WO2012014596A1 - 磁気ギア装置及び保持部材 - Google Patents

磁気ギア装置及び保持部材 Download PDF

Info

Publication number
WO2012014596A1
WO2012014596A1 PCT/JP2011/064007 JP2011064007W WO2012014596A1 WO 2012014596 A1 WO2012014596 A1 WO 2012014596A1 JP 2011064007 W JP2011064007 W JP 2011064007W WO 2012014596 A1 WO2012014596 A1 WO 2012014596A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
pole pairs
mover
holding member
magnetic pole
Prior art date
Application number
PCT/JP2011/064007
Other languages
English (en)
French (fr)
Inventor
正裕 三田
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US13/813,127 priority Critical patent/US9166464B2/en
Priority to KR1020137003207A priority patent/KR101457523B1/ko
Priority to DE112011102531.9T priority patent/DE112011102531B4/de
Priority to CN201180037306.9A priority patent/CN103038547B/zh
Priority to JP2012526376A priority patent/JP5408355B2/ja
Publication of WO2012014596A1 publication Critical patent/WO2012014596A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/10Means for influencing the pressure between the members
    • F16H13/12Means for influencing the pressure between the members by magnetic forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2798Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the stator face a rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/106Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with a radial air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/108Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with an axial air gap

Definitions

  • the present invention relates to a magnetic gear device and a holding member that can suppress eddy current loss.
  • the magnetic gear device includes a first mover and a second mover in which a plurality of magnetic pole pairs having different magnetic poles on the working surface side are arranged at equal intervals.
  • the first mover and the second mover have, for example, a cylindrical shape, a disk shape, or a flat plate shape.
  • a plurality of magnetic bodies functioning as pole pieces are arranged at equal intervals between the first mover and the second mover.
  • the gear ratio of the second mover to the first mover is determined according to the combination of the number of magnetic pole pairs of the first mover and the second mover.
  • the action surface here refers to the facing surface side of the first mover and the second mover facing each other with a plurality of magnetic bodies interposed therebetween.
  • a magnetic gear device such as a cylindrical rotary type having an inner rotor and an outer rotor or a cylindrical linear type having an inner column and an outer column as the first mover and the second mover (for example, see Non-Patent Document 1 and Non-Patent Document 3).
  • a cylindrical rotary type magnetic gear device is inserted with a cylindrical inner rotor, a cylindrical outer rotor that fits inside with a gap, and a gap between the inner rotor and the outer rotor.
  • a cylindrical intermediate yoke A plurality of magnetic pole pairs composed of N-pole and S-pole magnets are arranged along the circumferential direction on each of the outer peripheral surface of the inner rotor and the inner peripheral surface of the outer rotor.
  • the intermediate yoke holds a plurality of ferromagnetic magnetic bodies at equal intervals along the circumferential direction.
  • the inner rotor rotates due to the magnetic interaction between the magnetic pole pairs of the inner rotor and the outer rotor.
  • the number of magnetic pole pairs arranged in each of the inner rotor and the outer rotor is Ph and Pl
  • an alternating magnetic field is generated in the radial direction as the inner rotor and the outer rotor rotate.
  • the alternating magnetic field mainly includes a Ph-order harmonic component, an (Ns-Ph) -order harmonic component, and an (Ns + Ph) -order harmonic component. (For example, refer nonpatent literature 2).
  • the number Pl of the magnetic pole pairs arranged in the outer rotor is set to (Ns ⁇ Ph) or (Ns + Ph).
  • Ns ⁇ Ph the number of the magnetic pole pairs arranged in the outer rotor
  • Ns + Ph the number of the magnetic bodies held by the intermediate yoke
  • the number Ns of magnetic bodies held by the intermediate yoke may be (Ph + Pl) or (Pl ⁇ Ph).
  • FIG. 10 is a schematic assembly diagram showing an example of a conventional cylindrical rotating magnetic gear device.
  • the magnetic gear device includes an inner rotor 100, an intermediate yoke 200, and an outer rotor 300.
  • On the outer peripheral surface of the inner rotor 100 three magnetic pole pairs 102 each including an outer peripheral side N-pole magnet 102a and an S-pole magnet 102b magnetized in the thickness direction are arranged along the circumferential direction.
  • seven magnetic pole pairs 302 including an inner peripheral surface side N-pole magnet 302 a and an S-pole magnet 302 b magnetized in the thickness direction are arranged along the circumferential direction.
  • the magnetic gear device shown in FIG. 10 has a gear ratio of 3/7.
  • the intermediate yoke 200 holds ten magnetic bodies 202 that are the sum of the numbers 3 and 7 of the magnetic pole pairs 102 and 302 included in the inner rotor 100 and the outer rotor 300, respectively, along the circumferential direction at equal intervals.
  • the intermediate yoke 200 is manufactured, for example, by fixing each magnetic body 202 to a resin formed in a cylindrical shape (see Patent Document 1).
  • an alternating magnetic field including a third harmonic component, a seventh harmonic component, and a thirteenth harmonic component generated by the magnetic pole pairs 102 and 302 intersects along the radial direction.
  • An object of the present invention is to provide a magnetic gear device and a holding member that can be used.
  • Another object of the present application is to make the number of the plurality of connecting rods of the holding member a divisor of the number of the plurality of magnetic pole pairs arranged in the first movable element and the second movable element,
  • An object of the present invention is to provide a magnetic gear device and a holding member that can suppress eddy current loss.
  • Another object of the present application is to divide the circumference of each of the plurality of rings of the holding member using a divisor of the number of each of the plurality of magnetic pole pairs arranged in the first movable element and the second movable element.
  • an object of the present invention is to provide a magnetic gear device that can suppress an eddy current by arranging a connection position by a connection rod.
  • a plurality of magnetic pole pairs are arranged at substantially equal intervals along a specific direction, and the first and second movers that face each other, the first mover and the first mover And a holding member that holds a plurality of magnetic bodies at approximately equal intervals along the specific direction, and the number of the plurality of magnetic bodies that the holding member holds is
  • the holding member holds a plurality of magnetic bodies.
  • a holding portion and a connecting rod that is arranged at substantially equal intervals along the specific direction and connects the plurality of holding portions, the plurality of holding portions facing each other via the plurality of magnetic bodies.
  • the number of the plurality of magnetic pole pairs included in the first mover and the second mover is It characterized that you have a number of serial connecting rod to have a divisor.
  • a first mover in which a plurality of magnetic pole pairs are arranged at substantially equal intervals along a specific direction, and a plurality of magnetic pole pairs are arranged at substantially equal intervals along the specific direction.
  • mover is provided in the magnetic gear apparatus so that it may oppose with a clearance gap.
  • the magnetic gear device is provided with a holding member that holds the magnetic body at substantially equal intervals along the specific direction between the first mover and the second mover.
  • the number Ns of magnetic bodies is set to be a difference (Pl ⁇ Ph) or a total (Ph + Pl) between the number Ph of the magnetic pole pairs possessed by the first mover and the number Pl of the magnetic pole pairs possessed by the second mover. .
  • the gear ratio between the first mover and the second mover of the magnetic gear device is Ph / Pl.
  • the holding member includes a plurality of opposing holding portions.
  • the plurality of holding units hold a plurality of magnetic bodies between the opposing portions.
  • the plurality of holding portions are connected to each other by a plurality of connecting rods arranged at substantially equal intervals along the specific direction.
  • a magnetic body is disposed in each of the opening portions surrounded by the opposing part of the holding portion and the connecting rod.
  • the numbers Ph and Pl of the plurality of magnetic pole pairs arranged on the first mover and the second mover have the number of connecting rods as a divisor.
  • an alternating magnetic field that intersects each opening has an integral multiple of each period of the Ph-order harmonic component, the (Ns-Ph) -order harmonic component, and the (Ns + Ph) -order harmonic component along the specific direction.
  • each harmonic component having Therefore, eddy current does not flow through the closed loop composed of the connecting portion and the opposing part of the holding portion that forms the periphery of each opening.
  • a plurality of magnetic pole pairs are arranged at substantially equal intervals along a specific direction, and the first and second movers that face each other, the first mover and the first mover And a holding member that holds a plurality of magnetic bodies at approximately equal intervals along the specific direction, and the number of the plurality of magnetic bodies that the holding member holds is
  • the holding member holds a plurality of magnetic bodies.
  • a holding portion and a connecting rod that is arranged at substantially equal intervals along the specific direction and connects the plurality of holding portions, the plurality of holding portions facing each other via the plurality of magnetic bodies.
  • the number of the connecting rods is a plurality of the first mover and the second mover. Characterized in that are set to be a divisor of the number of pole pairs.
  • the number of connecting rods is a divisor of the number of each of the plurality of magnetic pole pairs arranged on the first and second movers.
  • the alternating magnetic field intersecting each opening of the holding member includes each cycle of the Ph order harmonic component, the (Ns ⁇ Ph) order harmonic component, and the (Ns + Ph) order harmonic component along the specific direction.
  • Each harmonic component having an integer multiple of is included.
  • the alternating magnetic field intersecting each opening of the holding member has a period of the Ph order harmonic component, the (Ns ⁇ Ph) order harmonic component, and the (Ns + Ph) order harmonic component along the specific direction.
  • Each harmonic component having an integer multiple of is always included. And an eddy current does not flow into the closed loop which consists of a part which the holding
  • the first mover and the second mover are cylinders, and the first mover has the plurality of magnetic pole pairs arranged on an outer circumferential surface along a circumferential direction.
  • the second mover has an inner peripheral surface facing the outer peripheral surface of the first mover, and the plurality of magnetic pole pairs are arranged on the inner peripheral surface along a circumferential direction;
  • the specific direction is a circumferential direction of a cylinder, and the holding part is a plurality of annular rings that hold the plurality of magnetic bodies between opposing sides along the circumferential direction.
  • the present application includes a cylindrical inner rotor as the first and second movers, and an outer rotor that fits inside with a gap.
  • a plurality of magnetic pole pairs are arranged along the circumferential direction on each of the outer peripheral surface of the inner rotor and the inner peripheral surface of the outer rotor.
  • a holding member is inserted between the inner rotor and the outer rotor.
  • the holding member includes an annular ring facing each other, and holds a plurality of magnetic bodies along the circumferential direction between the opposed annular rings.
  • the magnetic gear device disclosed in the present application includes a cylindrical first movable element in which a plurality of magnetic pole pairs are arranged at substantially equal intervals along the circumferential direction on the outer peripheral side, and the first movable element has a gap.
  • a second mover that is fitted on the inner peripheral side and has a plurality of magnetic pole pairs arranged at substantially equal intervals along the circumferential direction on the inner peripheral side, and between the first mover and the second mover
  • a holding member that holds a plurality of magnetic bodies along the circumferential direction, and the number of the plurality of magnetic bodies that the holding member holds includes the first movable element and the second movable body.
  • the holding member holds the plurality of magnetic bodies and is opposed to the plurality of magnetic bodies via the plurality of magnetic bodies.
  • a plurality of circular rings and a connecting position arranged along the circumferential direction of each of the plurality of circular rings.
  • a connecting rod that is connected along a direction, and the connecting position is a divisor of the number of each of the plurality of magnetic pole pairs of the first mover and the second mover that have a circumference of each of the plurality of rings. It is characterized by being selected and arranged from the division positions obtained by dividing it at substantially equal intervals.
  • the circumference of each ring included in the holding member is divided by using the divisors of the respective numbers of the plurality of magnetic pole pairs arranged in the first mover and the second mover. And a connection position is selected from a plurality of division positions, and each connection position is connected along the opposite direction by a connecting rod.
  • the alternating magnetic field intersecting each opening of the holding member has a period of the Ph order harmonic component, the (Ns ⁇ Ph) order harmonic component, and the (Ns + Ph) order harmonic component along the circumferential direction.
  • Each harmonic component having an integer multiple will always be included.
  • an eddy current does not flow into the closed loop which consists of a part which the holding
  • the holding member disclosed in the present application has a plurality of magnetic pole pairs arranged at substantially equal intervals along a specific direction, and holds a plurality of magnetic bodies between the first and second movable elements facing each other.
  • a plurality of holding portions that hold the plurality of magnetic bodies at substantially equal intervals along the specific direction, and a plurality of holding portions that are arranged at substantially equal intervals along the specific direction, A plurality of magnetic pole pairs of the first movable element and the second movable element. It is characterized in that it is a divisor of each number.
  • the holding member is inserted between the first mover and the second mover.
  • the number of connecting rods included in the holding member is a divisor of the number of the plurality of magnetic pole pairs arranged on the first and second movers.
  • the alternating magnetic field intersecting each opening of the holding member has a period of the Ph order harmonic component, the (Ns ⁇ Ph) order harmonic component, and the (Ns + Ph) order harmonic component along the specific direction.
  • Each harmonic component having an integer multiple of is included. Therefore, eddy current does not flow through the closed loop composed of the connecting portion and the opposing part of the holding portion that forms the periphery of each opening.
  • the first mover and the second mover are arranged to face each other in a disk shape, and the plurality of magnetic pole pairs are arranged on the first mover and the second mover, respectively. It is arranged radially, the specific direction is a circumferential direction of a disk, and the holding part is composed of a plurality of concentric toric bodies for holding the plurality of magnetic bodies.
  • the first mover and the second mover include a disk-shaped lower rotor and an upper rotor facing the lower rotor with a gap.
  • a plurality of magnetic pole pairs are radially arranged on the upper surface of the lower rotor and the lower surface of the upper rotor.
  • a holding member is inserted between the lower rotor and the upper rotor.
  • the holding member includes concentric rings opposed in the radial direction, and holds a plurality of magnetic bodies radially between the opposed rings.
  • the magnetic gear device disclosed in the present application includes a disk-shaped first mover in which a plurality of pairs of magnetic poles are arranged at substantially equal intervals, and is opposed to the first mover at a distance from each other.
  • a disc-shaped second mover having magnetic pole pairs arranged at substantially equal intervals, a holding member arranged between the first mover and the second mover, and holding a plurality of magnetic bodies radially.
  • the number of the plurality of magnetic bodies held by the holding member is the difference or total of the numbers of the plurality of magnetic pole pairs of each of the first movable element and the second movable element.
  • the holding member holds the plurality of magnetic bodies, and a plurality of concentric toric bodies facing each other in the radial direction via the plurality of magnetic bodies, and each of the plurality of toruses in the radial direction.
  • a connecting rod that is connected to the first movable element and the second movable element.
  • a plurality of magnetic pole pairs, each of which is a divisor of the number, and each of the plurality of rings is connected to a part or all of the positions divided along the circumferential direction at substantially equal intervals.
  • each annular ring of the holding member is divided in the circumferential direction by using a divisor of the number of each of the plurality of magnetic pole pairs arranged in the first mover and the second mover. Among them, a part or all of the selected ones are connected along the radial direction by a connecting rod.
  • the alternating magnetic field intersecting each opening of the holding member has a period of the Ph order harmonic component, the (Ns ⁇ Ph) order harmonic component, and the (Ns + Ph) order harmonic component along the circumferential direction.
  • Each harmonic component having an integer multiple will always be included.
  • an eddy current does not flow into the closed loop which consists of an opposing part of each annular ring which comprises the periphery of each opening part, and a connection rod.
