
GB0814399D0 (en) * | 2008-08-08 | 2008-09-10 | Rolls Royce Plc | Variable gear ratio magnetic gearbox |
GB0817046D0 (en) * | 2008-09-18 | 2008-10-22 | Rolls Royce Plc | Magnectic Gear Arrangement |
US10230292B2 (en) * | 2008-09-26 | 2019-03-12 | Clearwater Holdings, Ltd | Permanent magnet operating machine |
GB0905344D0 (en) * | 2009-03-27 | 2009-05-13 | Ricardo Uk Ltd | A flywheel |
JP5231498B2 (ja) * | 2009-10-19 | 2013-07-10 | 株式会社キトー | トルク伝達装置 |
US8446060B1 (en) * | 2010-01-12 | 2013-05-21 | Richard H. Lugg | Magnetic advanced gas-turbine transmission with radial aero-segmented nanomagnetic-drive (MAGTRAN) |
WO2012014596A1 (ja) * | 2010-07-29 | 2012-02-02 | 日立金属株式会社 | 磁気ギア装置及び保持部材 |
JP5286373B2 (ja) * | 2011-01-28 | 2013-09-11 | 株式会社日立製作所 | 磁気歯車 |
CN103370561B (zh) * | 2011-02-21 | 2016-04-27 | 株式会社日立制作所 | 磁齿轮机构 |
JP5350438B2 (ja) * | 2011-06-29 | 2013-11-27 | 株式会社日立製作所 | 磁気式歯車機構 |
JP6093592B2 (ja) * | 2013-02-22 | 2017-03-08 | 株式会社Ihi | 磁気波動歯車装置 |
JP2015061422A (ja) * | 2013-09-19 | 2015-03-30 | 株式会社デンソー | 動力伝達機構 |
WO2015053005A1 (ja) * | 2013-10-09 | 2015-04-16 | 日立金属株式会社 | 磁気歯車装置 |
-
2012
- 2012-06-27 JP JP2013524641A patent/JP5958466B2/ja not_active Expired - Fee Related
- 2012-06-27 EP EP12814557.0A patent/EP2733387B1/en not_active Not-in-force
- 2012-06-27 KR KR1020137033790A patent/KR20140013087A/ko active Application Filing
- 2012-06-27 US US14/232,183 patent/US9729040B2/en not_active Expired - Fee Related
- 2012-06-27 CN CN201280033104.1A patent/CN103635716A/zh active Pending
- 2012-06-27 KR KR1020157020015A patent/KR101627479B1/ko active IP Right Grant
- 2012-06-27 WO PCT/JP2012/066329 patent/WO2013011809A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007228735A (ja) * | 2006-02-23 | 2007-09-06 | Matsushita Electric Works Ltd | トルク伝達装置 |
WO2009087408A2 (en) | 2008-01-11 | 2009-07-16 | Magnomatics Limited | Magnetic drive systems |
WO2009087409A1 (en) | 2008-01-11 | 2009-07-16 | Magnomatics Limited | Drives for sealed systems |
JP2010223340A (ja) * | 2009-03-24 | 2010-10-07 | Hitachi Metals Ltd | 磁気歯車およびその製造方法 |
JP2011033166A (ja) * | 2009-08-05 | 2011-02-17 | Mitsubishi Electric Corp | 磁気ギヤおよびそれを搭載した車両 |
JP2011094742A (ja) * | 2009-10-30 | 2011-05-12 | Toyota Central R&D Labs Inc | 磁気的多段変速機構及び複合磁気的多段変速機構 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2733387A4 * |
TETSUYA IKEDA; KENJI NAKAMURA; OSAMU ICHINOKURA: "A Way to Improve Efficiency of Permanent-Magnet Magnetic Gears", JOURNAL OF THE MAGNETICS SOCIETY OF JAPAN, vol. 33, no. 2, 2009, pages 130 - 134, XP055135295, DOI: doi:10.3379/msjmag.0901RG8016 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014109268A1 (ja) * | 2013-01-11 | 2014-07-17 | 日立金属株式会社 | 磁気ギア装置 |
JP6020598B2 (ja) * | 2013-01-11 | 2016-11-02 | 日立金属株式会社 | 磁気ギア装置 |
