WO2013011757A1 - 磁場解析プログラム及び磁場解析方法 - Google Patents

磁場解析プログラム及び磁場解析方法 Download PDF

Info

Publication number
WO2013011757A1
WO2013011757A1 PCT/JP2012/064445 JP2012064445W WO2013011757A1 WO 2013011757 A1 WO2013011757 A1 WO 2013011757A1 JP 2012064445 W JP2012064445 W JP 2012064445W WO 2013011757 A1 WO2013011757 A1 WO 2013011757A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
flux density
magnetic flux
field strength
magnetic
Prior art date
Application number
PCT/JP2012/064445
Other languages
English (en)
French (fr)
Inventor
牧 晃司
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201280035526.2A priority Critical patent/CN103718180B/zh
Priority to US14/130,594 priority patent/US9506995B2/en
Priority to JP2013524633A priority patent/JP5909488B2/ja
Publication of WO2013011757A1 publication Critical patent/WO2013011757A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0064Arrangements or instruments for measuring magnetic variables comprising means for performing simulations, e.g. of the magnetic variable to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • G01R33/075Hall devices configured for spinning current measurements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Definitions

  • the present invention relates to a magnetic field analysis program and a magnetic field analysis method capable of calculating the inductance of an electromagnetic device such as a reactor or a motor at high speed.
  • the reactor is used in a form in which an alternating current is superimposed on a direct current.
  • the phenomenon in which high-frequency noise current is superimposed during operation of a motor or generator can be considered to be a situation in which AC current is superimposed on DC current if the fundamental current component is approximately regarded as DC. it can. Therefore, when designing an electromagnetic device such as a reactor or a motor, it is required to calculate the inductance related to the alternating current superimposed on the direct current, that is, the inductance related to the alternating magnetic field superimposed on the direct current magnetic field with high speed and high accuracy.
  • Non-Patent Document 1 AC analysis after obtaining the operating point is not a transient response analysis, but a faster frequency response analysis (assuming that when a sinusoidal current is input, the magnetic flux density changes over time into a sinusoidal waveform.
  • Non-Patent Document 1 a commercially available magnetic field analysis program performed by an analysis method for solving a steady state in a complex number region.
  • the relationship between the initial magnetization curve and the minor loop is faithfully modeled. That is, in the magnetic field analysis program described in Non-Patent Document 1, the minor loop is originally formed in a direction in which the magnetic field decreases from the point on the initial magnetization curve, but the magnetic field is centered on the point on the initial magnetization curve. Modeled to increase or decrease. Therefore, there remains a problem that a solution different from the reality is derived that the upper end point of the minor loop is not on the initial magnetization curve.
  • An object of the present invention is to provide a magnetic field analysis program and a magnetic field analysis method capable of calculating an inductance relating to an alternating magnetic field superimposed on a direct magnetic field at high speed and with high accuracy.
  • the magnetic field analysis program according to the present invention is a magnetic field analysis program for solving an alternating magnetic field by frequency response analysis, and has the following characteristics.
  • the input means uses the input means to input the DC magnetic flux density or DC magnetic field strength, the amplitude and frequency of the AC current, and the initial magnetization curve of the magnetic member to be analyzed. If DC magnetic flux density is input, this DC magnetic flux density A DC magnetic field strength is obtained from the initial magnetization curve, and when a DC magnetic field strength is input, a DC magnetic flux density is obtained from the DC magnetic field strength and the initial magnetization curve, and the DC magnetic flux density, the DC magnetic field strength, and the AC current are calculated.
  • the sum of the maximum AC magnetic flux density obtained by frequency response analysis and the DC magnetic flux density is the sum of the maximum AC magnetic field strength obtained by frequency response analysis and the DC magnetic field strength.
  • the inductance related to the AC magnetic field superimposed on the DC magnetic field can be calculated at high speed and with high accuracy.
  • the flowchart which shows the magnetic field analysis program by a 1st Example The schematic diagram which shows the relationship between the magnetic flux density B and the magnetic field intensity
  • the magnetic field analysis program and the magnetic field analysis method according to the present invention use a frequency response analysis as an AC analysis after obtaining the operating point, and derive a solution in which the upper end point of the minor loop is on the initial magnetization curve.
  • a frequency response analysis as an AC analysis after obtaining the operating point
  • derive a solution in which the upper end point of the minor loop is on the initial magnetization curve.
  • two types of methods according to the purpose are used. That is, when importance is attached to the simplicity of analysis, the upper end point of the minor loop is placed on the initial magnetization curve by repeating the frequency response analysis multiple times while adjusting the incremental permeability with reference to the initial magnetization curve. Derive a solution.
  • analysis accuracy can be ensured, and preparation of a database regarding incremental magnetic permeability is not required, and analysis can be easily performed.
  • static magnetic field analysis is performed once before frequency response analysis to find the minor loop center point, and frequency response analysis centered on this is performed, making it a more realistic physical phenomenon. Nearly accurate analysis can be realized.
  • the present invention it is possible to obtain a highly accurate solution more easily than the conventional analysis method, and to obtain a highly accurate solution that cannot be obtained by the conventional analysis method. It is possible to achieve both calculations. Therefore, the direct current superposition characteristics of the reactor or the low to high frequency characteristics of the motor can be modeled with high accuracy in a short time. By using such a model, it becomes possible to evaluate high-frequency phenomena such as electromagnetic noise and inverter surge, which can contribute to the optimization design and shortening of the development period of the motor drive.
  • the magnetic field analysis program and magnetic field analysis method of the present invention can be applied to the analysis of induction heating devices in addition to motors and reactors.
  • the magnetic field analysis program and the magnetic field analysis method according to the present invention are executed by a computer including an input device, an output device, an arithmetic device, and a storage device.
  • Data necessary for the analysis is input by an input device such as a keyboard and a mouse, and the analysis result can be output and displayed on an output device such as a display.