  • the magnetic gear device disclosed in the present application has a rectangular plate-like first mover in which a plurality of magnetic pole pairs are arranged at substantially equal intervals along the longitudinal direction, and is opposed to the first mover at a distance from each other.
  • a rectangular plate-like second mover in which a plurality of magnetic pole pairs are arranged at substantially equal intervals along the direction, and arranged between the first mover and the second mover, along the longitudinal direction.
  • a holding member that holds a plurality of magnetic bodies, and the number of magnetic bodies per unit length in the longitudinal direction of the plurality of magnetic bodies that the holding member holds is the first movable piece and the second movable piece, respectively.
  • the holding member holds the plurality of magnetic bodies, and the difference or total of the number of magnetic bodies per unit length of the plurality of magnetic pole pairs of The longitudinal direction of the first movable element and the second movable element is opposed to each other through the magnetic body.
  • a plurality of holding rods substantially aligned in the direction and a connecting rod for connecting the plurality of holding rods along the opposing direction, wherein the connecting rod includes a plurality of the first mover and the second mover.
  • the present application includes a rectangular lower plate as a first movable element and a second movable element, and a rectangular upper plate facing the lower plate with a gap.
  • a plurality of magnetic pole pairs are arranged along the longitudinal direction on each of the upper surface of the lower plate and the lower surface of the upper plate.
  • a holding member is inserted between the lower plate and the upper plate.
  • the holding member extends in the longitudinal direction and includes holding rods facing each other, and holds a plurality of magnetic bodies along the longitudinal direction between the opposed holding rods.
  • the connecting rod included in the holding member is a portion of the holding rod per unit length by using a divisor of the number per unit length in the longitudinal direction of the plurality of magnetic pole pairs arranged on the lower plate and the upper plate. Part or all of the divided positions are connected.
  • the alternating magnetic field intersecting each opening of the holding member has an integer of each period of the Ph-order harmonic component, the (Ns ⁇ Ph) -order harmonic component, and the (Ns + Ph) -order harmonic component along the longitudinal direction.
  • Each harmonic component having a multiple will always be included.
  • an eddy current does not flow into the closed loop which consists of a part which the holding rod which makes the periphery of each opening part which opposes, and a connection rod.
  • the magnetic gear device disclosed in the present application includes a cylindrical first movable element in which a plurality of magnetic pole pairs are arranged at substantially equal intervals along the cylindrical axis direction on the outer peripheral side, and the first movable element has a gap.
  • a cylindrical second movable element having a plurality of magnetic pole pairs arranged at substantially equal intervals along the cylindrical axis direction on the inner peripheral side, and the first movable element and the first movable element And a holding member that holds the plurality of magnetic bodies along the cylindrical axis direction, and is provided per unit length in the longitudinal direction of the plurality of magnetic bodies that the holding member holds.
  • the number of the plurality of magnetic pole pairs included in each of the first movable element and the second movable element is the difference or the total number of the plurality of magnetic pole pairs.
  • the plurality of magnetic bodies are held, opposed via the plurality of magnetic bodies, and the longitudinal direction thereof is the cylindrical axis direction.
  • a plurality of holding rods that are matched with each other, and a plurality of connecting annular members that connect the plurality of holding rods, and the plurality of connecting annular members that are included in the first movable element and the second movable element.
  • the present application includes a cylindrical inner column as the first movable element and the second movable element, and a cylindrical outer column in which the inner column is fitted with a gap.
  • a plurality of magnetic pole pairs are arranged along the cylindrical axis direction on each of the outer peripheral surface of the inner column and the inner peripheral surface of the outer column.
  • a holding member is inserted between the inner column and the outer column.
  • the holding member extends in the longitudinal direction and includes opposing holding rods, and holds a plurality of magnetic bodies along the cylindrical axis direction between the opposing holding rods.
  • the connecting ring is a position where the holding rod of the holding member is divided by using the divisor of the number of each magnetic pole pair arranged in the inner column and the outer column per unit length in the cylindrical axis direction.
  • the alternating magnetic field intersecting each opening of the holding member has a period of the Ph order harmonic component, (Ns ⁇ Ph) order harmonic component, and (Ns + Ph) order harmonic component along the cylindrical axis direction.
  • Each harmonic component having an integer multiple will always be included.
  • an eddy current does not flow into the closed loop which consists of the opposing part of the holding rod which makes the periphery of each opening part, and a connection annular body.
  • the magnetic gear device disclosed in the present application is characterized in that the holding member is movable.
  • the relative rotation speed or the relative movement speed of the second mover with respect to the first mover is changed by rotating or moving the holding member.
  • the magnetic gear device disclosed in the present application is characterized in that any one of the first mover and the second mover can be fixed.
  • the second mover rotates or moves with the rotation or movement of the holding member.
  • the first mover rotates or moves as the holding member rotates or moves.
  • the number of the plurality of magnetic pole pairs arranged on the first mover and the second mover has the number of the plurality of connecting rods of the holding member as a divisor. As a result, eddy current loss can be suppressed.
  • the number of the plurality of connecting rods included in the holding member is a divisor of the number of the plurality of magnetic pole pairs arranged in the first mover and the second mover.
  • a divisor of the number of each of the plurality of magnetic pole pairs arranged on the first movable element and the second movable element is used for the circumference of each of the plurality of rings included in the holding member. It is possible to suppress the eddy current by arranging the connecting positions by the connecting rods by dividing the eddy current.
  • the magnetic gear device includes a rotary type cylindrical rotary type and a disc rotary type, and a linear type flat plate linear type and cylindrical linear type.
  • the rotary magnetic gear device is configured such that the ratio of the rotational speed of the second movable element to the rotational speed of the first movable element is a predetermined gear ratio.
  • the linear magnetic gear device the movement amount of the second mover with respect to the movement amount of the first mover has a predetermined gear ratio.
  • Such a magnetic gear device may be used for a movable device as a non-contact gear device that is easy to maintain with little wear and noise.
  • the magnetic gear device converts the rotational speed of the windmill blade so as to coincide with the commercial frequency.
  • a cylindrical rotary magnetic gear device will be described as an example.
  • FIG. 1 and 2 are a schematic assembly diagram and a schematic cross-sectional view showing an example of a cylindrical rotating magnetic gear device.
  • FIG. 2 shows a cross section perpendicular to the rotation axis of the cylindrical rotary magnetic gear device.
  • the cylindrical rotary type magnetic gear device has a cylindrical inner rotor 1, a cylindrical outer rotor 3 in which the inner rotor 1 fits inside with a gap, and a gap between the inner rotor 1 and the outer rotor 3. And an intermediate yoke 2 to be fitted.
  • the inner rotor 1 has a cylinder 11 made of a magnetic material, and on the outer peripheral surface of the cylinder 11, a magnetic pole pair 12 including an outer peripheral surface side N-pole magnet 12 a and an S-pole magnet 12 b magnetized in the thickness direction. Are arranged along the circumferential direction.
  • the outer rotor 3 has a cylinder 31 made of a magnetic material, and an inner peripheral surface of the cylinder 31 includes an N-pole magnet 32a and an S-pole magnet 32b magnetized in the thickness direction. 14 magnetic pole pairs 32 are arranged along the circumferential direction.
  • the magnet magnetized in the thickness direction means that the outer peripheral surface side and the inner peripheral surface side are magnetized so as to have different polarities.
  • the magnet 12a is magnetized on the N pole and the S pole on the outer peripheral surface side and the inner peripheral surface side, respectively
  • the magnet 12b is magnetized on the S pole and the N pole on the outer peripheral surface side and the inner peripheral surface side, respectively. Yes.
  • the inner rotor 1 rotates due to the magnetic interaction between the magnetic pole pairs 12 and 32 of the inner rotor 1 and the outer rotor 3.
  • the inner rotor 1 having a smaller number of magnetic poles than the outer rotor 3 rotates in a direction opposite to the rotational direction of the outer rotor 3 at a higher rotational speed than the outer rotor 3.
  • a ratio Ph / P1 between the number Ph of the magnetic pole pairs arranged in the inner rotor 1 and the number Pl of the magnetic pole pairs arranged in the outer rotor 3 is the gear ratio n of the inner rotor 1 with respect to the outer rotor 3.
  • the inner rotor 1 rotates clockwise 1 / n.
  • the gear ratio n is 3/7.
  • the intermediate yoke 2 holds 20 ferromagnetic magnetic bodies 22, which are the total number of magnetic pole pairs 6 and 14 of the inner rotor 1 and the outer rotor 3, at equal intervals along the circumferential direction.
  • the magnetic body 22 may be a soft magnetic body made of, for example, a magnetic metal, a plurality of laminated magnetic plates, and a green powder compact.
  • FIG. 3 is a schematic perspective view showing an example of a closed loop.
  • a thick line including an arrow in the figure indicates one closed loop among the two closed loops formed on the holding member 21.
  • the holding member 21 is arranged at a substantially equal interval in the circumferential direction with a pair of annular rings (holding portions) 21a, 21a facing along the rotation axes of the inner rotor 1 and the outer rotor 3, and a pair of annular rings 21a, It has two connecting rods 21b and 21b that connect 21a in the opposite direction.
  • the number 2 of the connecting rods 21b is a divisor of the number 6 of the magnetic pole pairs 12 included in the inner rotor 1, the number 14 of the magnetic pole pairs 32 included in the outer rotor 3, and the number 20 of the magnetic bodies 22 included in the intermediate yoke 2. ing.
  • the holding member 21 is formed with two closed loops formed by the opposing portions of the circular rings 21a and 21a and the connecting rods 21b and 21b. Ten magnetic bodies 22 are arranged in each of the openings surrounded by each closed loop.
  • Each annular ring 21a and each connecting rod 21b may be made of, for example, an aluminum alloy, a magnesium alloy, a nonmagnetic stainless alloy, a nonmagnetic metal such as gold, silver, or copper.
  • Each annular ring 21a may be, for example, a part of a housing that houses the magnetic gear device, or may be integrated with a shaft to which the magnetic gear device is coupled. You may hold
  • the alternating magnetic field generated by the magnetic pole pairs 12 and 32 disposed in the inner rotor 1 and the outer rotor 3 intersects each opening of the holding member 21 along the radial direction of the intermediate yoke 2. And an alternating magnetic field cross
  • FIG. 4 is a chart showing the period of each harmonic component included in the alternating magnetic field. Cylindrical rotation in which the number Ns of magnetic bodies arranged in the intermediate yoke is the difference (Pl-Ph) or total (Ph + Pl) between the number Ph of the magnetic pole pairs possessed by the inner rotor and the number Pl of the magnetic pole pairs possessed by the outer rotor
  • the alternating magnetic field includes a Ph-order harmonic component, an (Ns ⁇ Ph) -order harmonic component, and an (Ns + Ph) -order harmonic component (see Non-Patent Document 2).
  • the harmonic components ⁇ 1, ⁇ 2, and ⁇ 3 shown in FIG. 4 are a Ph-order harmonic component, an (Ns ⁇ Ph) -order harmonic component, and an (Ns + Ph) -order harmonic component, respectively.
  • each graph indicates the amplitude of each harmonic component.
  • the horizontal axis shows the position of the opening of the holding member 21 on the opening surface using the period of each harmonic component along the circumferential direction of the intermediate yoke 2.
  • the alternating magnetic field that intersects the opening surrounded by the closed loop shown in FIG. 3 includes a sixth-order harmonic component, a 14th-order harmonic component, and a 26th-order harmonic component.
  • the opening distance in the circumferential direction of the intermediate yoke 2 of each opening of the holding member 21 includes a period that is an integral multiple of each harmonic component. Accordingly, no eddy current is generated by the alternating magnetic field in each of the closed loops positioned at the periphery of each opening of the holding member 21.
  • the holding member 21 has been shown to include two connecting rods 21b, but is not limited thereto.
  • the number 6 of the magnetic pole pairs 12 included in the inner rotor 1, the number 14 of the magnetic pole pairs 32 included in the outer rotor 3, and 1 which is a divisor of the number 20 of magnetic bodies 22 included in the intermediate yoke 2 are It is good also as a number.
  • a method for designing the magnetic gear device of the present application having a predetermined gear ratio will be described.
  • the number Ph of the magnetic pole pairs 12 arranged on the inner rotor 1 and the number Pl of the magnetic pole pairs 32 arranged on the outer rotor 3 are calculated so that Ph / Pl becomes a predetermined gear ratio, and Ph + Pl is intermediate This is calculated as the number Ns of magnetic bodies 22 arranged in the yoke 2.
  • the divisor of Ph, Pl and Ns is determined as the number of connecting rods 21b included in the holding member 21.
  • a magnetic gear device is designed in which no eddy current is generated in the closed loop formed in the holding member 21.
  • the connecting rod 21b included in the holding member 21 may be determined as one or three.
  • the holding member 21 is provided with all the determined number of connecting rods 21b was shown, it is not restricted to this.
  • the divisors of Ns, Ph, and Pl are 2 or more, the circumference of the opposing holding member 21 is divided by the divisor, and the position that becomes the selected pair among the opposing pairs of positions is the divisor. It is also possible to connect with a smaller number of connecting rods 21b.
  • the holding member 21 may not include a plurality of connecting rods 21b at equal intervals along the circumferential direction of the intermediate yoke 2.
  • the divisor of Ns, Ph, and Pl is 5
  • the circumference of the opposing holding member 21 is divided into five to form three pairs that are not equally spaced among the five pairs that face each other. You may select a position as a connection position and it connects with the three connection rods 21b.
  • the calculated numbers Ph, Pl, and Ns do not have the predetermined number of the connecting rods 21b as a divisor, the calculated numbers Ph, Pl, and Ns are obtained by multiplying the predetermined numbers of the connecting rods 21b, respectively. Each number is determined as the number Ph, Pl, Ns.
  • FIG. 5 is a schematic perspective view showing another example of the holding member 21.
  • the holding member 21 showed the case where a pair of opposing annular rings 21a and 21a were provided, it is not restricted to this, You may provide the 3 or more annular rings 21a which oppose.
  • three annular rings 21a are arranged coaxially with a gap.
  • the adjacent annular rings 21a and 21a are connected by connecting rods 21b and 21b.
  • the holding member 21 is formed with four closed loops composed of adjacent portions of adjacent annular rings 21a and 21a and connecting rods 21b and 21b connected to the portions.
  • the holding member 21 has four openings surrounded by each closed loop. Since the opening distance in the circumferential direction of the intermediate yoke 2 of each opening includes a period that is an integral multiple of each harmonic component, eddy current does not flow in each closed loop. Even when the intermediate yoke 2 is rotated, the opening distance in the circumferential direction of the intermediate yoke 2 of each opening includes a period that is an integral multiple of each harmonic component. Does not flow eddy current.
  • FIG. 6 is a schematic assembly diagram showing an example of a method for attaching the magnetic body 22.
  • the holding member 21 may hold the magnetic body 22 by fitting a plate embedded with the magnetic body 22 into the opening of the holding member 21.
  • a plurality of magnetic bodies 22 are embedded, and a nonmagnetic body and a non-conductive plate 23 are fitted into the opening of the holding member 21.
  • the inner peripheral edge of the opening of the holding member 21 has a flange 21c that is in contact with the flange 23a of the plate 23 and is provided with a plurality of holes 21d.
  • the plate 23 fitted in each opening of the holding member 21 is attached to the holding member 21 with a rivet or a screw that penetrates each hole 23b, 21d.
  • the attachment of the magnetic body 22 to the holding member 21 may be performed by screwing or bonding both ends of the magnetic body 22 to the peripheral edge of the annular ring 21a.
  • both ends of the magnetic body 22 may be attached to the peripheral edge of the annular ring 21a via spacers made of non-metal so that the rotational torque applied to the magnetic body 22 may be absorbed.
  • the magnetic pole pair is composed of two magnets, but is not limited to this configuration.
  • One magnet may be magnetized with NS2 poles in the rotation direction to form one magnetic pole pair.
  • it may be magnetized with NSNS to form two magnetic pole pairs.
  • an arcuate magnet has been described.
  • radially oriented annular magnets can be used for the inner and outer rotors.
