WO2013011757A1 - 磁場解析プログラム及び磁場解析方法 - Google Patents
磁場解析プログラム及び磁場解析方法 Download PDFInfo
- Publication number
- WO2013011757A1 WO2013011757A1 PCT/JP2012/064445 JP2012064445W WO2013011757A1 WO 2013011757 A1 WO2013011757 A1 WO 2013011757A1 JP 2012064445 W JP2012064445 W JP 2012064445W WO 2013011757 A1 WO2013011757 A1 WO 2013011757A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic field
- flux density
- magnetic flux
- field strength
- magnetic
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0064—Arrangements or instruments for measuring magnetic variables comprising means for performing simulations, e.g. of the magnetic variable to be measured
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/07—Hall effect devices
- G01R33/072—Constructional adaptation of the sensor to specific applications
- G01R33/075—Hall devices configured for spinning current measurements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/36—Circuit design at the analogue level
- G06F30/367—Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/82—Elements for improving aerodynamics
Definitions
- the present invention relates to a magnetic field analysis program and a magnetic field analysis method capable of calculating the inductance of an electromagnetic device such as a reactor or a motor at high speed.
- the reactor is used in a form in which an alternating current is superimposed on a direct current.
- the phenomenon in which high-frequency noise current is superimposed during operation of a motor or generator can be considered to be a situation in which AC current is superimposed on DC current if the fundamental current component is approximately regarded as DC. it can. Therefore, when designing an electromagnetic device such as a reactor or a motor, it is required to calculate the inductance related to the alternating current superimposed on the direct current, that is, the inductance related to the alternating magnetic field superimposed on the direct current magnetic field with high speed and high accuracy.
- Non-Patent Document 1 AC analysis after obtaining the operating point is not a transient response analysis, but a faster frequency response analysis (assuming that when a sinusoidal current is input, the magnetic flux density changes over time into a sinusoidal waveform.
- Non-Patent Document 1 a commercially available magnetic field analysis program performed by an analysis method for solving a steady state in a complex number region.
- the relationship between the initial magnetization curve and the minor loop is faithfully modeled. That is, in the magnetic field analysis program described in Non-Patent Document 1, the minor loop is originally formed in a direction in which the magnetic field decreases from the point on the initial magnetization curve, but the magnetic field is centered on the point on the initial magnetization curve. Modeled to increase or decrease. Therefore, there remains a problem that a solution different from the reality is derived that the upper end point of the minor loop is not on the initial magnetization curve.
- An object of the present invention is to provide a magnetic field analysis program and a magnetic field analysis method capable of calculating an inductance relating to an alternating magnetic field superimposed on a direct magnetic field at high speed and with high accuracy.
- the magnetic field analysis program according to the present invention is a magnetic field analysis program for solving an alternating magnetic field by frequency response analysis, and has the following characteristics.
- the input means uses the input means to input the DC magnetic flux density or DC magnetic field strength, the amplitude and frequency of the AC current, and the initial magnetization curve of the magnetic member to be analyzed. If DC magnetic flux density is input, this DC magnetic flux density A DC magnetic field strength is obtained from the initial magnetization curve, and when a DC magnetic field strength is input, a DC magnetic flux density is obtained from the DC magnetic field strength and the initial magnetization curve, and the DC magnetic flux density, the DC magnetic field strength, and the AC current are calculated.
- the sum of the maximum AC magnetic flux density obtained by frequency response analysis and the DC magnetic flux density is the sum of the maximum AC magnetic field strength obtained by frequency response analysis and the DC magnetic field strength.
- the inductance related to the AC magnetic field superimposed on the DC magnetic field can be calculated at high speed and with high accuracy.
- the flowchart which shows the magnetic field analysis program by a 1st Example The schematic diagram which shows the relationship between the magnetic flux density B and the magnetic field intensity
- the magnetic field analysis program and the magnetic field analysis method according to the present invention use a frequency response analysis as an AC analysis after obtaining the operating point, and derive a solution in which the upper end point of the minor loop is on the initial magnetization curve.
- a frequency response analysis as an AC analysis after obtaining the operating point
- derive a solution in which the upper end point of the minor loop is on the initial magnetization curve.
