WO2013011611A1 - 核酸分析方法及び核酸分析装置 - Google Patents

核酸分析方法及び核酸分析装置 Download PDF

Info

Publication number
WO2013011611A1
WO2013011611A1 PCT/JP2012/003176 JP2012003176W WO2013011611A1 WO 2013011611 A1 WO2013011611 A1 WO 2013011611A1 JP 2012003176 W JP2012003176 W JP 2012003176W WO 2013011611 A1 WO2013011611 A1 WO 2013011611A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
analyzed
molecule
phosphor
labeled
Prior art date
Application number
PCT/JP2012/003176
Other languages
English (en)
French (fr)
Inventor
俊郎 齋藤
孝伸 濱崎
高橋 智
宗郎 前嶋
今井 恭子
今井 一成
田尾 龍治
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US14/233,256 priority Critical patent/US10294519B2/en
Priority to JP2013524575A priority patent/JP5822929B2/ja
Priority to EP12815243.6A priority patent/EP2735618B1/en
Priority to CN201280034897.9A priority patent/CN103703146A/zh
Publication of WO2013011611A1 publication Critical patent/WO2013011611A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1065Preparation or screening of tagged libraries, e.g. tagged microorganisms by STM-mutagenesis, tagged polynucleotides, gene tags

Definitions

  • the present invention relates to a nucleic acid analysis method and a nucleic acid analysis apparatus.
  • Non-Patent Document 1 in a DNA microarray, a variety of synthetic DNAs having sequences that can identify known gene sequences are fixed at predetermined positions on a support substrate, and fluorescence is obtained. After hybridization of a nucleic acid sample or a reverse transcript or amplification product of a nucleic acid sample with a body label on the support substrate, a fluorescent image is obtained by a fluorescence scanner, and which gene is expressed in what amount. Can be analyzed from the fluorescence intensity.
  • PCR which is an amplification reaction of nucleic acid
  • the PCR method is also used as a nucleic acid analysis method.
  • a PCR reaction is performed in an emulsion containing microparticles, a number of microparticles with amplification products are immobilized on a support substrate, and then a DNA elongation reaction is performed.
  • a so-called next-generation sequencing method has also been put into practical use, in which a nucleotide sequence is analyzed with high parallelism by incorporating fluorescently labeled nucleotides and observing fluorescence.
  • a method of searching for a disease-related gene a method of searching for a gene whose expression level is significantly high or low in a disease patient by comparing a nucleic acid sample of a healthy person and a specific disease patient is used as a conventional means.
  • candidate genes with different expression levels are selected on a microarray, and then, the difference in expression levels is strictly confirmed using quantitative PCR for these candidate genes.
  • the microarray has a feature that the number of genes that can be analyzed at a time is tens of thousands or more, and the gene to be searched is high, but the dynamic range is about 2 to 3.5 digits, and the quantitative property is low.
  • RNAs messenger RNAs with more than 20,000 types
  • Non-Patent Document 4 when expression analysis is performed with quantitative PCR or a next-generation sequencer, amplification by PCR is applied to a nucleic acid sample, but the amplification efficiency depends on the GC content. Therefore, there is a problem that all nucleic acids of the sample are not amplified with the same amplification efficiency, the population of nucleic acids is biased, and the distribution of the abundance of individual nucleic acid molecules is not analyzed correctly.
  • An object of the present invention is to provide a nucleic acid analysis method that has a comprehensiveness of 1,000 or more types of nucleic acids that can be analyzed at one time without using an amplification reaction such as PCR, and a quantitative capability with a dynamic range of 4 digits or more. It is to provide a simple nucleic acid analysis method.
  • the present invention provides an analysis method that is extremely effective for analysis of untranslated RNA and microRNA, in which the number of nucleic acids to be analyzed is 10,000 or less.
  • nucleic acid molecules of a sample are immobilized on a spatially separated position one by one, and a nucleic acid molecule having a known base sequence and labeled with a fluorescent substance is combined with the nucleic acid molecule group of the sample.
  • the present invention relates to a method for analyzing the type and expression level of a nucleic acid molecule with sensitivity and resolution of a single molecule by performing hybridization and acquiring a fluorescence image.
  • nucleic acid analysis simply and quickly with sensitivity and resolution of a single molecule, having both completeness and quantitativeness in terms of the type and abundance of the nucleic acid to be analyzed without using an amplification reaction such as PCR. it can.
  • the method of the present invention can be applied not only to nucleic acid samples but also to analysis of biomolecules other than nucleic acid samples such as proteins by using antibodies as capture molecules.
  • biomolecule samples composed of a plurality of biomolecule species the biomolecules to be analyzed are fixed on the support substrate at regular positions, and the biomolecules are fixed one by one at each fixed location, Similar to the case of a nucleic acid sample, a detection biomolecule that is known to adsorb to a specific biomolecule is reacted with a biomolecule sample immobilized on the support substrate, and the detection biomolecule is detected. Can be analyzed. Therefore, the types and abundances of the biomolecules to be analyzed have both comprehensiveness and quantitativeness, and can be analyzed simply and quickly with single molecule sensitivity and resolution.
  • the figure for demonstrating an example of the analysis method of a present Example The figure for demonstrating an example of a structure of the device used for the analysis method of a present Example. The figure for demonstrating an example of the manufacturing method of the device used for the analysis method of a present Example. The figure for demonstrating an example of the preparation methods of the unimolecular fixed fine particle of a present Example. The figure for demonstrating an example of the analysis method of a present Example. The figure for demonstrating an example of the analysis method of a present Example. The figure for demonstrating an example of the analysis method of a present Example. The figure for demonstrating an example of the nucleic acid analyzer of a present Example.
  • a group of nucleic acid fragments to be analyzed is prepared, and a nucleic acid molecule having a known base sequence and labeled with a fluorescent substance is hybridized with the group of nucleic acid fragments to be analyzed, and labeled with the hybridized nucleic acid molecule.
  • a method for nucleic acid analysis is disclosed, wherein the phosphor is detected and the number of the phosphors is counted.
  • a group of nucleic acid fragments to be analyzed was prepared for each molecule, and a nucleic acid molecule having a known base sequence and labeled with a fluorescent substance was hybridized with the nucleic acid fragment group to be analyzed and hybridized.
  • a method for nucleic acid analysis characterized by detecting a fluorescent substance labeled on a nucleic acid molecule.
  • the step of fixing the nucleic acid molecule group to be analyzed one by one at a spatially separated position and the analysis of the nucleic acid molecule having a known base sequence and labeled with a phosphor.
  • a nucleic acid analysis method comprising a step of hybridization with a target nucleic acid molecule group and a step of measuring fluorescence of the phosphor after the hybridization step.
  • the step of fixing the nucleic acid molecule group to be analyzed one by one at different positions on the support substrate, and the nucleic acid molecule having a known base sequence and labeled with a fluorescent substance on the support substrate comprising: a step of hybridizing with a group of nucleic acid fragments, and a step of measuring fluorescence of the phosphor after the step of hybridization.
  • a step of fixing a nucleic acid fragment group to be analyzed on a fine particle, one molecule of the nucleic acid fragment per fine particle, and a nucleic acid molecule having a known base sequence and labeled with a phosphor The step of hybridizing with nucleic acid fragments on the microparticles, the step of fixing the microparticles on a support substrate after the step of hybridization, and the step of measuring the fluorescence of the phosphor, A method for nucleic acid analysis is disclosed.
  • the nucleic acid fragment group to be analyzed is not in a micro container isolated for each nucleic acid sample, and all the nucleic acid fragment groups have a known base sequence.
  • a method for nucleic acid analysis characterized by performing hybridization by reacting with the same solution containing a nucleic acid molecule labeled with a phosphor.
  • the phosphor label is a fine particle containing a plurality of types of phosphors having different blending ratios for each type of nucleic acid to be analyzed. A method is disclosed.
  • the same fluorescent substance label is used for nucleic acid species other than a specific nucleic acid species, and the number of fluorescent luminescent spots is counted for each nucleic acid molecule, and then the total number of luminescent spots is determined.
  • a nucleic acid analysis method characterized in that the abundance for each specific nucleic acid species is evaluated by calculating the ratio of the number of bright spots for each specific nucleic acid species.
  • a common fluorescent substance label is applied to a group of nucleic acid fragments to be analyzed, and a nucleic acid molecule having a known base sequence labeled with a fluorescent substance different from the fluorescent substance is used.
  • a nucleic acid analysis method comprising a step of hybridization, wherein the abundance of each type of nucleic acid fragment to be analyzed is evaluated by calculating the ratio of the number of bright spots of the former and the latter phosphors To do.
  • microparticles each having a nucleic acid fragment group to be analyzed immobilized thereon are prepared, and a nucleic acid molecule having a known base sequence and labeled with a phosphor is hybridized with the nucleic acid fragment group to be analyzed.
  • a nucleic acid analysis method characterized by detecting a fluorescent substance labeled with the hybridized nucleic acid molecule.
  • the fine particles in which the nucleic acid fragments to be analyzed are fixed one molecule at a time are magnetic fine particles, and the phosphor label has a blending ratio for each type of nucleic acid to be analyzed.
  • Microparticles containing different types of phosphors, and after hybridization, the phosphor-labeled nucleic acid molecules that were not hybridized were separated from the magnetic microparticles, and then hybridized with the nucleic acid molecules on the magnetic microparticles.
  • a method for nucleic acid analysis characterized by detecting a fluorescent substance labeled on a nucleic acid molecule.
  • the same fluorescent substance label is used for nucleic acid species other than a specific nucleic acid species, and the number of fluorescent luminescent spots is counted for each nucleic acid molecule, and then the total number of luminescent spots is determined.
  • a nucleic acid analysis method characterized in that the abundance of each specific nucleic acid species is evaluated by calculating the ratio of the number of bright spots for each specific nucleic acid species.
  • nucleic acid analysis method in the nucleic acid analysis method, a nucleic acid molecule having a known base sequence labeled with a fluorescent substance different from the fluorescent substance is applied to the nucleic acid molecule group to be analyzed.
  • a nucleic acid analysis method comprising a step of hybridization, wherein the abundance of each type of nucleic acid to be analyzed is evaluated by calculating the ratio of the number of fluorescent bright spots of the former and the latter.
  • means for fixing the nucleic acid molecule group to be analyzed at a spatially separated position one molecule at a time, and a nucleic acid molecule having a known base sequence and labeled with a fluorescent substance are analyzed.
  • a nucleic acid analyzer comprising means for hybridizing with a target nucleic acid molecule group and means for measuring fluorescence of the phosphor after the hybridization step.
  • the device configuration of this example is as follows.
  • An adhesive pad 102 is formed on the support base 101.
  • a glass substrate such as quartz or a silicon wafer can be used.
  • the bonding pad 102 may be made of a material different from that of the support base 101, and a metal or a metal oxide can be used.
  • the method for manufacturing the adhesive pad will be described in detail in Example 3.
  • the adhesive pad 102 is preferably formed on the support substrate 101 with regularity, but details will be described in Example 3.
  • Fine particles 103 are fixed on the adhesive pad 102.
  • the number of fine particles fixed per adhesive pad is one. Only one molecule of the capture molecule 104 is fixed to the fine particle 103 through the binding molecule 105.
  • nucleic acid fragment 106 to be analyzed various combinations of molecular groups can be used for the capture tag molecule 107, the capture molecule 104, and the binding molecule 105.
  • the capture tag molecule 107 can use primer DNA during reverse transcription reaction, and the capture molecule 104 is complementary to the capture tag molecule 107.
  • Nucleic acid molecules having sequences can be used.
  • a nucleic acid molecule having biotin at the terminal can be used as the capture tag molecule 107
  • a molecule having avidin at the terminal can be used as the capture molecule 104.
  • binding molecule 105 an alkane molecule having about 10 or less carbon atoms can be used, and a binding molecule 105 that binds to the capture molecule 104 through a chemical bond and has biotin attached to the opposite end can be used. In that case, it is desirable that the surface of the fine particles 103 is modified with avidin, streptavidin, or the like.
  • the reaction between the capture tag molecule 107 and the capture molecule 104 is preferably hybridization when both are nucleic acid molecules having complementary sequences. It is also preferable to use a method in which both are connected by chemical bonding by ligation. As a result, the nucleic acid fragments 106 to be analyzed are fixed in an isolated state on the support substrate 101 in a regular arrangement.
  • the phosphor-labeled nucleic acid molecule 108 is reacted with the substrate on which the nucleic acid fragment 106 to be analyzed is fixed.
  • the phosphor-labeled nucleic acid molecule 108 contains a nucleic acid sequence complementary to the nucleic acid fragment 106 to be analyzed.
  • normal fluorescent dye molecules such as Cy3 and Cy5, or semiconductor fine particles made of Zn—Se or the like can be used.
  • fluorescent beads containing a fluorescent material can be used as the fluorescent material label.
  • the number of is three, a bead set capable of discriminating 1000 types can be easily made.
  • fluorescent bead sets are commercially available from Luminex that can be distinguished by 100 types by excitation with two-wavelength laser light.