  • the alternating magnetic field that intersects the opening surrounded by the closed loop formed in the holding member 21 includes each harmonic component having an integral multiple of each period along the circumferential direction.
  • the conductive closed loop is not formed on the periphery of the opening of the holding member 21.
  • it is possible to save the trouble of insulating the connecting portions of the annular ring 21a and the connecting rod 21b.
  • the number of connecting rods 21b of a magnetic gear device having a predetermined gear ratio when the number of connecting rods 21b of a magnetic gear device having a predetermined gear ratio is changed, the number of magnetic pole pairs arranged in the inner rotor 1 and the outer rotor 3 and the intermediate yoke are held.
  • the number of the magnetic bodies 22 is changed to the number calculated by multiplying each number by the number of the connecting rods 21b.
  • the mechanical strength of the holding member 21 of the magnetic gear device having a predetermined gear ratio can be increased while suppressing eddy current loss.
  • the relative rotational speed of the outer rotor 3 with respect to the inner rotor 1 may be changed by rotating the intermediate yoke 2.
  • the rotational speed of the outer rotor 3 that rotates in the direction opposite to the rotational direction of the inner rotor 1 can be made variable by changing the rotational speed of the intermediate yoke 2 while keeping the rotational speed of the inner rotor 1 constant.
  • the alternating magnetic field that intersects the opening surrounded by the closed loop formed in the holding member 21 has a circumferential direction.
  • Each harmonic component having an integer multiple of each period. Thereby, the eddy current due to the alternating magnetic field does not flow in the closed loop formed in the holding member 21, and it becomes possible to suppress the eddy current loss.
  • the intermediate yoke 2 having the holding member 21 in which the magnetic body 22 is disposed in the opening, a gap between the inner peripheral surface of the intermediate yoke 2 and the outer peripheral surface of the inner rotor 1 is obtained.
  • the gap between the outer peripheral surface of the intermediate yoke 2 and the inner peripheral surface of the outer rotor 3 can be reduced. As a result, the gear efficiency of the magnetic gear device can be improved.
  • the present invention is not limited to this, and the outer rotor 3 may be fixed and the inner rotor 1 may rotate with the rotation of the intermediate yoke 2.
  • the inner rotor 1 rotates in the clockwise direction (1 + 1 / n) coinciding with the rotation direction of the intermediate yoke 2.
  • the magnetic gear device having a gear ratio n of 3/7 shown in FIG. 1 for example, when the intermediate yoke 2 makes one clockwise rotation, the inner rotor 3 makes a 10/3 clockwise rotation.
  • the inner rotor 1 may be fixed, and the outer rotor 3 may rotate as the intermediate yoke 2 rotates.
  • the outer rotor 3 rotates counterclockwise 1 / n that matches the rotation direction of the intermediate yoke 2.
  • the magnetic gear device having a gear ratio n of 3/7 shown in FIG. 1 for example, when the intermediate yoke 2 rotates 10/3 counterclockwise, the outer rotor 3 rotates 7/3 counterclockwise.
  • a cylindrical rotation type magnetic gear device is shown, but the present invention is not limited to this, and a disk rotation type magnetic gear device may be used.
  • the disk-rotating magnetic gear device includes a disk-shaped first mover in which a plurality of magnetic pole pairs are radially arranged at substantially equal intervals, and a plurality of magnetic pole pairs are arranged in radial directions at substantially equal intervals.
  • the disc-shaped second movable element is concentrically opposed with a gap. Between the first movable element and the second movable element, a disk holding member that holds the magnetic body radially is provided on the same axis.
  • the holding member includes a plurality of annular holding portions having different diameters arranged on the inner peripheral side and the outer peripheral side, and arranged on the concentric shaft, and the plurality of holding portions are provided with a plurality of magnetic bodies between the opposing radial directions. Hold.
  • the plurality of holding portions are connected to each other in the radial direction by connecting rods that are radially arranged at substantially equal intervals.
  • a magnetic body is attached to each of the opening parts surrounded by the opposing part of the holding part and the connecting rod.
  • the magnetic gear device may be a flat linear magnetic gear device.
  • the flat linear magnetic gear device includes a flat plate-like first movable element in which a plurality of magnetic pole pairs are arranged at substantially equal intervals along one direction, and a plurality of magnetic pole pairs at substantially equal intervals along the one direction. Is opposed to the second movable element having a gap. Between the first movable element and the second movable element, a flat plate-shaped holding member that holds the magnetic body at substantially equal intervals along the one direction is provided.
  • the holding member includes a plurality of opposing holding parts extending along the one direction, and the plurality of holding parts hold a plurality of magnetic bodies between the opposing parts.
  • the plurality of holding portions are connected to each other by connecting rods arranged at substantially equal intervals along the one direction.
  • a magnetic body is attached to each of the opening parts surrounded by the opposing part of the holding part and the connecting rod.
  • the magnetic gear device may be a cylindrical linear magnetic gear device.
  • the cylindrical linear type magnetic gear device includes a cylindrical first movable element having a plurality of magnetic pole pairs arranged at substantially equal intervals on the outer peripheral surface along the central axis direction, and the first movable element has a gap inside. And a cylindrical second mover in which a plurality of magnetic pole pairs are arranged at substantially equal intervals on the inner peripheral surface along the central axis direction.
  • a cylindrical holding member is provided between the first mover and the second mover to hold the magnetic body at substantially equal intervals along the central axis direction.
  • the holding member includes a plurality of annular holding portions facing in the central axis direction, and the plurality of holding portions hold a plurality of magnetic bodies arranged at equal intervals along the central axis direction between the facing portions.
  • the plurality of holding portions are connected to each other in the central axis direction by connecting rods arranged at approximately equal intervals along the central axis direction.
  • a magnetic body is attached to each of the opening parts surrounded by the opposing part of the holding part and the connecting rod.
  • FIG. 7 is a schematic assembly view showing an example of a cylindrical rotating type magnetic gear device.
  • the disk-rotating magnetic gear device includes a disk-shaped lower rotor 4, an upper rotor 6 disposed coaxially with the lower rotor 4, a lower rotor 4, and an upper rotor. 6 and a disk-shaped intermediate yoke 5 arranged coaxially with a gap between them.
  • the lower rotor 4 has a disk 41 made of a magnetic material.
  • a magnetic pole pair 42 made up of an upper N-pole magnet 42a and an S-pole magnet 42b magnetized in the thickness direction. Are arranged radially.
  • the upper rotor 6 has a disc 61 made of a magnetic material, and a magnetic pole made of a lower N pole magnet 62a and an S pole magnet 62b magnetized in the thickness direction on the lower surface of the disc 61.
  • Fourteen pairs 62 are arranged radially.
  • the magnet magnetized in the thickness direction means that the upper and lower sides are magnetized so as to have different polarities.
  • the upper side and the lower side of the magnet 42a are magnetized to the N and S poles
  • the upper side and the lower side of the magnet 42b are magnetized to the S and N poles, respectively.
  • the lower rotor 4 rotates due to the magnetic interaction between the magnetic pole pairs 42 and 62 of the lower rotor 4 and the upper rotor 6.
  • the lower rotor 4 having a smaller number of magnetic poles than the upper rotor 6 rotates at a higher rotational speed than the upper rotor 6 in the direction opposite to the rotational direction of the upper rotor 6.
  • the ratio Ph / Pl between the number Ph of the magnetic pole pairs arranged in the lower rotor 4 and the number Pl of the magnetic pole pairs arranged in the upper rotor 6 is the gear ratio of the lower rotor 4 to the upper rotor 6. In the example of the magnetic gear device shown in FIG. 7, the gear ratio is 3/7.
  • the intermediate yoke 5 radially holds 20 ferromagnetic magnetic bodies 22 that are the sum of the number of magnetic pole pairs 6 and 14 of the lower rotor 4 and the upper rotor 6.
  • the holding member 51 has a pair of large-diameter and small-diameter rings (ring bodies, holding portions) 51 a and 51 a that face each other along the radial direction of the lower rotor 4 and the upper rotor 6.
  • the small-diameter annular ring 51a is located inside the large-diameter annular ring 51a, and the outer peripheral surface of the small-diameter annular ring 51a and the inner peripheral surface of the large-diameter annular ring 51a are opposed to each other.
  • it has the two connection rods 51b and 51b which are arrange
  • the number 2 of the connecting rods 51b is the divisor of the number 6 of the magnetic pole pairs 42 included in the lower rotor 4, the number 14 of the magnetic pole pairs 62 included in the upper rotor 6, and the number 20 of the magnetic bodies 52 included in the intermediate yoke 5. It has become.
  • the alternating magnetic field intersecting each opening of the holding member 51 has each cycle of the Ph order harmonic component, the (Ns ⁇ Ph) order harmonic component, and the (Ns + Ph) order harmonic component along the circumferential direction.
  • Each harmonic component having an integer multiple of is always included.
  • an eddy current does not flow into the closed loop which consists of the opposing part of the annular rings 51a and 51a which make the periphery of each opening part, and the connecting rod 51b.
  • the 20 magnetic bodies 52 are arranged radially with a small-diameter ring 51a at the center.
  • the relative rotational speed of the upper rotor 6 with respect to the lower rotor 4 may be changed by rotating the intermediate yoke 5.
  • the upper rotor 6 may be fixed, and the lower rotor 4 may rotate as the intermediate yoke 5 rotates.
  • the lower rotor 4 may be fixed, and the upper rotor 6 may rotate as the intermediate yoke 5 rotates.
  • FIG. 8 is a schematic assembly view showing an example of a flat plate linear magnetic gear device.
  • FIG. 8 shows a part of the flat linear magnetic gear device extending in the longitudinal direction per unit length ⁇ L in the longitudinal direction.
  • the flat linear magnetic gear device includes a rectangular plate-shaped lower plate 7 and a rectangular plate-shaped upper plate 9 extending substantially parallel to the lower plate 7 and arranged with a gap.
  • Each of the lower plate 7 and the upper plate 9 has a side surface extending in the longitudinal direction guided and supported by a guide member (not shown), and is movable along the longitudinal direction.
  • the flat linear magnetic gear device extends substantially parallel to the lower plate 7 and the upper plate 9, and has a rectangular plate-shaped intermediate yoke 8 disposed with a gap between the lower plate 7 and the upper plate 9.
  • the lower plate 7 has a plate 71 made of a magnetic material.
  • a magnetic pole pair 72 made up of an upper N-pole magnet 72a and an S-pole magnet 72b magnetized in the thickness direction is longitudinal. 6 are arranged per unit length ⁇ L.
  • the upper plate 9 has a plate 91 made of a magnetic material, and a magnetic pole pair 92 made up of a lower N pole magnet 92a and an S pole magnet 92b magnetized in the thickness direction on the lower surface of the plate 91. Are arranged per unit length ⁇ L along the longitudinal direction.
  • the magnet magnetized in the thickness direction means that the lower side and the outer side are magnetized to have different polarities.
  • the magnet 72a is magnetized on the N and S poles on the upper and lower sides
  • the magnet 72b is magnetized on the S and N poles on the upper and lower sides, respectively.
  • the ratio Ph / Pl between the number Ph of the magnetic pole pairs arranged on the lower plate 7 per unit length ⁇ L and the number Pl of the magnetic pole pairs arranged on the upper plate 9 per unit length ⁇ L is the upper plate 9.
  • the intermediate yoke 8 includes 20 ferromagnetic magnetic bodies 82 that are the sum of the number 6 and 14 per unit length ⁇ L of the magnetic pole pairs of the lower plate 7 and the upper plate 9 along the longitudinal direction at equal intervals. It is held for each unit length ⁇ L.
  • the holding member 81 is arranged at a substantially equal interval in the longitudinal direction with a pair of holding bars (holding portions) 81a, 81a facing each other along the longitudinal direction of the lower plate 7 and the upper plate 9, and the pair of holding bars 81a, 81a. And two connecting rods 81b per unit length ⁇ L for connecting the two in the opposite direction.
  • the number 2 of the connecting rods 81b per unit length ⁇ L includes the number 6 per unit length ⁇ L of the magnetic pole pairs 72 included in the lower plate 7 and the number 14 per unit length ⁇ L of the magnetic pole pairs 92 included in the upper plate 9. And the divisor of the number 20 of the magnetic bodies 82 included in the intermediate yoke 8 per unit length ⁇ L.
  • the alternating magnetic field intersecting each opening of the holding member 81 has a period of the Ph order harmonic component, the (Ns ⁇ Ph) order harmonic component, and the (Ns + Ph) order harmonic component along the longitudinal direction.
  • Each harmonic component having an integer multiple will always be included.
  • an eddy current does not flow into the closed loop which consists of the part which the holding rods 81a and 81a which make the periphery of each opening part oppose, and the connection rod 81b.
  • the relative movement speed of the upper plate 9 with respect to the lower plate 7 may be changed by moving the intermediate yoke 8. Further, the upper plate 9 may be fixed, and the lower plate 7 may move as the intermediate yoke 8 moves. Further, the lower plate 7 may be fixed, and the upper plate 9 may move as the intermediate yoke 8 moves.
  • FIG. 9 is a schematic assembly diagram illustrating an example of a cylindrical linear magnetic gear device.
  • FIG. 9 shows a part of the cylindrical linear magnetic gear device extending in the cylindrical axis direction per unit length ⁇ L in the cylindrical axis direction.
  • the cylindrical linear type magnetic gear device has a cylindrical inner column 700, a cylindrical outer column 900 in which the inner column 700 fits inside with a gap, and a gap between the inner column 700 and the outer column 900. And an intermediate yoke 800 to be fitted.
  • the inner column 700 has a cylinder 701 made of a magnetic material, and on the outer peripheral surface of the cylinder 701, a magnetic pole pair 702 made up of an N pole magnet 702a and an S pole magnet 702b magnetized in the thickness direction. Are arranged per unit length ⁇ L along the cylindrical axis direction.
  • the outer column 900 has a cylinder 901 made of a magnetic material, and an inner peripheral surface of the cylinder 901 includes an N-pole magnet 902a and an S-pole magnet 902b magnetized in the thickness direction. 14 magnetic pole pairs 902 are arranged along the cylindrical axis direction per unit length ⁇ L.
  • the magnet magnetized in the thickness direction means that the outer peripheral surface side and the inner peripheral surface side are magnetized so as to have different polarities.
  • the magnet 702a is magnetized on the N and S poles on the outer peripheral surface side and the inner peripheral surface side
  • the magnet 702b is magnetized on the S and N poles on the outer peripheral surface side and the inner peripheral surface side, respectively. Yes.
  • Each of the inner column 700 and the outer column 900 has a side surface extending in the cylindrical axis direction guided and supported by a guide member (not shown), and is movable along the cylindrical axis direction.
  • the inner column 700 moves in the cylindrical axis direction by magnetic interaction between the magnetic pole pairs 702 and 902 included in the inner column 700 and the outer column 900, respectively.
  • the ratio Ph / Pl between the number Ph per unit length ⁇ L of the magnetic pole pairs arranged in the inner column 700 and the number Pl per unit length ⁇ L of the magnetic pole pairs arranged in the outer column 900 is the outer column 900. Is the gear ratio of the inner column 700.
  • the intermediate yoke 800 includes 20 ferromagnetic magnetic bodies 802 that are the sum of the number of magnetic pole pairs 6 and 14 per unit length ⁇ L of each of the inner column 700 and the outer column 900 along the cylindrical axis direction at equal intervals. Are held for each unit length ⁇ L.
  • the holding member 801 is disposed at a substantially equal interval in the cylindrical axis direction with a pair of holding rods (holding portions) 801a and 801a facing each other in the cylindrical axis direction of the inner column 700 and the outer column 900, and the pair of rods 801a, 801a has two connected rings (connected ring bodies) 801b per unit length ⁇ L that includes the opposing direction.
  • the number 2 per unit length ⁇ L of the connecting ring 801b is the number 6 per unit length ⁇ L of the magnetic pole pair 702 included in the inner column 700 and the number 14 per unit length ⁇ L of the magnetic pole pair 902 included in the outer column 900. And the divisor of the number 20 per unit length ⁇ L of the magnetic body 802 included in the intermediate yoke 800.
  • the alternating magnetic field intersecting each opening of the holding member 801 has each cycle of the Ph order harmonic component, (Ns ⁇ Ph) order harmonic component, and (Ns + Ph) order harmonic component along the cylindrical axis direction.
  • Each harmonic component having an integer multiple of is always included.
  • an eddy current does not flow into the closed loop which consists of the part which the holding rods 801a and 801a which make the periphery of each opening part oppose, and the connection ring 801b.
  • the relative moving speed of the outer column 900 relative to the inner column 700 may be changed by moving the intermediate yoke 800.
  • the outer column 900 may be fixed, and the inner column 700 may move as the intermediate yoke 800 rotates.
  • the inner column 700 may be fixed, and the outer column 900 may move as the intermediate yoke 800 moves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