- two types of methods according to the purpose are used. That is, when importance is attached to the simplicity of analysis, the upper end point of the minor loop is placed on the initial magnetization curve by repeating the frequency response analysis multiple times while adjusting the incremental permeability with reference to the initial magnetization curve. Derive a solution.
- analysis accuracy can be ensured, and preparation of a database regarding incremental magnetic permeability is not required, and analysis can be easily performed.
- static magnetic field analysis is performed once before frequency response analysis to find the minor loop center point, and frequency response analysis centered on this is performed, making it a more realistic physical phenomenon. Nearly accurate analysis can be realized.
- the present invention it is possible to obtain a highly accurate solution more easily than the conventional analysis method, and to obtain a highly accurate solution that cannot be obtained by the conventional analysis method. It is possible to achieve both calculations. Therefore, the direct current superposition characteristics of the reactor or the low to high frequency characteristics of the motor can be modeled with high accuracy in a short time. By using such a model, it becomes possible to evaluate high-frequency phenomena such as electromagnetic noise and inverter surge, which can contribute to the optimization design and shortening of the development period of the motor drive.
- the magnetic field analysis program and magnetic field analysis method of the present invention can be applied to the analysis of induction heating devices in addition to motors and reactors.
- the magnetic field analysis program and the magnetic field analysis method according to the present invention are executed by a computer including an input device, an output device, an arithmetic device, and a storage device.
- Data necessary for the analysis is input by an input device such as a keyboard and a mouse, and the analysis result can be output and displayed on an output device such as a display.
- the arithmetic device controls the computer and executes magnetic field analysis and other arithmetic operations.
- input data and data obtained by analysis can be stored in a storage device such as a hard disk or a memory.
- the magnetic field analysis program and the magnetic field analysis method according to the present invention have an analysis target model divided into micro regions, a DC magnetic flux density or a DC magnetic field strength as an offset, an AC magnetic flux density or an AC magnetic field strength, and an initial magnetization curve as inputs. Then, the magnetic field analysis is performed on the minute region, and the inductance related to the AC magnetic field superimposed on the DC magnetic field is calculated. Instead of the DC magnetic flux density or DC magnetic field strength that serves as an offset, a DC current that serves as an offset may be input.
- FIG. 1 is a flowchart showing a first embodiment of a magnetic field analysis program according to the present invention.
- FIG. 2 is a schematic diagram showing the relationship between the magnetic flux density B and the magnetic field strength H in a typical magnetic material, and shows an initial magnetization curve and a minor loop.
- FIG. 3 is a diagram showing the locus of the magnetic field on the BH plane obtained by the magnetic field analysis program according to this embodiment, and shows the relationship between the magnetic flux density B and the magnetic field strength H.
- the DC magnetic field is determined by the initial magnetization curve 1.
- the alternating magnetic field superimposed on the initial magnetization curve 1 draws a locus on the BH plane according to the minor loop 4.
- the gradient of the minor loop 4, that is, the physical quantity ⁇ expressed by the equation (1) is called incremental magnetic permeability.
- ⁇ (B a ⁇ B b ) / (H a ⁇ H b ) (1)
- H a and H b are the maximum magnetic field strength and the minimum magnetic field strength of the minor loop 4, respectively
- B a and B b are magnetic flux densities corresponding to H a and H b on the minor loop 4, respectively.
- “magnetic field” means either or both of magnetic flux density and magnetic field strength.
- the physical phenomenon shown in FIG. 2 is analyzed according to the flowchart of FIG.
- the magnetic field draws a locus 15 as shown in FIG. 3 on the BH plane, and the point at the upper end of the minor loop rides on the initial magnetization curve 1 (a line representing the locus 15). Minute represents a minor loop).
- step S100 an analysis target model divided into minute regions, a DC magnetic field, an AC current amplitude and frequency, and an initial magnetization curve of a magnetic member of the analysis target model are input.
- the input DC magnetic field is only one of the magnetic flux density B 0 and the magnetic field strength H 0 , H 0 or B 0 corresponding to the input B 0 or H 0 is calculated based on the initial magnetization curve.
- the initial magnetization curve may be specified and input by a magnetic field analysis program, or may be prepared and input by an individual analyst. A plurality of initial magnetization curves can be input in accordance with the magnetic member of the model to be analyzed.