  • the arithmetic device controls the computer and executes magnetic field analysis and other arithmetic operations.
  • input data and data obtained by analysis can be stored in a storage device such as a hard disk or a memory.
  • the magnetic field analysis program and the magnetic field analysis method according to the present invention have an analysis target model divided into micro regions, a DC magnetic flux density or a DC magnetic field strength as an offset, an AC magnetic flux density or an AC magnetic field strength, and an initial magnetization curve as inputs. Then, the magnetic field analysis is performed on the minute region, and the inductance related to the AC magnetic field superimposed on the DC magnetic field is calculated. Instead of the DC magnetic flux density or DC magnetic field strength that serves as an offset, a DC current that serves as an offset may be input.
  • FIG. 1 is a flowchart showing a first embodiment of a magnetic field analysis program according to the present invention.
  • FIG. 2 is a schematic diagram showing the relationship between the magnetic flux density B and the magnetic field strength H in a typical magnetic material, and shows an initial magnetization curve and a minor loop.
  • FIG. 3 is a diagram showing the locus of the magnetic field on the BH plane obtained by the magnetic field analysis program according to this embodiment, and shows the relationship between the magnetic flux density B and the magnetic field strength H.
  • the DC magnetic field is determined by the initial magnetization curve 1.
  • the alternating magnetic field superimposed on the initial magnetization curve 1 draws a locus on the BH plane according to the minor loop 4.
  • the gradient of the minor loop 4, that is, the physical quantity ⁇ expressed by the equation (1) is called incremental magnetic permeability.
  • (B a ⁇ B b ) / (H a ⁇ H b ) (1)
  • H a and H b are the maximum magnetic field strength and the minimum magnetic field strength of the minor loop 4, respectively
  • B a and B b are magnetic flux densities corresponding to H a and H b on the minor loop 4, respectively.
  • “magnetic field” means either or both of magnetic flux density and magnetic field strength.
  • the physical phenomenon shown in FIG. 2 is analyzed according to the flowchart of FIG.
  • the magnetic field draws a locus 15 as shown in FIG. 3 on the BH plane, and the point at the upper end of the minor loop rides on the initial magnetization curve 1 (a line representing the locus 15). Minute represents a minor loop).
  • step S100 an analysis target model divided into minute regions, a DC magnetic field, an AC current amplitude and frequency, and an initial magnetization curve of a magnetic member of the analysis target model are input.
  • the input DC magnetic field is only one of the magnetic flux density B 0 and the magnetic field strength H 0 , H 0 or B 0 corresponding to the input B 0 or H 0 is calculated based on the initial magnetization curve.
  • the initial magnetization curve may be specified and input by a magnetic field analysis program, or may be prepared and input by an individual analyst. A plurality of initial magnetization curves can be input in accordance with the magnetic member of the model to be analyzed.
  • an input device included in a computer that executes a magnetic field analysis program can be used.
  • the analysis target model, the DC magnetic field (DC magnetic flux density B 0 and DC magnetic field strength H 0 ), the amplitude and frequency of the AC current, and the initial magnetization curve are stored in the storage device.
  • step S103 an incremental permeability in each minute region of the analysis target model is set.
  • the incremental magnetic permeability is also different for each minute region.
  • a method for setting the incremental permeability for example, it is derived from the slope of the initial magnetization curve in the value of the DC magnetic field input in step S100.
  • step S104 an AC magnetic field is calculated by frequency response analysis using the amplitude and frequency of the AC current input in step S100 and the incremental permeability set in step S103.
  • An existing method can be used for the AC magnetic field calculation by the frequency response analysis.
  • FIG. 3 shows an example of the locus of the magnetic field on the BH plane in the first frequency response analysis as a locus 14 as a line segment.
  • a line segment representing the locus 14 represents a minor loop.
  • step S105 to calculate the maximum magnetic field intensity H 1 and the maximum magnetic flux density B 1 in each micro regions.
  • H 1 is obtained from the DC magnetic field intensity H 0 input in step S100 and the amplitude (H 1 ⁇ H 0 ) of the AC magnetic field intensity obtained in step S104.
  • B 1 is obtained from the DC magnetic flux density B 0 input in step S100, the AC magnetic field strength amplitude (H 1 -H 0 ) obtained in step S104, and the incremental permeability set in step S103. Assuming that the incremental permeability is ⁇ 1 , B 1 is expressed as shown in Expression (2).
  • B 1 B 0 + ⁇ 1 (H 1 ⁇ H 0 ) (2) Referring to FIG.
  • the maximum magnetic flux density B 1 is equal to the direct-current magnetic flux density B 0 , the alternating magnetic field amplitude 3 (ie, H 1 ⁇ H 0 ), the incremental magnetic permeability ⁇ 1 (for example, the initial value at the operating point 2). It is a value obtained by adding the product of the gradient of the magnetization curve 1).
  • step S106 solution convergence is determined. Determining the value of the maximum magnetic flux density B 1 obtained in step S105 is performed on whether or not to match with a desired accuracy the point on the initial magnetization curve. To explain with reference to FIG. 3, it determines the maximum magnetic flux density B 1 is a maximum magnetic flux density B 1 corresponding to the magnetic field intensity H 1 'on initial magnetization curve 1, in whether they match with the desired accuracy.
  • the desired accuracy may be a default value or a value input by an analyst, and is determined in advance and stored in a storage device.
  • step S106 If it is determined in step S106 that it has not converged, the process returns to step S103 and the incremental permeability is reset and updated.
  • the following equation (3) is used to reset the incremental magnetic permeability.
  • ⁇ 2 (B 1 ′ ⁇ B 0 ) / (H 1 ⁇ H 0 ) (3)
  • ⁇ 2 is the reset incremental permeability.
  • the relaxation coefficient ⁇ is introduced as in the formula (4) or the formula (5) to relax the change.
  • ⁇ 2 ⁇ 1 + ⁇ ((B 1 ′ ⁇ B 0 ) / (H 1 ⁇ H 0 ) ⁇ 1 ) (4)
  • ⁇ 2 ((B 1 ′ ⁇ B 0 ) / (H 1 ⁇ H 0 )) ⁇ ⁇ 1 1 ⁇ (5)
  • the steps S104 and S105 are executed again using the incremental permeability reset as described above, and the determination is made in S106.
  • This iterative calculation usually depends on the required accuracy, but usually converges within 5 times.
  • the locus 15 of the magnetic field on the BH plane drawn at this time rides the upper end point of the minor loop on the initial magnetization curve 1 with a desired accuracy.
  • step S107 post-processing such as inductance calculation is performed, and analysis on a specific DC component and AC component is completed.
  • post-processing such as inductance calculation is performed, and analysis on a specific DC component and AC component is completed.