 本発明は、渦電流損失を抑制することが可能となる磁気ギア装置及び保持部材を提供する。 円周方向に沿って略等間隔に複数の磁極対12、32が各配置してあり、対向する内側ロータ1及び外側ロータ3と、内側ロータ1及び外側ロータ3間に配置してあり、円周方向に沿って略等間隔に複数の磁性体22を保持する保持部材21とを備え、保持部材21が保持する磁性体22の個数は、磁極対12、32の各個数の差分又は合計となるようにしてある磁気ギア装置において、保持部材21は、磁性体22を保持する複数の円環21aと、円周方向に沿って略等間隔に配置してあり、複数の円環21aを連結する連結棒21bとを備え、複数の円環21aは、磁性体22を介して対向し、磁極対12、32の各個数は、連結棒21bの本数を約数として有するようにしてある。

Description

磁気ギア装置及び保持部材
 本発明は、渦電流損失を抑制することが可能となる磁気ギア装置及び保持部材に関する。
 非接触のギア装置として磁気ギア装置がある。磁気ギア装置は、作用面側において異なる磁極を有する磁極対が等間隔に複数配置してある第1可動子及び第2可動子を備える。第1可動子及び第2可動子は、例えば、円筒状、円板状又は平板状をなす。第1可動子及び第2可動子間には、ポールピースとして機能する複数の磁性体が等間隔に配置される。第1可動子が移動した場合、第1可動子及び第2可動子夫々が有する磁極対間の磁気的相互作用により、第2可動子が移動する。第1可動子及び第2可動子夫々が有する磁極対の各個数の組み合わせに応じて第1可動子に対する第2可動子のギア比が決まる。ここでいう作用面とは、複数の磁性体を挟んで対向する第1可動子と第2可動子の対向面側のことを言う。
 第1可動子及び第2可動子として内側ロータ及び外側ロータを備える円筒回転型又は内側カラム及び外側カラムを備える円筒リニア型等の磁気ギア装置がある(例えば非特許文献1及び非特許文献3参照)。円筒回転型の磁気ギア装置は、円筒状の内側ロータと、当該内側ロータが間隙を有して内側に嵌る円筒状の外側ロータと、内側ロータ及び外側ロータ間に間隙を有して挿入される円筒状の中間ヨークとを備える。内側ロータの外周面及び外側ロータの内周面夫々には、N極及びS極の磁石からなる磁極対が円周方向に沿って複数配置されている。中間ヨークは、複数の強磁性の磁性体を等間隔に円周方向に沿って保持している。
 外側ロータが回転した場合、内側ロータ及び外側ロータ夫々が有する磁極対間の磁気的相互作用により内側ロータが回転する。ここで、内側ロータ及び外側ロータ夫々に配置された磁極対の個数をPh及びPlとした場合、内側ロータ及び外側ロータの回転に伴って、交番磁界が径方向に発生する。ここで、中間ヨークが保持している磁性体の個数をNsとすると、交番磁界は、主にPh次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分を含む(例えば、非特許文献2参照)。
 この3つの調波成分を含む交番磁界に同期して内側ロータ及び外側ロータが回転するために、外側ロータに配置された磁極対の個数Plを、(Ns-Ph)又は(Ns+Ph)とすることがある(例えば、非特許文献2参照)。言い換えると、中間ヨークが保持する磁性体の個数Nsを、(Ph+Pl)又は(Pl-Ph)とすることがある。
 図10は、従来技術の円筒回転型の磁気ギア装置の例を示す模式的組立図である。磁気ギア装置は、内側ロータ100と、中間ヨーク200と、外側ロータ300とを備える。内側ロータ100の外周面には、厚さ方向に着磁された外周面側N極の磁石102a及びS極の磁石102bからなる磁極対102が円周方向に沿って3個配置されている。また、外側ロータ300の内周面には、厚さ方向に着磁された内周面側N極の磁石302a及びS極の磁石302bからなる磁極対302が円周方向に沿って7個配置されている。これにより、図10に示す磁気ギア装置は、ギア比3/7を有する。
 中間ヨーク200は、内側ロータ100及び外側ロータ300夫々が有する磁極対102、302の個数3及び7の合計となる10個の磁性体202を等間隔に円周方向に沿って保持している。中間ヨーク200は、例えば円筒状に形成された樹脂に各磁性体202を固定して作製される(特許文献1参照)。中間ヨーク200には、磁極対102、302により発生した3次調波成分、7次調波成分及び13次調波成分を含む交番磁界が径方向に沿って交差する。
国際公開第2009/087408号パンフレット
K.Atallah、「Design,analysis and realisation of a high-performance magnetic gear」、IEE Proceedings-Electric Power Applications、英国、2004年3月、151巻、2号、135-143項 池田哲也・中村健二・一ノ倉理、「永久磁石式磁気ギアの回転子構造に関する一考察」、磁気学会論文誌、2009年、33巻、2号、130-134項 K.Atallah、 J.Wang、D. Howe、「A high-performance linear magnetic gear」、Journal of Applied Physics、米国、2005年、97巻、10号、10N516-01項-03項
 しかしながら、従来技術では、磁性体を保持する保持部材を例えば金属として中間ヨークを形成し、中間ヨークの強度を確保しようとした場合、交番磁界が交差する導電性の閉ループが保持部材に形成されて渦電流が流れ、渦電流損失が生じる虞があった。
 本願は、斯かる事情に鑑みてなされたものである。その目的は、第1可動子及び第2可動子に配置してある複数の磁極対の各個数が、保持部材が有する複数の連結棒の本数を約数として有することにより、渦電流損失を抑制することが可能となる磁気ギア装置及び保持部材を提供することにある。
 また、本願の他の目的は、保持部材が有する複数の連結棒の本数を、第1可動子及び第2可動子に配置してある複数の磁極対の各個数の約数とすることにより、渦電流損失を抑制することが可能となる磁気ギア装置及び保持部材を提供することにある。
 また、本願の他の目的は、保持部材が有する複数の円環夫々の円周を第1可動子及び第2可動子に配置してある複数の磁極対の各個数の約数を用いて分割することで連結棒による連結位置を配置することにより、渦電流を抑制することが可能となる磁気ギア装置を提供することにある。
 本願に開示する磁気ギア装置は、特定の方向に沿って略等間隔に複数の磁極対が各配置してあり、対向する第1可動子及び第2可動子と、該第1可動子及び第2可動子間に配置してあり、前記特定の方向に沿って略等間隔に複数の磁性体を保持する保持部材とを備え、該保持部材が保持する前記複数の磁性体の個数は、前記第1可動子及び第2可動子夫々が有する前記複数の磁極対の各個数の差分又は合計となるようにしてある磁気ギア装置において、前記保持部材は、前記複数の磁性体を保持する複数の保持部と、前記特定の方向に沿って略等間隔に配置してあり、前記複数の保持部を連結する連結棒とを備え、前記複数の保持部は、前記複数の磁性体を介して対向し、前記第1可動子及び第2可動子が有する複数の磁極対の各個数は、前記連結棒の本数を約数として有するようにしてあることを特徴とする。
 本願にあっては、特定の方向に沿って略等間隔に複数の磁極対が配置してある第1可動子と、前記特定の方向に沿って略等間隔に複数の磁極対が配置してある第2可動子が間隙を有して対向するよう磁気ギア装置に設けられている。また、磁気ギア装置には、第1可動子及び第2可動子間に前記特定の方向に沿って略等間隔に磁性体を保持する保持部材が設けられている。磁性体の個数Nsは、第1可動子が有する磁極対の個数Phと、第2可動子が有する磁極対の個数Plとの差分(Pl-Ph)又は合計(Ph+Pl)となるようにしてある。磁気ギア装置の第1可動子及び第2可動子間のギア比は、Ph/Plとなる。保持部材は、対向する複数の保持部を備える。複数の保持部は、対向間に複数の磁性体を保持する。また、複数の保持部は、前記特定の方向に沿って略等間隔に配置してある複数の連結棒により対向間が連結される。保持部の対向する一部と、連結棒とにより囲まれる開口部夫々に磁性体が配置してある。第1可動子及び第2可動子に配置してある複数の磁極対の個数Ph、Plは、連結棒の本数を約数として有する。これにより、各開口部を交差する交番磁界には、前記特定の方向に沿ってPh次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分の各周期の整数倍を有する各調波成分が含まれることとなる。従って、各開口部の周縁をなす保持部の対向する一部と、連結棒とからなる閉ループには、渦電流が流れない。
 本願に開示する磁気ギア装置は、特定の方向に沿って略等間隔に複数の磁極対が各配置してあり、対向する第1可動子及び第2可動子と、該第1可動子及び第2可動子間に配置してあり、前記特定の方向に沿って略等間隔に複数の磁性体を保持する保持部材とを備え、該保持部材が保持する前記複数の磁性体の個数は、前記第1可動子及び第2可動子夫々が有する前記複数の磁極対の各個数の差分又は合計となるようにしてある磁気ギア装置において、前記保持部材は、前記複数の磁性体を保持する複数の保持部と、前記特定の方向に沿って略等間隔に配置してあり、前記複数の保持部を連結する連結棒とを備え、前記複数の保持部は、前記複数の磁性体を介して対向し、前記連結棒の本数は、前記第1可動子及び第2可動子が有する複数の磁極対の各個数の約数となるようにしてあることを特徴とする。
 本願にあっては、連結棒の本数は、第1可動子及び第2可動子に配置してある複数の磁極対の各個数の約数にしてある。この場合、保持部材の各開口部を交差する交番磁界には、前記特定の方向に沿ってPh次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分の各周期の整数倍を有する各調波成分が含まれる。これにより、保持部材の各開口部を交差する交番磁界には、前記特定の方向に沿ってPh次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分の各周期の整数倍を有する各調波成分が常に含まれることとなる。そして各開口部の周縁をなす保持部の対向する一部と、連結棒とからなる閉ループには、渦電流が流れない。
 本願に開示する磁気ギア装置は、前記第1可動子及び第2可動子は、円筒であり、前記第1可動子は、円周方向に沿って前記複数の磁極対が外周面に配置してあり、前記第2可動子は、前記第1可動子の外周面と対向する内周面を有し、円周方向に沿って該内周面に前記複数の磁極対が配置してあり、前記特定の方向は、円筒の円周方向であり、前記保持部は、円周方向に沿って対向間に前記複数の磁性体を保持する複数の円環であることを特徴とする。
 本願にあっては、第1可動子及び第2可動子として円筒状の内側ロータと、該内側ロータが間隙を有して内側に嵌る外側ロータとを備える。内側ロータの外周面及び外側ロータの内周面夫々には、複数の磁極対が円周方向に沿って配置してある。内側ロータ及び外側ロータ間には、保持部材が挿入してある。保持部材は、対向する円環を備え、円環の対向間に円周方向に沿って複数の磁性体を保持する。
 本願に開示する磁気ギア装置は、外周側に円周方向に沿って略等間隔に複数の磁極対が配置してある円筒の第1可動子と、該第1可動子が間隙を有して内周側に嵌合しており、内周側に円周方向に沿って略等間隔に複数の磁極対が配置してある第2可動子と、該第1可動子及び第2可動子間に配置してあり、前記円周方向に沿って複数の磁性体を保持する保持部材とを備え、該保持部材が保持する前記複数の磁性体の個数は、前記第1可動子及び第2可動子夫々が有する前記複数の磁極対の各個数の差分又は合計となるようにしてある磁気ギア装置において、前記保持部材は、前記複数の磁性体を保持し、前記複数の磁性体を介して対向する複数の円環と、該複数の円環夫々の円周方向に沿って配置してある連結位置を前記複数の円環の対向方向に沿って連結する連結棒とを備え、前記連結位置は、前記複数の円環夫々の円周を前記第1可動子及び第2可動子が有する複数の磁極対の各個数の約数を用いて略等間隔に分割して得た分割位置から選択して配置してあることを特徴とする。
 本願にあっては、保持部材が有する各円環の円周が、第1可動子及び第2可動子に配置してある複数の磁極対の各個数の約数を用いて分割される。そして、複数の分割位置から連結位置が選択され、各連結位置が連結棒により対向間に沿って連結されている。これにより、保持部材の各開口部を交差する交番磁界には、円周方向に沿ってPh次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分の各周期の整数倍を有する各調波成分が常に含まれることとなる。そして各開口部の周縁をなす保持部の対向する一部と、連結棒とからなる閉ループには、渦電流が流れない。
 本願に開示する保持部材は、特定の方向に沿って略等間隔に複数の磁極対が各配置してあり、対向する第1可動子及び第2可動子間に、複数の磁性体を保持する保持部材において、前記複数の磁性体を前記特定の方向に沿って略等間隔に保持する複数の保持部と、前記特定の方向に沿って略等間隔に配置してあり、前記複数の保持部を連結する連結棒とを備え、前記複数の保持部は、前記複数の磁性体を介して対向し、前記連結棒の本数は、前記第1可動子及び第2可動子が有する複数の磁極対の各個数の約数となるようにしてあることを特徴とする。
 本願にあっては、保持部材が第1可動子及び第2可動子間に挿入される。保持部材が有する連結棒の本数は、第1可動子及び第2可動子に配置してある複数の磁極対の各個数の約数にしてある。これにより、保持部材の各開口部を交差する交番磁界には、前記特定の方向に沿ってPh次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分の各周期の整数倍を有する各調波成分が含まれることとなる。従って、各開口部の周縁をなす保持部の対向する一部と、連結棒とからなる閉ループには、渦電流が流れない。
 本願に開示する磁気ギア装置は、前記第1可動子及び第2可動子は円板状をなして対向配置してあり、前記複数の磁極対は前記第1可動子及び第2可動子夫々に放射状に配置してあり、前記特定の方向は円板の円周方向であり、前記保持部は前記複数の磁性体を保持する同心の複数の円環体からなることを特徴とする。
 本願にあっては、第1可動子及び第2可動子として円板状の下側ロータと、下側ロータと間隙を有して対向する上側ロータとを備える。下側ロータの上面及び上側ロータの下面夫々には、複数の磁極対が放射状に配置してある。下側ロータ及び上側ロータ間には、保持部材が挿入してある。保持部材は、径方向に対向する同心の円環を備え、円環の対向間に複数の磁性体を放射状に保持する。
 本願に開示する磁気ギア装置は、放射状に複数の磁極対が略等間隔に配置してある円板状の第1可動子と、該第1可動子と離隔対向しており、放射状に複数の磁極対が略等間隔に配置してある円板状の第2可動子と、該第1可動子及び第2可動子間に配置してあり、放射状に複数の磁性体を保持する保持部材とを備え、該保持部材が保持する前記複数の磁性体の個数は、前記第1可動子及び第2可動子夫々が有する前記複数の磁極対の各個数の差分又は合計となるようにしてある磁気ギア装置において、前記保持部材は、前記複数の磁性体を保持し、前記複数の磁性体を介して径方向に対向する同心の複数の円環体と、該複数の円環体夫々を径方向に沿って連結する連結棒とを備え、前記連結棒は、前記第1可動子及び第2可動子が有する複数の磁極対の各個数の約数を用いて前記複数の円環夫々が略等間隔に円周方向に沿って分割された位置の一部又は全部を連結するようにしてあることを特徴とする。
 本願にあっては、保持部材が有する各円環が、第1可動子及び第2可動子に配置してある複数の磁極対の各個数の約数を用いて円周方向に分割された位置のうち、選択された一部又は全部が連結棒により径方向に沿って連結される。これにより、保持部材の各開口部を交差する交番磁界には、円周方向に沿ってPh次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分の各周期の整数倍を有する各調波成分が常に含まれることとなる。そして各開口部の周縁をなす各円環の対向する一部と、連結棒とからなる閉ループには、渦電流が流れない。
 本願に開示する磁気ギア装置は、長手方向に沿って複数の磁極対が略等間隔に配置してある矩形板状の第1可動子と、該第1可動子と離隔対向しており、長手方向に沿って複数の磁極対が略等間隔に配置してある矩形板状の第2可動子と、該第1可動子及び第2可動子間に配置してあり、前記長手方向に沿って複数の磁性体を保持する保持部材とを備え、該保持部材が保持する前記複数の磁性体の長手方向の単位長さ当たりの磁性体の個数は、前記第1可動子及び第2可動子夫々が有する前記複数の磁極対の前記単位長さ当たりの磁性体の各個数の差分又は合計となるようにしてある磁気ギア装置において、前記保持部材は、前記複数の磁性体を保持し、前記複数の磁性体を介して対向し、長手方向を前記第1可動子及び第2可動子の長手方向に略一致させた複数の保持棒と、該複数の保持棒を対向方向に沿って連結する連結棒とを備え、前記連結棒は、前記第1可動子及び第2可動子が有する複数の磁極対の前記単位長さ当たりの各個数の約数を用いて前記単位長さ当たりの前記複数の保持棒の各部分が略等間隔に長手方向に沿って分割された位置の一部又は全部を連結するようにしてあることを特徴とする。