- an input device included in a computer that executes a magnetic field analysis program can be used.
- the analysis target model, the DC magnetic field (DC magnetic flux density B 0 and DC magnetic field strength H 0 ), the amplitude and frequency of the AC current, and the initial magnetization curve are stored in the storage device.
- step S103 an incremental permeability in each minute region of the analysis target model is set.
- the incremental magnetic permeability is also different for each minute region.
- a method for setting the incremental permeability for example, it is derived from the slope of the initial magnetization curve in the value of the DC magnetic field input in step S100.
- step S104 an AC magnetic field is calculated by frequency response analysis using the amplitude and frequency of the AC current input in step S100 and the incremental permeability set in step S103.
- An existing method can be used for the AC magnetic field calculation by the frequency response analysis.
- FIG. 3 shows an example of the locus of the magnetic field on the BH plane in the first frequency response analysis as a locus 14 as a line segment.
- a line segment representing the locus 14 represents a minor loop.
- step S105 to calculate the maximum magnetic field intensity H 1 and the maximum magnetic flux density B 1 in each micro regions.
- H 1 is obtained from the DC magnetic field intensity H 0 input in step S100 and the amplitude (H 1 ⁇ H 0 ) of the AC magnetic field intensity obtained in step S104.
- B 1 is obtained from the DC magnetic flux density B 0 input in step S100, the AC magnetic field strength amplitude (H 1 -H 0 ) obtained in step S104, and the incremental permeability set in step S103. Assuming that the incremental permeability is ⁇ 1 , B 1 is expressed as shown in Expression (2).
- B 1 B 0 + ⁇ 1 (H 1 ⁇ H 0 ) (2) Referring to FIG.
- the maximum magnetic flux density B 1 is equal to the direct-current magnetic flux density B 0 , the alternating magnetic field amplitude 3 (ie, H 1 ⁇ H 0 ), the incremental magnetic permeability ⁇ 1 (for example, the initial value at the operating point 2). It is a value obtained by adding the product of the gradient of the magnetization curve 1).
- step S106 solution convergence is determined. Determining the value of the maximum magnetic flux density B 1 obtained in step S105 is performed on whether or not to match with a desired accuracy the point on the initial magnetization curve. To explain with reference to FIG. 3, it determines the maximum magnetic flux density B 1 is a maximum magnetic flux density B 1 corresponding to the magnetic field intensity H 1 'on initial magnetization curve 1, in whether they match with the desired accuracy.
- the desired accuracy may be a default value or a value input by an analyst, and is determined in advance and stored in a storage device.
- step S106 If it is determined in step S106 that it has not converged, the process returns to step S103 and the incremental permeability is reset and updated.
- the following equation (3) is used to reset the incremental magnetic permeability.
- ⁇ 2 (B 1 ′ ⁇ B 0 ) / (H 1 ⁇ H 0 ) (3)
- ⁇ 2 is the reset incremental permeability.
- the relaxation coefficient ⁇ is introduced as in the formula (4) or the formula (5) to relax the change.
- ⁇ 2 ⁇ 1 + ⁇ ((B 1 ′ ⁇ B 0 ) / (H 1 ⁇ H 0 ) ⁇ 1 ) (4)
- ⁇ 2 ((B 1 ′ ⁇ B 0 ) / (H 1 ⁇ H 0 )) ⁇ ⁇ 1 1 ⁇ (5)
- the steps S104 and S105 are executed again using the incremental permeability reset as described above, and the determination is made in S106.
- This iterative calculation usually depends on the required accuracy, but usually converges within 5 times.
- the locus 15 of the magnetic field on the BH plane drawn at this time rides the upper end point of the minor loop on the initial magnetization curve 1 with a desired accuracy.
- step S107 post-processing such as inductance calculation is performed, and analysis on a specific DC component and AC component is completed.
- post-processing such as inductance calculation is performed, and analysis on a specific DC component and AC component is completed.
- the inductance calculation may be performed by a conventional method using the obtained magnetic field value.