EP2763298A3 (en) * | 2013-02-05 | 2017-05-17 | Sanyo Denki Co., Ltd. | Power transmission device |
JP2014155253A (ja) * | 2013-02-05 | 2014-08-25 | Sanyo Denki Co Ltd | 動力伝達装置 |
US10985642B2 (en) | 2013-02-05 | 2021-04-20 | Sanyo Denki Co., Ltd. | Power transmission device |
WO2015053005A1 (ja) * | 2013-10-09 | 2015-04-16 | 日立金属株式会社 | 磁気歯車装置 |
US10050510B2 (en) | 2013-10-09 | 2018-08-14 | Hitachi Metals, Ltd. | Magnetic gear device |
WO2015115694A1 (ko) * | 2014-01-28 | 2015-08-06 | 동아대학교 산학협력단 | 동축 마그네틱 기어 |
EP3118972A4 (en) * | 2014-03-12 | 2018-01-03 | IHI Corporation | Annular magnetic pole member and magnetic wave gear device |
WO2015137392A1 (ja) * | 2014-03-12 | 2015-09-17 | 株式会社Ihi | 環状磁極部材及び磁気波動歯車装置 |
JP2016019365A (ja) * | 2014-07-08 | 2016-02-01 | 日立金属株式会社 | 磁気ギア装置 |
WO2017051823A1 (ja) * | 2015-09-24 | 2017-03-30 | 日立金属株式会社 | 磁気ギア装置 |
JPWO2017051823A1 (ja) * | 2015-09-24 | 2018-07-12 | 日立金属株式会社 | 磁気ギア装置 |
JP2019523196A (ja) * | 2016-07-14 | 2019-08-22 | フレックスリンク アーベー | コンベヤのための磁気変速機 |
WO2024161532A1 (ja) * | 2023-02-01 | 2024-08-08 | 三菱電機株式会社 | 回転装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20140013087A (ko) | 2014-02-04 |
EP2733387A1 (en) | 2014-05-21 |
JP5958466B2 (ja) | 2016-08-02 |
EP2733387B1 (en) | 2017-01-04 |
US20140167546A1 (en) | 2014-06-19 |
KR101627479B1 (ko) | 2016-06-03 |
EP2733387A4 (en) | 2015-12-16 |
KR20150091187A (ko) | 2015-08-07 |
CN103635716A (zh) | 2014-03-12 |
JPWO2013011809A1 (ja) | 2015-02-23 |
US9729040B2 (en) | 2017-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5958466B2 (ja) | 磁気ギア装置 | |
JP6020598B2 (ja) | 磁気ギア装置 | |
JP6280970B2 (ja) | ロータ及びモータ | |
JP6423991B2 (ja) | ローター及び駆動モータ | |
JP5985342B2 (ja) | モータ及びモータ用ローター | |
JP2011130598A (ja) | アキシャルギャップ型永久磁石モータ、それに用いるロータ、及びそのロータの製造方法 | |
JP2007330025A (ja) | モータ | |
JP4687687B2 (ja) | アキシャルギャップ型回転電機及び界磁子 | |
US20130113329A1 (en) | Rotor and motor | |
JP6442887B2 (ja) | 磁気ギア装置 | |
US11894726B2 (en) | Rotating electric machine | |
WO2013065275A1 (ja) | モータの回転子およびそれを備えたモータ | |
JP6408766B2 (ja) | アキシャル立体ギャップ式回転電機 | |
CN107040107B (zh) | 转子和马达 | |
JP2007082300A (ja) | コア及びそれを備える電動機 | |
JP5852418B2 (ja) | ロータ及びモータ | |
JP5353804B2 (ja) | アキシャルギャップ型回転電機及びその製造方法 | |
JP5077369B2 (ja) | ブラシレスモータ | |
JP6121859B2 (ja) | ロータ及びモータ | |
JP5844607B2 (ja) | ロータ及びモータ | |
WO2022030031A1 (ja) | 磁束変調型磁気歯車 | |
JP2011055584A (ja) | Ipmモータ用回転子 | |
JP2017135923A (ja) | モータ用ロータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12814557 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137033790 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013524641 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14232183 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012814557 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012814557 Country of ref document: EP |