  • the phosphor-labeled nucleic acid molecule 108 can be prepared by chemically modifying the surface of these fluorescent beads and binding the nucleic acid molecule. After hybridization, washing of an appropriate non-specific adsorbate is followed by fluorescence detection, whereby the nucleic acid fragment 106 to be analyzed is analyzed.
  • the bonding pad 102 Since the bonding pad 102 has high regularity on the support substrate 101 and is formed in, for example, a lattice shape, a fluorescent bright spot is observed at a position having regularity in a fluorescent image. Therefore, even if the phosphor-labeled nucleic acid molecule 108 non-specifically adheres to the support substrate 101, it can be easily identified and removed from the bright spot position of the fluorescence image. This is a very useful feature in practice for analyzing a small amount of sample and observing weak fluorescence.
  • the phosphor or fluorescent bead is identified by spectroscopically diffusing the emission spectrum using a diffraction grating, irradiating the photosensitive surface of the CCD, and examining the intensity of each pixel divided in the wavelength direction.
  • the type of phosphor or fluorescent bead can be identified using a ratio of reflected light and transmitted light by using a dichroic mirror having a large wavelength dependency in reflection characteristics.
  • the information of the type and the number of bright spots of the nucleic acid fragment 106 to be analyzed that is, the abundance information, can be finally obtained by collecting them. For example, when the bonding pad 102 is manufactured at a pitch of 1 ⁇ m, there are 10 6 bonding pads in each 1 mm, and therefore, how many molecules of the nucleic acid fragment to be analyzed of a predetermined type in the maximum total number of molecules 10 6. You can check if it exists.
  • microRNA as an example of a specific analysis target.
  • sequence data of individual microRNA molecules can be obtained from a known microRNA base sequence database (for example, http://www.microrna.org/). Based on this, a primer for reverse transcription can be designed.
  • the base length of the primer is preferably about 10 to 15 bases, and DNA of 10 bases is provided as a capture tag molecule 107 at the 5 ′ end.
  • 1000 types of primers are designed and synthesized for human microRNA. Prepare a cocktail of primers by mixing equal amounts of 1000 types of synthesized primers, mix the reverse transcription primer cocktail and reverse transcriptase for total RNA, and perform reverse transcription in a 37-40 ° C environment.
  • RNA of about 10 bases is used as the nucleic acid fragment 106 to be analyzed, and RNA of about 10 bases is used as the tag molecule 107 for capture, and the capture tag molecule 107 is bound to the nucleic acid fragment 106 to be analyzed by binding both using T4 RNA ligase. It can also be made.
  • one molecule of complementary strand DNA to the 10 base nucleic acid of the capture tag molecule 107 is immobilized as the capture molecule 104 in advance.
  • the details of fixing one molecule of the capture molecule 104 to the fine particle 103 are described in Example 4.
  • the nucleic acid fragment 106 to be analyzed is immobilized on the substrate by hybridization of cDNA (the nucleic acid fragment 106 to be analyzed and the tag molecule 107 to be captured bound) by conventional means on the substrate.
  • sequence data of individual microRNA molecules is obtained from a base sequence database of known microRNAs, and 1000 types of synthetic oligos having the same base sequence as this sequence and modified with biotin at the 5 ′ end are synthesized. .
  • the phosphor used for the fluorescent beads for example, Cy5, Cy5.5, and Cy3 can be used, and the excitation light can correspond to two types of 532 nm and 633 nm.
  • the phosphor used for the fluorescent beads for example, Cy5, Cy5.5, and Cy3 can be used, and the excitation light can correspond to two types of 532 nm and 633 nm.
  • a carboxyl group is introduced into the bead surface by using a copolymerization reaction of acrylic acid / methacrylic acid and styrene, and the amino group of avidin and carbodiimide are reacted as a crosslinking agent. Can be easily modified.
  • Fluorescent-labeled nucleic acid molecule 108 can be synthesized by reacting avidin-modified fluorescent beads with synthetic oligos modified with biotin at the 5 'end.
  • the phosphor-labeled nucleic acid molecule 108 is hybridized to the substrate on which the nucleic acid fragment 106 to be analyzed is fixed using a normal method.
  • a fluorescent image is acquired, and the fluorescent bright spot of each adhesive pad is identified and the fluorescent spot is counted, and then the bright spots are counted.
  • the abundance can be analyzed.
  • the number of nucleic acid species that can be detected depends on the number of fluorescent beads that can be identified. If there are about 1000 types of microRNAs, 1000 types of fluorescent beads may be prepared. As described above, the content of the phosphors is set at 10 levels each, and the content of the 3 types of phosphors. By mixing at different levels, a set of 1000 distinguishable beads can be easily made and all microRNA species can be detected at once. Further, when it is desired to examine the expression level of only a specific microRNA, the phosphor-labeled nucleic acid molecules 108 corresponding to the specific microRNA species are prepared, and the same number of fluorescent beads are prepared.
  • the amount of total microRNA can be reduced to a bright spot without preparing 1000 types of fluorescent beads. It can be known as a count value, and the abundance ratio of a specific microRNA to the total microRNA can be obtained.
  • a fluorescent dye label having a light emission wavelength or emission intensity different from that of the phosphor-labeled nucleic acid molecule 108 is applied in advance to the capture tag molecule 107, and the number of fluorescent bright spots by the fluorescent dye labeled on the capture tag molecule 107 is determined. It is judged that the number of fluorescent luminescent spots corresponding to the total number of nucleic acid sample molecules and the fluorescent substances labeled on the various phosphor-labeled nucleic acid molecules 108 correspond to the number of various nucleic acid sample molecules. Judging the abundance ratio of various nucleic acid sample molecules is extremely effective when it is desired to examine the expression level of only a specific nucleic acid molecule.
  • the method of the present invention can be applied not only to nucleic acid samples but also to analysis of biomolecules other than nucleic acid samples such as proteins by optimizing the capture molecules 104.
  • a biomolecule sample composed of a plurality of biomolecule species use a suitable antibody or the like as the capture molecule 104 at a position having regularity on the support substrate and a fixed molecule at each fixed location.
  • a biomolecule for detection that is known to be adsorbed to a specific biomolecule by fixing the biomolecule one by one at a location, is reacted with a biomolecule sample immobilized on the support substrate, and the biomolecule for detection Can be analyzed in the same manner as in the case of a nucleic acid sample. Therefore, the types and abundances of the biomolecules to be analyzed have both comprehensiveness and quantitativeness, and can be analyzed simply and quickly with single molecule sensitivity and resolution.
  • the DNA sample to be analyzed was fixed on the substrate one molecule at a time. However, it is easier to count one molecule at a time, but it is essential to fix one molecule at a time. It goes without saying that the object of the present invention, that is, analyzing the type and abundance of the DNA sample to be analyzed, is achieved as long as counting is possible even if two or three are fixed, not conditions.
  • Adhesive pads 202 are regularly formed on the support base 201, for example, in a lattice shape as shown in FIG.
  • the adhesive pad 202 and the fine particle 203 are connected by a chemical bond or a chemical interaction via the linear molecule 205.
  • the functional group 206 at the end of the linear molecule 205 and the adhesive pad 202 are bonded by chemical interaction.
  • the functional group 206 has a weak interaction with the support base 201 and a strong interaction with the adhesive pad 202. From such a viewpoint, quartz glass, sapphire, a silicon substrate, or the like can be used as the support base 201.
  • the adhesive pad 202 can be made of a material selected from gold, titanium, nickel, and aluminum.
  • the functional group 206 must be selected in consideration of the combination of the support base 201 and the adhesive pad 202.
  • a sulfohydryl group, an amino group, a carboxyl group, a phosphate group, an aldehyde group, or the like can be used.
  • the linear molecule 205 plays a role of connecting the fine particles 203 and the adhesive pad 202, and the length thereof is not greatly limited. However, in the case of a low molecule, a linear molecule having about 3 to 20 carbon atoms is preferable.
  • the functional group 207 at the end of the linear molecule 205 provides adhesion with the fine particles 203.
  • a polymer having a plurality of side chains and having both a side chain having a functional group 206 and a side chain having a functional group 207 can be used.
  • the fine particles 203 metal fine particles or semiconductor fine particles can be used.
  • gold fine particles having a diameter of 5 nm to 100 nm are commercially available and can be utilized.
  • semiconductor fine particles compound semiconductors such as CdSe having a diameter of about 10 nm to 20 nm are commercially available and can be utilized.
  • the functional group that can be used as the functional group 207 varies depending on the type of fine particles.
  • fine particles when gold fine particles are used, a sulfohydryl group, an amino group, and the like are preferable.
  • semiconductor fine particles fine particles whose surface is modified with streptavidin are commercially available, and biotin can be used as the functional group 207.
  • fine particles 203 fine particles made of a polymer material such as polystyrene can be used. In the case of a polymer material, the particle diameters of the fine particles can be made uniform, and the particle diameter can be selected widely from several tens of nanometers to several micrometers.
  • the functional group possessed by the polymer material is subjected to surface modification on the scaffold, so that the introduction amount of the functional group for the fixation reaction of the capture molecule 204 immobilized on the surface of the fine particles can be made uniform.
  • the reproducibility of the fixation rate is very high, which is preferable.
  • the capture molecule 204 a single strand of DNA or RNA nucleic acid molecule can be used.
  • the end of the nucleic acid molecule is modified in advance in the same manner as the functional group 207 and reacted with the fine particles 203. It is preferable that the capture molecule 204 to be fixed to one fine particle 203 is a single molecule, and only one capture molecule 204 is fixed on the adhesive pad 202.
  • the probes are separated by about 1 ⁇ m in consideration of the diffraction limit. Therefore, the size of the fine particles 203 is suitably 1 ⁇ m or less.
  • a thin film process that has already been put to practical use in a semiconductor can be used. For example, after forming a thin film by vapor deposition / sputtering through a mask or vapor deposition / sputtering, it can be produced by dry or wet etching. Regular arrangement can be easily realized by using a thin film process.
  • the interval between the pads can be arbitrarily set, but when optical measurement is performed as the detection means, 1 ⁇ m or more is preferable in consideration of the diffraction limit of optical detection.
  • linear molecules 205 that connect the fine particles 203 and the adhesive pad 202 are supplied, and the linear molecules 205 are fixed on the adhesive pad 202.
  • a method of reacting a material having a strong adhesive force with the support substrate 201 on the support substrate 201 before supplying the linear molecules 205 is effective. It is.
  • a silane coupling agent can be used.
  • the microparticles 203 on which the capture molecules 204 are fixed are supplied onto the substrate, and the microparticles 203 are fixed on the adhesive pad 202, thereby completing the nucleic acid analysis device.
  • fine particles 203 having a size equal to or larger than that of the bonding pad 202 are fixed, unreacted linear molecules are covered with the fixed fine particles and cannot react with other fine particles. Is done. Further, as a result of intensive studies, when the fine particle 203 has a charge on its surface, an electrostatic repulsive force acts between the fine particles, so that the diameter d of the adhesive pad 202 is larger than the diameter D of the fine particle 203. It was found that even when the size was large, the number of fixed fine particles per adhesive pad was one.
  • the diameter d of the adhesive pad 202 is preferably smaller than the diameter D of the fine particle 203, and the surface charge of the fine particle 203 is large and the electrostatic repulsion force. It is clear that the diameter d of the adhesive pad 202 does not necessarily have to be smaller than the diameter D of the fine particles 203 when the resistance is strong.
  • a hole is provided in each individual optical fiber bundled with optical fibers, and microparticles with antibodies for capturing biomolecules to be analyzed are placed in each hole.
  • a method for detecting fluorescence with an optical fiber for each hole is disclosed.
  • a hole is not necessary, and if the fine particles are put into the holes, the cleaning process takes time. Therefore, in the present invention, as described in the present embodiment, a method of arranging and fixing in a grid pattern on a supporting substrate using an adhesive pad is preferable.
  • An electron beam positive resist 302 is applied onto a smooth support substrate 301 by spin coating.
  • a smooth support substrate a glass substrate, a sapphire substrate, a silicon wafer or the like is used.
  • a quartz substrate or a sapphire substrate having excellent light transmittance may be used.
  • the positive resist for electron beam include polymethyl methacrylate and ZEP-520A (manufactured by Nippon Zeon Co., Ltd.). After aligning using the position of the marker on the substrate, electron beam direct drawing exposure is performed to form a through hole in the resist.
  • a through hole having a diameter of 15 nm is formed.
  • the formation of through holes at a pitch of about 1 ⁇ m takes into account the simplicity of manufacturing, high yield, and the number of nucleic acid molecules that can be analyzed by parallel processing. Then it is suitable.
  • the through hole formation region also depends on the number of nucleic acid molecules that can be analyzed by parallel processing, but greatly depends on the position accuracy and position resolution on the detection device side. For example, when the reaction sites (adhesive pads) are formed with a pitch of 1 ⁇ m, 1 million reaction sites can be formed if the through hole formation region is 1 mm ⁇ 1 mm.