- the magnetic field analysis program can calculate the inductance related to the AC magnetic field superimposed on the DC magnetic field at high speed and with high accuracy, and further includes point sequence data (database) indicating the relationship between the magnetic flux density and the incremental permeability. Since it is unnecessary, it has a feature that it can be easily implemented.
- FIG. 4 is a flowchart showing a second embodiment of the magnetic field analysis program according to the present invention. Hereinafter, each step of FIG. 4 will be described.
- step S101 the analysis target model divided into minute regions, the direct current, the amplitude and frequency of the alternating current, and the initial magnetization curve of the magnetic member of the analysis target model are input.
- the initial magnetization curve may be specified and input by a magnetic field analysis program, or may be prepared and input by an individual analyst.
- a plurality of initial magnetization curves can be input in accordance with the magnetic member of the model to be analyzed. The difference from the first embodiment is that not a direct-current magnetic field but a direct-current current is input.
- an input device provided in a computer that executes a magnetic field analysis program can be used.
- the analysis target model, the direct current, the amplitude and frequency of the alternating current, and the initial magnetization curve are stored in the storage device.
- Step S102 based on the initial magnetization curve, a DC magnetic field generated by a DC current inputted calculated in step S101, obtaining a magnetic flux density B 0 and magnetic field strength H 0.
- a conventional method can be used to calculate the DC magnetic field.
- the obtained magnetic flux density B 0 and magnetic field strength H 0 are stored in the storage device.
- step S103 and subsequent steps are basically the same as those in the first embodiment, and thus description thereof is omitted.
- the DC magnetic field used in step S103 or step S105 is not directly input but is calculated in step S102.
- the magnetic field analysis program according to the present embodiment can calculate the inductance related to the alternating magnetic field superimposed on the direct current magnetic field at high speed and with high accuracy. Since the point sequence data (database) indicating the relationship with the magnetic susceptibility is not necessary, it can be easily implemented.
- FIG. 5 is a flowchart showing a third embodiment of the magnetic field analysis program according to the present invention.
- FIG. 6 is a diagram showing the locus of the magnetic field on the BH plane obtained by the magnetic field analysis program according to this embodiment, and shows the relationship between the magnetic flux density B and the magnetic field strength H.
- a minor loop center point 13 (see FIG. 6) that is not on the initial magnetization curve 1 is obtained, and then a frequency response analysis is performed centering on that point, thereby determining the upper end point of the minor loop. Is placed on the initial magnetization curve 1 with the accuracy of For this reason, the analysis which expressed the minor loop with higher precision is realizable.
- step S201 the analysis target model divided into minute regions, the direct current, the amplitude and frequency of the alternating current, and the initial magnetization curve of the magnetic member of the analysis target model are input. Further, point sequence data (hereinafter referred to as “database”) indicating the relationship between the magnetic flux density and the incremental permeability or the relationship between the magnetic field strength and the incremental permeability is input for the magnetic member of the analysis target model.
- the initial magnetization curve and the database may be input by specifying those provided in the magnetic field analysis program, or may be prepared and input by individual analysts. A plurality of initial magnetization curves and a database can be input in accordance with the magnetic member of the model to be analyzed.
- an input device provided in a computer that executes a magnetic field analysis program can be used.
- the analysis target model, the direct current, the amplitude and frequency of the alternating current, the initial magnetization curve, and the database are stored in the storage device.
- step S202 based on the initial magnetization curve, a magnetic field (maximum magnetic field) with respect to the maximum current obtained by adding the amplitude of the alternating current to the direct current is obtained by static magnetic field analysis.
- a conventional method can be used for the static magnetic field analysis. The effect of eddy currents that can be generated by an alternating magnetic field is ignored here.
- the obtained maximum magnetic flux density is B 1 and the maximum magnetic field strength is H 1 .
- step S203 the maximum magnetic flux density B 1 or the maximum magnetic field intensity H 1 obtained, using a database input in step S201, it determines the incremental permeability mu 1 in each minute area of the analysis target model.
- a magnetic field (magnetic flux density B 0 and magnetic field intensity H 0 ) with respect to a direct current is obtained by static magnetic field analysis using the incremental permeability ⁇ 1 , the maximum magnetic flux density B 1 , and the maximum magnetic field strength H 1. .
- a conventional method can be used for the static magnetic field analysis.