  • the inductance calculation may be performed by a conventional method using the obtained magnetic field value.
  • the magnetic field analysis program can calculate the inductance related to the AC magnetic field superimposed on the DC magnetic field at high speed and with high accuracy, and further includes point sequence data (database) indicating the relationship between the magnetic flux density and the incremental permeability. Since it is unnecessary, it has a feature that it can be easily implemented.
  • FIG. 4 is a flowchart showing a second embodiment of the magnetic field analysis program according to the present invention. Hereinafter, each step of FIG. 4 will be described.
  • step S101 the analysis target model divided into minute regions, the direct current, the amplitude and frequency of the alternating current, and the initial magnetization curve of the magnetic member of the analysis target model are input.
  • the initial magnetization curve may be specified and input by a magnetic field analysis program, or may be prepared and input by an individual analyst.
  • a plurality of initial magnetization curves can be input in accordance with the magnetic member of the model to be analyzed. The difference from the first embodiment is that not a direct-current magnetic field but a direct-current current is input.
  • an input device provided in a computer that executes a magnetic field analysis program can be used.
  • the analysis target model, the direct current, the amplitude and frequency of the alternating current, and the initial magnetization curve are stored in the storage device.
  • Step S102 based on the initial magnetization curve, a DC magnetic field generated by a DC current inputted calculated in step S101, obtaining a magnetic flux density B 0 and magnetic field strength H 0.
  • a conventional method can be used to calculate the DC magnetic field.
  • the obtained magnetic flux density B 0 and magnetic field strength H 0 are stored in the storage device.
  • step S103 and subsequent steps are basically the same as those in the first embodiment, and thus description thereof is omitted.
  • the DC magnetic field used in step S103 or step S105 is not directly input but is calculated in step S102.
  • the magnetic field analysis program according to the present embodiment can calculate the inductance related to the alternating magnetic field superimposed on the direct current magnetic field at high speed and with high accuracy. Since the point sequence data (database) indicating the relationship with the magnetic susceptibility is not necessary, it can be easily implemented.
  • FIG. 5 is a flowchart showing a third embodiment of the magnetic field analysis program according to the present invention.
  • FIG. 6 is a diagram showing the locus of the magnetic field on the BH plane obtained by the magnetic field analysis program according to this embodiment, and shows the relationship between the magnetic flux density B and the magnetic field strength H.
  • a minor loop center point 13 (see FIG. 6) that is not on the initial magnetization curve 1 is obtained, and then a frequency response analysis is performed centering on that point, thereby determining the upper end point of the minor loop. Is placed on the initial magnetization curve 1 with the accuracy of For this reason, the analysis which expressed the minor loop with higher precision is realizable.
  • step S201 the analysis target model divided into minute regions, the direct current, the amplitude and frequency of the alternating current, and the initial magnetization curve of the magnetic member of the analysis target model are input. Further, point sequence data (hereinafter referred to as “database”) indicating the relationship between the magnetic flux density and the incremental permeability or the relationship between the magnetic field strength and the incremental permeability is input for the magnetic member of the analysis target model.
  • the initial magnetization curve and the database may be input by specifying those provided in the magnetic field analysis program, or may be prepared and input by individual analysts. A plurality of initial magnetization curves and a database can be input in accordance with the magnetic member of the model to be analyzed.
  • an input device provided in a computer that executes a magnetic field analysis program can be used.
  • the analysis target model, the direct current, the amplitude and frequency of the alternating current, the initial magnetization curve, and the database are stored in the storage device.
  • step S202 based on the initial magnetization curve, a magnetic field (maximum magnetic field) with respect to the maximum current obtained by adding the amplitude of the alternating current to the direct current is obtained by static magnetic field analysis.
  • a conventional method can be used for the static magnetic field analysis. The effect of eddy currents that can be generated by an alternating magnetic field is ignored here.
  • the obtained maximum magnetic flux density is B 1 and the maximum magnetic field strength is H 1 .
  • step S203 the maximum magnetic flux density B 1 or the maximum magnetic field intensity H 1 obtained, using a database input in step S201, it determines the incremental permeability mu 1 in each minute area of the analysis target model.
  • a magnetic field (magnetic flux density B 0 and magnetic field intensity H 0 ) with respect to a direct current is obtained by static magnetic field analysis using the incremental permeability ⁇ 1 , the maximum magnetic flux density B 1 , and the maximum magnetic field strength H 1. .
  • a conventional method can be used for the static magnetic field analysis.
  • the obtained magnetic flux density B 0 and magnetic field intensity H 0 are magnetic fields that give the minor loop center point 13 (see FIG. 6).
  • the upper end point of the minor loop obtained in the next step S205 is the first. It rides on the magnetization curve 1 with a desired accuracy.
  • the desired accuracy may be a default value or a value input by an analyst, and is determined in advance and stored in a storage device.
  • the minor loop center point 13 (that is, the magnetic flux density B 0 and the magnetic field strength H 0 ) is obtained for each minute region of the analysis target model.
  • step S205 an alternating magnetic field is calculated by frequency response analysis using the incremental permeability ⁇ 1 determined in step S203.
  • the AC magnetic field calculation by the frequency response analysis can be performed by the same method as in step S104 in the first embodiment.
  • FIG. 6 shows an example of the locus of the magnetic field on the BH plane drawn by this alternating magnetic field calculation as a locus 21 as a line segment.
  • a line segment representing the locus 21 represents a minor loop.
  • step S206 post-processing such as inductance calculation is performed to complete the analysis on a specific DC component and AC component.
  • inductance calculation may be performed by a conventional method using the obtained magnetic field value.
  • This embodiment is the same as the prior art in that a database relating to the relationship between the magnetic flux density and the incremental permeability or the relationship between the magnetic field strength and the incremental permeability is necessary. It has the feature that analysis accuracy improves by adding.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