  • a material constituting the adhesive pad 303 for example, gold, titanium, nickel, aluminum, is formed by sputtering.
  • a glass substrate or sapphire substrate is used as a smooth support base and gold, aluminum, or nickel is used as an adhesive pad material, a thin film of titanium or chromium is used to reinforce the adhesion between the substrate material and the adhesive pad material. It is preferable to add.
  • the linear molecule 304 is reacted with the bonding pad 303.
  • the bonding pad 303 is gold, titanium, aluminum, or nickel, it is preferable to use a sulfohydryl group, a phosphate group, a phosphate group, or a thiazole group as the functional group 305 at the end of the linear molecule, respectively.
  • biotin can be used for the functional group 306 on the opposite side of the linear molecule.
  • the resist is peeled off.
  • non-specific adsorption preventing treatment is performed on the surface of the supporting substrate other than the adhesive pad formed.
  • coating with nonspecific adsorption preventing molecules 307 having a negatively charged functional group is performed. For example, epoxy silane is applied to the surface by spin coating, heat treatment, and then treatment with a weakly acidic solution (pH 5 to pH 6) to open the epoxy group and introduce OH group to the surface. Adsorption prevention effect can be brought about.
  • the surface of the fine particles 308 is preferably modified with avidin 309 in advance.
  • avidin 309 When gold or platinum fine particles are used, it is easy to modify avidin by reacting aminothiol, then reacting biotin-succinimide (NHS-Biotin manufactured by Pierce), and finally reacting streptavidin. it can.
  • metal fine particles other than gold or platinum the surface is oxidized by heat treatment in an oxygen atmosphere, then aminosilane is reacted, and then biotin-succinimide (NHS-Biotin manufactured by Pierce) is reacted. Finally, react with streptavidin. Thereby, it is possible to easily avidin-modify the surface of the metal fine particles.
  • semiconductor fine particles are used as the fine particles, commercially available fine particles can be used.
  • the product name “Qdot® streptavidin label” (manufactured by Invitrogen) having a diameter of 15 to 20 nm can be used.
  • polystyrene beads can also be used as the fine particles.
  • the product name “Fluosphere Neutravidin Modification” (manufactured by Invitrogen) having a diameter of 40 nm can be used.
  • an oligonucleotide is used as the capture molecule 310, it can be easily fixed on the fine particle 308 by synthesizing the end with biotin.
  • the nucleic acid analysis device of this example can be manufactured by immobilizing the fine particles 308 having the capture molecules 310 immobilized on the adhesive pad 303.
  • a binding site 402 for capturing the capture molecule 404 is bonded to the surface of the fine particle 401.
  • streptavidin can be used as the binding site
  • commercially available streptavidin-coated fine particles manufactured by Invitrogen
  • the binding molecule 403 is modified in advance on the capture molecule 404. As the binding site 403, one that easily binds to the binding site 402 on the surface of the fine particle 401 is selected.
  • a capture molecule 404 having a binding site 403 at the end can be easily synthesized by synthesizing an oligo whose end is modified with the binding site 403.
  • the capture molecules 404 are bonded to the fine particles 401 by reacting the fine particles 401 with the capture molecules 404.
  • the number of the trapping molecules 404 in the unit volume is smaller than the number of the particle 401.
  • the number of trapping molecules 404 is larger than that of the fine particles 401, the number of trapping molecules per fine particle 401 is likely to be larger than one molecule.
  • the capture molecules 404 are not captured by about 90% of the fine particles 401, and about 9%.
  • One capture molecule 404 was captured by the fine particle 401. This result is in good agreement with the predicted result assuming a Poisson distribution. Therefore, if only the fine particles 401 that have captured the capture molecules 404 are collected, 90% or more of the collected fine particles 401 become the fine particles 401 that have captured only one capture molecule 404.
  • the capture molecules 404 can be bound to the magnetic fine particles 407 and collected by a magnet.
  • An oligonucleotide 405 having a sequence complementary to the terminal sequence of the capture molecule 404 and having a binding site 406 modified at the end is prepared, and a binding site 408 that binds to the binding site 406 is coated on the surface of the magnetic particle 407 in advance. .
  • the magnetic fine particles 407 thus produced, the fine particles 401 having captured one molecule of the capture molecules 404 can be separated and collected at a high rate of 90% or more.
  • a denature treatment for separating the double strands of the capture molecules 404 and the oligonucleotides 405 can be used.
  • the isolated microparticles 401 can be fixed in a predetermined arrangement on the support substrate by using the method described in Example 2, and a nucleic acid analysis device in which only one capture molecule 404 of this example is fixed is used. Can be manufactured.
  • an electrophoresis method in order to increase the proportion of fine particles that have captured only one molecule. That is, by utilizing the fact that the amount of charge on the microparticle varies depending on the number of molecules of nucleic acid captured by the microparticle, the microparticle is migrated in a gel, such as agarose, while the nucleic acid is still captured, so Electrophoretic patterns are separated based on the number of nucleic acid molecules.
  • the fine particles in which the nucleic acid is not captured have the shortest movement distance, and the fine particles in which only one nucleic acid molecule is captured form a band at the next short movement distance. Therefore, by cutting out this band, fine particles in which only one nucleic acid molecule is captured can be obtained with high purity.
  • a capture tag molecule 502 labeled with a fluorescent dye 503 is bound to a nucleic acid fragment 501 to be analyzed.
  • a ligation reaction or a coupling reaction between functional groups after introducing a functional group such as an amino group or a succinimide group into the nucleic acid fragment 501 to be analyzed and the capture tag molecule 502 in advance can also be used.
  • a method using T4 RNA ligase with the capture tag molecule 502 as an RNA molecule having a length of about 10-20 bases is effective.
  • the nucleic acid molecule 504 is for identifying individual nucleic acid fragments to be analyzed, and needs to have a base sequence that represents the sequence of each gene.
  • sequence design it is necessary to keep the melting temperature, which is an indicator of nucleic acid duplex stability, within a certain range for each labeled molecule.
  • the range is preferably narrow, but is preferably suppressed to a predetermined temperature of about ⁇ 3 ° C.
  • the homology of the base sequences of the labeled molecules is low, and it is preferable to suppress the highest homology to 70% or less, more preferably 60% or less.
  • the fluorescent material 505 can be fluorescent beads containing a fluorescent material.
  • the fine particles 508 forming the hybrid are fixed on an adhesive pad 509 formed on the support base 510.
  • the conditions described in Example 1 can be applied as the fixing reaction conditions.
  • the fluorescence of the fluorescent dye 503 and the phosphor 505 is measured by the detector 511, and the number of bright spots for each type of the fluorescent dye 503 and each phosphor 505 is calculated.
  • the number of bright spots of the fluorescent dye 503 corresponds to the total number of nucleic acid fragments 501 to be analyzed, and the number of bright spots for each type of each phosphor 505 corresponds to the number of nucleic acid fragments to be analyzed of each type.
  • the ratio of the number of each nucleic acid fragment to the total number of nucleic acid fragments to be analyzed can be calculated. Calculation of this ratio is particularly useful when performing comparative expression analysis between samples. For example, when searching for marker genes with different expression levels between healthy subjects and patients with specific diseases, it is necessary to find genes with the same expression levels between both samples and normalize them with the expression levels. It is practically very difficult to find a gene with the same expression level between both samples. In particular, Non-Patent Document 5 points out that this is a serious problem in quantitative PCR.
  • the comparison between the healthy person and the patient can be directly compared with the ratio to the total number of sample molecules. it can. This point is particularly useful for comparative analysis of nucleic acid molecules in clinical specimens.
  • a capture tag molecule 602 labeled with a fluorescent dye 603 is bound to a nucleic acid fragment 601 to be analyzed.
  • a ligation reaction or a coupling reaction between functional groups after introducing a functional group such as an amino group or a succinimide group into the nucleic acid fragment 601 to be analyzed and the capture tag molecule 602 in advance can be used.
  • a method using T4 RNA ligase with the capture tag molecule 602 as an RNA molecule having a length of about 10-20 bases is effective.
  • the nucleic acid molecule 604 is for identifying individual nucleic acid fragments, and needs to have a base sequence representative of the sequence of each gene.
  • sequence design it is necessary to keep the melting temperature, which is an indicator of nucleic acid duplex stability, within a certain range for each labeled molecule.
  • the range is preferably narrow, but is preferably suppressed to a predetermined temperature of about ⁇ 3 ° C.
  • the homology of the base sequences of the labeled molecules is low, and it is preferable to suppress the highest homology to 70% or less, more preferably 60% or less.
  • the fluorescent material 605 can be fluorescent beads containing a fluorescent material.
  • the fine particles 608 forming the hybrid are flowed into the flow path 609 and irradiated with excitation light, whereby the fluorescence of the fluorescent dye 603 and the fluorescence intensity of the phosphor 605 are measured by the detector 610.
  • the diameter of the flow path 609 be less than or equal to twice the diameter of the fine particles 608 because the individual fine particles 608 can be identified and measured without measuring the fluorescence of the plurality of fluorescent dyes 603 at the same time. .
  • the number of fluorescent bright spots of the fluorescent dye 603 is counted to obtain a value corresponding to the total number of nucleic acid fragments.
  • the fluorescence of the fluorescent dye 603, the fluorescence of the phosphor 605, and the scattered light of the fine particles 608 are two-dimensionally displayed. Detection can be performed, and detection speed and sensitivity can be improved.
  • fine particles made of a polymer such as polystyrene can be used, or magnetic fine particles containing a magnetic metal powder in the polymer can be used.
  • unreacted fluorescent dye 603 that is not fixed to the fine particles 608 remaining in the reaction solution is labeled before flowing the reacted fine particles 608 through the flow channel 609.
  • the capture tag molecule 602 and the nucleic acid molecule 604 labeled with the phosphor 605 can be easily removed, and only when the fluorescence of the fluorescent dye 603 and the fluorescence of the phosphor 605 are measured simultaneously, a specific phosphor This is preferable because it has a great merit that the measurement becomes easy.
  • the nucleic acid analyzer of the present embodiment has a means for supplying a nucleic acid sample solution, a fluorescently labeled molecule solution and a washing solution to the nucleic acid analysis device substrate, and for performing hybridization on the nucleic acid analysis device substrate. Temperature adjusting means, means for irradiating light to the device substrate for nucleic acid analysis, and luminescence detecting means for measuring the fluorescence of the fluorescent substance of the fluorescently labeled molecule. More specifically, a reaction chamber is formed by placing a nucleic acid analysis device substrate 701 on a temperature control plate 703 and bonding a flow path forming member 702 provided with a flow path 704 thereon. For the flow path forming member 702, for example, PDMS (Polydimethylsiloxane) can be used.
  • PDMS Polydimethylsiloxane
  • a liquid feeding unit 705 is connected to the inlet, and the nucleic acid sample solution to be analyzed, the molecule solution with fluorescent label, and the washing solution stored in the liquid feeding unit 705 are sequentially supplied to the nucleic acid analysis device substrate 701. Is done. After the nucleic acid sample solution to be analyzed and the fluorescently labeled molecule solution are supplied to the nucleic acid analysis device substrate 701, the solution is held on the nucleic acid analysis device substrate 701 in the flow path 704, and is heated at 30 ° C. by the temperature control plate 703. To 80 ° C., the temperature of the reaction solution on the nucleic acid analysis device substrate 701 is controlled to perform hybridization. After hybridization, a washing solution is supplied from the solution feeding unit 705 to the nucleic acid analysis device substrate 701, and unreacted substances are washed.
  • An appropriate excitation light source can be selected depending on the type of phosphor used. For example, when using Cy5, Cy5.5, and Cy3 as phosphors used for the fluorescent beads, the excitation light can be handled with two types of 532 nm (YAG laser) and 633 nm (He—Ne laser).
  • the dichroic mirror 714 After adjusting the laser light oscillated from the YAG laser light source (wavelength 532 nm, output 20 mW) 707 and the He—Ne laser light source (wavelength 633 nm, output 20 mW) 713 by the dichroic mirror 714 to be coaxial,
  • the light is guided to the objective lens 706 by the dichroic mirror 709 and irradiated onto the nucleic acid analysis device substrate 701.
  • the fluorescence emitted from the fluorescently labeled molecules travels in the reverse direction of the excitation light and the coaxial optical path, is collected by the objective lens 706, passes through the dichroic mirror 709, and is formed on the photosensitive surface of the two-dimensional CCD camera 712 by the imaging lens 711. Imaged.
  • the scattered light of the excitation light is removed by the optical filter 710.
  • nucleic acid analyzer As described above, by assembling a nucleic acid analyzer with a liquid feeding unit, a temperature control plate, an excitation light source, and a fluorescence detection unit, it becomes possible to automatically perform nucleic acid analysis by a high bullization, which is a significant improvement over the prior art. Throughput can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明の目的は、核酸分析方法において、一度に解析できる核酸の種類が千種類以上という網羅性と、ダイナミックレンジが4桁以上の定量性を有する、簡便な核酸分析方法を提供することにある。特に、解析対象の核酸が1万種以下である、非翻訳RNAやマイクロRNAの解析に極めて有効な解析方法を提供するものである。 本発明は、解析対象の核酸断片群を一分子ずつ用意し、既知の塩基配列を有しかつ蛍光体標識された核酸分子を前記解析対象の核酸断片群とハイブリダイゼーションさせ、ハイブリダイゼーションした核酸分子に標識された蛍光体を検出することで、PCR等の増幅反応を用いることなく、解析対象の核酸の種類と存在量を網羅性と定量性を兼ね備え、一分子の感度及び分解能で、簡便,迅速に核酸分析を行うことができる。