 本願にあっては、第1可動子及び第2可動子として矩形状の下部プレートと、下部プレートが間隙を有して対向する矩形状の上部プレートとを備える。下部プレートの上面及び上部プレートの下面夫々には、複数の磁極対が長手方向に沿って配置してある。下部プレート及び上部プレート間には、保持部材が挿入してある。保持部材は、長手方向に延び、対向する保持棒を備え、保持棒の対向間に長手方向に沿って複数の磁性体を保持する。保持部材が有する連結棒は、下部プレート及び上部プレートに配置してある複数の磁極対の長手方向の単位長さ当たりの各個数の約数を用いて、単位長さあたりの保持棒の各部分が分割された位置のうち、一部又は全部を連結する。これにより、保持部材の各開口部を交差する交番磁界には、長手方向に沿ってPh次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分の各周期の整数倍を有する各調波成分が常に含まれることとなる。そして各開口部の周縁をなす保持棒の対向する一部と、連結棒とからなる閉ループには、渦電流が流れない。
 本願に開示する磁気ギア装置は、外周側に円筒軸方向に沿って複数の磁極対が略等間隔に配置してある円筒状の第1可動子と、該第1可動子が間隙を有して内周側に嵌合しており、内周側に円筒軸方向に沿って複数の磁極対が略等間隔に配置してある円筒状の第2可動子と、該第1可動子及び第2可動子間に配置してあり、前記円筒軸方向に沿って複数の磁性体を保持する保持部材とを備え、該保持部材が保持する前記複数の磁性体の長手方向の単位長さ当たりの個数は、前記第1可動子及び第2可動子夫々が有する前記複数の磁極対の前記単位長さ当たりの各個数の差分又は合計となるようにしてある磁気ギア装置において、前記保持部材は、前記複数の磁性体を保持し、前記複数の磁性体を介して対向し、長手方向を前記円筒軸方向に略一致させた複数の保持棒と、該複数の保持棒夫々を連結する複数の連結円環体とを備え、該複数の連結円環体は、前記第1可動子及び第2可動子が有する複数の磁極対の前記単位長さ当たりの各個数の約数を用いて前記単位長さ当たりの前記複数の保持棒の各部分が略等間隔に長手方向に沿って分割された位置の一部又は全部を連結するようにしてあることを特徴とする。
 本願にあっては、第1可動子及び第2可動子として円筒状の内側カラムと、該内側カラムが間隙を有して嵌合する円筒状の外側カラムとを備える。内側カラムの外周面及び外側カラムの内周面夫々には、複数の磁極対が円筒軸方向に沿って配置してある。内側カラム及び外側カラム間には、保持部材が挿入してある。保持部材は、長手方向に延び、対向する保持棒を備え、保持棒の対向間に円筒軸方向に沿って複数の磁性体を保持する。連結円環体は、内側カラム及び外側カラムに配置してある複数の磁極対の円筒軸方向の単位長さ当たりの各個数の約数を用いて、保持部材が有する保持棒が分割された位置のうち、一部又は全部を連結する。これにより、保持部材の各開口部を交差する交番磁界には、円筒軸方向に沿ってPh次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分の各周期の整数倍を有する各調波成分が常に含まれることとなる。そして各開口部の周縁をなす保持棒の対向する一部と、連結円環体とからなる閉ループには、渦電流が流れない。
 本願に開示する磁気ギア装置は、前記保持部材は、移動可能にしてあることを特徴とする。
 本願にあっては、保持部材を回転又は移動させることによって第1可動子に対する第2可動子の相対回転速度又は相対移動速度が変更される。
 本願に開示する磁気ギア装置は、前記第1可動子及び第2可動子のいずれか一つは、固定可能にしてあることを特徴とする。
 本願にあっては、第1可動子が固定された場合、保持部材の回転又は移動に伴って第2可動子が回転又は移動する。第2可動子が固定された場合、保持部材の回転又は移動に伴って第1可動子が回転又は移動する。
 当該装置及び部材の一観点によれば、第1可動子及び第2可動子に配置してある複数の磁極対の各個数が、保持部材が有する複数の連結棒の本数を約数として有することにより、渦電流損失を抑制することが可能となる。
 また、当該装置及び部材の一観点によれば、保持部材が有する複数の連結棒の本数を、第1可動子及び第2可動子に配置してある複数の磁極対の各個数の約数とすることにより、渦電流損失を抑制することが可能となる。
 また、当該装置の一観点によれば、保持部材が有する複数の円環夫々の円周を第1可動子及び第2可動子に配置してある複数の磁極対の各個数の約数を用いて分割することで連結棒による連結位置を配置することにより、渦電流を抑制することが可能となる。
円筒回転型の磁気ギア装置の例を示す模式的組立図である。 円筒回転型の磁気ギア装置の例を示す模式的断面図である。 閉ループの例を示す模式的斜視図である。 開口部を交差する交番磁場に含まれる各調波成分の周期を示す図表である。 保持部材の他の例を示す模式的斜視図である。 磁性体の取付方法の例を示す模式的組立図である。 円筒回転型の磁気ギア装置の例を示す模式的組立図である。 平板リニア型の磁気ギア装置の例を示す模式的組立図である。 円筒リニア型の磁気ギア装置の例を示す模式的組立図である。 従来技術の円筒回転型の磁気ギア装置の例を示す模式的組立図である。
 実施の形態1
 以下、実施の形態を図面を参照して具体的に説明する。本願に係る磁気ギア装置は、回転型である円筒回転型及び円板回転型と、リニア型である平板リニア型及び円筒リニア型等がある。回転型の磁気ギア装置は、第1可動子の回転数に対する第2可動子の回転数の比が所定のギア比となるようにしてある。また、リニア型の磁気ギア装置は、第1可動子の移動量に対する第2可動子の移動量が所定のギア比となるようにしてある。このような磁気ギア装置は、磨耗及び騒音が少なく保守が容易な非接触式のギア装置として可動機器に用いられることがある。例えば、可動機器として風力発電機に用いられる場合、磁気ギア装置は、風車羽の回転数を商用周波数と一致するよう変換する。本実施の形態は、円筒回転型の磁気ギア装置を例に挙げて説明する。
 図1及び図2は、円筒回転型の磁気ギア装置の例を示す模式的組立図及び模式的断面図である。図2は、円筒回転型の磁気ギア装置の回転軸に垂直な断面を示している。円筒回転型の磁気ギア装置は、円筒状の内側ロータ1と、内側ロータ1が間隙を有して内側に嵌る円筒状の外側ロータ3と、内側ロータ1及び外側ロータ3間に間隙を有して嵌る中間ヨーク2とを備える。内側ロータ1は、磁性体からなる円筒11を有し、円筒11の外周面には、厚さ方向に着磁された外周面側N極の磁石12a及びS極の磁石12bからなる磁極対12が円周方向に沿って6個配置されている。
 また、外側ロータ3は、磁性体からなる円筒31を有し、円筒31の内周面には、厚さ方向に着磁された内周面側N極の磁石32a及びS極の磁石32bからなる磁極対32が円周方向に沿って14個配置されている。ここで厚さ方向に着磁された磁石とは、外周面側及び内周面側が異極となるよう着磁されていることを意味する。例えば、磁石12aは、外周面側及び内周面側夫々がN極及びS極に着磁され、磁石12bは、外周面側および内周面側夫々がS極及びN極に着磁されている。
 外側ロータ3が回転した場合、内側ロータ1及び外側ロータ3夫々が有する磁極対12、32間の磁気的相互作用により、内側ロータ1が回転する。この場合、外側ロータ3よりも磁極数の少ない内側ロータ1は、外側ロータ3よりも高い回転数で、外側ロータ3の回転方向と逆方向に回転する。内側ロータ1に配置してある磁極対の個数Phと、外側ロータ3に配置してある磁極対の個数Plとの比Ph/Plが外側ロータ3に対する内側ロータ1のギア比nとなる。そして、外側ロータ3が左回りに1回転した場合、内側ロータ1が右回りに1/n回転する。図1に示す磁気ギア装置の例では、ギア比nが3/7となり、例えば外側ロータ3が左回りに1回転した場合、内側ロータ1が右回りに7/3回転する。中間ヨーク2は、内側ロータ1及び外側ロータ3夫々が有する磁極対の個数6及び14の合計となる20個の強磁性の磁性体22を等間隔に円周方向に沿って保持している。磁性体22は、例えば、磁性金属、積層した複数の磁性板及び磁性粉の圧粉体等からなる軟磁性体を用いるとよい。
 図3は、閉ループの例を示す模式的斜視図である。図中の矢印を含む太線は、保持部材21に形成される2つの閉ループのうち、一つの閉ループを示している。保持部材21は、内側ロータ1及び外側ロータ3の回転軸に沿って対向する一対の円環(保持部)21a、21aと、円周方向に略等間隔に配置され、一対の円環21a、21aを対向方向に連結する2本の連結棒21b、21bとを有する。連結棒21bの本数2は、内側ロータ1が有する磁極対12の個数6と、外側ロータ3が有する磁極対32の個数14と、中間ヨーク2が有する磁性体22の個数20の約数となっている。
 保持部材21には、円環21a、21a夫々の対向する一部と、連結棒21b、21bとが形成する閉ループが2つ形成されている。各閉ループにより囲まれた開口部夫々には、10個の磁性体22が配置されている。各円環21a及び各連結棒21bは、例えば、アルミニウム合金、マグネシウム合金及び非磁性ステンレス合金、金、銀及び銅等の非磁性金属を用いるとよい。各円環21aは、例えば、磁気ギア装置を収納する筺体の一部であってもよく、磁気ギア装置が連結されるシャフトと一体化されていてもよい。円環21a、21aの代わりに、対向する円板を用いて複数の磁性体22を保持してもよい。内側ロータ1及び外側ロータ3に配置してある磁極対12、32により発生する交番磁界は、保持部材21の各開口部を中間ヨーク2の径方向に沿って交差する。そして、交番磁界は、各開口部に配置された各磁性体22に対して交差する。
 図4は、交番磁場に含まれる各調波成分の周期を示す図表である。中間ヨークに配置された磁性体の個数Nsが、内側ロータが有する磁極対の個数Phと、外側ロータが有する磁極対の個数Plとの差分(Pl-Ph)又は合計(Ph+Pl)となる円筒回転型の磁気ギア装置の場合、交番磁界は、Ph次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分を含むことが公知となっている(非特許文献2参照)。図4に示す調波成分φ1、φ2、φ3夫々は、Ph次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分である。
 各グラフの縦軸は、各調波成分の振幅を示す。横軸は、保持部材21の開口部の開口面上の位置を、中間ヨーク2の円周方向に沿って各調波成分の周期を用いて示している。図1及び図2に示す磁気ギア装置の例では、Ns=20、Ph=6、Pl=14であり、中間ヨーク2に配置された磁性体22の個数20は、内側ロータ1及び外側ロータ3に配置してある磁極対6、14の各個数の合計となっている。この場合、図3に示した閉ループにより囲まれる開口部を交差する交番磁界には、6次調波成分と、14次調波成分と、26次調波成分とが含まれる。
 図4に示す如く保持部材21の各開口部の中間ヨーク2の円周方向の開口距離内には、6次調波成分の3周期と、14次調波成分の7周期と、26次調波成分の13周期とが含まれている。すなわち、開口部の中間ヨーク2の円周方向の開口距離内には、各調波成分夫々の整数倍の周期が含まれる。従って、保持部材21の各開口部周縁に位置する閉ループ夫々には、交番磁界による渦電流が発生しない。
 保持部材21は、2本の連結棒21bを備える場合を示したが、これに限るものではない。例えば、内側ロータ1が有する磁極対12の個数6と、外側ロータ3が有する磁極対32の個数14と、中間ヨーク2が有する磁性体22の個数20の約数である1を連結棒21bの本数としてもよい。
 Ns=20、Ph=6、Pl=14とされた磁気ギア装置は、1例を示したに過ぎず、これに限るものではない。次に、所定のギヤ比を有する本願の磁気ギア装置を設計する方法を説明する。公知技術により、Ph/Plが所定のギヤ比となるよう内側ロータ1に配置する磁極対12の個数Phと、外側ロータ3に配置する磁極対32の個数Plとを算出し、更にPh+Plを中間ヨーク2に配置する磁性体22の個数Nsとして算出する。次に、本願の実施例を適用することにより、Ph、Pl及びNsの約数を保持部材21が有する連結棒21bの本数として決定する。
 これにより、保持部材21に形成される閉ループに渦電流が発生しない磁気ギア装置が設計される。例えば、Ns、Ph、Plの約数が1、3である場合、保持部材21が有する連結棒21bは、1本又は3本のいずれかに決定するとよい。また、決定した連結棒21bの本数全てを保持部材21が備える場合を示したが、これに限るものではない。Ns、Ph、Plの約数が2以上である場合、対向する保持部材21の円周を当該約数で分割し、対向する対となる位置のうち、選択した対となる位置を当該約数よりも小なる本数の連結棒21bで連結してもよい。
 この場合、保持部材21が複数の連結棒21bを中間ヨーク2の円周方向に沿って等間隔に備えていなくてもよい。例えば、Ns、Ph、Plの約数が5である場合、対向する保持部材21の円周を5分割し、対向する5組の対となる位置のうち、等間隔でない3組の対となる位置を連結位置として選択し、3本の連結棒21bで連結してもよい。
 次に所定の本数の連結棒21bを備え、所定のギヤ比を有する本願の磁気ギア装置を設計する方法を説明する。公知技術により、内側ロータ1に配置する磁極対12の個数Phと、外側ロータ3に配置する磁極対32の個数Plとを算出し、更にPh+Plを中間ヨーク2に配置する磁性体22の個数Nsとして算出する。本願の実施例を適用することにより、算出した個数Ph、Pl、Nsが連結棒21bの所定の本数を約数として有している場合、算出した個数Ph、Pl、Nsに決定する。また、算出した個数Ph、Pl、Nsが連結棒21bの所定の本数を約数として有していない場合、算出した個数Ph、Pl、Ns夫々に連結棒21bの所定の本数を乗算して得た各個数を個数Ph、Pl、Nsとして決定する。
 図5は、保持部材21の他の例を示す模式的斜視図である。保持部材21は、対向する一対の円環21a、21aを備える場合を示したが、これに限るものではなく対向する3つ以上の円環21aを備えていてもよい。図5に示す例では、3つの円環21aが同軸上に間隙を有して配置されている。隣り合う円環21a、21a間は、連結棒21b、21bにより連結されている。この場合、保持部材21には、隣り合う円環21a、21aの対向する一部と、該一部と連結する連結棒21b、21bとからなる4つの閉ループが形成される。
 保持部材21は、各閉ループで囲まれる4つの開口部を有する。各開口部の中間ヨーク2の円周方向の開口距離内には、各調波成分夫々の整数倍の周期が含まれるため、各閉ループには渦電流が流れない。また、中間ヨーク2が回転した場合であっても、各開口部の中間ヨーク2の円周方向の開口距離内には、各調波成分夫々の整数倍の周期が含まれるため、各閉ループには渦電流が流れない。
 図6は、磁性体22の取付方法の例を示す模式的組立図である。保持部材21は、磁性体22が埋め込まれた板を保持部材21の開口部に嵌め合わせることにより、磁性体22を保持するとよい。図6に示す例では、複数の磁性体22が埋め込まれており、非磁性体であって非導電性の板23が保持部材21の開口部に嵌め合わされている。板23の周縁には、複数の孔部23bが設けられた鍔部23aを有する。また、保持部材21の開口部の内周縁には、板23の鍔部23aと接し、複数の孔部21dが設けられた鍔部21cを有する。保持部材21の各開口部に嵌め合わされた板23は、各孔部23b、21dを貫通するリベット又はネジ等により保持部材21に取り付けられる。
 磁性体22の保持部材21への取り付けは、磁性体22の両端を円環21aの周縁部にネジ留め又は接着して取り付けてもよい。また、この場合、非金属からなるスペーサを介して磁性体22の両端を円環21aの周縁部に取り付けて磁性体22に印加される回転トルクが吸収されるようにしてもよい。
 尚、本実施例では、磁極対を二つの磁石で構成したが、この構成に限定されない。一つの磁石を回転方向にNS2極で着磁し、一つの磁極対としてもよい。また同様にNSNSと着磁し二つの磁極対としてもよい。本実施例では弓形の磁石について記載したが、本発明の、構成を得ることができれば、内側および外側ロータに放射状に配向した円環状磁石を用いることができる。
 本実施の形態では、保持部材21に形成された閉ループで囲まれた開口部を交差する交番磁界には、円周方向に沿って各周期の整数倍を有する各調波成分が含まれる。これにより、保持部材21に形成された閉ループには交番磁界による渦電流が流れず、渦電流損失を抑制することが可能となる。閉ループに渦電流が流れないため、保持部材21に開口部の周縁に閉ループが形成されないよう高分子材料等を用いて電気的に絶縁する手間を省くことが可能となる。
 また、閉ループに渦電流が流れないため、円環21a及び連結棒21bに非磁性であって導電性の金属材料を用いた場合、保持部材21に開口部の周縁に導電性の閉ループが形成されないよう円環21a及び連結棒21bの結合部分を絶縁する手間を省くことが可能となる。また、非磁性の金属材料を用いて保持部材21を作製し、機械的強度の高い保持部材21を得ることが可能となる。また、加工性のよい金属材料を用いることにより、寸法精度が高い保持部材21を得ることが可能となる。