 直流磁場に重畳する交流磁場に関するインダクタンスを高速かつ高精度に計算することができる磁場解析プログラムと磁場解析方法を提供する。交流磁場を周波数応答解析で解く磁場解析プログラムであり、直流磁束密度または直流磁界強度と、交流電流の振幅及び周波数と、解析対象の磁性部材の初磁化曲線を入力し、直流磁束密度が入力された場合は直流磁界強度を求め、直流磁界強度が入力された場合は直流磁束密度を求める手順(S100)と、交流電流の振幅及び周波数を用いて周波数応答解析を実行して、交流磁束密度と交流磁界強度を計算する手順(S104)と、周波数応答解析で得られる交流磁束密度の最大値と直流磁束密度の合計が、周波数応答解析で得られる交流磁界強度の最大値と直流磁界強度の合計と初磁化曲線とで決まる磁束密度と、所望の精度で一致する解を導出する手順(S105、S106)をコンピュータに実行させる。

Description

磁場解析プログラム及び磁場解析方法
 本発明は、リアクトルやモータなどの電磁機器のインダクタンスを高速に計算可能な磁場解析プログラムと磁場解析方法に関する。
 リアクトルは、直流電流に交流電流が重畳された形で使用される。また、モータや発電機の稼動中に高周波ノイズ電流が重畳する現象も、基本波電流成分を近似的に直流とみなせば、直流電流に交流電流が重畳された状況が生じていると考えることができる。そのため、リアクトルやモータといった電磁機器を設計する際には、直流電流に重畳した交流電流に関するインダクタンス、すなわち直流磁場に重畳した交流磁場に関するインダクタンスを高速・高精度に計算することが求められる。
 直流電流に重畳した交流電流に関するインダクタンスを計算する方法として、これまでにさまざまな方法が提案されている。例えば特許文献1に記載の技術では、磁界解析シミュレータにより所定の直流電流に対する動作点を求め、その結果を初期値とする一方、事前に作成した磁束密度と増分透磁率との関係を示す点列データから増分透磁率を決定し、交流解析を行ってインダクタンス値を得ている。しかしこの方法では、動作点を求めた後の交流解析において、過渡応答解析(時刻を少しずつ進めながら各瞬間の磁場を解き、これを多数ステップ繰り返す解析手法)を行うため、解析時間が長くかかる。
 また特許文献2及び3に記載の技術では、過渡応答解析を行わず、1回の静磁場解析でインダクタンスを求めることで高速化しているが、鉄心に流れる渦電流を考慮できないため計算精度に劣る。そこで特許文献4に記載の技術では、1回の静磁場解析で渦電流の影響を考慮するために、リング状の試料を用いて渦電流の影響を加味した増分透磁率を実測で求め、この増分透磁率を用いて磁場解析を行っている。しかし手順が煩雑である上、計算精度にも限界がある。
 そこで最近では、動作点を求めた後の交流解析を、過渡応答解析ではなく、より高速である周波数応答解析(正弦波状の電流を入力したときに、磁束密度が正弦波状に時間変化すると仮定して複素数領域で定常状態を解く解析手法)で行う市販の磁場解析プログラムも現れている(非特許文献1参照)。しかしながら、初磁化曲線とマイナーループの関係を忠実にモデル化しているとは言い難い。すなわち、非特許文献1に記載の磁場解析プログラムでは、本来マイナーループは初磁化曲線上の点から磁場が減少する向きに形成されるはずのところを、初磁化曲線上の点を中心に磁場が増減するようにモデル化している。そのため、マイナーループ上端の点が初磁化曲線の上に乗っていないという、現実とは異なる解が導かれるという課題が残っている。
WO2010/038799 特開2004-294123号公報 特開2010-122089号公報 特許第2984108号公報
JMAGアプリケーションカタログNo.158、"マイナーヒステリシスループを考慮したリアクトルの直流重畳特性解析"、[online]、2010年12月27日、株式会社JSOL、[平成23年6月21日検索]、インターネット〈URL:http://www.jmag-international.com/jp/catalog/158_Reactor_SuperImposedDirectCurrent.html〉
 以上説明したように、従来の技術では、直流磁場に交流磁場が重畳した体系について、インダクタンスの高速な計算と高精度な計算を両立するのが困難であり、実用には不便であった。
 本発明は、直流磁場に重畳する交流磁場に関するインダクタンスを高速かつ高精度に計算することができる磁場解析プログラムと磁場解析方法を提供することを目的とする。
 本発明による磁場解析プログラムは、交流磁場を周波数応答解析で解く磁場解析プログラムであり、次のような特徴を持つ。
 入力手段を用いて、直流磁束密度または直流磁界強度と、交流電流の振幅及び周波数と、解析対象の磁性部材の初磁化曲線を入力し、直流磁束密度が入力された場合はこの直流磁束密度と前記初磁化曲線から直流磁界強度を求め、直流磁界強度が入力された場合はこの直流磁界強度と前記初磁化曲線から直流磁束密度を求め、前記直流磁束密度と前記直流磁界強度と前記交流電流の振幅及び周波数と前記初磁化曲線とを記憶手段に記憶する手順と、前記交流電流の振幅及び周波数を用いて周波数応答解析を実行して、交流磁束密度と交流磁界強度を計算する手順と、前記周波数応答解析で得られる交流磁束密度の最大値と前記直流磁束密度の合計が、前記周波数応答解析で得られる交流磁界強度の最大値と前記直流磁界強度の合計と前記初磁化曲線とで決まる磁束密度と、前記記憶手段から読み出した精度で一致する解を導出する手順をコンピュータに実行させる。
 本発明によれば、直流磁場に重畳する交流磁場に関するインダクタンスを高速かつ高精度に計算することができる。
第1の実施例による磁場解析プログラムを示すフローチャート。 代表的な磁性体における磁束密度Bと磁界強度Hの関係を示す模式図。 第1の実施例による磁場解析プログラムで求められるB-H平面上の磁場の軌跡を示す図。 第2の実施例による磁場解析プログラムを示すフローチャート。 第3の実施例による磁場解析プログラムを示すフローチャート。 第3の実施例による磁場解析プログラムで求められるB-H平面上の磁場の軌跡を示す図。
 本発明による磁場解析プログラムと磁場解析方法は、動作点を求めた後の交流解析として周波数応答解析を用い、マイナーループ上端の点が初磁化曲線の上に乗った解を導出することで、高速かつ高精度な磁場解析を実現する。具体的には、目的に応じた2種類の方法を用いる。すなわち、解析の簡便さを重視する場合は、初磁化曲線を参照して増分透磁率を調整しながら周波数応答解析を複数回繰り返すことで、マイナーループ上端の点が初磁化曲線の上に乗った解を導出する。この方法により、解析精度を確保できるとともに、増分透磁率に関するデータベースの準備が不要となって簡便に解析を実行することができる。一方、解析精度を重視する場合は、周波数応答解析の前に静磁場解析を1回行ってマイナーループ中央点を求め、そこを中心とする周波数応答解析を行うことで、より現実の物理現象に近い高精度な解析を実現することができる。