Description

核酸分析方法及び核酸分析装置
 本発明は、核酸分析方法及び核酸分析装置に関する。
 近年、核酸解析方法として、試料中に含まれる核酸の種類と量を簡便に解析する方法が開発されている。例えば、非特許文献1に記載されているように、DNAマイクロアレイでは、既知の遺伝子の配列を識別し得る配列を有する合成DNAを多種類、支持基体上の所定の箇所に固定しておき、蛍光体標識を施した、核酸試料あるいは核酸試料の逆転写物や増幅産物を前記支持基体上にハイブリダイゼーションした後、蛍光スキャナーにより蛍光画像を取得し、どの遺伝子が、どれだけの量発現しているかを蛍光強度から解析することができる。また、非特許文献2に記載されているように、核酸の増幅反応であるPCRを用い、増幅曲線を求め、一定量の増幅産物が得るのに必要な反応回数を試料間で比較する、定量PCR法も核酸解析方法として用いられている。さらに、非特許文献3に記載されているように、微粒子を含んだエマルジョン中でPCR反応を行い、増幅産物をつけた微粒子を支持基体上に多数固定した上で、DNAの伸長反応を行い、蛍光体標識したヌクレオチドを取り込ませ、蛍光観察することで並列性高く塩基配列解析を行う、所謂、次世代シーケンス法も実用化されている。
Science 1995, Vol. 270, pp 467-470. Nucleic Acid Research, 1992, Vol. 20, pp 4939. Genome Research 2008, Vol. 18, pp 1051-1063. Nature Methods, 2009, Vol. 6, pp 474-476. Nature Methods 2010, Vol. 7, pp 687-692.
 疾患関連遺伝子を探索する方法として、健常者と特定の疾患患者の核酸試料を比較して疾患患者において有意に発現量が高いあるいは低い遺伝子を探し出す方法が常套手段として用いられている。そのような方法として、まず、マイクロアレイで、発現量の異なる候補遺伝子を選定し、次に、それら候補遺伝子に関して定量PCRを用いて発現量の差を厳密に確認する方法が一般的である。それは、マイクロアレイは一度に解析できる遺伝子数が数万以上と探索する遺伝子の網羅性が高いが、ダイナミックレンジが2~3.5桁程度と定量性が低いという特徴を持ち、一方、定量PCR法は、ダイナミックレンジが6~7桁と定量性が高いが、一度に解析できる遺伝子数が400程度と網羅性が低いという特徴を有することから、お互いの良い点を組み合わせた結果によるものである。したがって、試料間の発現比較解析を行うためには、マイクロアレイと定量PCRの2段階の実験をせねばならないという問題点があった。一方、次世代シーケンサでは、一度に解析できる核酸断片数は数億から数十億本であり、同一配列の核酸断片数をカウントすることで発現量を決めることができることからダイナミックレンジは8桁以上あることになる。2万種以上が存在するメッセンジャーRNAの網羅的な発現解析には適しているが、非翻訳RNAや数十塩基以下のマイクロRNAなど存在する種類の数が2千種以下の核酸の発現量を解析するにはオーバースペックとなり、一回の解析に掛かる試薬等のランニングコストや数十時間かかる解析時間の長さが問題となる。
 また、非特許文献4に指摘されているように、定量PCRや次世代シーケンサで発現解析を行う場合には、核酸試料に対してPCRによる増幅をかけることになるが、増幅効率はGC含有量など塩基配列に依存するため、試料のすべての核酸が同じ増幅効率で増幅されず、核酸のポピュレーションにバイアスがかかり、個々の核酸分子の存在量の分布が正しく解析されないという問題がある。
 本発明の目的は、核酸分析方法において、PCR等の増幅反応を用いずに、一度に解析できる核酸の種類が千種類以上という網羅性と、ダイナミックレンジが4桁以上の定量性を有する、簡便な核酸分析方法を提供することにある。特に、解析対象の核酸が1万種以下である、非翻訳RNAやマイクロRNAの解析に極めて有効な解析方法を提供するものである。
 本発明は、試料の核酸分子を空間的に分離された位置に、一分子ずつ固定した上で、既知の塩基配列を有しかつ蛍光体標識された核酸分子を前記試料の核酸分子群とハイブリダイゼーションを行い、蛍光画像を取得することで、一分子の感度及び分解能で核酸分子の種類と発現量を解析する方法に関する。
 本発明により、PCR等の増幅反応を用いることなく、解析対象の核酸の種類と存在量を網羅性と定量性を兼ね備え、一分子の感度及び分解能で、簡便,迅速に核酸分析を行うことができる。
 また、本発明の方法は、核酸試料のみならず、タンパク質などの核酸試料以外の生体分子の解析にも、捕捉分子として抗体などを用いることで、適用できる。複数の生体分子種から構成される生体分子試料に対しては、解析対象の生体分子を支持基体上の規則性を有する位置に、各固定箇所一箇所に前記生体分子を一分子ずつ固定し、特定の生体分子に吸着することが既知である検出用の生体分子を前記支持基体上に固定した生体分子試料と反応させ、前記検出用の生体分子を検出することで、核酸試料の場合と同様に分析することができる。したがって、解析対象の生体分子の種類と存在量を網羅性と定量性を兼ね備え、一分子の感度及び分解能で、簡便,迅速に分析することができる。
本実施例の解析方法の一例を説明するための図。 本実施例の解析方法に用いるデバイスの構成の一例を説明するための図。 本実施例の解析方法に用いるデバイスの製造方法の一例を説明するための図。 本実施例の一分子固定微粒子の作製方法の一例を説明するための図。 本実施例の解析方法の一例を説明するための図。 本実施例の解析方法の一例を説明するための図。 本実施例の核酸分析装置の一例を説明するための図。
 実施例では、解析対象の核酸断片群を用意し、既知の塩基配列を有しかつ蛍光体標識された核酸分子を前記解析対象の核酸断片群とハイブリダイゼーションさせ、ハイブリダイゼーションした核酸分子に標識された蛍光体を検出し、前記蛍光体の個数を計数することを特徴とする、核酸分析方法を開示する。
 また、実施例では、解析対象の核酸断片群を一分子ずつ用意し、既知の塩基配列を有しかつ蛍光体標識された核酸分子を前記解析対象の核酸断片群とハイブリダイゼーションさせ、ハイブリダイゼーションした核酸分子に標識された蛍光体を検出することを特徴とする、核酸分析方法を開示する。
 また、実施例では、解析対象の核酸分子群を、一分子ずつ、空間的に分離された位置に固定する工程と、既知の塩基配列を有しかつ蛍光体標識された核酸分子を、前記解析対象の核酸分子群とハイブリダイゼーションする工程と、前記ハイブリダイゼーションの工程後に、前記蛍光体の蛍光を測定する工程を含むことを特徴とする、核酸分析方法を開示する。
 また、実施例では、解析対象の核酸分子群を、一分子ずつ、支持基体上の異なる位置に固定する工程と、既知の塩基配列を有しかつ蛍光体標識された核酸分子を前記支持基体上の核酸断片群とハイブリダイゼーションする工程と、前記ハイブリダイゼーションの工程後に、前記蛍光体の蛍光を測定する工程を含むことを特徴とする、核酸分析方法を開示する。
 また、実施例では、解析対象の核酸断片群を、微粒子上に、微粒子一つあたり前記核酸断片を一分子ずつ固定する工程と、既知の塩基配列を有しかつ蛍光体標識された核酸分子を、前記微粒子上の核酸断片とハイブリダイゼーションする工程と、前記ハイブリダイゼーションの工程後に、前記微粒子を支持基体上に固定する工程と、前記蛍光体の蛍光を測定する工程を含むことを特徴とする、核酸分析方法を開示する。
 また、実施例では、前記核酸分析方法において、解析対象の核酸断片群は、個々の核酸試料ごとに隔離された微小容器内にはなく、すべての核酸断片群が、既知の塩基配列を有しかつ蛍光体標識された核酸分子を含む同一の溶液と反応することで、ハイブリダイゼーションさせることを特徴とする、核酸分析方法。
 また、実施例では、前記核酸分析方法において、前記蛍光体標識が、解析対象の核酸の種類ごとに、配合割合が異なった複数種類の蛍光体を含む微粒子であることを特徴とする、核酸分析方法を開示する。
 また、実施例では、前記核酸分析方法において、特定の核酸種以外の核酸種に対しては同一の蛍光体標識を用い、前記核酸分子ごとに蛍光輝点数を計数した上で、総輝点数に対する特定の核酸種ごとの輝点数の比を算出することで、前記特定の核酸種ごとの存在量を評価することを特徴とする、核酸分析方法を開示する。
 また、実施例では、前記核酸分析方法において、解析対象の核酸断片群に対して共通の蛍光体標識を施し、前記蛍光体とは異なる蛍光体で標識された既知の塩基配列を有する核酸分子をハイブリダイゼーションする工程を含み、前者と後者の蛍光体の輝点数の比を算出することで、前記解析対象の核酸断片の種類ごとの存在量を評価することを特徴とする、核酸分析方法を開示する。
 また、実施例では、解析対象の核酸断片群を一分子ずつ固定した微粒子を用意し、既知の塩基配列を有しかつ蛍光体標識された核酸分子を前記解析対象の核酸断片群とハイブリダイゼーションさせ、ハイブリダイゼーションした前記核酸分子に標識された蛍光体を検出することを特徴とする、核酸分析方法を開示する。
 また、実施例では、前記核酸分析方法において、解析対象の核酸断片群を一分子ずつ固定した前記微粒子が磁気微粒子であり、前記蛍光体標識が、解析対象の核酸の種類ごとに、配合割合が異なった複数種類の蛍光体を含む微粒子であり、ハイブリダイゼーション後に、ハイブリダイゼーションしなかった前記蛍光体標識された核酸分子と前記磁気微粒子を分離した後、前記磁気微粒子上の核酸分子とハイブリダイゼーションした核酸分子に標識された蛍光体を検出することを特徴とする、核酸分析方法を開示する。
 また、実施例では、前記核酸分析方法において、特定の核酸種以外の核酸種に対しては同一の蛍光体標識を用い、前記核酸分子ごとに蛍光輝点数を計数した上で、総輝点数に対する特定の核酸種ごとの輝点数の割合を算出することで、前記特定の核酸種ごとの存在量を評価することを特徴とする、核酸分析方法を開示する。
 また、実施例では、前記核酸分析方法において、解析対象の核酸分子群に対して同一の蛍光体標識を施し、前記蛍光体とは異なる蛍光体で標識された既知の塩基配列を有する核酸分子をハイブリダイゼーションする工程を含み、前者と後者の蛍光輝点数の比を算出することで、前記解析対象の核酸の種類ごとの存在量を評価することを特徴とする、核酸分析方法を開示する。
 また、実施例では、解析対象の核酸分子群を、一分子ずつ、空間的に分離された位置に固定する手段と、既知の塩基配列を有しかつ蛍光体標識された核酸分子を、前記解析対象の核酸分子群とハイブリダイゼーションする手段と、前記ハイブリダイゼーションの工程後に、前記蛍光体の蛍光を測定する手段を具備することを特徴とする核酸分析装置を開示する。
 以下、上記及びその他の本発明の新規な特徴と効果について、図を参照して説明する。ここでは、本発明を完全に理解してもらうため、特定の実施形態について詳細な説明を行うが、本発明はここに記した内容に限定されるものではない。
 本実施例のデバイスの構成及び解析方法を、図1を用いて説明する。