 本実施の形態では、所定のギア比を有する磁気ギア装置の連結棒21bの本数を変更する場合、内側ロータ1及び外側ロータ3に配置してある磁極対の各個数と、中間ヨークに保持されている磁性体22の個数とを、各個数に連結棒21bの本数を乗じて算出した個数夫々に変更する。これにより、所定のギア比を有する磁気ギア装置の保持部材21の機械的強度を、渦電流損失を抑制した状態で増大させることが可能となる。
 本実施の形態で示した磁気ギア装置は、中間ヨーク2を回転させることによって内側ロータ1に対する外側ロータ3の相対回転速度を変更するようにしてもよい。例えば、内側ロータ1の回転数を一定とし、中間ヨーク2の回転数を変更することにより、内側ロータ1の回転方向と逆方向に回転する外側ロータ3の回転数を可変にすることが可能となる。このような中間ヨーク2の回転に伴って保持部材21が回転する場合であっても、保持部材21に形成された閉ループで囲まれた開口部を交差する交番磁界には、円周方向に沿って各周期の整数倍を有する各調波成分が含まれる。これにより、保持部材21に形成された閉ループには交番磁界による渦電流が流れず、渦電流損失を抑制することが可能となる。
 本願に係る磁気ギア装置は、開口部に磁性体22が配置された保持部材21を有する中間ヨーク2を用いることにより、中間ヨーク2の内周面及び内側ロータ1の外周面間の間隙と、中間ヨーク2の外周面及び外側ロータ3の内周面間の間隙とが小さくことが可能となる。これにより、磁気ギア装置のギア効率を向上させることが可能となる。
 外側ロータ3の回転に伴って内側ロータ1が回転する場合を示したが、これに限るものではなく外側ロータ3を固定し、中間ヨーク2の回転に伴って内側ロータ1が回転してもよい。この場合、中間ヨーク2が右回りに1回転した場合、内側ロータ1が中間ヨーク2の回転方向と一致する右回りに(1+1/n)回転する。図1に示すギア比nが3/7の磁気ギア装置の例では、例えば中間ヨーク2が右回りに1回転した場合、内側ロータ3が右回りに10/3回転する。
 また、内側ロータ1を固定し、中間ヨーク2の回転に伴って外側ロータ3が回転してもよい。この場合、中間ヨーク2が左回りに(1+1/n)回転した場合、外側ロータ3が中間ヨーク2の回転方向と一致する左回りに1/n回転する。図1に示すギア比nが3/7の磁気ギア装置の例では、例えば中間ヨーク2が左回りに10/3回転した場合、外側ロータ3が左回りに7/3回転する。
 本実施の形態は、円筒回転型の磁気ギア装置を示したが、これに限るものではなく円板回転型の磁気ギア装置であってもよい。円板回転型の磁気ギア装置は、放射線状に略等間隔に複数の磁極対が配置してある円板状の第1可動子と、放射線状に略等間隔に複数の磁極対が配置してある円板状の第2可動子とが間隙を有して同軸上に対向する。第1可動子及び第2可動子間には、放射線状に略等間隔に磁性体を保持する円板の保持部材が同軸上に設けられる。保持部材は、内周側及び外周側に配置され、同心軸上に配置された径の異なる円環状の複数の保持部を備え、複数の保持部は、径方向の対向間に複数の磁性体を保持する。
 また、複数の保持部は、放射状に略等間隔に配置してある連結棒により径方向の対向間が連結される。保持部の対向する一部と、連結棒とにより囲まれる開口部夫々に磁性体が取り付けられる。このような円板型の磁気ギア装置であっても、第1可動子及び第2可動子が有する複数の磁極対の個数を、連結棒の本数を約数として有することにより、渦電流損失を抑制することが可能となる。
 本願に係る磁気ギア装置は、平板リニア型の磁気ギア装置であってもよい。平板リニア型の磁気ギア装置は、一方向に沿って略等間隔に複数の磁極対が配置してある平板状の第1可動子と、前記一方向に沿って略等間隔に複数の磁極対が配置してある第2可動子とが間隙を有して対向する。第1可動子及び第2可動子間には、前記一方向に沿って略等間隔に磁性体を保持する平板状の保持部材が設けられる。保持部材は、前記一方向に沿って延び、対向する複数の保持部を備え、複数の保持部は、対向間に複数の磁性体を保持する。
 また、複数の保持部は、前記一方向に沿って略等間隔に配置してある連結棒により対向間が連結される。保持部の対向する一部と、連結棒とにより囲まれる開口部夫々に磁性体が取り付けられる。このような平板リニア型の磁気ギア装置であっても、第1可動子及び第2可動子が有する複数の磁極対の個数を、連結棒の本数を約数として有することにより、渦電流損失を抑制することが可能となる。
 本願に係る磁気ギア装置は、円筒リニア型の磁気ギア装置であってもよい。円筒リニア型の磁気ギア装置は、中心軸方向に沿って外周面に略等間隔に複数の磁極対が配置してある円筒状の第1可動子と、該第1可動子が内側に間隙を有して嵌り、中心軸方向に沿って内周面に略等間隔に複数の磁極対が配置してある円筒状の第2可動子とを備える。第1可動子及び第2可動子間には、中心軸方向に沿って略等間隔に磁性体を保持する円筒状の保持部材が設けられる。保持部材は、中心軸方向に対向する円環状の複数の保持部を備え、複数の保持部は、中心軸方向に沿って等間隔に配置された複数の磁性体を対向間に保持する。
 また、複数の保持部は、中心軸方向に沿って略等間隔に配置してある連結棒により中心軸方向の対向間が連結される。保持部の対向する一部と、連結棒とにより囲まれる開口部夫々に磁性体が取り付けられる。このような円筒リニア型の磁気ギア装置であっても、第1可動子及び第2可動子が有する複数の磁極対の個数を、連結棒の本数を約数として有することにより、渦電流損失を抑制することが可能となる。
 実施の形態2
 実施の形態2は、実施の形態1が円筒回転型の磁気ギア装置の渦電流損失を抑制するのに対して、円板回転型の磁気ギア装置の渦電流損失を抑制する。図7は、円筒回転型の磁気ギア装置の例を示す模式的組立図である。円板回転型の磁気ギア装置は、円板状の下側ロータ4と、下側ロータ4に対して同軸上に間隙を有して配された上側ロータ6と、下側ロータ4及び上側ロータ6間に間隙を有して同軸上に配された円板状の中間ヨーク5とを備える。下側ロータ4は、磁性体からなる円板41を有し、円板41の上面には、厚さ方向に着磁された上側N極の磁石42a及びS極の磁石42bからなる磁極対42が放射状に6個配置されている。
 また、上側ロータ6は、磁性体からなる円板61を有し、円板61の下面には、厚さ方向に着磁された下側N極の磁石62a及びS極の磁石62bからなる磁極対62が放射状に14個配置されている。ここで厚さ方向に着磁された磁石とは、上側及び下側が異極となるよう着磁されていることを意味する。例えば、磁石42aは、上側及び下側がN極及びS極に着磁され、磁石42bは、上側及び下側夫々がS極及びN極に着磁されている。
 上側ロータ6が回転した場合、下側ロータ4及び上側ロータ6夫々が有する磁極対42、62間の磁気的相互作用により、下側ロータ4が回転する。この場合、上側ロータ6よりも磁極数の少ない下側ロータ4は、上側ロータ6よりも高い回転数で、上側ロータ6の回転方向と逆方向に回転する。下側ロータ4に配置してある磁極対の個数Phと、上側ロータ6に配置してある磁極対の個数Plとの比Ph/Plが上側ロータ6に対する下側ロータ4のギア比となる。図7に示す磁気ギア装置の例では、ギア比3/7となる。中間ヨーク5は、下側ロータ4及び上側ロータ6夫々が有する磁極対の個数6及び14の合計となる20個の強磁性の磁性体22を放射状に保持している。
 保持部材51は、下側ロータ4及び上側ロータ6の径方向に沿って対向した一対の大径及び小径の円環(円環体、保持部)51a、51aを有する。小径の円環51aは大径の円環51aの内側に位置し、小径の円環51aの外周面と大径の円環51aの内周面とが対向する。また円周方向に略等間隔に配置され、一対の円環51a、51aを対向方向に連結する2本の連結棒51b、51bを有する。連結棒51bの本数2は、下側ロータ4が有する磁極対42の個数6と、上側ロータ6が有する磁極対62の個数14と、中間ヨーク5が有する磁性体52の個数20の約数となっている。これにより、保持部材51の各開口部を交差する交番磁界には、円周方向に沿ってPh次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分の各周期の整数倍を有する各調波成分が常に含まれることとなる。そして各開口部の周縁をなす円環51a、51aの対向する一部と、連結棒51bとからなる閉ループには、渦電流が流れない。なお20個の磁性体52は、小径の円環51aを中央にして放射状に配置してある。
 本実施の形態で示した磁気ギア装置は、中間ヨーク5を回転させることによって下側ロータ4に対する上側ロータ6の相対回転速度を変更するようにしてもよい。また、上側ロータ6を固定し、中間ヨーク5の回転に伴って下側ロータ4が回転してもよい。更に下側ロータ4を固定し、中間ヨーク5の回転に伴って上側ロータ6が回転してもよい。
 実施の形態3
 実施の形態3は、実施の形態2が円板回転型の磁気ギア装置の渦電流損失を抑制するのに対して、平板リニア型の磁気ギア装置の渦電流損失を抑制する。図8は、平板リニア型の磁気ギア装置の例を示す模式的組立図である。また、図8は、長手方向に延びる平板リニア型の磁気ギア装置の長手方向の単位長さΔL当たりの一部を示している。平板リニア型の磁気ギア装置は、矩形板状の下部プレート7と、下部プレート7に対して略平行に延び、間隙を有して配された矩形板状の上部プレート9とを備える。下部プレート7及び上部プレート9夫々は、長手方向に延びる側面が図示しない案内部材により、案内支持されており、長手方向に沿って移動自在にしてある。
 また、平板リニア型の磁気ギア装置は、下部プレート7及び上部プレート9に対して略平行に延び、下部プレート7及び上部プレート9間に間隙を有して配された矩形板状の中間ヨーク8を備える。下部プレート7は、磁性体からなる板71を有し、板71の上面には、厚さ方向に着磁された上側N極の磁石72a及びS極の磁石72bからなる磁極対72が長手方向に沿って単位長さΔL当たり6個配置されている。また、上部プレート9は、磁性体からなる板91を有し、板91の下面には、厚さ方向に着磁された下側N極の磁石92a及びS極の磁石92bからなる磁極対92が長手方向に沿って単位長さΔL当たり14個配置されている。
 ここで厚さ方向に着磁された磁石とは、下側及び外側が異極となるよう着磁されていることを意味する。例えば、磁石72aは、上側及び下側がN極及びS極に着磁され、磁石72bは、上側及び下側夫々がS極及びN極に着磁されている。上部プレート9が長手方向に直線移動した場合、下部プレート7及び上部プレート9夫々が有する磁極対72、92間の磁気的相互作用により、下部プレート7が長手方向に移動する。下部プレート7に配置してある磁極対の単位長さΔL当たりの個数Phと、上部プレート9に配置してある磁極対の単位長さΔL当たりの個数Plとの比Ph/Plが上部プレート9に対する下部プレート7のギア比となる。
 図8に示す磁気ギア装置の例では、ギア比3/7となる。中間ヨーク8は、下部プレート7及び上部プレート9夫々が有する磁極対の単位長さΔL当たりの個数6及び14の合計となる20個の強磁性の磁性体82を等間隔に長手方向に沿って単位長さΔL毎に保持している。保持部材81は、下部プレート7及び上部プレート9の長手方向に沿って対向する一対の保持棒(保持部)81a、81aと、長手方向に略等間隔に配置され、一対の保持棒81a、81aを対向方向に連結する単位長さΔL当たり2本の連結棒81bとを有する。
 連結棒81bの単位長さΔL当たりの本数2は、下部プレート7が有する磁極対72の単位長さΔL当たりの個数6と、上部プレート9が有する磁極対92の単位長さΔL当たりの個数14と、中間ヨーク8が有する磁性体82の単位長さΔL当たりの個数20の約数となっている。これにより、保持部材81の各開口部を交差する交番磁界には、長手方向に沿ってPh次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分の各周期の整数倍を有する各調波成分が常に含まれることとなる。そして各開口部の周縁をなす保持棒81a、81aの対向する一部と、連結棒81bとからなる閉ループには、渦電流が流れない。
 本実施の形態で示した磁気ギア装置は、中間ヨーク8を移動させることによって下部プレート7に対する上部プレート9の相対移動速度を変更するようにしてもよい。また、上部プレート9を固定し、中間ヨーク8の移動に伴って下部プレート7が移動してもよい。更に下部プレート7を固定し、中間ヨーク8の移動に伴って上部プレート9が移動してもよい。
 実施の形態4
 実施の形態4は、実施の形態3が平板リニア型の磁気ギア装置の渦電流損失を抑制するのに対して、円筒リニア型の磁気ギア装置の渦電流損失を抑制する。図9は、円筒リニア型の磁気ギア装置の例を示す模式的組立図である。また、図9は、円筒軸方向に延びる円筒リニア型の磁気ギア装置の円筒軸方向の単位長さΔL当たりの一部を示している。円筒リニア型の磁気ギア装置は、円筒状の内側カラム700と、内側カラム700が間隙を有して内側に嵌る円筒状の外側カラム900と、内側カラム700及び外側カラム900間に間隙を有して嵌る中間ヨーク800とを備える。内側カラム700は、磁性体からなる円筒701を有し、円筒701の外周面には、厚さ方向に着磁された外周面側N極の磁石702a及びS極の磁石702bからなる磁極対702が円筒軸方向に沿って単位長さΔL当たり6個配置されている。
 また、外側カラム900は、磁性体からなる円筒901を有し、円筒901の内周面には、厚さ方向に着磁された内周面側N極の磁石902a及びS極の磁石902bからなる磁極対902が円筒軸方向に沿って単位長さΔL当たり14個配置されている。ここで厚さ方向に着磁された磁石とは、外周面側及び内周面側が異極となるよう着磁されていることを意味する。例えば、磁石702aは、外周面側及び内周面側夫々がN極及びS極に着磁され、磁石702bは、外周面側および内周面側夫々がS極及びN極に着磁されている。
 内側カラム700及び外側カラム900夫々は、円筒軸方向に延びる側面が図示しない案内部材により、案内支持されており、円筒軸方向に沿って移動自在にしてある。外側カラム900が円筒軸方向に直線移動した場合、内側カラム700及び外側カラム900夫々が有する磁極対702、902間の磁気的相互作用により、内側カラム700が円筒軸方向に移動する。内側カラム700に配置してある磁極対の単位長さΔL当たりの個数Phと、外側カラム900に配置してある磁極対の単位長さΔL当たりの個数Plとの比Ph/Plが外側カラム900に対する内側カラム700のギア比となる。
 図9に示す磁気ギア装置の例では、ギア比3/7となる。中間ヨーク800は、内側カラム700及び外側カラム900夫々が有する磁極対の単位長さΔL当たりの個数6及び14の合計となる20個の強磁性の磁性体802を等間隔に円筒軸方向に沿って単位長さΔL毎に保持している。保持部材801は、内側カラム700及び外側カラム900の円筒軸方向に沿って対向する一対の保持棒(保持部)801a、801aと、円筒軸方向に略等間隔に配置され、一対の棒801a、801aを対向方向を含む連結する単位長さΔL当たり2個の連結円環(連結円環体)801bとを有する。
 連結円環801bの単位長さΔL当たり個数2は、内側カラム700が有する磁極対702の単位長さΔL当たりの個数6と、外側カラム900が有する磁極対902の単位長さΔL当たりの個数14と、中間ヨーク800が有する磁性体802の単位長さΔL当たりの個数20の約数となっている。これにより、保持部材801の各開口部を交差する交番磁界には、円筒軸方向に沿ってPh次調波成分、(Ns―Ph)次調波成分及び(Ns+Ph)次調波成分の各周期の整数倍を有する各調波成分が常に含まれることとなる。そして各開口部の周縁をなす保持棒801a、801aの対向する一部と、連結円環801bとからなる閉ループには、渦電流が流れない。
 本実施の形態で示した磁気ギア装置は、中間ヨーク800を移動させることによって内側カラム700に対する外側カラム900の相対移動速度を変更するようにしてもよい。また、外側カラム900を固定し、中間ヨーク800の回転に伴って内側カラム700が移動してもよい。更に内側カラム700を固定し、中間ヨーク800の移動に伴って外側カラム900が移動してもよい。
 以上説明した実施の形態は本発明の例示であり、本発明は請求の範囲に記載された事項及び請求の範囲の記載に基づいて定められる範囲内において種々変更した形態で実施することができる。
 1、100 内側ロータ
 2、5、8、200、800 中間ヨーク
 3、300 外側ロータ
 4 下側ロータ
 6 上側ロータ
 7 下部プレート
 9 上部プレート
 700 内側カラム
 900 外側カラム
 11、31、701、901 円筒
 12、32、42、62、72、92、702、902、102、302 磁極対
 12a、12b、32a、32b、42a、42b、62a、62b、72a、72b、92a、92b、702a、702b、902a、902b 磁石
 21、51、81 保持部材
 21a、51a 円環
 21b、51b、81b 連結棒
 21c、23a 鍔部
 21d、23b 孔部
 22、52、802 磁性体
 23、71、91 板
 41、61 円板
 81a、801a 保持棒
 801b 連結円環