 本発明により、高精度の解を従来の解析方法よりも簡便に得ることと、従来の解析方法では得られない高精度な解を得ることが可能であり、インダクタンスの高速な計算と高精度な計算とを両立することができる。従って、リアクトルの直流重畳特性、あるいはモータの低~高周波特性を短時間で高精度にモデリング可能になる。このようなモデルを用いると、電磁ノイズやインバータサージといった高周波現象を評価することが可能になり、モータドライブの最適化設計や開発期間短縮に貢献できる。なお、本発明の磁場解析プログラムと磁場解析方法は、モータやリアクトルのほか、誘導加熱装置の解析にも応用可能である。
 本発明による磁場解析プログラムと磁場解析方法は、入力装置、出力装置、演算装置及び記憶装置を備えるコンピュータにより実行される。解析に必要なデータは、キーボードやマウスなどの入力装置により入力され、解析結果は、ディスプレーなどの出力装置に出力して表示することができる。演算装置は、コンピュータを制御し、磁場解析その他の演算を実行する。また、入力されたデータや解析で得られたデータは、ハードディスクやメモリなどの記憶装置に保存することができる。
 本発明による磁場解析プログラムと磁場解析方法は、微小領域に分割された解析対象モデルと、オフセットとなる直流磁束密度または直流磁界強度と、交流磁束密度または交流磁界強度と、初磁化曲線を入力とし、微小領域について磁場解析を行い、直流磁場に重畳する交流磁場に関するインダクタンスを計算する。オフセットとなる直流磁束密度または直流磁界強度の代わりに、オフセットとなる直流電流を入力としてもよい。
 以下、本発明による磁場解析プログラムの実施例について説明する。
 図1は、本発明による磁場解析プログラムの第1の実施例を示すフローチャートである。図2は、代表的な磁性体における磁束密度Bと磁界強度Hの関係を示す模式図であり、初磁化曲線及びマイナーループを示している。図3は、本実施例による磁場解析プログラムで求められるB-H平面上の磁場の軌跡を示す図であり、磁束密度Bと磁界強度Hの関係を示す。
 図2において、直流磁場は、初磁化曲線1にて決定される。初磁化曲線1に重畳する交流磁場は、マイナーループ4に従ってB-H平面上に軌跡を描く。マイナーループ4の勾配、すなわち式(1)で表される物理量μを、増分透磁率と呼ぶ。
μ=(B-B)/(H-H)   (1)
、Hは、それぞれマイナーループ4の最大磁界強度と最小磁界強度であり、B、Bは、それぞれマイナーループ4上でH、Hに対応する磁束密度である。なお、以下で「磁場」と記述した場合、磁束密度及び磁界強度のいずれか一方または両方を意味することとする。
 本実施例では、図2に示したような物理現象を図1のフローチャートに従って解析する。この解析により、磁場は、B-H平面上において図3に示すような軌跡15を描くことになり、マイナーループ上端の点が初磁化曲線1の上に乗ることになる(軌跡15を表す線分がマイナーループを表している)。
 以下、図1の各ステップについて説明する。
 最初にステップS100において、微小領域に分割された解析対象モデルと、直流磁場と、交流電流の振幅及び周波数と、解析対象モデルの磁性部材の初磁化曲線を入力する。入力された直流磁場が磁束密度B及び磁界強度Hのどちらか一方のみであった場合は、初磁化曲線に基づいて、入力されたBまたはHに対応するHまたはBを決定する。初磁化曲線は、磁場解析プログラムが備えているものを指定して入力してもよく、個々の解析者が準備して入力してもよい。解析対象モデルの磁性部材に応じて、複数の初磁化曲線を入力することもできる。
 これらの入力には、磁場解析プログラムを実行するコンピュータが備える入力装置を用いることができる。解析対象モデルと直流磁場(直流磁束密度Bと直流磁界強度H)と交流電流の振幅及び周波数と初磁化曲線は、記憶装置に記憶される。
 次にステップS103において、解析対象モデルの各微小領域での増分透磁率を設定する。一般に、動作点は微小領域毎に異なるため、増分透磁率も微小領域毎に異なる。増分透磁率の設定方法としては、例えば、ステップS100で入力した直流磁場の値における初磁化曲線の傾きから導出する。
 次にステップS104において、ステップS100で入力した交流電流の振幅及び周波数とステップS103で設定した増分透磁率とを用いて、周波数応答解析により交流磁場を計算する。この周波数応答解析による交流磁場計算には、既存の方法を用いることができる。
 図3に、この最初の周波数応答解析でのB-H平面上の磁場の軌跡の例を、軌跡14として線分で示す。軌跡14を表す線分がマイナーループを表している。静磁場解析ではなく周波数応答解析を行うことで、鉄心や巻線などに流れる渦電流を考慮することができるため、精度が向上する。また、過渡応答解析ではなく周波数応答解析を行うことで、解析時間を短縮できる。ただし、この段階では磁気飽和などの非線形性を考慮できていないので、次のステップ以降で収束計算を行う。
 ステップS105において、各微小領域での最大磁界強度Hと最大磁束密度Bを計算する。Hは、ステップS100で入力した直流の磁界強度Hと、ステップS104で求めた交流の磁界強度の振幅(H-H)とから求められる。Bは、ステップS100で入力した直流の磁束密度Bと、ステップS104で求めた交流の磁界強度の振幅(H-H)と、ステップS103で設定した増分透磁率とから求められる。増分透磁率をμとすると、Bは式(2)のように表される。
=B+μ(H-H)   (2)
図3を用いて説明すると、最大磁束密度Bは、直流の磁束密度Bに、交流磁場の振幅3(すなわちH-H)に増分透磁率μ(例えば、動作点2における初磁化曲線1の勾配)を掛けたものを加えた値である。
 続いて、ステップS106において、解の収束判定を行う。判定は、ステップS105で得られた最大磁束密度Bの値が、初磁化曲線上の点と所望の精度で一致するかどうかで行う。図3を用いて説明すると、最大磁束密度Bが、初磁化曲線1上で最大磁界強度Hに対応する磁束密度B’と、所望の精度で一致しているかどうかで判定する。所望の精度は、デフォルト値を用いても、解析者が入力した値を用いてもよく、予め定めて記憶装置に記憶しておく。
 ステップS106で収束していないと判定した場合は、ステップS103に戻って増分透磁率を再設定して更新する。増分透磁率の再設定には、例えば下記の式(3)を用いる。
μ=(B’-B)/(H-H)   (3)
μは、再設定した増分透磁率である。
 ただし、増分透磁率の変化が急過ぎると解が収束しない恐れがあるため、一般には式(4)または式(5)のように緩和係数νを導入して、変化を緩和させる。
μ=μ+ν((B’-B)/(H-H)-μ)   (4)
μ=((B’-B)/(H-H))νμ 1-ν   (5)
緩和係数νは、予め定めた値とし、0<ν≦1の実数、例えばν=0.1と設定する。
 このように再設定した増分透磁率を用いて、再度、ステップS104及びS105を実行し、S106にて判定を行う。この反復計算は、要求する精度にも依存するが、通常は5回以内で収束する。反復計算が収束すると、図3に示すように、このときに描かれるB-H平面上の磁場の軌跡15は、マイナーループ上端の点が初磁化曲線1の上に所望の精度で乗る。