 本実施例のデバイス構成は以下の通りである。支持基体101の上に接着パッド102が形成してある。支持基体101としては、石英等のガラス基板やシリコンウエハなどを用いることができる。接着パッド102としては、支持基体101と異なる材質であればよく、金属あるいは金属の酸化物を用いることができる。接着パッドの作製方法は実施例3で詳細を述べる。接着パッド102は支持基体101上に規則性を持って形成されていることが好ましいが、詳細は実施例3で述べる。接着パッド102の上には微粒子103が固定されている。接着パッド1つ当たり固定される微粒子数は1個である。微粒子103には、捕捉分子104が結合分子105を介して一分子のみ固定されている。解析対象の核酸断片106の種類に依存して、捕捉用タグ分子107,捕捉分子104,結合分子105にはいろいろな組合せの分子群を用いることができる。例えば、解析対象の核酸断片106がRNAの逆転写物である場合には、捕捉用タグ分子107は逆転写反応時のプライマDNAを用いることができ、捕捉分子104として捕捉用タグ分子107の相補配列を有する核酸分子を用いることができる。あるいは、捕捉用タグ分子107として末端にビオチンを有する核酸分子とし、捕捉分子104として末端にアビジンを有する分子を用いることもできる。結合分子105には炭素数10程度以下のアルカン分子を用いることができ、化学結合を介して捕捉分子104に結合し、反対側の末端にはビオチンがついているものを用いることができる。その場合、微粒子103の表面にはアビジン,ストレプトアビジンなどが修飾されていることが望ましい。捕捉用タグ分子107と捕捉分子104の反応は、両者が相補配列を有する核酸分子の場合には、ハイブリダイゼーションが好ましい。また、ライゲーションにより両者を化学結合で結びつける方法を用いることも好ましい。結果として、支持基体101上には、規則的な配置で、解析対象の核酸断片106が一分子ずつ孤立した状態で固定されることになる。
 次に、固定した解析対象の核酸断片106の種類の同定と存在数を求める。蛍光体標識付核酸分子108を解析対象の核酸断片106を固定した基板に反応させる。解析対象の核酸断片106と相補な核酸配列を蛍光体標識付核酸分子108は含むことになる。蛍光体標識には、Cy3やCy5などの通常の蛍光色素分子やZn-Seなどからなる半導体微粒子を用いることができる。識別すべき解析対象の核酸断片106の数が多い場合には、蛍光体標識として、蛍光体入り蛍光ビーズを用いることができる。例えば、2種類の蛍光体の含有量を各々10種のレベルとし、2種類の蛍光体の含有量のレベルを変えて混合することで、100種類の蛍光ビーズを作製することができ、蛍光体の数を3種類とすれば、1000種類の識別が可能なビーズセットを容易に作ることができる。例えば、ルミネックス社から2波長のレーザ光で励起することで100種類の識別ができる蛍光ビーズセットが市販されている。これらの蛍光ビーズの表面を化学修飾し、核酸分子と結合させることで蛍光体標識付核酸分子108を作製することができる。ハイブリダイゼーション後、適切な非特異吸着物の洗浄後、蛍光検出を行うことで、解析対象の核酸断片106の分析を行う。蛍光体標識にCy3やCy5などの通常の蛍光色素分子を一分子だけ付けた蛍光体標識付核酸分子108の場合には、基板上の解析対象の核酸断片106を固定した箇所から、一分子蛍光が観察されることになる。この場合、蛍光が微弱であるため、EM-CCDなど高感度の蛍光検出機が必要となる。蛍光体として蛍光ビーズを用いた場合には、一分子蛍光よりも強い蛍光が発せられるため、通常のCCDでも十分検出できる。接着パッド102は支持基体101上に規則性高く、例えば格子状に形成されるため、蛍光画像においても、規則性を持った位置に蛍光の輝点が観測される。そのため、非特異的に蛍光体標識付核酸分子108が支持基体101上に付着しても、蛍光画像の輝点位置から容易に識別・除去することができる。この点は、微量な試料の解析,微弱な蛍光観察において、実際上、非常に有用な特徴である。蛍光体あるいは蛍光ビーズの識別には、回折格子を用いて発光スペクトルを分光してCCDの感光面に照射し、波長方向に分けた各画素の強度を調べることで、蛍光体あるいは蛍光ビーズの種類を識別できる。あるいは、反射特性に大きな波長依存性を持たせたダイクロイックミラーを用いて、反射光と透過光の比率を用いて、蛍光体あるいは蛍光ビーズの種類を識別することもできる。個々の輝点の識別を行った後、それらを集計することで、解析対象の核酸断片106の種類と輝点数、すなわち、存在量の情報を最終的に得ることができる。例えば、接着パッド102を1μmピッチで作製した場合、1mm各の中に106個の接着パッドが存在するので、最大総分子数106の中で所定の種類の解析対象の核酸断片が何分子存在するかを調べることができる。
 以下、具体的な解析対象としてマイクロRNAを例に取り、詳細を説明する。
 解析対象がマイクロRNAの場合には、既知のマイクロRNAの塩基配列データベース(例えばhttp://www.microrna.org/)から、個々のマイクロRNA分子の配列データを取得できる。これを基に、逆転写用のプライマを設計できる。プライマの塩基長は10~15塩基程度が好ましく、5′端に捕捉用タグ分子107として10塩基のDNAを持たせる。例えば、ヒトマイクロRNAを対象とし、1000種類のプライマを設計・合成する。合成した1000種類のプライマを等量ずつ混ぜたプライマのカクテルを作製し、トータルRNAを対象に、逆転写用プライマのカクテル、逆転写酵素を混合後、37-40℃の環境下で逆転写反応を起こし、cDNAを合成することで解析対象の核酸断片106と捕捉用タグ分子107を結合させたものを得る。あるいは、解析対象の核酸断片106としてRNA、捕捉用タグ分子107として10塩基程度のRNAを用い、両者をT4RNAリガーゼを用いて結合させることで解析対象の核酸断片106に捕捉用タグ分子107を結合させることもできる。基板には、予め、捕捉用タグ分子107の10塩基の核酸に対する相補鎖DNAを捕捉分子104として一分子固定しておく。微粒子103に対する捕捉分子104の一分子固定に関しては、実施例4に詳細を記載した。cDNA(解析対象の核酸断片106と捕捉用タグ分子107を結合させたもの)を基板上で常套手段によりハイブリダイゼーションを行うことで、解析対象の核酸断片106を基板上に固定する。
 前記と同様に、既知のマイクロRNAの塩基配列データベースから、個々のマイクロRNA分子の配列データを取得し、この配列と同じ塩基配列で、5′端にビオチンを修飾した合成オリゴを1000種類合成する。
 蛍光ビーズに使う蛍光体として、例えば、Cy5,Cy5.5,Cy3を用いることができ、励起光には532nm,633nmの2種類で対応できる。各色素の濃度比が異なる溶液を作製し、スチレンモノマーからポリスチレンビーズを合成する段階で混合することで、所定の色素混合比のポリスチレンビーズを作製できる。ポリスチレン表面にアビジン等の修飾を施すには、アクリル酸/メタクリル酸とスチレンの共重合反応を用いることでビーズ表面にカルボキシル基を導入しておき、アビジンのアミノ基とカルボジイミドを架橋剤として反応させることで容易に修飾できる。
 アビジン修飾した蛍光ビーズと5′端にビオチンを修飾した合成オリゴを反応させることで、蛍光体標識付核酸分子108を合成することができる。
 次に、解析対象の核酸断片106を固定した基板に、蛍光体標識付核酸分子108を通常の方法を用いてハイブリダイゼーションさせる。
 ドデシル硫酸ナトリウムを含む洗浄液で洗浄後、蛍光画像を取得し、各接着パッドの蛍光輝点がどの種類の蛍光ビーズに相当するかを識別した上で輝点を計数することで、各種マイクロRNAの存在量を解析することができる。
 検出できる核酸種の数は、識別し得る蛍光ビーズの数に依存する。マイクロRNAの種類として凡そ1000種類が存在すると、1000種類の蛍光ビーズを作製すればよく、前述のように、蛍光体の含有量を各々10種のレベルとし、3種類の蛍光体の含有量のレベルを変えて混合することで、1000種類の識別が可能なビーズセットを容易に作ることができ、全マイクロRNA種のすべてを一度に検出することができる。また、特定のマイクロRNAだけの発現量を調べたい時には、特定のマイクロRNA種に対応した蛍光体標識付核酸分子108を作製し、蛍光ビーズもその数だけ用意する。特定のマイクロRNA種以外のマイクロRNA種に対しては、それら以外で同一の蛍光ビーズを用いることで、蛍光ビーズの種類として1000種類を用意しなくとも、全マイクロRNAの存在量を輝点の計数値として知ることができ、また、特定のマイクロRNAの全マイクロRNAに対する存在比を求めることができる。
 あるいは、捕捉用タグ分子107に、蛍光体標識付核酸分子108とは異なる発光波長あるいは発光強度を有する蛍光色素標識を予め施しておき、捕捉用タグ分子107に標識した蛍光色素による蛍光輝点数を全核酸試料分子数に相当するもの、各種の蛍光体標識付核酸分子108に標識した蛍光体の蛍光輝点数を各種の核酸試料分子数に相当するものと判断し、両者の輝点数の比を各種の核酸試料分子の存在比率と判断することも、特定の核酸分子だけの発現量を調べたい時には、極めて、有効である。
 さらに、本発明の方法は、核酸試料のみならず、タンパク質などの核酸試料以外の生体分子の解析にも、捕捉分子104を最適化することで、適用できる。複数の生体分子種から構成される生体分子試料に対しては、解析対象の生体分子を支持基体上の規則性を有する位置に、適切な抗体などを捕捉分子104に用いることで各固定箇所一箇所に前記生体分子を一分子ずつ固定し、特定の生体分子に吸着することが既知である検出用の生体分子を前記支持基体上に固定した生体分子試料と反応させ、前記検出用の生体分子を検出することで、核酸試料の場合と同様に分析することができる。したがって、解析対象の生体分子の種類と存在量を網羅性と定量性を兼ね備え、一分子の感度及び分解能で、簡便,迅速に分析することができる。
 上記実施例では、解析対象のDNA試料を一分子ずつ基板上に固定した例を示したが、一分子ずつ固定したほうが、計数する上で容易ではあるが、一分子ずつ固定することは必須の条件ではなく、二個あるいは三個ずつ固定されても、計数ができさえすれば、解析対象のDNA試料の種類と存在量を解析するという、本発明の目的が達成されることは言うまでもない。
 本実施例のデバイスの構成を、図2を用いて説明する。支持基体201の上に接着パッド202が規則正しく、例えば図2に示すように格子状に形成されている。接着パッド202と微粒子203は、線状分子205を介して化学結合あるいは化学的相互作用により結ばれている。線状分子205の末端の官能基206と、接着パッド202とは化学的相互作用により結合していることが好ましい。その際、官能基206は、支持基体201との相互作用が弱く、接着パッド202との相互作用が強いことが好ましい。このような観点から、支持基体201としては、石英ガラス,サファイア,シリコン基板などを用いることができる。また、接着パッド202には、金,チタン,ニッケル,アルミから選ばれる材料で構成することができる。官能基206には、支持基体201と接着パッド202との組合せを考えて選択せねばならないが、例えば、スルホヒドリル基,アミノ基,カルボキシル基,リン酸基,アルデヒド基等を用いることができる。線状分子205は、微粒子203と接着パッド202を結ぶ役割を果たし、長さに大きな限定はないが、低分子の場合には炭素数にして3から20程度の直鎖状分子が好ましい。線状分子205の末端の官能基207は、微粒子203との接着性をもたらす。また、線状分子205として高分子を用いる場合には、複数の側鎖を有し、官能基206を有する側鎖と官能基207を持つ側鎖を併せ持つものを用いることができる。微粒子203としては、金属微粒子や半導体微粒子を用いることができる。例えば、金の微粒子として、直径5nm~100nmのものが市販されており、活用することができる。また、半導体微粒子としては、直径が10nm~20nm程度のCdSe等の化合物半導体が市販されており、活用することができる。官能基207として用いることができる官能基は、微粒子の種類によって異なるが、例えば金微粒子を用いた場合にはスルホヒドリル基,アミノ基等が好ましい。半導体微粒子を用いる場合には、ストレプトアビジンで表面が修飾された微粒子が市販されており、官能基207としてビオチンを用いることができる。さらに、微粒子203として、ポリスチレンなどの高分子材料からなる微粒子を用いることもできる。高分子材料の場合には、微粒子の粒径を揃えることができ、粒径の大きさも数十nmから数μmまで幅広く選択することができる。また、高分子材料が有する官能基を足場に表面修飾を施すことで、微粒子表面に固定する捕捉分子204の固定反応のための官能基の導入量を均一にすることができるという点で好ましい。特に、捕捉分子204を一分子だけ微粒子表面に固定する場合、固定率の再現性が非常に高く、好ましい。