- the obtained magnetic flux density B 0 and magnetic field intensity H 0 are magnetic fields that give the minor loop center point 13 (see FIG. 6).
- the upper end point of the minor loop obtained in the next step S205 is the first. It rides on the magnetization curve 1 with a desired accuracy.
- the desired accuracy may be a default value or a value input by an analyst, and is determined in advance and stored in a storage device.
- the minor loop center point 13 (that is, the magnetic flux density B 0 and the magnetic field strength H 0 ) is obtained for each minute region of the analysis target model.
- step S205 an alternating magnetic field is calculated by frequency response analysis using the incremental permeability ⁇ 1 determined in step S203.
- the AC magnetic field calculation by the frequency response analysis can be performed by the same method as in step S104 in the first embodiment.
- FIG. 6 shows an example of the locus of the magnetic field on the BH plane drawn by this alternating magnetic field calculation as a locus 21 as a line segment.
- a line segment representing the locus 21 represents a minor loop.
- step S206 post-processing such as inductance calculation is performed to complete the analysis on a specific DC component and AC component.
- inductance calculation may be performed by a conventional method using the obtained magnetic field value.
- This embodiment is the same as the prior art in that a database relating to the relationship between the magnetic flux density and the incremental permeability or the relationship between the magnetic field strength and the incremental permeability is necessary. It has the feature that analysis accuracy improves by adding.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
μ=(Ba-Bb)/(Ha-Hb) (1)
Ha、Hbは、それぞれマイナーループ4の最大磁界強度と最小磁界強度であり、Ba、Bbは、それぞれマイナーループ4上でHa、Hbに対応する磁束密度である。なお、以下で「磁場」と記述した場合、磁束密度及び磁界強度のいずれか一方または両方を意味することとする。
B1=B0+μ1(H1-H0) (2)
図3を用いて説明すると、最大磁束密度B1は、直流の磁束密度B0に、交流磁場の振幅3(すなわちH1-H0)に増分透磁率μ1(例えば、動作点2における初磁化曲線1の勾配)を掛けたものを加えた値である。
μ2=(B1’-B0)/(H1-H0) (3)
μ2は、再設定した増分透磁率である。
μ2=μ1+ν((B1’-B0)/(H1-H0)-μ1) (4)
μ2=((B1’-B0)/(H1-H0))νμ1 1-ν (5)
緩和係数νは、予め定めた値とし、0<ν≦1の実数、例えばν=0.1と設定する。
Claims (7)
- 交流磁場を周波数応答解析で解く磁場解析プログラムにおいて、
入力手段を用いて、直流磁束密度または直流磁界強度と、交流電流の振幅及び周波数と、解析対象の磁性部材の初磁化曲線を入力し、直流磁束密度が入力された場合はこの直流磁束密度と前記初磁化曲線から直流磁界強度を求め、直流磁界強度が入力された場合はこの直流磁界強度と前記初磁化曲線から直流磁束密度を求め、前記直流磁束密度と前記直流磁界強度と前記交流電流の振幅及び周波数と前記初磁化曲線とを記憶手段に記憶する手順と、
前記交流電流の振幅及び周波数を用いて周波数応答解析を実行して、交流磁束密度と交流磁界強度を計算する手順と、
前記周波数応答解析で得られる交流磁束密度の最大値と前記直流磁束密度の合計が、前記周波数応答解析で得られる交流磁界強度の最大値と前記直流磁界強度の合計と前記初磁化曲線とで決まる磁束密度と、前記記憶手段から読み出した精度で一致する解を導出する手順を、
コンピュータに実行させるための磁場解析プログラム。 - 前記直流磁束密度または前記直流磁界強度を入力する代わりに、前記入力手段を用いて直流電流を入力する手順と、