 反復計算が収束したと判定されると、ステップS107に進み、インダクタンス計算などの後処理を行い、ある特定の直流成分及び交流成分に関する解析を完了する。実際には、引き続いて異なる条件での解析に進むことが多い。なお、インダクタンスの計算は、得られた磁場の値を用いて従来方法で行えばよい。
 本実施例による磁場解析プログラムは、直流磁場に重畳する交流磁場に関するインダクタンスを高速かつ高精度に計算することができ、さらに、磁束密度と増分透磁率との関係を示す点列データ(データベース)が不要であるため、簡便に実施可能であるという特徴を有する。
 以下、本発明による磁場解析プログラムの第2の実施例について説明する。
 図4は、本発明による磁場解析プログラムの第2の実施例を示すフローチャートである。以下、図4の各ステップについて説明する。
 最初にステップS101において、微小領域に分割された解析対象モデルと、直流電流と、交流電流の振幅及び周波数と、解析対象モデルの磁性部材の初磁化曲線を入力する。初磁化曲線は、磁場解析プログラムが備えているものを指定して入力してもよく、個々の解析者が準備して入力してもよい。解析対象モデルの磁性部材に応じて、複数の初磁化曲線を入力することもできる。第1の実施例との相違点は、直流磁場ではなく、その起源となる直流電流を入力する点である。
 これらの入力には、磁場解析プログラムを実行するコンピュータが備える入力装置を用いることができる。解析対象モデルと直流電流と交流電流の振幅及び周波数と初磁化曲線は、記憶装置に記憶される。
 続いてステップS102において、初磁化曲線に基づき、ステップS101で入力した直流電流により発生する直流磁場を計算し、磁束密度B及び磁界強度Hを得る。直流磁場の計算には、従来の方法を用いることができる。得られた磁束密度B及び磁界強度Hは、記憶装置に記憶される。
 続くステップS103以降は、第1の実施例と基本的に同じであるため、説明を省略する。ただし、ステップS103やステップS105で用いる直流磁場は、直接入力したものではなく、ステップS102にて計算したものである点が異なる。
 本実施例による磁場解析プログラムは、第1の実施例による磁場解析プログラムと同様に、直流磁場に重畳する交流磁場に関するインダクタンスを高速かつ高精度に計算することができ、さらに、磁束密度と増分透磁率との関係を示す点列データ(データベース)が不要であるため、簡便に実施可能であるという特徴を有する。
 以下、本発明による磁場解析プログラムの第3の実施例について説明する。
 図5は、本発明による磁場解析プログラムの第3の実施例を示すフローチャートである。また図6は、本実施例による磁場解析プログラムで求められるB-H平面上の磁場の軌跡を示す図であり、磁束密度Bと磁界強度Hの関係を示す。
 本実施例では、初磁化曲線1上にないマイナーループ中央点13(図6を参照)を求め、続いてその点を中心とする周波数応答解析を実施することで、マイナーループ上端の点を所望の精度で初磁化曲線1の上に乗せる。このため、より高精度にマイナーループを表現した解析を実現することができる。
 以下、図5の各ステップについて説明する。
 ステップS201において、微小領域に分割された解析対象モデルと、直流電流と、交流電流の振幅及び周波数と、解析対象モデルの磁性部材の初磁化曲線を入力する。さらに、解析対象モデルの磁性部材について、磁束密度と増分透磁率との関係、または磁界強度と増分透磁率との関係を示す点列データ(以下、「データベース」と称する)を入力する。初磁化曲線とデータベースは、磁場解析プログラムが備えているものを指定して入力してもよく、個々の解析者が準備して入力してもよい。解析対象モデルの磁性部材に応じて、複数の初磁化曲線とデータベースを入力することもできる。
 これらの入力には、磁場解析プログラムを実行するコンピュータが備える入力装置を用いることができる。解析対象モデルと直流電流と交流電流の振幅及び周波数と初磁化曲線とデータベースは、記憶装置に記憶される。
 続いてステップS202において、初磁化曲線に基づき、直流電流に交流電流の振幅を加えた最大電流に対する磁場(最大磁場)を、静磁場解析にて求める。静磁場解析には、従来の方法を用いることができる。交流磁場により発生する可能性のある渦電流の影響は、ここでは無視する。得られた最大磁束密度をB、最大磁界強度をHとする。
 次にステップS203において、得られた最大磁束密度Bまたは最大磁界強度Hから、ステップS201で入力したデータベースを用いて、解析対象モデルの各微小領域での増分透磁率μを決定する。
 次にステップS204において、増分透磁率μ、最大磁束密度B、及び最大磁界強度Hを用いて、直流電流に対する磁場(磁束密度Bと磁界強度H)を静磁場解析にて求める。この静磁場解析には、増分透磁率μ、最大磁束密度B、及び最大磁界強度Hから計算される残留磁束密度M(=B-μ)を用いてもよい。静磁場解析には、従来の方法を用いることができる。得られた磁束密度Bと磁界強度Hが、マイナーループ中央点13(図6参照)を与える磁場である。このマイナーループ中央点13を求める静磁場解析を実施する際、収束判定値を十分に小さく設定するなどの精度確保対策を施すことで、次のステップS205にて得られるマイナーループ上端の点が初磁化曲線1の上に所望の精度で乗ることになる。所望の精度は、デフォルト値を用いても、解析者が入力した値を用いてもよく、予め定めて記憶装置に記憶しておく。マイナーループ中央点13(すなわち、磁束密度Bと磁界強度H)は、解析対象モデルの各微小領域に対して求める。
 次にステップS205において、ステップS203で決定した増分透磁率μを用いて、周波数応答解析により交流磁場を計算する。この周波数応答解析による交流磁場計算は、第1の実施例でのステップS104と同様の方法で行うことができる。
 図6に、この交流磁場計算で描かれるB-H平面上の磁場の軌跡の例を、軌跡21として線分で示す。軌跡21を表す線分がマイナーループを表している。静磁場解析ではなく周波数応答解析を行うことで、鉄心や巻線などに流れる渦電流を考慮することができるため、精度が向上する。また、過渡応答解析ではなく周波数応答解析を行うことで、解析時間を短縮できる。さらに、本実施例では、第1及び第2の実施例とは異なり、最大磁場(磁束密度Bで磁界強度H、すなわちマイナーループ上端の点)が既に初磁化曲線の上にあるため、収束計算は不要である。よって、解析時間はさらに短くなる。
 最後にステップS206にて、インダクタンス計算などの後処理を行い、ある特定の直流成分及び交流成分に関する解析を完了する。実際には、引き続いて異なる条件での解析に進むことが多い。なお、インダクタンスの計算は、得られた磁場の値を用いて従来方法で行えばよい。
 本実施例は、磁束密度と増分透磁率との関係、または磁界強度と増分透磁率との関係に関するデータベースが必要である点は従来技術と同じであるが、マイナーループ中央点を求める静磁場解析を追加することで解析精度が向上するという特徴を有する。
 1…初磁化曲線,2…動作点,3…交流磁場の振幅,4…マイナーループ,13…マイナーループ中央点,14…第1の実施例における、最初の周波数応答解析での磁場の軌跡,15…第1の実施例における、最後の周波数応答解析での磁場の軌跡,21…第3の実施例における、周波数応答解析での磁場の軌跡。