 捕捉分子204には、DNAやRNAの核酸分子の一本鎖を用いることができる。核酸分子の末端を官能基207と同様に予め修飾しておき、微粒子203と反応させておく。一つの微粒子203に固定する捕捉分子204は一分子であることが好ましく、接着パッド202の上には捕捉分子204が一分子だけ固定されることになる。
 簡便な蛍光検出でプローブを識別する場合回折限界を考慮するとプローブ間が1μm程度離れていることが好ましい。したがって、微粒子203のサイズは1μm以下であることが適している。
 接着パッド202を支持基体201上に形成する方法としては、半導体で既に実用化されている薄膜プロセスを活用することができる。例えば、マスクを通した蒸着・スパッタリング、あるいは蒸着・スパッタリングにより薄膜を形成した後、ドライあるいはウエットエッチングにより製造することができる。規則正しく配置することは、薄膜プロセスを用いることで容易に実現できる。パッド間の間隔は任意に設定できるが、検出手段として光計測を行う場合、光検出の回折限界を考えると1μm以上が好ましい。
 接着パッド202を支持基体201上に形成した後、微粒子203と接着パッド202を結ぶ線状分子205を供給し、接着パッド202上に線状分子205を固定する。この際、支持基体201上での非特異的吸着を防止する目的で、線状分子205を供給する前に、支持基体201との接着力の強い材料を支持基体201上に反応させる方法が有効である。例えば、シランカップリング剤等が利用できる。次に、捕捉分子204を固定した微粒子203を基板上に供給して、微粒子203を接着パッド202上に固定させることにより、核酸分析用デバイスを完成する。
 接着パッド202上に微粒子203を固定させる際、一つの接着パッド202に複数個の微粒子203が固定される可能性がある。複数個が固定されてしまうと、種類の違う核酸断片の情報が重なり合ってしまい、正確な核酸分析ができなくなってしまう。そのため、一つの接着パッド202には、1個の微粒子203を固定させねばならない。そこで、発明者らは、種々の条件での固定実験を繰り返し、鋭意検討した結果、接着パッド202の直径dが微粒子203の直径Dに比べて小さい、という条件が成り立てば、一つの接着パッド202に1個の微粒子203を固定できることを見出した。接着パッド202に比べて同等以上の大きさの微粒子203が固定されると、未反応の線状分子が固定された微粒子に覆い隠されてしまい、別の微粒子と反応できなくなってしまうものと説明される。さらに、鋭意検討を続けた結果、微粒子203がその表面に電荷を有する場合には、微粒子間に静電的な反発力が働くため、接着パッド202の直径dが微粒子203の直径Dに比べて大きい場合にも接着パッドあたりの固定微粒子数が1個になることが判明した。したがって、微粒子203の表面電荷が小さく静電反発力が弱い場合には、接着パッド202の直径dが微粒子203の直径Dに比べて小さいことが好ましく、微粒子203の表面電荷が大きく静電反発力が強い場合には、接着パッド202の直径dは必ずしも微粒子203の直径Dよりも小さくなくても良いことが明らかとなった。
 米国特許第6859570号公報において、光ファイバーをバンドル化した先端部の個々の光ファイバーに穴(微小容器)を設けて、解析対象の生体分子を捕獲するための抗体をつけた微粒子を個々の穴に入れて、穴ごとに光ファイバーで蛍光を検出する方法が開示されている。本発明では、微粒子を格子状に並べる場合でも、このような穴(微小容器)は必要ではなく、穴に微粒子を入れるとかえって洗浄工程に時間を要するなどの問題を発生してしまう。したがって、本発明では、本実施例に記載したように、接着パッドを用いて支持基体上に格子状に並べて固定する方法が好ましい。
 本実施例のデバイスの製造方法を、図3を用いて説明する。平滑な支持基体301上に電子線用ポジ型レジスト302をスピンコート法により塗工する。平滑な支持基体としては、ガラス基板,サファイア基板,シリコンウエハ等が用いられる。デバイスとしたときに、微粒子を配列した面と反対側の裏面より励起光を照射する必要がある場合には、光透過性に優れた石英基板やサファイア基板を用いればよい。電子線用ポジ型レジストとしては、例えば、ポリメチルメタクリレートやZEP-520A(日本ゼオン社製)を挙げることができる。基板上のマーカーの位置を用いて位置合わせを行ったうえ電子線直描露光を行って、レジストにスルーホールを形成する。例えば、直径15nmのスルーホールを形成する。並行処理で解析できる核酸の分子数に依存するが、スルーホールは1μm程度のピッチで形成することが、製造上の簡便さ,歩留まりの高さ、及び並行処理で解析できる核酸の分子数を勘案すると、適している。スルーホール形成領域も、並行処理で解析できる核酸の分子数によるが、検出装置側の位置精度や位置分解能にも大きく依存する。例えば、1μmピッチで反応サイト(接着パッド)を構成した場合、スルーホール形成領域を1mm×1mmとすると、100万反応サイトを形成できる。スルーホールを形成後、接着パッド303を構成する材料、例えば、金,チタン,ニッケル,アルミ、をスパッタリングで製膜する。平滑な支持基体としてガラス基板,サファイア基板を用い、接着パッド材料として金,アルミ,ニッケルを用いる場合には、基板材料と接着パッド材料との間に接着を補強する意味でチタンやクロムの薄膜を入れることが好ましい。次に、接着パッド303に線状分子304を反応させる。接着パッド303が金,チタン,アルミ,ニッケルの場合には、線状分子末端の官能基305としては、各々、スルホヒドニル基,リン酸基,リン酸基,チアゾール基を用いることが好ましい。線状分子の反対側の官能基306には、例えばビオチンを用いることができる。線状分子を接着パッドと反応させた後、レジストを剥離する。レジストを剥離後、接着パッドを形成した以外の支持基体表面に非特異吸着防止処理を施す。蛍光色素付きヌクレオチドに対する吸着防止を実現するには負の電荷を帯びた官能基を有する非特異吸着防止用分子307でコートする。例えば、エポキシシランを表面にスピンコートで塗工し、加熱処理後、弱酸性溶液(pH5~pH6程度)で処理することにより、エポキシ基を開環させOH基を表面に導入することで非特異吸着防止効果をもたらすことができる。
 微粒子308表面には、予めアビジン309を修飾しておくことが好ましい。金または白金微粒子を用いる場合には、アミノチオールを反応させた後、ビオチン-スクシンイミド(Pierce社製NHS-Biotin)を反応させ、最後にストレプトアビジンを反応させることにより、アビジン修飾することが容易にできる。金または白金以外の金属微粒子を用いる場合には、酸素雰囲気中で加熱処理することにより表面を酸化処理した後、アミノシランを反応させ、次にビオチン-スクシンイミド(Pierce社製NHS-Biotin)を反応させ、最後にストレプトアビジンを反応させる。これにより、金属微粒子表面をアビジン修飾することが容易にできる。微粒子として、半導体微粒子を用いる場合には、市販の微粒子を用いることができる。例えば、直径が15~20nmである製品名「Qdot(R)ストレプトアビジン標識」(インビトロジェン社製)を利用することができる。また、微粒子として、ポリスチレンビーズを用いることもできる。例えば、直径が40nmである製品名「フルオスフィア ニュートラビジン修飾」(インビトロジェン社製)を利用することができる。捕捉分子310としてオリゴヌクレオチドを用いる場合には、末端をビオチン修飾して合成しておくことにより、容易に微粒子308上に固定できる。捕捉分子310を固定した微粒子308を接着パッド303上に固定することにより、本実施例の核酸分析用デバイスを製造することができる。
 本実施例では、捕捉分子を一分子だけ固定した微粒子の製造方法の一例を、特に、微粒子一個につき一分子の捕捉分子を固定する方法を図4を用いて説明する。微粒子401の表面に捕捉分子404を捕捉するための結合サイト402を結合させておく。例えば、結合サイトとしてストレプトアビジンを用いることができ、市販のストレプトアビジンコート微粒子(インビトロジェン社製)を微粒子として用いることができる。捕捉分子404には予め、結合サイト403を修飾しておく。結合サイト403には微粒子401表面の結合サイト402と容易に結合するものを選択する。例えば、結合サイト402として前記のストレプトアビジンを用いた場合には結合サイト403としてビオチンを用いる。結合サイト403を末端修飾したオリゴを合成することで容易に末端に結合サイト403をもつ捕捉分子404を合成できる。次に、微粒子401と捕捉分子404を反応させることで、捕捉分子404を微粒子401に結合させる。微粒子401一個につき一分子の捕捉分子404を固定するには、単位体積中の捕捉分子404の分子数を微粒子401の個数よりも小さくすることが好ましい。微粒子401よりも捕捉分子404が過剰にあると微粒子401一個当たりの捕捉分子数が一分子よりも多くなる可能性が高いからである。発明者らが検討した結果では、微粒子401の数を捕捉分子404の数よりも10倍多くして反応させると、凡そ90%の微粒子401には捕捉分子404は捕捉されず、約9%の微粒子401には捕捉分子404が一分子捕捉されていた。この結果は、ポアソン分布を仮定した場合の予測結果と良く一致している。したがって、捕捉分子404を捕捉した微粒子401のみを捕集すれば、捕集した微粒子401のうち90%以上は捕捉分子404を一分子のみ捕捉した微粒子401となる。捕集方法として、例えば、磁気微粒子407に捕捉分子404を結合させて磁石で捕集することができる。捕捉分子404の末端配列と相補な配列を持ち末端に結合サイト406が修飾されたオリゴヌクレオチド405を用意し、結合サイト406と結合する結合サイト408を予め、磁気微粒子407の表面にコートしておく。こうして作製した磁気微粒子407を用いることで捕捉分子404を一分子を捕捉した微粒子401を90%以上と高い割合で分離,収集することができる。磁気微粒子407から微粒子401を単離するには、例えば、捕捉分子404とオリゴヌクレオチド405の二本鎖を分離するディネイチャー処理(高温処理)を用いることができる。単離した微粒子401は実施例2に記載した方法を用いることで、支持基体上の所定の配置に固定することができ、本実施例の捕捉分子404を一分子だけ固定した核酸分析用デバイスを製造することができる。