前記直流電流と前記初磁化曲線を用いて、前記直流磁束密度と前記直流磁界強度を求める手順を、
コンピュータに実行させるための請求項1記載の磁場解析プログラム。 - 交流磁束密度と交流磁界強度を計算する前記手順で、前記交流電流の振幅及び周波数の他に、前記磁性部材の増分透磁率を用いて周波数応答解析を実行し、前記周波数応答解析で得られる交流磁束密度の最大値と前記直流磁束密度の合計が、前記周波数応答解析で得られる交流磁界強度の最大値と前記直流磁界強度の合計と前記初磁化曲線とで決まる磁束密度と、前記記憶手段から読み出した精度で一致するまで、前記増分透磁率を更新しながら前記周波数応答解析を反復して解を導出する請求項1記載の磁場解析プログラム。
- 前記直流磁束密度または前記直流磁界強度を入力する代わりに、前記入力手段を用いて直流電流を入力する手順と、
前記直流電流と前記初磁化曲線を用いて、前記直流磁束密度と前記直流磁界強度を求める手順を、
コンピュータに実行させるための請求項3記載の磁場解析プログラム。 - 交流磁場を周波数応答解析で解く磁場解析プログラムにおいて、
入力手段を用いて、直流電流と、交流電流の振幅及び周波数と、解析対象の磁性部材の初磁化曲線と、磁束密度と前記磁性部材の増分透磁率との関係または磁界強度と前記磁性部材の増分透磁率との関係を示すデータベースを入力し、前記直流電流と前記交流電流の振幅及び周波数と前記初磁化曲線と前記データベースとを記憶手段に記憶する手順と、
前記直流電流と前記交流電流の振幅の合計と前記初磁化曲線とを用いて、最大磁束密度と最大磁界強度を静磁場解析によって求める手順と、
前記データベースと前記最大磁束密度または前記最大磁界強度とから、前記磁性部材の増分透磁率を決定する手順と、
前記最大磁束密度と前記最大磁界強度と前記増分透磁率とから、前記直流電流に対する磁束密度と磁界強度を静磁場解析にて求める手順と、
前記交流電流の振幅及び周波数と前記増分透磁率とを用いて周波数応答解析を実行して、交流磁束密度と交流磁界強度を計算する手順を、
コンピュータに実行させるための磁場解析プログラム。 - 入力手段と演算手段と記憶手段を備えるコンピュータを用いて、交流磁場を周波数応答解析で解く磁場解析方法において、
前記入力手段が、直流磁束密度または直流磁界強度と、交流電流の振幅及び周波数と、解析対象の磁性部材の初磁化曲線を入力する工程と、
前記演算手段が、直流磁束密度が入力された場合はこの直流磁束密度と前記初磁化曲線から直流磁界強度を求め、直流磁界強度が入力された場合はこの直流磁界強度と前記初磁化曲線から直流磁束密度を求める工程と、
前記記憶手段が、前記直流磁束密度と前記直流磁界強度と前記交流電流の振幅及び周波数と前記初磁化曲線とを記憶する工程と、
前記演算手段が、前記交流電流の振幅及び周波数と前記磁性部材の増分透磁率とを用いて周波数応答解析を実行して、交流磁束密度と交流磁界強度を計算する工程と、
前記演算手段が、前記周波数応答解析で得られる交流磁束密度の最大値と前記直流磁束密度の合計が、前記周波数応答解析で得られる交流磁界強度の最大値と前記直流磁界強度の合計と前記初磁化曲線とで決まる磁束密度と、前記記憶手段から読み出した精度で一致するまで、前記増分透磁率を更新しながら前記周波数応答解析を反復して解を導出する工程を、
有することを特徴とする磁場解析方法。 - 入力手段と演算手段と記憶手段を備えるコンピュータを用いて、交流磁場を周波数応答解析で解く磁場解析方法において、
前記入力手段が、直流電流と、交流電流の振幅及び周波数と、解析対象の磁性部材の初磁化曲線と、磁束密度と前記磁性部材の増分透磁率との関係または磁界強度と前記磁性部材の増分透磁率との関係を示すデータベースを入力する工程と、
前記記憶手段が、前記直流電流と前記交流電流の振幅及び周波数と前記初磁化曲線と前記データベースとを記憶する工程と、
前記演算手段が、前記直流電流と前記交流電流の振幅の合計と前記初磁化曲線とを用いて、最大磁束密度と最大磁界強度を静磁場解析によって求める工程と、
前記演算手段が、前記データベースと前記最大磁束密度または前記最大磁界強度とから、前記磁性部材の増分透磁率を決定する工程と、
前記演算手段が、前記最大磁束密度と前記最大磁界強度と前記増分透磁率とから、前記直流電流に対する磁束密度と磁界強度を静磁場解析にて求める工程と、
前記演算手段が、前記交流電流の振幅及び周波数と前記増分透磁率とを用いて周波数応答解析を実行して、交流磁束密度と交流磁界強度を計算する工程を、
有することを特徴とする磁場解析方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280035526.2A CN103718180B (zh) | 2011-07-19 | 2012-06-05 | 磁场分析方法 |
US14/130,594 US9506995B2 (en) | 2011-07-19 | 2012-06-05 | Magnetic field analysis programs and magnetic field analysis methods |
JP2013524633A JP5909488B2 (ja) | 2011-07-19 | 2012-06-05 | 磁場解析プログラム及び磁場解析方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011157905 | 2011-07-19 | ||
JP2011-157905 | 2011-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013011757A1 true WO2013011757A1 (ja) | 2013-01-24 |
Family
ID=47557944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/064445 WO2013011757A1 (ja) | 2011-07-19 | 2012-06-05 | 磁場解析プログラム及び磁場解析方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9506995B2 (ja) |