Claims (7)

  1.  交流磁場を周波数応答解析で解く磁場解析プログラムにおいて、
     入力手段を用いて、直流磁束密度または直流磁界強度と、交流電流の振幅及び周波数と、解析対象の磁性部材の初磁化曲線を入力し、直流磁束密度が入力された場合はこの直流磁束密度と前記初磁化曲線から直流磁界強度を求め、直流磁界強度が入力された場合はこの直流磁界強度と前記初磁化曲線から直流磁束密度を求め、前記直流磁束密度と前記直流磁界強度と前記交流電流の振幅及び周波数と前記初磁化曲線とを記憶手段に記憶する手順と、
     前記交流電流の振幅及び周波数を用いて周波数応答解析を実行して、交流磁束密度と交流磁界強度を計算する手順と、
     前記周波数応答解析で得られる交流磁束密度の最大値と前記直流磁束密度の合計が、前記周波数応答解析で得られる交流磁界強度の最大値と前記直流磁界強度の合計と前記初磁化曲線とで決まる磁束密度と、前記記憶手段から読み出した精度で一致する解を導出する手順を、
    コンピュータに実行させるための磁場解析プログラム。
  2.  前記直流磁束密度または前記直流磁界強度を入力する代わりに、前記入力手段を用いて直流電流を入力する手順と、
     前記直流電流と前記初磁化曲線を用いて、前記直流磁束密度と前記直流磁界強度を求める手順を、
    コンピュータに実行させるための請求項1記載の磁場解析プログラム。
  3.  交流磁束密度と交流磁界強度を計算する前記手順で、前記交流電流の振幅及び周波数の他に、前記磁性部材の増分透磁率を用いて周波数応答解析を実行し、前記周波数応答解析で得られる交流磁束密度の最大値と前記直流磁束密度の合計が、前記周波数応答解析で得られる交流磁界強度の最大値と前記直流磁界強度の合計と前記初磁化曲線とで決まる磁束密度と、前記記憶手段から読み出した精度で一致するまで、前記増分透磁率を更新しながら前記周波数応答解析を反復して解を導出する請求項1記載の磁場解析プログラム。
  4.  前記直流磁束密度または前記直流磁界強度を入力する代わりに、前記入力手段を用いて直流電流を入力する手順と、
     前記直流電流と前記初磁化曲線を用いて、前記直流磁束密度と前記直流磁界強度を求める手順を、
    コンピュータに実行させるための請求項3記載の磁場解析プログラム。
  5.  交流磁場を周波数応答解析で解く磁場解析プログラムにおいて、
     入力手段を用いて、直流電流と、交流電流の振幅及び周波数と、解析対象の磁性部材の初磁化曲線と、磁束密度と前記磁性部材の増分透磁率との関係または磁界強度と前記磁性部材の増分透磁率との関係を示すデータベースを入力し、前記直流電流と前記交流電流の振幅及び周波数と前記初磁化曲線と前記データベースとを記憶手段に記憶する手順と、
     前記直流電流と前記交流電流の振幅の合計と前記初磁化曲線とを用いて、最大磁束密度と最大磁界強度を静磁場解析によって求める手順と、
     前記データベースと前記最大磁束密度または前記最大磁界強度とから、前記磁性部材の増分透磁率を決定する手順と、
     前記最大磁束密度と前記最大磁界強度と前記増分透磁率とから、前記直流電流に対する磁束密度と磁界強度を静磁場解析にて求める手順と、
     前記交流電流の振幅及び周波数と前記増分透磁率とを用いて周波数応答解析を実行して、交流磁束密度と交流磁界強度を計算する手順を、
    コンピュータに実行させるための磁場解析プログラム。
  6.  入力手段と演算手段と記憶手段を備えるコンピュータを用いて、交流磁場を周波数応答解析で解く磁場解析方法において、
     前記入力手段が、直流磁束密度または直流磁界強度と、交流電流の振幅及び周波数と、解析対象の磁性部材の初磁化曲線を入力する工程と、
     前記演算手段が、直流磁束密度が入力された場合はこの直流磁束密度と前記初磁化曲線から直流磁界強度を求め、直流磁界強度が入力された場合はこの直流磁界強度と前記初磁化曲線から直流磁束密度を求める工程と、
     前記記憶手段が、前記直流磁束密度と前記直流磁界強度と前記交流電流の振幅及び周波数と前記初磁化曲線とを記憶する工程と、
     前記演算手段が、前記交流電流の振幅及び周波数と前記磁性部材の増分透磁率とを用いて周波数応答解析を実行して、交流磁束密度と交流磁界強度を計算する工程と、
     前記演算手段が、前記周波数応答解析で得られる交流磁束密度の最大値と前記直流磁束密度の合計が、前記周波数応答解析で得られる交流磁界強度の最大値と前記直流磁界強度の合計と前記初磁化曲線とで決まる磁束密度と、前記記憶手段から読み出した精度で一致するまで、前記増分透磁率を更新しながら前記周波数応答解析を反復して解を導出する工程を、
    有することを特徴とする磁場解析方法。
  7.  入力手段と演算手段と記憶手段を備えるコンピュータを用いて、交流磁場を周波数応答解析で解く磁場解析方法において、
     前記入力手段が、直流電流と、交流電流の振幅及び周波数と、解析対象の磁性部材の初磁化曲線と、磁束密度と前記磁性部材の増分透磁率との関係または磁界強度と前記磁性部材の増分透磁率との関係を示すデータベースを入力する工程と、
     前記記憶手段が、前記直流電流と前記交流電流の振幅及び周波数と前記初磁化曲線と前記データベースとを記憶する工程と、
     前記演算手段が、前記直流電流と前記交流電流の振幅の合計と前記初磁化曲線とを用いて、最大磁束密度と最大磁界強度を静磁場解析によって求める工程と、
     前記演算手段が、前記データベースと前記最大磁束密度または前記最大磁界強度とから、前記磁性部材の増分透磁率を決定する工程と、
     前記演算手段が、前記最大磁束密度と前記最大磁界強度と前記増分透磁率とから、前記直流電流に対する磁束密度と磁界強度を静磁場解析にて求める工程と、
     前記演算手段が、前記交流電流の振幅及び周波数と前記増分透磁率とを用いて周波数応答解析を実行して、交流磁束密度と交流磁界強度を計算する工程を、
    有することを特徴とする磁場解析方法。
PCT/JP2012/064445 2011-07-19 2012-06-05 磁場解析プログラム及び磁場解析方法 WO2013011757A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280035526.2A CN103718180B (zh) 2011-07-19 2012-06-05 磁场分析方法
US14/130,594 US9506995B2 (en) 2011-07-19 2012-06-05 Magnetic field analysis programs and magnetic field analysis methods
JP2013524633A JP5909488B2 (ja) 2011-07-19 2012-06-05 磁場解析プログラム及び磁場解析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011157905 2011-07-19
JP2011-157905 2011-07-19

Publications (1)

Publication Number Publication Date
WO2013011757A1 true WO2013011757A1 (ja) 2013-01-24

Family

ID=47557944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064445 WO2013011757A1 (ja) 2011-07-19 2012-06-05 磁場解析プログラム及び磁場解析方法

Country Status (4)

Country Link
US (1) US9506995B2 (ja)
JP (1) JP5909488B2 (ja)
CN (1) CN103718180B (ja)
WO (1) WO2013011757A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813367A (zh) * 2016-03-10 2016-07-27 东莞中子科学中心 一种在交流磁铁上得到高精度时变磁场的方法和装置
WO2017064578A3 (en) * 2015-10-14 2018-02-01 International Business Machines Corporation Graphene-based magnetic hall sensor for fluid flow analysis at nanoscale level
CN107765199A (zh) * 2017-10-11 2018-03-06 福州大学 磁性元件幅值磁导率和增量磁导率的直流励磁测量方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104809274A (zh) * 2015-04-13 2015-07-29 国网四川省电力公司电力科学研究院 一种电力变压器铁心振动分析计算方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207900A (ja) * 2004-01-23 2005-08-04 Hitachi Ltd 磁界解析法,磁界解析プログラム及び磁界解析プログラムを記録した記録媒体
JP2006209273A (ja) * 2005-01-26 2006-08-10 Hitachi Ltd 磁界解析法及び磁界解析プログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2984108B2 (ja) 1991-10-07 1999-11-29 新日本製鐵株式会社 直流重畳のインダクタンス計算装置
JP3705861B2 (ja) * 1996-03-21 2005-10-12 株式会社日立メディコ 超電導磁石装置及びその着磁調整方法
JP4228649B2 (ja) * 2002-10-04 2009-02-25 日立金属株式会社 磁場解析方法および装置
JP2004294123A (ja) 2003-03-25 2004-10-21 Kyocera Corp インダクタンス算出法及び直流重畳特性算出法
EP2098880B1 (en) * 2006-10-31 2013-05-22 Hitachi Metals, Ltd. Magnetization analysis method, magnetization analysis device, and computer program
JP4587005B2 (ja) 2008-09-30 2010-11-24 日立金属株式会社 インダクタンス素子の直流重畳特性の解析方法及び電磁界シミュレータ
JP2010122089A (ja) 2008-11-20 2010-06-03 Nec Tokin Corp 直流重畳インダクタンス算出方法および直流重畳インダクタンス算出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207900A (ja) * 2004-01-23 2005-08-04 Hitachi Ltd 磁界解析法,磁界解析プログラム及び磁界解析プログラムを記録した記録媒体
JP2006209273A (ja) * 2005-01-26 2006-08-10 Hitachi Ltd 磁界解析法及び磁界解析プログラム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017064578A3 (en) * 2015-10-14 2018-02-01 International Business Machines Corporation Graphene-based magnetic hall sensor for fluid flow analysis at nanoscale level
GB2558154A (en) * 2015-10-14 2018-07-04 Ibm Graphene-based magnetic hall sensor for fluid flow analysis at nanoscale level
GB2558154B (en) * 2015-10-14 2018-12-12 Ibm Graphene-based magnetic hall sensor for fluid flow analysis at nanoscale level
CN105813367A (zh) * 2016-03-10 2016-07-27 东莞中子科学中心 一种在交流磁铁上得到高精度时变磁场的方法和装置
CN107765199A (zh) * 2017-10-11 2018-03-06 福州大学 磁性元件幅值磁导率和增量磁导率的直流励磁测量方法
CN107765199B (zh) * 2017-10-11 2019-06-07 福州大学 磁性元件幅值磁导率和增量磁导率的直流励磁测量方法

Also Published As

Publication number Publication date
US9506995B2 (en) 2016-11-29
CN103718180B (zh) 2016-11-23
US20140129167A1 (en) 2014-05-08
CN103718180A (zh) 2014-04-09
JP5909488B2 (ja) 2016-04-26
JPWO2013011757A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP6206608B1 (ja) 電磁場解析装置、電磁場解析方法、およびプログラム
JP5909488B2 (ja) 磁場解析プログラム及び磁場解析方法
JP6249912B2 (ja) 解析装置
CN105425174B (zh) 一种获取心式变压器漏磁场的方法及装置
Hofmann et al. Modeling magnetic power losses in electrical steel sheets in respect of arbitrary alternating induction waveforms: Theoretical considerations and model synthesis
Vo et al. Novel adaptive controller for effective magnetic measurement under arbitrary magnetization
Berkani et al. Study on optimal design based on direct coupling between a FEM simulation model and L-BFGS-B algorithm
JP5523265B2 (ja) 高速定常場解析方法、高速定常場解析装置、定常場高速解析プログラム、およびこのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP4508582B2 (ja) ヒステリシス磁界解析法及びシステム
Tomczuk et al. The influence of the leg cutting on the core losses in the amorphous modular transformers
JP2005207900A (ja) 磁界解析法,磁界解析プログラム及び磁界解析プログラムを記録した記録媒体
JP6650333B2 (ja) 周波数特性解析装置、方法、及びプログラム
JP2000268061A (ja) 電磁場解析方法およびその装置
JP2016118831A (ja) 特性テーブル作成装置及びコンピュータプログラム
Sulowicz et al. Practical adaptation of a low-cost voltage transducer with an open feedback loop for precise measurement of distorted voltages
Xu et al. Estimation of Iron Loss in Permanent Magnet Synchronous Motors Based on Particle Swarm Optimization and a Recurrent Neural Network
JP6984426B2 (ja) 電磁場解析装置、電磁場解析方法、およびプログラム
D’Amico et al. Vibration of fusion reactor components with magnetic damping
CN109543240B (zh) 一种基于动态区域饱和j-a理论的电流互感器建模方法
Soppelsa et al. Integrated identification of RFX-mod active control system from experimental data and finite element model
Clénet et al. Determination of losses’ local distribution for transformer optimal designing
Zakrzewski et al. Nonlinear scaled models in 3D calculation of transformer magnetic circuits
JP7091865B2 (ja) 電磁場解析装置、電磁場解析方法、およびプログラム
Omura et al. Development of semicircular tubular coreless linear motor and its motion control
JPH05100000A (ja) 直流重畳の鉄損計算装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524633

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14130594

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12815371

Country of ref document: EP

Kind code of ref document: A1