Claims (11)

  1.  特定の方向に沿って略等間隔に複数の磁極対が各配置してあり、対向する第1可動子及び第2可動子と、該第1可動子及び第2可動子間に配置してあり、前記特定の方向に沿って略等間隔に複数の磁性体を保持する保持部材とを備え、該保持部材が保持する前記複数の磁性体の個数は、前記第1可動子及び第2可動子夫々が有する前記複数の磁極対の各個数の差分又は合計となるようにしてある磁気ギア装置において、
     前記保持部材は、
     前記複数の磁性体を保持する複数の保持部と、
     前記特定の方向に沿って略等間隔に配置してあり、前記複数の保持部を連結する連結棒と
     を備え、
     前記複数の保持部は、前記複数の磁性体を介して対向し、
     前記第1可動子及び第2可動子が有する複数の磁極対の各個数は、前記連結棒の本数を約数として有するようにしてある
     ことを特徴とする磁気ギア装置。
  2.  特定の方向に沿って略等間隔に複数の磁極対が各配置してあり、対向する第1可動子及び第2可動子と、該第1可動子及び第2可動子間に配置してあり、前記特定の方向に沿って略等間隔に複数の磁性体を保持する保持部材とを備え、該保持部材が保持する前記複数の磁性体の個数は、前記第1可動子及び第2可動子夫々が有する前記複数の磁極対の各個数の差分又は合計となるようにしてある磁気ギア装置において、
     前記保持部材は、
     前記複数の磁性体を保持する複数の保持部と、
     前記特定の方向に沿って略等間隔に配置してあり、前記複数の保持部を連結する連結棒と
     を備え、
     前記複数の保持部は、前記複数の磁性体を介して対向し、
     前記連結棒の本数は、前記第1可動子及び第2可動子が有する複数の磁極対の各個数の約数となるようにしてある
     ことを特徴とする磁気ギア装置。
  3.  前記第1可動子及び第2可動子は、円筒であり、
     前記第1可動子は、円周方向に沿って前記複数の磁極対が外周面に配置してあり、
     前記第2可動子は、前記第1可動子の外周面と対向する内周面を有し、円周方向に沿って該内周面に前記複数の磁極対が配置してあり、
     前記特定の方向は、円筒の円周方向であり、
     前記保持部は、円周方向に沿って対向間に前記複数の磁性体を保持する複数の円環である
     ことを特徴とする請求項1又は請求項2に記載の磁気ギア装置。
  4.  外周側に円周方向に沿って略等間隔に複数の磁極対が配置してある円筒の第1可動子と、該第1可動子が間隙を有して内周側に嵌合しており、内周側に円周方向に沿って略等間隔に複数の磁極対が配置してある第2可動子と、該第1可動子及び第2可動子間に配置してあり、前記円周方向に沿って複数の磁性体を保持する保持部材とを備え、該保持部材が保持する前記複数の磁性体の個数は、前記第1可動子及び第2可動子夫々が有する前記複数の磁極対の各個数の差分又は合計となるようにしてある磁気ギア装置において、
     前記保持部材は、
     前記複数の磁性体を保持し、前記複数の磁性体を介して対向する複数の円環と、
     該複数の円環夫々の円周方向に沿って配置してある連結位置を前記複数の円環の対向方向に沿って連結する連結棒と
     を備え、
     前記連結位置は、前記複数の円環夫々の円周を前記第1可動子及び第2可動子が有する複数の磁極対の各個数の約数を用いて略等間隔に分割して得た分割位置から選択して配置してある
     ことを特徴とする磁気ギア装置。
  5.  特定の方向に沿って略等間隔に複数の磁極対が各配置してあり、対向する第1可動子及び第2可動子間に、複数の磁性体を保持する保持部材において、
     前記複数の磁性体を前記特定の方向に沿って略等間隔に保持する複数の保持部と、
     前記特定の方向に沿って略等間隔に配置してあり、前記複数の保持部を連結する連結棒と
     を備え、
     前記複数の保持部は、前記複数の磁性体を介して対向し、
     前記連結棒の本数は、前記第1可動子及び第2可動子が有する複数の磁極対の各個数の約数となるようにしてある
     ことを特徴とする保持部材。
  6.  前記第1可動子及び第2可動子は円板状をなして対向配置してあり、
     前記複数の磁極対は前記第1可動子及び第2可動子夫々に放射状に配置してあり、
     前記特定の方向は円板の円周方向であり、
     前記保持部は前記複数の磁性体を保持する同心の複数の円環体からなる
     ことを特徴とする請求項1又は請求項2に記載の磁気ギア装置。
  7.  放射状に複数の磁極対が略等間隔に配置してある円板状の第1可動子と、該第1可動子と離隔対向しており、放射状に複数の磁極対が略等間隔に配置してある円板状の第2可動子と、該第1可動子及び第2可動子間に配置してあり、放射状に複数の磁性体を保持する保持部材とを備え、該保持部材が保持する前記複数の磁性体の個数は、前記第1可動子及び第2可動子夫々が有する前記複数の磁極対の各個数の差分又は合計となるようにしてある磁気ギア装置において、
     前記保持部材は、
     前記複数の磁性体を保持し、前記複数の磁性体を介して径方向に対向する同心の複数の円環体と、
     該複数の円環体夫々を径方向に沿って連結する連結棒と
     を備え、
     前記連結棒は、前記第1可動子及び第2可動子が有する複数の磁極対の各個数の約数を用いて前記複数の円環夫々が略等間隔に円周方向に沿って分割された位置の一部又は全部を連結するようにしてある
     ことを特徴とする磁気ギア装置。
  8.  長手方向に沿って複数の磁極対が略等間隔に配置してある矩形板状の第1可動子と、該第1可動子と離隔対向しており、長手方向に沿って複数の磁極対が略等間隔に配置してある矩形板状の第2可動子と、該第1可動子及び第2可動子間に配置してあり、前記長手方向に沿って複数の磁性体を保持する保持部材とを備え、該保持部材が保持する前記複数の磁性体の長手方向の単位長さ当たりの磁性体の個数は、前記第1可動子及び第2可動子夫々が有する前記複数の磁極対の前記単位長さ当たりの磁性体の各個数の差分又は合計となるようにしてある磁気ギア装置において、
     前記保持部材は、
     前記複数の磁性体を保持し、前記複数の磁性体を介して対向し、長手方向を前記第1可動子及び第2可動子の長手方向に略一致させた複数の保持棒と、
     該複数の保持棒を対向方向に沿って連結する連結棒と
     を備え、
     前記連結棒は、前記第1可動子及び第2可動子が有する複数の磁極対の前記単位長さ当たりの各個数の約数を用いて前記単位長さ当たりの前記複数の保持棒の各部分が略等間隔に長手方向に沿って分割された位置の一部又は全部を連結するようにしてある
     ことを特徴とする磁気ギア装置。
  9.  外周側に円筒軸方向に沿って複数の磁極対が略等間隔に配置してある円筒状の第1可動子と、該第1可動子が間隙を有して内周側に嵌合しており、内周側に円筒軸方向に沿って複数の磁極対が略等間隔に配置してある円筒状の第2可動子と、該第1可動子及び第2可動子間に配置してあり、前記円筒軸方向に沿って複数の磁性体を保持する保持部材とを備え、該保持部材が保持する前記複数の磁性体の長手方向の単位長さ当たりの個数は、前記第1可動子及び第2可動子夫々が有する前記複数の磁極対の前記単位長さ当たりの各個数の差分又は合計となるようにしてある磁気ギア装置において、
     前記保持部材は、
     前記複数の磁性体を保持し、前記複数の磁性体を介して対向し、長手方向を前記円筒軸方向に略一致させた複数の保持棒と、
     該複数の保持棒夫々を連結する複数の連結円環体と
     を備え、
     該複数の連結円環体は、前記第1可動子及び第2可動子が有する複数の磁極対の前記単位長さ当たりの各個数の約数を用いて前記単位長さ当たりの前記複数の保持棒の各部分が略等間隔に長手方向に沿って分割された位置の一部又は全部を連結するようにしてある
     ことを特徴とする磁気ギア装置。
  10.  前記保持部材は、移動可能にしてあることを特徴とする請求項1から請求項4及び請求項6から請求項9までのいずれか一つに記載の磁気ギア装置。
  11.  前記第1可動子及び第2可動子のいずれか一つは、固定可能にしてある
     ことを特徴とする請求項1から請求項4及び請求項6から請求項9までのいずれか一つに記載の磁気ギア装置。
PCT/JP2011/064007 2010-07-29 2011-06-20 磁気ギア装置及び保持部材 WO2012014596A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/813,127 US9166464B2 (en) 2010-07-29 2011-06-20 Magnetic gear device and holding member
KR1020137003207A KR101457523B1 (ko) 2010-07-29 2011-06-20 자기 기어 장치 및 유지 부재
DE112011102531.9T DE112011102531B4 (de) 2010-07-29 2011-06-20 Magnetische Getriebevorrichtung und Halteteil
CN201180037306.9A CN103038547B (zh) 2010-07-29 2011-06-20 磁性齿轮装置以及保持部件
JP2012526376A JP5408355B2 (ja) 2010-07-29 2011-06-20 磁気ギア装置及び保持部材