JP (1) | JP5909488B2 (ja) |
CN (1) | CN103718180B (ja) |
WO (1) | WO2013011757A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105813367A (zh) * | 2016-03-10 | 2016-07-27 | 东莞中子科学中心 | 一种在交流磁铁上得到高精度时变磁场的方法和装置 |
WO2017064578A3 (en) * | 2015-10-14 | 2018-02-01 | International Business Machines Corporation | Graphene-based magnetic hall sensor for fluid flow analysis at nanoscale level |
CN107765199A (zh) * | 2017-10-11 | 2018-03-06 | 福州大学 | 磁性元件幅值磁导率和增量磁导率的直流励磁测量方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104809274A (zh) * | 2015-04-13 | 2015-07-29 | 国网四川省电力公司电力科学研究院 | 一种电力变压器铁心振动分析计算方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005207900A (ja) * | 2004-01-23 | 2005-08-04 | Hitachi Ltd | 磁界解析法,磁界解析プログラム及び磁界解析プログラムを記録した記録媒体 |
JP2006209273A (ja) * | 2005-01-26 | 2006-08-10 | Hitachi Ltd | 磁界解析法及び磁界解析プログラム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2984108B2 (ja) | 1991-10-07 | 1999-11-29 | 新日本製鐵株式会社 | 直流重畳のインダクタンス計算装置 |
JP3705861B2 (ja) * | 1996-03-21 | 2005-10-12 | 株式会社日立メディコ | 超電導磁石装置及びその着磁調整方法 |
JP4228649B2 (ja) * | 2002-10-04 | 2009-02-25 | 日立金属株式会社 | 磁場解析方法および装置 |
JP2004294123A (ja) | 2003-03-25 | 2004-10-21 | Kyocera Corp | インダクタンス算出法及び直流重畳特性算出法 |
EP2098880B1 (en) * | 2006-10-31 | 2013-05-22 | Hitachi Metals, Ltd. | Magnetization analysis method, magnetization analysis device, and computer program |
JP4587005B2 (ja) | 2008-09-30 | 2010-11-24 | 日立金属株式会社 | インダクタンス素子の直流重畳特性の解析方法及び電磁界シミュレータ |
JP2010122089A (ja) | 2008-11-20 | 2010-06-03 | Nec Tokin Corp | 直流重畳インダクタンス算出方法および直流重畳インダクタンス算出装置 |
-
2012
- 2012-06-05 JP JP2013524633A patent/JP5909488B2/ja active Active
- 2012-06-05 US US14/130,594 patent/US9506995B2/en active Active
- 2012-06-05 WO PCT/JP2012/064445 patent/WO2013011757A1/ja active Application Filing
- 2012-06-05 CN CN201280035526.2A patent/CN103718180B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005207900A (ja) * | 2004-01-23 | 2005-08-04 | Hitachi Ltd | 磁界解析法,磁界解析プログラム及び磁界解析プログラムを記録した記録媒体 |
JP2006209273A (ja) * | 2005-01-26 | 2006-08-10 | Hitachi Ltd | 磁界解析法及び磁界解析プログラム |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017064578A3 (en) * | 2015-10-14 | 2018-02-01 | International Business Machines Corporation | Graphene-based magnetic hall sensor for fluid flow analysis at nanoscale level |
GB2558154A (en) * | 2015-10-14 | 2018-07-04 | Ibm | Graphene-based magnetic hall sensor for fluid flow analysis at nanoscale level |
GB2558154B (en) * | 2015-10-14 | 2018-12-12 | Ibm | Graphene-based magnetic hall sensor for fluid flow analysis at nanoscale level |
CN105813367A (zh) * | 2016-03-10 | 2016-07-27 | 东莞中子科学中心 | 一种在交流磁铁上得到高精度时变磁场的方法和装置 |
CN107765199A (zh) * | 2017-10-11 | 2018-03-06 | 福州大学 | 磁性元件幅值磁导率和增量磁导率的直流励磁测量方法 |