 さらに、捕捉分子を一分子だけ捕捉した微粒子の割合を高めるには、電気泳動法を用いることが有効である。すなわち、微粒子に捕捉された核酸の分子数により、微粒子上の電荷量が異なることを利用し、核酸を捕捉したままの状態で微粒子をゲル、例えばアガロース中を泳動させることで、電荷量すなわち捕捉された核酸分子数の違いにより泳動パターンを分離させる。核酸が捕捉されない微粒子は移動距離がもっとも短く、核酸分子が一分子だけ捕捉された微粒子が次に移動距離の短いところにバンドを形成する。したがって、このバンドを切り出すことで、核酸分子が一分子だけ捕捉された微粒子を純度高く、得ることができる。
 本実施例のデバイスの構成及び解析方法を、図5を用いて説明する。解析対象の核酸断片501に蛍光色素503が標識された捕捉用タグ分子502を結合させる。結合には、ライゲーション反応や、予め解析対象の核酸断片501と捕捉用タグ分子502にアミノ基やスクシンイミド基などの官能基を導入しておいて官能基同士のカップリング反応を用いることもできる。特に、解析対象の核酸断片501がマイクロRNAの場合には、捕捉用タグ分子502を10-20塩基長程度のRNA分子とし、T4RNAリガーゼを用いる方法が有効である。解析対象の核酸断片501に蛍光色素503が標識された捕捉用タグ分子502を結合させた後、蛍光体505で標識された核酸分子504とハイブリダイゼーションを行う。核酸分子504は個々の解析対象の核酸断片を識別するためのものであり、個々の遺伝子の配列を代表する塩基配列を有する必要がある。配列設計を行う場合には、核酸二本鎖の安定性の指標となる融解温度を個々の標識分子で一定の範囲に収める必要がある。その範囲は狭いほうが好ましいが、所定の温度±3℃程度に抑えることが好ましい。また、標識分子同士の塩基配列の相同性は低いことが好ましく、一番高い相同性を70%以下、より好ましくは60%以下に抑えることが好ましい。次に、実施例4に記載した方法を用いて、微粒子508に捕捉分子506を結合分子507を介して一分子だけ固定したものを予め作製しておき、これを加えてハイブリダイゼーションを行うことで、微粒子508上に、解析対象の核酸断片501と蛍光体505で標識された核酸分子504のハイブリッドを一分子対形成したものを作製することができる。蛍光体505には、実施例1で述べたように、蛍光体入り蛍光ビーズを用いることができる。
 次に、このハイブリッドを形成した微粒子508を支持基体510に形成しておいた接着パッド509上に固定する。固定反応条件は実施例1に記載した条件を適用することができる。最後に、蛍光色素503と蛍光体505の蛍光を検出器511で測定し、蛍光色素503と、各蛍光体505の種類ごとの輝点数を算出する。蛍光色素503の輝点数は、解析対象の核酸断片501の総数に対応し、各蛍光体505の種類ごとの輝点数は各種類の解析対象の核酸断片数に相当する。したがって、両者の比を算出することで、解析対象の総核酸断片数に対する各核酸断片数の割合を算出することができる。この比を算出することは、試料間の発現比較解析をする場合に特に有用である。例えば、健常者と特定の疾患の患者間で発現量の異なるマーカー遺伝子を探索する場合、両試料間で発現量の等しい遺伝子を見つけ出して、その発現量で規格化することが必要になるが、両試料間で発現量の等しい遺伝子を見つけることは実際上非常に困難である。特に、定量PCRでは大きな問題であることが非特許文献5に指摘されている。これに対して、本実施例の方法では、全体に対する割合が個々の試料分子に対して簡便に算出されるため、健常者と患者の比較も直接、全試料分子数に対する割合で比較することができる。この点は、特に、臨床検体での核酸分子の比較解析には有用となる。
 本実施例の解析方法を、図6を用いて説明する。解析対象の核酸断片601に蛍光色素603が標識された捕捉用タグ分子602を結合させる。結合には、ライゲーション反応や、予め解析対象の核酸断片601と捕捉用タグ分子602にアミノ基やスクシンイミド基などの官能基を導入しておいて官能基同士のカップリング反応を用いることもできる。特に、解析対象の核酸断片601がマイクロRNAの場合には、捕捉用タグ分子602を10-20塩基長程度のRNA分子とし、T4RNAリガーゼを用いる方法が有効である。解析対象の核酸断片601に蛍光色素603が標識された捕捉用タグ分子602を結合させた後、蛍光体605で標識された核酸分子604とハイブリダイゼーションを行う。核酸分子604は個々の核酸断片を識別するためのものであり、個々の遺伝子の配列を代表する塩基配列を有する必要がある。配列設計を行う場合には、核酸二本鎖の安定性の指標となる融解温度を個々の標識分子で一定の範囲に収める必要がある。その範囲は狭いほうが好ましいが、所定の温度±3℃程度に抑えることが好ましい。また、標識分子同士の塩基配列の相同性は低いことが好ましく、一番高い相同性を70%以下、より好ましくは60%以下に抑えることが好ましい。次に、実施例4に記載した方法を用いて、微粒子608に捕捉分子606を結合分子607を介して一分子だけ固定したものを予め作製しておき、これを加えてハイブリダイゼーションを行うことで、微粒子608上に、解析対象の核酸断片601と蛍光体605で標識された核酸分子604のハイブリッドを一分子対形成したものを作製することができる。蛍光体605には、実施例1で述べたように、蛍光体入り蛍光ビーズを用いることができる。
 次に、このハイブリッドを形成した微粒子608を流路609中に流し、励起光を照射することで、蛍光色素603の蛍光と蛍光体605の蛍光強度を検出器610で測定する。流路609の直径を、微粒子608の直径の2倍以下とすることで、同時に複数個の蛍光色素603の蛍光を測定することなく、一個一個の微粒子608を識別して蛍光を測定できるため好ましい。蛍光色素603の蛍光輝点数をカウントし、総核酸断片数に相当する値を得る。一方、蛍光色素603の蛍光と蛍光体605の蛍光が同時に測定された場合にのみ、特定の蛍光体の輝点をカウントし、各種類の核酸断片数に相当する値を得る。両者の比を算出することで、総試料分子数に対する各試料分子数の割合を算出することができる。本実施例の方法では、個々の遺伝子の発現量が全遺伝子の発現量に対する発現量の比で得られるため、異なる試料間、例えば健常者と患者試料の比較も直接、比較することができる。この点は、特に、臨床検体での核酸分子の比較解析には有用となる。さらに、微粒子608の散乱光を検出し、蛍光測定と組み合わせることで識別精度を向上させることもできる。
 流路609として円形流路を例として開示したが、流路609として薄い平面流路を用いることで、蛍光色素603の蛍光と蛍光体605の蛍光、さらに微粒子608の散乱光を2次元的に検出することを可能とし、検出スピード及び感度の向上を図ることもできる。
 微粒子608としてポリスチレンなどの高分子からなる微粒子を用いることも、また、高分子中に磁性金属粉体を含有したような磁気微粒子を用いることができる。特に、磁気微粒子を用いた場合には、反応後の微粒子608を流路609に流す前に、反応液中に残っている微粒子608に固定されていない未反応の、蛍光色素603が標識された捕捉用タグ分子602や、蛍光体605で標識された核酸分子604を、容易に取り除くことができ、蛍光色素603の蛍光と蛍光体605の蛍光が同時に測定された場合にのみ、特定の蛍光体の輝点をカウントする際に、測定が容易になるという大きなメリットがあり、好ましい。
 本実施例では、核酸分析用デバイスを用いた核酸分析装置の好ましい構成の一例について図7を参照しながら説明する。
 本実施例の核酸分析装置は、核酸分析用デバイス基板に対して、解析対象の核酸試料溶液,蛍光標識付分子溶液及び洗浄液を供給する手段と、核酸分析用デバイス基板においてハイブリダイゼーションを行うための温度調節手段と、核酸分析用デバイス基板に光を照射する手段と、蛍光標識付分子の蛍光体の蛍光を測定する発光検出手段、を備える。より具体的には、核酸分析用デバイス基板701を温調プレート703上に置き、流路704を設けた流路形成部材702をその上に貼り合せることで反応チャンバを形成する。流路形成部材702には、例えばPDMS(Polydimethylsiloxane)を使用することができる。
 注入口には送液ユニット705が接続されており、送液ユニット705中に保管されている、解析対象の核酸試料溶液,蛍光標識付分子溶液及び洗浄液が順次、核酸分析用デバイス基板701へ供給される。解析対象の核酸試料溶液及び蛍光標識付分子溶液が核酸分析用デバイス基板701へ供給された後、流路704中で溶液は核酸分析用デバイス基板701上に保持され、温調プレート703で30℃から80℃の温度範囲で核酸分析用デバイス基板701上の反応液の温度がコントロールされてハイブリダイゼーションが行われる。ハイブリダイゼーション後、送液ユニット705から洗浄液が核酸分析用デバイス基板701に供給され、未反応物が洗浄される。
 洗浄後、蛍光検出が行われる。励起光源は、用いる蛍光体の種類によって適切なものを選択できる。例えば、蛍光ビーズに使う蛍光体として、Cy5,Cy5.5,Cy3を用いる場合には、励起光には532nm(YAGレーザ),633nm(He-Neレーザ)の2種類で対応できる。YAGレーザ光源(波長532nm,出力20mW)707およびHe-Neレーザ光源(波長633nm,出力20mW)713から発振するレーザ光をダイクロイックミラー714によって、前記2つのレーザ光を同軸になるよう調整した後、ダイクロイックミラー709によって対物レンズ706に導き、核酸分析用デバイス基板701上に照射される。蛍光標識付分子から発せられる蛍光は、励起光と同軸光路を逆に進み、対物レンズ706で集められた後ダイクロイックミラー709を通過し、結像レンズ711により2次元CCDカメラ712の感光面上に結像される。励起光の散乱光は光学フィルタ710によって除去される。
 上記のように、送液ユニット,温調プレート,励起光源及び蛍光検出ユニットで核酸分析装置を組上げることにより、自動でハイブルダイゼーションによる核酸分析を行うことが可能となり、従来技術に対して大幅なスループットの改善が図れる。
101,201,510 支持基体
102,202,303,509 接着パッド
103,203,308,401,508,608 微粒子
104,204,310,404,506,606 捕捉分子
105,507,607 結合分子
106,501,601 解析対象の核酸断片
107,502,602 捕捉用タグ分子
108 蛍光体標識付核酸分子
205,304 線状分子
206,207 官能基
301 平滑な支持基体
302 電子線用ポジ型レジスト
305,306 線状分子末端の官能基
307 非特異吸着防止用分子
309 アビジン
402,403,406,408 結合サイト
405 オリゴヌクレオチド
407 磁気微粒子
503,603 蛍光色素
504,604 核酸分子
505,605 蛍光体
511,610 検出器
609,704 流路
701 核酸分析用デバイス基板
702 流路形成部材
703 温調プレート
705 送液ユニット
706 対物レンズ
707 YAGレーザ光源
708 レンズ
709,714 ダイクロイックミラー
710 光学フィルタ
711 結像レンズ
712 2次元CCDカメラ
713 He-Neレーザ光源