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010169955 2010-07-29
JP2010-169955 2010-07-29
JP2010-192638 2010-08-30
JP2010192638 2010-08-30

Publications (1)

Publication Number Publication Date
WO2012014596A1 true WO2012014596A1 (ja) 2012-02-02

Family

ID=45529816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064007 WO2012014596A1 (ja) 2010-07-29 2011-06-20 磁気ギア装置及び保持部材

Country Status (6)

Country Link
US (1) US9166464B2 (ja)
JP (1) JP5408355B2 (ja)
KR (1) KR101457523B1 (ja)
CN (1) CN103038547B (ja)
DE (1) DE112011102531B4 (ja)
WO (1) WO2012014596A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015992A (ja) * 2012-07-09 2014-01-30 Nissei Corp 磁気歯車装置
US20140167546A1 (en) * 2011-07-15 2014-06-19 Hitachi Metals, Ltd. Magnetic Gear Device
JP5948428B2 (ja) * 2012-10-01 2016-07-06 株式会社日立製作所 磁気カップリング
US20170104388A1 (en) * 2015-10-09 2017-04-13 The Texas A&M University System Method and apparatus for compact axial flux magnetically geared machines
JP2018078777A (ja) * 2016-11-11 2018-05-17 株式会社プロスパイン 回転増速部を有する発電機
CN112615521A (zh) * 2020-11-30 2021-04-06 珠海格力电器股份有限公司 磁齿轮及具有其的复合电机
WO2021131807A1 (ja) * 2019-12-24 2021-07-01 三菱重工業株式会社 磁性極片装置及び磁気歯車装置
WO2021149720A1 (ja) * 2020-01-24 2021-07-29 三菱重工業株式会社 磁極片装置、磁気歯車、磁気ギアードモータ並びに磁気ギアード発電機

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5795807B2 (ja) * 2010-12-08 2015-10-14 プロトートゥス、リミテッド 電磁発電機およびその使用方法
WO2013146560A1 (ja) * 2012-03-27 2013-10-03 日立金属株式会社 周波数変換装置
EP2834868B1 (en) 2012-04-02 2023-12-27 Hydrogenics Corporation Fuel cell start up method
CN104919219A (zh) * 2013-01-11 2015-09-16 日立金属株式会社 磁力齿轮装置
EP3105847B1 (en) * 2014-02-11 2020-03-11 Magnomatics Limited A magnetic gear system and method for reducing transmission of torque pulsation
CN104065242B (zh) * 2014-06-27 2017-01-25 南京艾凌节能技术有限公司 一种一体化永磁变速减速机
CN104401389A (zh) * 2014-10-28 2015-03-11 南京林业大学 一种永磁离合电动助力转向机构
CN104333197A (zh) * 2014-11-03 2015-02-04 燕山大学 机电集成磁场调制型磁齿轮
GB2545154B (en) * 2015-08-24 2021-12-01 Magnomatics Ltd Magnetically geared apparatus and a pole piece for such apparatus
WO2017051823A1 (ja) * 2015-09-24 2017-03-30 日立金属株式会社 磁気ギア装置
DE102015223339A1 (de) * 2015-11-25 2017-06-01 Mahle International Gmbh Magnetische Kupplung, insbesondere für eine Abwärmenutzungseinrichtung
DE102015223338A1 (de) * 2015-11-25 2017-06-01 Mahle International Gmbh Magnetische Kupplung, insbesondere für eine Abwärmenutzungseinrichtung
US10700583B2 (en) * 2016-08-31 2020-06-30 Uti Limited Partnership Induction machine with integrated magnetic gear and related methods
US10404310B2 (en) * 2016-09-06 2019-09-03 Innovative Music, LLC Phone case with interchangeable cosmetic accessory attachment system
CN106936291B (zh) * 2017-05-22 2023-09-08 深圳市正德智控股份有限公司 一种多级磁性齿轮
CN107425697B (zh) * 2017-06-19 2019-08-02 江苏大学 一种应用侧边正弦调磁装置的气隙可调式磁力齿轮
CN110115522B (zh) * 2018-02-06 2022-03-01 佛山市顺德区美的电热电器制造有限公司 磁力传动盘、磁传动组件、刀具组件和食物料理机
KR102270090B1 (ko) * 2018-05-15 2021-06-28 한국전기연구원 자기기어용 폴피스조립체, 그 제조방법 및 이를 구비한 자기기어장치
KR102183912B1 (ko) * 2019-08-30 2020-11-30 충남대학교산학협력단 마그네틱 기어의 제작방법
CN110739827B (zh) * 2019-10-09 2021-06-11 华中科技大学 一种复合型磁场调制磁力联轴器
KR102191364B1 (ko) 2020-07-08 2020-12-15 주식회사 마그네틱파워트레인 자기기어용 폴피스, 그 제조방법, 그를 포함하는 자기기어 및 그를 포함하는 추진모듈
KR102394233B1 (ko) 2020-07-08 2022-05-04 (주)제넥 토크 리미터 일체형 마그네틱 커플링 및 그 제조방법
KR102549738B1 (ko) 2021-08-09 2023-06-30 주식회사 마그네틱파워트레인 자기기어용 폴피스 및 내측로터 제조방법
KR102518065B1 (ko) 2022-11-10 2023-04-05 (주)제넥 마그네틱 기어 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280341A (ja) * 1996-04-08 1997-10-28 Ckd Corp 回転伝達装置
JP2008039045A (ja) * 2006-08-04 2008-02-21 Honda Motor Co Ltd 磁気式動力伝達装置
JP2009095173A (ja) * 2007-10-10 2009-04-30 Toyota Central R&D Labs Inc 対向ロータ機構
JP2010106940A (ja) * 2008-10-29 2010-05-13 Osaka Univ 磁気波動歯車装置および磁気伝達減速機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100441A (en) 1977-03-18 1978-07-11 Alfred Landry Magnetic transmission
DE3246122A1 (de) * 1982-12-13 1984-06-14 Heinz 4350 Recklinghausen Schiweck Magnetgetriebe
JPS61108359A (ja) 1984-10-30 1986-05-27 Seiwa Kasei Kk 青果物の保存包装材料および保存方法
JPH0767695B2 (ja) * 1989-05-30 1995-07-26 大日本プラスチックス株式会社 積層板の表面層切削方法およびその装置
CN201027950Y (zh) 2007-04-09 2008-02-27 刘新广 磁阻传动器
GB0800463D0 (en) 2008-01-11 2008-02-20 Magnomatics Ltd Magnetic drive systems
GB2457682B (en) * 2008-02-21 2012-03-28 Magnomatics Ltd Variable magnetic gears
GB0817046D0 (en) * 2008-09-18 2008-10-22 Rolls Royce Plc Magnectic Gear Arrangement
JP5286373B2 (ja) * 2011-01-28 2013-09-11 株式会社日立製作所 磁気歯車

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280341A (ja) * 1996-04-08 1997-10-28 Ckd Corp 回転伝達装置
JP2008039045A (ja) * 2006-08-04 2008-02-21 Honda Motor Co Ltd 磁気式動力伝達装置
JP2009095173A (ja) * 2007-10-10 2009-04-30 Toyota Central R&D Labs Inc 対向ロータ機構
JP2010106940A (ja) * 2008-10-29 2010-05-13 Osaka Univ 磁気波動歯車装置および磁気伝達減速機

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140167546A1 (en) * 2011-07-15 2014-06-19 Hitachi Metals, Ltd. Magnetic Gear Device
US9729040B2 (en) * 2011-07-15 2017-08-08 Hitachi Metals, Ltd. Magnetic gear device having a plurality of magnetic bodies arranged in a particular configuration
JP2014015992A (ja) * 2012-07-09 2014-01-30 Nissei Corp 磁気歯車装置
JP5948428B2 (ja) * 2012-10-01 2016-07-06 株式会社日立製作所 磁気カップリング
JPWO2014054087A1 (ja) * 2012-10-01 2016-08-25 株式会社日立製作所 磁気カップリング
US20170104388A1 (en) * 2015-10-09 2017-04-13 The Texas A&M University System Method and apparatus for compact axial flux magnetically geared machines
US10476349B2 (en) * 2015-10-09 2019-11-12 The Texas A&M University System Method and apparatus for compact axial flux magnetically geared machines
JP2018078777A (ja) * 2016-11-11 2018-05-17 株式会社プロスパイン 回転増速部を有する発電機
JP7229909B2 (ja) 2019-12-24 2023-02-28 三菱重工業株式会社 磁性極片装置及び磁気歯車装置
WO2021131807A1 (ja) * 2019-12-24 2021-07-01 三菱重工業株式会社 磁性極片装置及び磁気歯車装置
JP2021101116A (ja) * 2019-12-24 2021-07-08 三菱重工業株式会社 磁性極片装置及び磁気歯車装置
JP2021116843A (ja) * 2020-01-24 2021-08-10 三菱重工業株式会社 磁極片装置、磁気歯車、磁気ギアードモータ並びに磁気ギアード発電機
WO2021149720A1 (ja) * 2020-01-24 2021-07-29 三菱重工業株式会社 磁極片装置、磁気歯車、磁気ギアードモータ並びに磁気ギアード発電機
JP7433061B2 (ja) 2020-01-24 2024-02-19 三菱重工業株式会社 磁極片装置、磁気歯車、磁気ギアードモータ並びに磁気ギアード発電機
CN112615521B (zh) * 2020-11-30 2021-12-24 珠海格力电器股份有限公司 磁齿轮及具有其的复合电机
CN112615521A (zh) * 2020-11-30 2021-04-06 珠海格力电器股份有限公司 磁齿轮及具有其的复合电机

Also Published As

Publication number Publication date
JPWO2012014596A1 (ja) 2013-09-12
US9166464B2 (en) 2015-10-20
DE112011102531B4 (de) 2018-06-14
KR20130042564A (ko) 2013-04-26
CN103038547A (zh) 2013-04-10
JP5408355B2 (ja) 2014-02-05
DE112011102531T5 (de) 2013-07-25
KR101457523B1 (ko) 2014-11-04
US20130127278A1 (en) 2013-05-23
CN103038547B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5408355B2 (ja) 磁気ギア装置及び保持部材
EP2240998B1 (en) Drives for sealed systems
US20110115326A1 (en) Electrical machines
WO2013098940A1 (ja) 電動機
JP5703168B2 (ja) モータ
Li et al. An improved coaxial magnetic gear using flux focusing
JP2010106940A (ja) 磁気波動歯車装置および磁気伝達減速機
JP2010246197A (ja) 磁極コア及び磁極コアを用いた直流電動機
JP5404718B2 (ja) 磁気歯車装置
JPWO2015140941A1 (ja) 永久磁石型電動機の回転子
JP2012228068A (ja) 発電装置
JP5920455B2 (ja) 磁気ギア装置
JP2013017285A (ja) 磁気ギア装置
JP5389122B2 (ja) 磁気歯車装置
JP5791385B2 (ja) 回転電機
RU2545166C1 (ru) Магнитный редуктор
JP6693527B2 (ja) 磁気ギア装置
JP2012107718A (ja) 磁気歯車装置
CN102684335A (zh) 磁铁埋入型旋转电机
KR101971096B1 (ko) 출력을 향상시킨 모터
JP5500656B2 (ja) 電磁誘導回転装置
JP2012107719A (ja) 磁気歯車装置
US9991774B2 (en) DC field gradient motor
TW201328136A (zh) 永磁裝置
KR101622935B1 (ko) 가변자속 전동기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037306.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526376

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13813127

Country of ref document: US

Ref document number: 1120111025319

Country of ref document: DE

Ref document number: 112011102531

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20137003207

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11812189

Country of ref document: EP

Kind code of ref document: A1