CN107765199B (zh) * | 2017-10-11 | 2019-06-07 | 福州大学 | 磁性元件幅值磁导率和增量磁导率的直流励磁测量方法 |
Also Published As
Publication number | Publication date |
---|---|
US9506995B2 (en) | 2016-11-29 |
CN103718180B (zh) | 2016-11-23 |
US20140129167A1 (en) | 2014-05-08 |
CN103718180A (zh) | 2014-04-09 |
JP5909488B2 (ja) | 2016-04-26 |
JPWO2013011757A1 (ja) | 2015-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6206608B1 (ja) | 電磁場解析装置、電磁場解析方法、およびプログラム | |
JP5909488B2 (ja) | 磁場解析プログラム及び磁場解析方法 | |
JP6249912B2 (ja) | 解析装置 | |
CN105425174B (zh) | 一种获取心式变压器漏磁场的方法及装置 | |
Hofmann et al. | Modeling magnetic power losses in electrical steel sheets in respect of arbitrary alternating induction waveforms: Theoretical considerations and model synthesis | |
Vo et al. | Novel adaptive controller for effective magnetic measurement under arbitrary magnetization | |
Berkani et al. | Study on optimal design based on direct coupling between a FEM simulation model and L-BFGS-B algorithm | |
JP5523265B2 (ja) | 高速定常場解析方法、高速定常場解析装置、定常場高速解析プログラム、およびこのプログラムを記録したコンピュータ読み取り可能な記録媒体 | |
JP4508582B2 (ja) | ヒステリシス磁界解析法及びシステム | |
Tomczuk et al. | The influence of the leg cutting on the core losses in the amorphous modular transformers | |
JP2005207900A (ja) | 磁界解析法,磁界解析プログラム及び磁界解析プログラムを記録した記録媒体 | |
JP6650333B2 (ja) | 周波数特性解析装置、方法、及びプログラム | |
JP2000268061A (ja) | 電磁場解析方法およびその装置 | |
JP2016118831A (ja) | 特性テーブル作成装置及びコンピュータプログラム | |
Sulowicz et al. | Practical adaptation of a low-cost voltage transducer with an open feedback loop for precise measurement of distorted voltages | |
Xu et al. | Estimation of Iron Loss in Permanent Magnet Synchronous Motors Based on Particle Swarm Optimization and a Recurrent Neural Network | |
JP6984426B2 (ja) | 電磁場解析装置、電磁場解析方法、およびプログラム | |
D’Amico et al. | Vibration of fusion reactor components with magnetic damping | |
CN109543240B (zh) | 一种基于动态区域饱和j-a理论的电流互感器建模方法 | |
Soppelsa et al. | Integrated identification of RFX-mod active control system from experimental data and finite element model | |
Clénet et al. | Determination of losses’ local distribution for transformer optimal designing | |
Zakrzewski et al. | Nonlinear scaled models in 3D calculation of transformer magnetic circuits | |
JP7091865B2 (ja) | 電磁場解析装置、電磁場解析方法、およびプログラム | |
Omura et al. | Development of semicircular tubular coreless linear motor and its motion control | |
JPH05100000A (ja) | 直流重畳の鉄損計算装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12815371 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013524633 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14130594 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12815371 Country of ref document: EP Kind code of ref document: A1 |