Claims (14)

  1.  解析対象の核酸断片群を用意し、既知の塩基配列を有しかつ蛍光体標識された核酸分子を前記解析対象の核酸断片群とハイブリダイゼーションさせ、ハイブリダイゼーションした核酸分子に標識された蛍光体を検出し、前記蛍光体の個数を計数することを特徴とする、核酸分析方法。
  2.  解析対象の核酸断片群を一分子ずつ用意し、既知の塩基配列を有しかつ蛍光体標識された核酸分子を前記解析対象の核酸断片群とハイブリダイゼーションさせ、ハイブリダイゼーションした核酸分子に標識された蛍光体を検出することを特徴とする、核酸分析方法。
  3.  解析対象の核酸分子群を、一分子ずつ、空間的に分離された位置に固定する工程と、既知の塩基配列を有しかつ蛍光体標識された核酸分子を、前記解析対象の核酸分子群とハイブリダイゼーションする工程と、前記ハイブリダイゼーションの工程後に、前記蛍光体の蛍光を測定する工程を含むことを特徴とする、核酸分析方法。
  4.  解析対象の核酸分子群を、一分子ずつ、支持基体上の異なる位置に固定する工程と、既知の塩基配列を有しかつ蛍光体標識された核酸分子を前記支持基体上の核酸断片群とハイブリダイゼーションする工程と、前記ハイブリダイゼーションの工程後に、前記蛍光体の蛍光を測定する工程を含むことを特徴とする、核酸分析方法。
  5.  解析対象の核酸断片群を、微粒子上に、微粒子一つあたり前記核酸断片を一分子ずつ固定する工程と、既知の塩基配列を有しかつ蛍光体標識された核酸分子を、前記微粒子上の核酸断片とハイブリダイゼーションする工程と、前記ハイブリダイゼーションの工程後に、前記微粒子を支持基体上に固定する工程と、前記蛍光体の蛍光を測定する工程を含むことを特徴とする、核酸分析方法。
  6.  請求項1において、解析対象の核酸断片群は、個々の核酸試料ごとに壁で隔離されてはいない状態で、すべての核酸断片群が、既知の塩基配列を有しかつ蛍光体標識された核酸分子を含む同一の溶液と反応することで、ハイブリダイゼーションさせることを特徴とする、核酸分析方法。
  7.  請求項1において、前記蛍光体標識が、解析対象の核酸の種類ごとに、配合割合が異なった複数種類の蛍光体を含む微粒子であることを特徴とする、核酸分析方法。
  8.  請求項7において、特定の核酸種以外の核酸種に対しては同一の蛍光体標識を用い、前記核酸分子ごとに蛍光輝点数を計数した上で、総輝点数に対する特定の核酸種ごとの輝点数の比を算出することで、前記特定の核酸種ごとの存在量を評価することを特徴とする、核酸分析方法。
  9.  請求項7において、解析対象の核酸断片群に対して共通の蛍光体標識を施し、前記蛍光体とは異なる蛍光体で標識された既知の塩基配列を有する核酸分子をハイブリダイゼーションする工程を含み、前者と後者の蛍光体の輝点数の比を算出することで、前記解析対象の核酸断片の種類ごとの存在量を評価することを特徴とする、核酸分析方法。
  10.  解析対象の核酸断片群を一分子ずつ固定した微粒子を用意し、既知の塩基配列を有しかつ蛍光体標識された核酸分子を前記解析対象の核酸断片群とハイブリダイゼーションさせ、ハイブリダイゼーションした前記核酸分子に標識された蛍光体を検出することを特徴とする、核酸分析方法。
  11.  請求項10において、解析対象の核酸断片群を一分子ずつ固定した前記微粒子が磁気微粒子であり、前記蛍光体標識が、解析対象の核酸の種類ごとに、配合割合が異なった複数種類の蛍光体を含む微粒子であり、ハイブリダイゼーション後に、ハイブリダイゼーションしなかった前記蛍光体標識された核酸分子と前記磁気微粒子を分離した後、前記磁気微粒子上の核酸分子とハイブリダイゼーションした核酸分子に標識された蛍光体を検出することを特徴とする、核酸分析方法。
  12.  請求項10において、特定の核酸種以外の核酸種に対しては同一の蛍光体標識を用い、前記核酸分子ごとに蛍光輝点数を計数した上で、総輝点数に対する特定の核酸種ごとの輝点数の割合を算出することで、前記特定の核酸種ごとの存在量を評価することを特徴とする、核酸分析方法。
  13.  請求項10において、解析対象の核酸分子群に対して同一の蛍光体標識を施し、前記蛍光体とは異なる蛍光体で標識された既知の塩基配列を有する核酸分子をハイブリダイゼーションする工程を含み、前者と後者の蛍光輝点数の比を算出することで、前記解析対象の核酸の種類ごとの存在量を評価することを特徴とする、核酸分析方法。
  14.  解析対象の核酸分子群を、一分子ずつ、空間的に分離された位置に固定する手段と、既知の塩基配列を有しかつ蛍光体標識された核酸分子を、前記解析対象の核酸分子群とハイブリダイゼーションする手段と、前記ハイブリダイゼーションの工程後に、前記蛍光体の蛍光を測定する手段を具備することを特徴とする核酸分析装置。
PCT/JP2012/003176 2011-07-19 2012-05-16 核酸分析方法及び核酸分析装置 WO2013011611A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/233,256 US10294519B2 (en) 2011-07-19 2012-05-16 Method and apparatus for nucleic acid analysis
JP2013524575A JP5822929B2 (ja) 2011-07-19 2012-05-16 核酸分析装置
EP12815243.6A EP2735618B1 (en) 2011-07-19 2012-05-16 Nucleic acid analysis method
CN201280034897.9A CN103703146A (zh) 2011-07-19 2012-05-16 核酸分析方法和核酸分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011157399 2011-07-19
JP2011-157399 2011-07-19

Publications (1)

Publication Number Publication Date
WO2013011611A1 true WO2013011611A1 (ja) 2013-01-24

Family

ID=47557815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003176 WO2013011611A1 (ja) 2011-07-19 2012-05-16 核酸分析方法及び核酸分析装置

Country Status (5)

Country Link
US (1) US10294519B2 (ja)
EP (1) EP2735618B1 (ja)
JP (1) JP5822929B2 (ja)
CN (1) CN103703146A (ja)
WO (1) WO2013011611A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017515469A (ja) * 2014-04-21 2017-06-15 プレジデント アンド フェローズ オブ ハーバード カレッジ 核酸をバーコーディングするためのシステムおよび方法
US10596541B2 (en) 2014-04-21 2020-03-24 President And Fellows Of Harvard College Systems and methods for barcoding nucleic acids
CN112789497A (zh) * 2019-09-10 2021-05-11 株式会社东芝 分析方法、分析基板、分析套件和分析设备
US11001883B2 (en) 2012-03-05 2021-05-11 The General Hospital Corporation Systems and methods for epigenetic sequencing
US11021762B2 (en) 2014-11-28 2021-06-01 Uniqure Ip B.V. DNA impurities in a composition comprising a parvoviral virion
US11746367B2 (en) 2015-04-17 2023-09-05 President And Fellows Of Harvard College Barcoding systems and methods for gene sequencing and other applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030950A (ja) * 2003-07-07 2005-02-03 Shimadzu Corp 固定化された物質の定量方法
US6859570B2 (en) 1997-03-14 2005-02-22 Trustees Of Tufts College, Tufts University Target analyte sensors utilizing microspheres
JP2008190937A (ja) * 2007-02-02 2008-08-21 Hitachi High-Technologies Corp 生体分子検出素子、生体分子検出素子の製造方法及び生体分子検出方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2360271A1 (en) * 1998-06-24 2011-08-24 Illumina, Inc. Decoding of array sensors with microspheres
US20050250117A1 (en) * 2003-10-07 2005-11-10 Xing Su Isolation of single polymeric molecules
WO2005085850A1 (en) * 2004-02-27 2005-09-15 Tianxin Wang Methods for multiplexed analyte detection
US20070099225A1 (en) * 2005-11-03 2007-05-03 Wilson George S Separation of chromosomes using an affinity-based magnetic bead separation in suspension
JP2008198937A (ja) 2007-02-15 2008-08-28 Nec Corp 半導体受光素子および光信号処理装置
JP5260339B2 (ja) * 2009-01-30 2013-08-14 株式会社日立ハイテクノロジーズ 核酸分析デバイス、及び核酸分析装置
CN103842821B (zh) * 2011-10-05 2016-03-23 株式会社日立高新技术 生物分子分析方法及生物分子分析装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859570B2 (en) 1997-03-14 2005-02-22 Trustees Of Tufts College, Tufts University Target analyte sensors utilizing microspheres
JP2005030950A (ja) * 2003-07-07 2005-02-03 Shimadzu Corp 固定化された物質の定量方法
JP2008190937A (ja) * 2007-02-02 2008-08-21 Hitachi High-Technologies Corp 生体分子検出素子、生体分子検出素子の製造方法及び生体分子検出方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
GAZOULI, M. ET AL.: "Specific detection of unamplified mycobacterial DNA by use of fluorescent semiconductor quantum dots and magnetic beads.", JOURNAL OF CLINICAL MICROBIOLOGY, vol. 48, no. 8, 2010, pages 2830 - 2835, XP055140761 *
GENOME RESEARCH, vol. 18, 2008, pages 1051 - 1063
NATURE METHODS, vol. 6, 2009, pages 474 - 476
NATURE METHODS, vol. 7, 2010, pages 687 - 692
NUCLEIC ACID RESEARCH, vol. 20, 1992, pages 4939
REPSILBER, D. ET AL.: "Two-color microarray experiments. Technology and sources of variance.", METHODS OF INFORMATION IN MEDICINE, vol. 44, no. 3, 2005, pages 400 - 404, XP008172695 *
ROUSSERIE, GILLES ET AL.: "Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays.", CRITICAL REVIEWS IN ONCOLOGY/HEMATOLOGY, vol. 74, no. 1, 2010, pages 1 - 15, XP026926155 *
SCIENCE, vol. 270, 1995, pages 467 - 470
See also references of EP2735618A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001883B2 (en) 2012-03-05 2021-05-11 The General Hospital Corporation Systems and methods for epigenetic sequencing
US11047003B2 (en) 2012-03-05 2021-06-29 The General Hospital Corporation Systems and methods for epigenetic sequencing
JP2017515469A (ja) * 2014-04-21 2017-06-15 プレジデント アンド フェローズ オブ ハーバード カレッジ 核酸をバーコーディングするためのシステムおよび方法
US10596541B2 (en) 2014-04-21 2020-03-24 President And Fellows Of Harvard College Systems and methods for barcoding nucleic acids
US11052368B2 (en) 2014-04-21 2021-07-06 Vilnius University Systems and methods for barcoding nucleic acids
US11021762B2 (en) 2014-11-28 2021-06-01 Uniqure Ip B.V. DNA impurities in a composition comprising a parvoviral virion
US11746367B2 (en) 2015-04-17 2023-09-05 President And Fellows Of Harvard College Barcoding systems and methods for gene sequencing and other applications
CN112789497A (zh) * 2019-09-10 2021-05-11 株式会社东芝 分析方法、分析基板、分析套件和分析设备

Also Published As

Publication number Publication date
EP2735618A1 (en) 2014-05-28
JPWO2013011611A1 (ja) 2015-02-23
CN103703146A (zh) 2014-04-02
JP5822929B2 (ja) 2015-11-25
EP2735618B1 (en) 2017-12-06
EP2735618A4 (en) 2015-01-21
US20140200162A1 (en) 2014-07-17
US10294519B2 (en) 2019-05-21

Similar Documents

Publication Publication Date Title
JP5816291B2 (ja) 生体分子分析方法及び生体分子分析装置
WO2010087121A1 (ja) 核酸分析デバイス、及び核酸分析装置
JP5822929B2 (ja) 核酸分析装置
US9365891B2 (en) Nucleic acid analysis device, method for producing same, and nucleic acid analyzer
JP5587816B2 (ja) 核酸分析デバイス、及び核酸分析装置
TW200902977A (en) Separation/purification method and microfluid circuit
JP5309092B2 (ja) 核酸分析用デバイス,核酸分析装置、及び核酸分析用デバイスの製造方法
JP5635130B2 (ja) 単分子プローブ核酸付き微粒子及びその製造方法、並びに核酸分析方法
JP6037701B2 (ja) 免疫分析装置
US11913064B2 (en) Molecular beacon-based optical gene biosensor employing retro-reflection and quantitative analysis method of nucleic acid molecule
JP2015139373A (ja) 生体分子分析デバイス、及び生体分子分析装置
JP5233296B2 (ja) ターゲット評価方法および装置
WO2007135741A1 (ja) 被検体評価装置および被検体評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524575

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012815243

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14233256

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE