WO2013011557A1 - 冷却器及び電動機一体型電力変換装置 - Google Patents

冷却器及び電動機一体型電力変換装置 Download PDF

Info

Publication number
WO2013011557A1
WO2013011557A1 PCT/JP2011/066338 JP2011066338W WO2013011557A1 WO 2013011557 A1 WO2013011557 A1 WO 2013011557A1 JP 2011066338 W JP2011066338 W JP 2011066338W WO 2013011557 A1 WO2013011557 A1 WO 2013011557A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow path
cooler
refrigerant flow
coolant
Prior art date
Application number
PCT/JP2011/066338
Other languages
English (en)
French (fr)
Inventor
康滋 椋木
貴晴 鈴木
英士 山内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201180071898.6A priority Critical patent/CN103636298B/zh
Priority to PCT/JP2011/066338 priority patent/WO2013011557A1/ja
Priority to DE112011105452.1T priority patent/DE112011105452T5/de
Priority to JP2013524541A priority patent/JP5683704B2/ja
Priority to US14/123,838 priority patent/US9647509B2/en
Publication of WO2013011557A1 publication Critical patent/WO2013011557A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a cooler and a motor-integrated power conversion device equipped with the cooler, and in particular, a cooler that cools a liquid as a cooling medium, for example, water by passing through the inside of the cooler, and the same.
  • the present invention relates to a motor-integrated power converter.
  • the power conversion semiconductor element or the power conversion semiconductor module generates a large heat loss when energized. Therefore, a liquid-cooled cooler that forcibly passes a refrigerant from the outside is used as a cooler.
  • Various patterns are disclosed.
  • a cooler for a semiconductor device disclosed in Patent Document 1 has a forward path portion formed in a spiral shape from an inlet of cooling water toward a central portion, and is cooled by being adjacent to the forward path portion folded back from the forward path portion.
  • a lower cooling body having a return part formed toward the water outlet is provided, and the upper part of the lower cooling body is covered with the upper cooling body to realize a cooler capable of uniform cooling as a whole. ing.
  • the electrical component cooler disclosed in Patent Document 2 achieves improved cooling performance by dividing the spiral flow path into a plurality of paths.
  • the cooler of the electronic device disclosed in Patent Document 3 is configured to provide uniform cooling by providing a large number of flow paths through which refrigerant flows alternately in opposite directions in the cooling plate.
  • the motor-integrated inverter device disclosed in Patent Document 4 realizes a motor-integrated inverter device in which a rear frame in which a cooling water passage is formed between the motor and the inverter is installed, and wiring is simplified.
  • HEV hybrid vehicles
  • EV electric vehicles
  • the flow path is formed in a spiral shape, and further, a plurality of flow paths including a pair of refrigerant inlets and refrigerant outlets are all formed in the same plane. Therefore, it is inevitable that the flow path length becomes long and a large pressure loss occurs. In this case, there is a problem that a high-performance pump is required outside in order to improve the cooling performance.
  • Patent Document 3 it is necessary to form a plurality of inlets / outlets in order to flow the refrigerant in the reverse direction in the cooling plate, and there is a problem that the configuration of the refrigerant piping becomes complicated. Moreover, since there are a plurality of entrances / exits, there is a problem that it is necessary to prepare a plurality of external pumps.
  • any of the above-mentioned Patent Documents 1 to 3 has a problem that the cooler system including the external pump is large and expensive.
  • the cooler according to the present invention has a flat plate-shaped cooler base body having a predetermined thickness and having a surface as a cooling surface, A pair of refrigerant inlet and refrigerant outlet formed so as to open on the outer surface of the cooler base; A refrigerant branch passage communicating with the refrigerant inlet, a refrigerant junction passage communicating with the refrigerant outlet, and a plurality of refrigerant passages communicating with the refrigerant branch passage formed in the cooler base; Any one of the plurality of refrigerant flow paths communicates the refrigerant branch path and the refrigerant combined flow path, The other refrigerant flow paths except the one refrigerant flow path are connected via a refrigerant communication flow path that is three-dimensionally intersected with the refrigerant flow path in a plane different from the formation surface of the refrigerant flow path in the thickness direction.
  • the refrigerant branch passage and the refrigerant joint passage communicate with each other, In the plurality of refrigerant channels, the plurality of refrigerant channels are provided such that the flow directions of the refrigerant flowing in the adjacent refrigerant channels are opposite to each other.
  • An electric motor-integrated power conversion device includes an electric motor having an electric motor shaft and a motor bracket that rotatably supports the electric motor shaft, and an electric power conversion that controls the electric motor.
  • Semiconductor element or power conversion semiconductor module a flat plate-like cooler base having a predetermined thickness and having the surface as a cooling surface, and a pair of refrigerants formed to open to the outer surface of the cooler base
  • any one of the plurality of refrigerant flow paths communicates the refrigerant branch path and the refrigerant combined flow path, and the other refrigerant flow paths except the one refrigerant flow path include the refrigerant flow
  • the refrigerant branch passage and the refrigerant combined passage are communicated with each other through a refrigerant communication passage formed in a three-dimensional intersection with the refrigerant passage in a plane different in the thickness direction from the formation surface of the plurality of refrigerants.
  • the electric motor-integrated power conversion device including the cooler provided with the plurality of refrigerant flow paths so that the flow directions of the refrigerant flowing in the refrigerant flow paths adjacent to each other in the flow paths are opposite to each other, Forming a hollow hole through the electric motor shaft in the cooler base;
  • One surface of the cooler base is fixed to the electric motor bracket, and the power conversion semiconductor element or power conversion semiconductor module is fixed to the other surface of the cooler base.
  • cooler according to the present invention pressure loss can be avoided, high cooling performance can be obtained, and simplification of the cooling system including refrigerant piping and the like can be realized.
  • the cooler, the motor bracket, and the motor can be integrated with high density while realizing high cooling performance of the cooler, which is small and simple.
  • An electric motor integrated power converter is obtained.
  • Embodiment 1 of the cooler concerning this invention It is the perspective view and front view which show Embodiment 1 of the cooler concerning this invention. It is the perspective view and front view which show Embodiment 2 of the cooler which concerns on this invention. It is the perspective view and front view which show Embodiment 3 which applied the cooler concerning this invention to the electric motor integrated power converter device. It is the perspective view and front view which show Embodiment 4 of the cooler based on this invention.
  • FIG. 1 (a) and 1 (b) are a perspective view and a front view showing a first embodiment of a cooler according to the present invention.
  • the cooler 100 according to the present invention includes a flat plate-shaped cooler base body having a predetermined thickness and having the surface as a cooling surface.
  • FIG. 1 is a diagram showing a configuration of a flow path through which a refrigerant formed inside a cooler base flows. As shown in FIG. 1, the refrigerant
  • a first refrigerant channel 131 and a second refrigerant channel 132 are formed in the same surface on the opposite side of the cooling surface 101 of the flat plate 102 and the refrigerant flows coaxially around the central axis C.
  • the refrigerant flowing from the refrigerant inlet 111 between the refrigerant inlet 111 and one end of the first refrigerant flow path 131 and the second refrigerant flow path 132 is transferred to the first refrigerant flow path 131 and the second refrigerant flow path 132.
  • a refrigerant branch path 121 for dividing and flowing is formed.
  • a refrigerant combined flow path 122 is formed in which refrigerant flowing out from the other ends of the first refrigerant flow path 131 and the second refrigerant flow path 132 merges.
  • the other end of the first refrigerant flow channel 131 has a first refrigerant flow on a surface in which the thickness direction of the flat plate is different from the surface on which the first refrigerant flow channel 131 and the second refrigerant flow channel 132 are formed.
  • the refrigerant communication channel 122 communicates with a refrigerant communication channel 123 formed by three-dimensionally intersecting the channel 131.
  • the second refrigerant flow path 132 communicates the refrigerant branch path 121 and the refrigerant combined flow path 122, and the first refrigerant flow path 131 is different from the formation surface of the refrigerant flow path in the thickness direction.
  • the refrigerant branch passage 121 and the refrigerant combination passage 122 are communicated with each other through a refrigerant communication passage 123 formed to intersect the refrigerant passage.
  • each channel is expressed as a groove.
  • the first refrigerant flow path 131 communicates with the first groove 131a that communicates with the refrigerant branch path 121, the second groove 131b that communicates with the first groove 131a, and the second groove 131b that is formed in an arc shape.
  • the third groove 131c is formed.
  • a refrigerant communication channel 123 that communicates with the third groove 131 c and communicates with the refrigerant combination channel 122 is formed to intersect the first refrigerant channel 131 in a three-dimensional manner.
  • the second refrigerant channel 132 is formed on the outer side along the third groove 131c of the first refrigerant channel 131, and communicates with the fourth groove 132a and the fourth groove 132a that communicate with the refrigerant branch path 121.
  • the low-temperature refrigerant that has flowed from the refrigerant inlet 111 is branched by the refrigerant branch path 121, and flows in the opposite directions through the inner first refrigerant path 131 and the outer second refrigerant path 132.
  • the semiconductor element for power conversion or the semiconductor module for power conversion installed on the cooling surface 101 is cooled.
  • the refrigerant that has flowed through the outer second refrigerant flow path 132 and the refrigerant that has flowed through the first refrigerant flow path 131 merge in the refrigerant merge flow path 122 and flow out of the refrigerant outlet 112.
  • the refrigerant rises in temperature from a low temperature to a high temperature in the course of cooling, but the refrigerant flowing through the first refrigerant flow path 131 and the refrigerant flowing through the second refrigerant flow path 132 flow in opposite directions, so that the cooling surface
  • the cooler 100 having uniform cooling performance over the entire 101 is obtained.
  • the refrigerant communication flow intersecting the first refrigerant flow path 131 on the surface where the first refrigerant flow path 131 and the second refrigerant flow path 132 are formed and the plane different in the thickness direction of the flat plate. Since the passage 123 is provided so that the refrigerant flowing out from the other end of the first refrigerant passage 131 flows into the refrigerant combination passage 122 via the refrigerant communication passage 123, the passage length is shortened to reduce the pressure loss. Can do.
  • the cooler 100 having uniform and high cooling performance over the entire cooling surface 101 can be obtained.
  • a pair of refrigerant pipes is sufficient, and an externally installed pump functions as a single unit. Therefore, a simple cooling system can be constructed, and the cooling system as a whole can be made simple and low cost.
  • FIG. 2 (a) and 2 (b) are a perspective view and a front view showing the second embodiment of the cooler according to the present invention, and show the configuration of the flow path through which the refrigerant flows.
  • a pair of refrigerant inlets 211 and refrigerant outlets 212 are formed on one end surface 202 a that is the outer surface of the cooler base of the cooler 200.
  • a fourth refrigerant channel 234 is formed.
  • the refrigerant flowing from the refrigerant inlet 211 between the refrigerant inlet 211 and one end of the first refrigerant flow path 231 to the fourth refrigerant flow path 234 is the first refrigerant flow path 231, the second refrigerant flow path 232, A refrigerant branch path 221 for dividing and flowing into the third refrigerant flow path 233 and the fourth refrigerant flow path 234 is formed.
  • a refrigerant combined flow path 222 communicating with the other ends of the first refrigerant flow 231, the second refrigerant flow path 232, the third refrigerant flow path 233, and the fourth refrigerant flow path 234 is formed. ing.
  • the other end of the second refrigerant flow path 232 communicates directly with the refrigerant combination flow path 222, and the other end of the other refrigerant flow paths 231, 233, 234 except for the second refrigerant flow path 232 is the first refrigerant flow.
  • the first refrigerant channel 231, the third refrigerant channel 233, and the fourth refrigerant channel are arranged on a surface in which the thickness direction of the flat plate is different from the surface on which the channel 231 to the fourth refrigerant channel 234 are formed.
  • 234 communicates with the refrigerant joint flow path 222 through a refrigerant communication flow path 223 formed to three-dimensionally intersect with the H.234.
  • the second refrigerant flow path 232 communicates the refrigerant branch path 221 and the refrigerant combined flow path 222
  • the other refrigerant flow paths 231, 233, and 234 except for the second refrigerant flow path 232 are the first refrigerant flow paths.
  • 231, the third refrigerant flow path 233, and the fourth refrigerant flow path 234 communicate with the refrigerant branch path 221 and the refrigerant combined flow path 222 through the refrigerant communication path 223 formed to cross three-dimensionally. .
  • a third refrigerant flow path 233 is provided along the first refrigerant flow path 231 and a fourth refrigerant flow path 234 is provided along the third refrigerant flow path 233. It is a point that is formed.
  • each channel is expressed as a groove.
  • the third refrigerant flow path 233 communicates with the refrigerant branch path 221, communicates with the seventh groove 233 a formed inside the third groove 231 c, and communicates with the seventh groove 233 a, and the second groove 231 b.
  • a refrigerant communication channel 223 that communicates with the ninth groove 233c and communicates with the refrigerant combination channel 222 is formed to three-dimensionally intersect with the first groove 231a, the seventh groove 233a, and the tenth groove 234a.
  • the ninth groove 233c communicates with the refrigerant joint channel 222 via the refrigerant communication channel 223.
  • the fourth refrigerant flow path 234 communicates with the refrigerant branch path 221 and communicates with the tenth groove 234a formed inside the ninth groove 233c and the eighth groove 233b. And an eleventh groove 234b formed on the inner side along the seventh groove 234b and a twelfth groove 234c formed on the inner side along the seventh groove 233a.
  • the groove 234c communicates with the refrigerant joint channel 222 via the refrigerant communication channel 223.
  • the low-temperature refrigerant flowing from the refrigerant inlet 211 is branched to one end of the first to fourth refrigerant flow paths 231 to 234 by the refrigerant branch path 221, and the first to fourth refrigerant flow paths are obtained.
  • the flow paths adjacent to each other flow alternately in the reverse direction, and the power conversion semiconductor element or power conversion semiconductor module installed on the cooling surface 201 is cooled.
  • the refrigerant that flows through the second refrigerant flow path 232 and flows out from the end thereof directly enters the refrigerant combination flow path 222, and the first refrigerant flow path 231, the third refrigerant flow path 233, and the fourth refrigerant flow path 234.
  • the refrigerant that has flowed through the refrigerant enters the refrigerant combined flow path 222 through the refrigerant communication flow path 223, merges with the refrigerant that has flowed from the second refrigerant flow path 232, and flows out from the refrigerant outlet 212.
  • the refrigerant rises in temperature from the low temperature to the high temperature during the cooling process
  • the refrigerant flowing through the first to fourth refrigerant flow paths 231 to 234 flows in the opposite directions in the adjacent refrigerant flow paths, so that the cooling surface 201
  • the cooler 200 having uniform cooling performance as a whole is obtained.
  • the refrigerant communication channel 223 formed to sterically intersect with the first refrigerant channel 231, the third refrigerant channel 233, and the fourth refrigerant channel 234 is provided. Therefore, the pressure loss can be reduced by shortening the flow path length. Further, since the refrigerant flowing through the first to fourth refrigerant flow paths 231, 232, 233, and 234 flows in opposite directions in the adjacent refrigerant flow paths, the cooler having uniform cooling performance over the entire cooling surface 201. 200 is obtained.
  • a pair of refrigerant pipes is sufficient, and an externally installed pump functions as a single unit. Therefore, a simple cooling system can be constructed, and a refrigerant and a simple and low-cost cooler can be obtained as the entire cooling system. .
  • the case where the number of refrigerant channels is an even number such as two and four is shown, but an odd number such as three or four or more may be used.
  • the cooling performance of the cooler can be made uniform over the entire cooling surface by changing the groove width of the refrigerant flow path.
  • FIG. 2 an example of an arc in which the second groove 231b, the fifth groove 232b, the eighth groove 233b, and the eleventh groove 234b are coaxially formed is shown.
  • the shape may be various shapes such as a quadrangular shape formed coaxially.
  • the refrigerant inlet 111 and the refrigerant outlet 112 are reversed, and the refrigerant junctions 122 and 222 are used as the refrigerant branch.
  • 121 and 221 can also be used as a refrigerant combined flow path.
  • FIG. 3 is a diagram showing a motor-integrated power converter according to the present invention, and in particular, FIGS. 3 (a) and 3 (c) are perspective views and FIG. 3 (b) is a front view.
  • FIG. 3C the cooler 300, the motor bracket 3100, and the motor 3200 are illustrated so that the cooling surface 301 is on the front side.
  • the cooler 300 is shown as an example that is substantially the same as that shown in the first embodiment.
  • a difference from the first embodiment is that a hollow hole 350 through which the electric motor shaft 3201 passes is formed in the center axis of the arc of the first refrigerant channel 331 and the second refrigerant channel 332 of the cooler 300, and the cooling surface 301
  • power conversion semiconductor elements or power conversion semiconductor modules 3001 to 3012 for controlling the electric motor 3200 are fixed.
  • the electric motor integrated power converter of the present invention has an electric motor shaft 3201, an electric motor bracket 3100 having a plane perpendicular to the electric motor shaft 3201, and rotatably supporting the electric motor shaft 3201. And an electric motor 3200 having The motor bracket 3100 is provided with a cylindrical protrusion 3101 on which the motor shaft 3201 is disposed on the inner peripheral side. Further, the power conversion semiconductor element or the power conversion semiconductor modules 3001 to 3012 are fixed to one surface of the cooling surface 301 of the cooler 300, and the lid 360 is provided to the other surface. The lid 360 is equipped with a mounting screw base 361.
  • a protrusion 3101 provided on the electric motor bracket 3100 is fitted into the hollow hole 350, and the cooler 300 is fixed to the electric motor bracket 3100 with a screw 370. Since the protrusion 3101 is cylindrical, it has a structure that allows direct access to the motor shaft 3201 on the inner periphery side of the cylinder.
  • the cooler 300, the electric motor bracket 3100, and the electric motor 3200 can be integrated with high density while realizing high cooling performance of the cooler 300, and a small and simple electric motor.
  • An integrated power converter is obtained.
  • the cooler 300 substantially the same as that shown in the first embodiment is mounted is shown.
  • the cooler 200 shown in the second embodiment may be mounted. it can.
  • the hollow hole provided in the cooler 200 may be provided so as to pass through the central axis of the arc of the fourth refrigerant channel 234 formed in the innermost periphery.
  • FIG. 4 (a) and 4 (b) are a perspective view and a front view showing Embodiment 4 of the cooler according to the present invention.
  • the cooler 400 is shown as an example that is substantially the same as that shown in the first embodiment.
  • the difference from the first embodiment is that fins 451 extending in the refrigerant flow direction are erected in the first refrigerant flow path 431 and fins extending in the refrigerant flow direction in the second refrigerant flow path 432.
  • 452 is erected.
  • the fins 451 and 452 can also be applied to the refrigerant flow paths of the second embodiment.
  • the fins 451 are provided in the first refrigerant flow path 431 and the fins 452 are provided in the second refrigerant flow path 432, a cooler that exhibits high cooling performance is obtained. It is done.
  • the cooler and motor-integrated power converter according to the present invention can be effectively used for vehicle motors such as automobiles and trains.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

所定の板厚の平板(102)の面を冷却面(101)とし、一端面(102a)に一対の冷媒入口及び出口(111),(112)、冷却面(101)と反対側の面内に、第1及び第2の冷媒流路(131),(132)、冷媒入口(111)に連通し冷媒を各冷媒流路(131),(132)に分割して流すための冷媒分岐路(121)、各冷媒流路(131),(132)の出口から流出した冷媒が合流する冷媒合流路(122)が形成され、第1の冷媒流路(131)を時計方向に流れる冷媒が第1の冷媒流路(131)と立体交差して形成された冷媒連通流路(123)を通り、第2の冷媒流路(132)を反時計方向に流れる冷媒と第1の冷媒流路(131)を流れる冷媒とが冷媒合流路(122)に流入するようにした。これにより、圧損を回避し、高い冷却性能を得、かつ冷媒配管等を含む冷却システムの簡素化が実現できる。

Description

冷却器及び電動機一体型電力変換装置
 本発明は、冷却器及びそれを搭載した電動機一体型電力変換装置に関し、特に、冷却媒体である液体、例えば、水が冷却器の内部を貫通することにより冷却を行う冷却器及びそれを用いた電動機一体型電力変換装置に関するものである。
 電力変換用半導体素子あるいは電力変換用半導体モジュールは、通電に伴って大きな熱損失が発生するため、冷却器として外部より冷媒を強制通流させる液冷式冷却器が用いられ、その冷却流路の各種パターンが開示されている。
 例えば、特許文献1に示された半導体素子用冷却器は、冷却水の入り口より中心部に向かって、渦巻状に形成された往路部分と、この往路部分から折り返され往路部分に隣接して冷却水の出口に向かって形成された帰路部分とを有する下部冷却体を有し、この下部冷却体の上部を上部冷却体で蓋をして冷却器全体として均一な冷却ができる冷却器を実現している。
 また、特許文献2に示された電気部品用冷却器は、渦巻き状の流路を複数路に分割することで冷却性能の向上を実現している。
 また、特許文献3に示された電子機器の冷却器は、冷却板内に交互に反対方向に冷媒が流れる多数の流路を設けることにより均一な冷却ができるようにしている。
 また、特許文献4に示された電動機一体型インバータ装置は、電動機とインバータの間に冷却水路を形成したリアフレームを設置し、配線を簡素化した電動機一体型インバータ装置を実現している。
特公平7-112034号公報 特開平8-97337号公報 特開昭59-193053号公報 特許第3975162号公報
 近年、環境問題への取り組みの一環として、ハイブリッド車(HEV)や電気自動車(EV)の市場が活発であり、モータ駆動用の電力変換用半導体素子あるいは電力変換用半導体モジュールの需要が高まっている。HEVやEVの場合、電力変換用半導体素子あるいは電力変換用半導体モジュールの冷却性能に加え、車内空間の制約があるため、モータとインバータを一体化した、小型で簡素な駆動システムが要望されている。
 上記特許文献1及び特許文献2に示した従来例では、流路を渦巻き状に形成する、さらには、一対の冷媒入口及び冷媒出口を含め複数の流路をすべて同一面内に形成しているので、流路長が長くなり大きな圧損が発生することは避けられず、この場合、冷却性能を向上させるためには外部に高性能なポンプを必要とするという問題がある。
 また、上記特許文献3に示した従来例では、冷却板内に冷媒を逆方向に流すため複数の入出口を形成する必要があり、冷媒配管の構成が複雑になるという問題がある。また、入出口を複数箇所有するため、外部のポンプも複数台用意する必要があるという問題がある。
 このように、上記特許文献1~3のいずれも外部ポンプまで含めた冷却器システムは、大型でコストが高いものになるという問題がある。
 また、上記特許文献4に示した電動機一体型インバータ装置では、電動機とインバータの間に冷却性能を有するリアフレームを設置しているが、冷却性能及び冷媒用配管まで含めた冷却システムとして簡素化が十分である保障はないという問題がある。
 本発明は、上記問題を解決するためになされたものであり、本発明の目的は、優れた冷却性能と小型、簡素な構造とを同時に実現する冷却器を提供することである。また、本発明の別の目的は、この冷却器を搭載して優れた冷却性能を有し、小型、簡素な構造の電動機一体型電力変換装置を提供することである。
 本発明に係る冷却器は、所定の厚さを有しその表面を冷却面とする平板状の冷却器基体、
 上記冷却器基体の外側面に開口するように形成された一対の冷媒入口と冷媒出口、
 上記冷却器基体の内部に形成された、上記冷媒入口に連通する冷媒分岐路、上記冷媒出口に連通する冷媒合流路、及び
 上記冷媒分岐路に連通する複数の冷媒流路を備え、
 上記複数の冷媒流路のいずれか一つの冷媒流路は、上記冷媒分岐路と上記冷媒合流路とを連通し、
 上記一つの冷媒流路を除く他の冷媒流路は、上記冷媒流路の形成面と上記厚さ方向に異なる面内に上記冷媒流路と立体交差して形成された冷媒連通流路を介して上記冷媒分岐路と上記冷媒合流路とを連通し、
 上記複数の冷媒流路において隣接する冷媒流路内を流れる冷媒の流れ方向が互いに逆方向となるように上記複数の冷媒流路が設けられたものである。
 本発明に係る電動機一体型電力変換装置は、電動機シャフト及び上記電動機シャフトと垂直な平面を有し、上記電動機シャフトを回転可能に支持する電動機ブラケットを備えた電動機と、上記電動機を制御する電力変換用半導体素子または電力変換用半導体モジュールと、所定の厚さを有しその表面を冷却面とする平板状の冷却器基体、上記冷却器基体の外側面に開口するように形成された一対の冷媒入口と冷媒出口、上記冷却器基体の内部に形成された、上記冷媒入口に連通する冷媒分岐路、上記冷媒出口に連通する冷媒合流路、及び上記冷媒分岐路に連通する複数の冷媒流路を備え、上記複数の冷媒流路のいずれか一つの冷媒流路は、上記冷媒分岐路と上記冷媒合流路とを連通し、上記一つの冷媒流路を除く他の冷媒流路は、上記冷媒流路の形成面と上記厚さ方向に異なる面内に上記冷媒流路と立体交差して形成された冷媒連通流路を介して上記冷媒分岐路と上記冷媒合流路とを連通し、上記複数の冷媒流路において隣接する冷媒流路内を流れる冷媒の流れ方向が互いに逆方向となるように上記複数の冷媒流路が設けられた冷却器とを備えた電動機一体型電力変換装置において、
 上記冷却器基体に上記電動機シャフトを貫通させる中空穴を形成し、
 上記冷却器基体の一方の面を上記電動機ブラケットに固定し、上記冷却器基体の他方の面に上記電力変換用半導体素子または電力変換用半導体モジュールを固定したものである。
 本発明に係る冷却器によれば、圧損を回避し、高い冷却性能を得、かつ冷媒配管等を含む冷却システムの簡素化が実現できる。
 本発明に係る電動機一体型電力変換装置によれば、冷却器の高い冷却性を実現しつつ、冷却器と電動機ブラケット及び電動機とを高密度に一体化させることができ、小型、かつ、簡素な電動機一体型電力変換装置が得られる。
本発明に係る冷却器の実施の形態1を示す斜視図及び正面図である。 本発明に係る冷却器の実施の形態2を示す斜視図及び正面図である。 本発明に係る冷却器を電動機一体型電力変換装置に適用した実施の形態3を示す斜視図及び正面図である。 本発明に係る冷却器の実施の形態4を示す斜視図及び正面図である。
実施の形態1.
 図1(a)、図1(b)は、本発明に係る冷却器の実施の形態1を示す斜視図及び正面図である。本発明に係る冷却器100は、所定の厚さを有し、その表面を冷却面とする平板状の冷却器基体からなる。図1は、冷却器基体の内部に形成した冷媒が流れる流路の構成を示した図である。図1に示したように、冷却器100の外側面である一端面102aに開口する、冷媒入口111と冷媒出口112が形成されている。平板102の冷却面101と反対側の同一面内に中心軸Cの周りに同軸状に冷媒が流れる第1の冷媒流路131と第2の冷媒流路132が形成されている。冷媒入口111と第1の冷媒流路131及び第2の冷媒流路132の一端との間に冷媒入口111から流入した冷媒を第1の冷媒流路131と第2の冷媒流路132とに分割して流すための冷媒分岐路121が形成されている。冷媒出口112側には、第1の冷媒流路131及び第2の冷媒流路132の他端から流出する冷媒が合流する冷媒合流路122が形成されている。第1の冷媒流路131の他端は、第1の冷媒流路131及び第2の冷媒流路132が形成されている面に対して平板の厚さ方向が異なる面に第1の冷媒流路131と立体的に交差して形成された冷媒連通流路123を介して冷媒合流路122に連通している。
 すなわち、第2の冷媒流路132は、冷媒分岐路121と冷媒合流路122とを連通し、第1の冷媒流路131は、上記冷媒流路の形成面と上記厚さ方向に異なる面内に上記冷媒流路と立体交差して形成された冷媒連通流路123を介して冷媒分岐路121と冷媒合流路122とを連通している。
 次に、第1の冷媒流路131及び第2の冷媒流路132の具体的な一例を説明する。ここでは、各流路を説明の便宜上から溝の表現をとっている。
 第1の冷媒流路131は、冷媒分岐路121に連通する第1の溝131a、第1の溝131aに連通し円弧状に形成された第2の溝131b、第2の溝131bに連通する第3の溝131cにより形成されている。また、第3の溝131cに連通するとともに冷媒合流路122に連通する冷媒連通流路123が第1の冷媒流路131と立体的に交差して形成されている。
 第2の冷媒流路132は、第1の冷媒流路131の第3の溝131cに沿ってその外側に形成され冷媒分岐路121に連通する第4の溝132a、第4の溝132aに連通し第2の溝131bに沿ってその外側に形成された第5の溝132b、第5の溝132bに連通し第1の溝131aに沿ってその外側に形成され冷媒合流路122に連通する第6の溝132cからなる。
 図1において、冷媒入口111より流入した低温の冷媒は、冷媒分岐路121で分岐され、内側の第1の冷媒流路131と外側の第2の冷媒流路132を相互に逆方向に流れ、冷却面101に設置された電力変換用半導体素子または電力変換用半導体モジュールを冷却する。外側の第2の冷媒流路132を流れてきた冷媒と、第1の冷媒流路131を流れてきた冷媒とは冷媒合流路122で合流して冷媒出口112から流出する。冷媒は冷却の過程で低温から高温へと温度上昇するが、第1の冷媒流路131を流れる冷媒と第2の冷媒流路132を流れる冷媒とが相互に逆方向に流れることで、冷却面101全体で均一な冷却性能を有する冷却器100が得られる。
 本実施の形態1によれば、第1の冷媒流路131及び第2の冷媒流路132の形成面と平板の厚さ方向に異なる面に第1の冷媒流路131と交差する冷媒連通流路123を設け第1の冷媒流路131の他端から流出した冷媒が冷媒連通流路123を介して冷媒合流路122に流れるようにしたので、流路長を短くして圧損を小さくすることができる。また、第1の冷媒流路131を流れる冷媒と第2の冷媒流路132を流れる冷媒は相互に逆方向に流れるので、冷却面101全体で均一で高い冷却性能を有する冷却器100が得られる。また、冷媒入口111と冷媒出口112は一対のみであり、外部に、例えば、接続部品であるニップル等の冷媒接続部品を一対のみとすることができ、また、流路長を短くできるので、圧損の発生を抑制することができる。
 また、冷媒配管も一対で十分であり、外部設置のポンプも一台で機能するため、簡素な冷却システムを構築することができ、冷却システム全体として、簡素で低コストにすることができる。
実施の形態2.
 図2(a)、図2(b)は、本発明に係る冷却器の実施の形態2を示す斜視図及び正面図であり、冷媒が流れる流路の構成を示している。図2に示したように、冷却器200の冷却器基体の外側面である一端面202aに、一対の冷媒入口211と冷媒出口212が形成されている。平板202の冷却面201と反対側の同一面内に中心軸Cの周りに同軸状に冷媒が流れる第1の冷媒流路231と第2の冷媒流路232と第3の冷媒流路233と第4の冷媒流路234とが形成されている。冷媒入口211と第1の冷媒流路231~第4の冷媒流路234の一端との間に冷媒入口211から流入した冷媒を第1の冷媒流路231、第2の冷媒流路232、第3の冷媒流路233及び第4の冷媒流路234とに分割して流すための冷媒分岐路221が形成されている。冷媒出口212側には、第1の冷媒流231、第2の冷媒流路232、第3の冷媒流路233及び第4の冷媒流路234の他端と連通する冷媒合流路222が形成されている。第2の冷媒流路232の他端は直接、冷媒合流路222に連通し、第2の冷媒流路232を除く他の冷媒流路231,233,234の他端は、第1の冷媒流路231~第4の冷媒流路234が形成されている面に対して平板の厚さ方向が異なる面に第1の冷媒流路231、第3の冷媒流路233、第4の冷媒流路234と立体的に交差して形成された冷媒連通流路223を介して冷媒合流路222に連通している。
 すなわち、第2の冷媒流路232は冷媒分岐路221と冷媒合流路222とを連通し、第2の冷媒流路232を除く他の冷媒流路231,233,234は第1の冷媒流路231、第3の冷媒流路233、第4の冷媒流路234と立体的に交差して形成された冷媒連通流路223を介して冷媒分岐路221と冷媒合流路222とを連通している。
 上記実施の形態1と異なる点は、第1の冷媒流路231に沿ってその内側に第3の冷媒流路233と、第3の冷媒流路233に沿って第4の冷媒流路234が形成されている点である。
 次に、第3の冷媒流路233及び第4の冷媒流路234の具体的な一例を説明する。ここでは、各流路を説明の便宜上から溝の表現をとっている。
 第3の冷媒流路233は、冷媒分岐路221に連通し第3の溝231cに沿ってその内側に形成された第7の溝233aと、第7の溝233aに連通し第2の溝231bに沿ってその内側に形成された第8の溝233bと、第8の溝233bに連通し第1の溝231aに沿ってその内側に形成された第9の溝233cとからなる。また、第9の溝233cに連通するとともに冷媒合流路222に連通する冷媒連通流路223が第1の溝231a、第7の溝233a及び第10の溝234aと立体的に交差して形成され、第9の溝233cは冷媒連通流路223を介して冷媒合流路222に連通する。
 第4の冷媒流路234は、冷媒分岐路221に連通し第9の溝233cに沿ってその内側に形成された第10の溝234aと、第10の溝234aに連通し第8の溝233bに沿ってその内側に形成された第11の溝234bと、第11の溝234bに連通し第7の溝233aに沿ってその内側に形成された第12の溝234cとからなり、第12の溝234cは冷媒連通流路223を介して冷媒合流路222に連通する。
 図2において、冷媒入口211より流入した低温の冷媒は、冷媒分岐路221で第1~第4の冷媒流路231~234の一方の端部に分岐され、第1~第4の冷媒流路231~234で隣り合う流路を交互に逆方向に流れ、冷却面201に設置された電力変換用半導体素子または電力変換用半導体モジュールを冷却する。第2の冷媒流路232を流れてその端部から流出する冷媒は直接、冷媒合流路222に入り、第1の冷媒流路231、第3の冷媒流路233及び第4の冷媒流路234を流れてきた冷媒は冷媒連通流路223を介して冷媒合流路222に入り第2の冷媒流路232から流れてきた冷媒と合流して冷媒出口212から流出する。冷媒は冷却の過程で低温から高温へと温度上昇するが、第1~第4の冷媒流路231~234を流れる冷媒は、隣り合う冷媒流路で相互に逆方向に流れることで冷却面201全体で均一な冷却性能を有する冷却器200が得られる。
 本実施の形態2によれば、第1の冷媒流路231、第3の冷媒流路233、第4の冷媒流路234と立体的に交差して形成された冷媒連通流路223を設けたので、流路長を短くして圧損を小さくすることができる。また、第1~第4の冷媒流路231,232,233,234を流れる冷媒は、隣り合う冷媒流路で相互に逆方向に流れるので、冷却面201全体で均一な冷却性能を有する冷却器200が得られる。また、冷媒入口211,212は一対のみであり、外部に、例えば、接続部品であるニップル等の冷媒接続部品を余分に設置する必要がなく、また、流路長を短くできるので、圧損の発生を抑制することができる。
 また、冷媒配管も一対で十分であり、外部設置のポンプも一台で機能するため、簡素な冷却システムを構築することができ、冷却システム全体として冷媒、簡素で低コストな冷却器が得られる。
 なお、上記実施の形態1及び2では、冷媒流路が2個と4個といった偶数個の場合を示したが、3個のような奇数個でもよく、4個以上でもよい。奇数個の場合には冷媒流路の溝幅を変えることによって冷却器の冷却性能を冷却面全体で均一にすることができる。
 また、例えば、図2において、第2の溝231b、第5の溝232b、第8の溝233b及び第11の溝234bの形状が同軸状に形成された円弧の例を示したが、円弧に限られるものではなく、例えば、同軸状に形成された四角形等、種々の形状とすることができる。
 また、上記実施の形態1及び2において、冷媒入口111と冷媒出口112、冷媒入口211と冷媒出口212の入口と出口を逆にして、冷媒合流路122,222を冷媒分岐路とし、冷媒分岐路121,221を冷媒合流路とすることもできる。
実施の形態3.
 図3は、本発明に係る電動機一体型電力変換装置を示す図であり、特に図3(a)、図3(c)は斜視図、図3(b)は正面図である。なお、図3(c)では、冷却面301が手前側となるように冷却器300、電動機ブラケット3100、電動機3200を図示している。
 図3に示したように、冷却器300は、上記実施の形態1に示したものとほぼ同様のものを例として示している。
 上記実施の形態1と異なるのは、冷却器300の第1の冷媒流路331及び第2の冷媒流路332の円弧の中心軸に電動機シャフト3201が通る中空穴350が形成され、冷却面301に電動機3200を制御するための電力変換用半導体素子または電力変換用半導体モジュール3001~3012が固定されていることである。
 図3(c)に示したように、本発明の電動機一体型電力変換装置は、電動機シャフト3201と、電動機シャフト3201と垂直な平面を有し、電動機シャフト3201を回転可能に支持する電動機ブラケット3100とを有する電動機3200を備えている。電動機ブラケット3100には、電動機シャフト3201がその内周側に配置される円筒状の突起部3101が設けられている。また、冷却器300の冷却面301の一方の面に電力変換用半導体素子または電力変換用半導体モジュール3001~3012が固定され、他方の面に蓋360が設けられる。蓋360には取付用ネジ台361が装備されている。中空穴350に、電動機ブラケット3100に設けられた突起部3101が嵌め合わせられ、ネジ370で冷却器300が電動機ブラケット3100に固定される。突起部3101は円筒状であるので、円筒の内周側にある電動機シャフト3201に直接アクセスできる構造となる。
 本実施の形態3によれば、冷却器300の高い冷却性を実現しつつ、冷却器300と電動機ブラケット3100及び電動機3200とを高密度に一体化させることができ、小型、かつ、簡素な電動機一体型電力変換装置が得られる。
 なお、本実施の形態3では、上記実施の形態1に示したものとほぼ同様の冷却器300を搭載する例を示したが、上記実施の形態2に示した冷却器200を搭載することもできる。この場合、冷却器200に設ける中空穴は、最内周に形成された第4の冷媒流路234の円弧の中心軸を通るように設ければよい。
実施の形態4.
 図4(a)、図4(b)は、本発明に係る冷却器の実施の形態4を示す斜視図及び正面図である。図4に示したように、冷却器400は、上記実施の形態1に示したものとほぼ同様のものを例として示している。上記実施の形態1と異なる点は、第1の冷媒流路431に冷媒の流れ方向に延在するフィン451が立設され、第2の冷媒流路432に冷媒の流れ方向に延在するフィン452が立設されている点である。このフィン451,452は上記実施の形態2の各冷媒流路にも適用することができる。
 本実施の形態4によれば、第1の冷媒流路431にフィン451が設けられ、第2の冷媒流路432にフィン452が設けられているので、高い冷却性能を発揮する冷却器が得られる。
 本発明に係る冷却器及び電動機一体型電力変換装置は自動車、列車などの車両用電動機に有効に利用することができる。

Claims (4)

  1. 所定の厚さを有しその表面を冷却面とする平板状の冷却器基体、
     上記冷却器基体の外側面に開口するように形成された一対の冷媒入口と冷媒出口、
     上記冷却器基体の内部に形成された、上記冷媒入口に連通する冷媒分岐路、上記冷媒出口に連通する冷媒合流路、及び
     上記冷媒分岐路に連通する複数の冷媒流路を備え、
     上記複数の冷媒流路のいずれか一つの冷媒流路は、上記冷媒分岐路と上記冷媒合流路とを連通し、
     上記一つの冷媒流路を除く他の冷媒流路は、上記冷媒流路の形成面と上記厚さ方向に異なる面内に上記冷媒流路と立体交差して形成された冷媒連通流路を介して上記冷媒分岐路と上記冷媒合流路とを連通し、
     上記複数の冷媒流路において隣接する冷媒流路内を流れる冷媒の流れ方向が互いに逆方向となるように上記複数の冷媒流路が設けられた冷却器。
  2. 上記冷媒流路の内部に、冷媒の流れ方向に延在するフィンを立設した請求項1に記載の冷却器。
  3. 電動機シャフト及び上記電動機シャフトと垂直な平面を有し、上記電動機シャフトを回転可能に支持する電動機ブラケットを備えた電動機と、上記電動機を制御する電力変換用半導体素子または電力変換用半導体モジュールと、所定の厚さを有しその表面を冷却面とする平板状の冷却器基体、上記冷却器基体の外側面に開口するように形成された一対の冷媒入口と冷媒出口、上記冷却器基体の内部に形成された、上記冷媒入口に連通する冷媒分岐路、上記冷媒出口に連通する冷媒合流路、及び上記冷媒分岐路に連通する複数の冷媒流路を備え、上記複数の冷媒流路のいずれか一つの冷媒流路は、上記冷媒分岐路と上記冷媒合流路とを連通し、上記一つの冷媒流路を除く他の冷媒流路は、上記冷媒流路の形成面と上記厚さ方向に異なる面内に上記冷媒流路と立体交差して形成された冷媒連通流路を介して上記冷媒分岐路と上記冷媒合流路とを連通し、上記複数の冷媒流路において隣接する冷媒流路内を流れる冷媒の流れ方向が互いに逆方向となるように上記複数の冷媒流路が設けられた冷却器とを備えた電動機一体型電力変換装置において、
     上記冷却器基体に上記電動機シャフトを貫通させる中空穴を形成し、
     上記冷却器基体の一方の面を上記電動機ブラケットに固定し、上記冷却器基体の他方の面に上記電力変換用半導体素子または電力変換用半導体モジュールを固定した電動機一体型電力変換装置。
  4. 上記冷媒流路の内部に、冷媒の流れ方向に延在するフィンを立設した請求項3に記載の電動機一体型電力変換装置。
PCT/JP2011/066338 2011-07-19 2011-07-19 冷却器及び電動機一体型電力変換装置 WO2013011557A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180071898.6A CN103636298B (zh) 2011-07-19 2011-07-19 冷却器及电动机一体型电力变换装置
PCT/JP2011/066338 WO2013011557A1 (ja) 2011-07-19 2011-07-19 冷却器及び電動機一体型電力変換装置
DE112011105452.1T DE112011105452T5 (de) 2011-07-19 2011-07-19 Kühlvorrichtung und motorintegrierte Spannungsformer-Vorrichtung
JP2013524541A JP5683704B2 (ja) 2011-07-19 2011-07-19 冷却器及び電動機一体型電力変換装置
US14/123,838 US9647509B2 (en) 2011-07-19 2011-07-19 Cooler and motor-integrated power conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/066338 WO2013011557A1 (ja) 2011-07-19 2011-07-19 冷却器及び電動機一体型電力変換装置

Publications (1)

Publication Number Publication Date
WO2013011557A1 true WO2013011557A1 (ja) 2013-01-24

Family

ID=47557764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066338 WO2013011557A1 (ja) 2011-07-19 2011-07-19 冷却器及び電動機一体型電力変換装置

Country Status (5)

Country Link
US (1) US9647509B2 (ja)
JP (1) JP5683704B2 (ja)
CN (1) CN103636298B (ja)
DE (1) DE112011105452T5 (ja)
WO (1) WO2013011557A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103607871A (zh) * 2013-11-29 2014-02-26 北京经纬恒润科技有限公司 一种用于电源控制器的冷却水路及控制器壳体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172650A1 (ja) * 2011-06-15 2012-12-20 トヨタ自動車株式会社 半導体素子の冷却構造
CN104201825A (zh) * 2014-08-14 2014-12-10 沈坤元 一种盘式电机用高效成型散热器
GB2549086B (en) * 2016-03-30 2022-09-07 Advanced Electric Machines Group Ltd Electrical sub-assembly
WO2018078719A1 (ja) * 2016-10-25 2018-05-03 三菱電機株式会社 電力制御装置、電動機、空気調和機、および電動機の製造方法
DE102019219421A1 (de) * 2019-12-12 2021-06-17 Zf Friedrichshafen Ag Kühlsystem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897337A (ja) * 1994-09-29 1996-04-12 Asahi Tec Corp 電気部品用冷却盤
JPH08241943A (ja) * 1995-03-07 1996-09-17 Fuji Electric Co Ltd パワー半導体素子用の液冷式冷却体
JP2001177031A (ja) * 1999-12-15 2001-06-29 Hitachi Ltd 冷却装置を備えた光送受信装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915262A (en) * 1970-08-07 1975-10-28 Hermann Klaue Liquid cooled disc brake
US4445599A (en) * 1981-10-27 1984-05-01 Eaton Corporation Cooling means for torque converter bypass
JPS59193053A (ja) 1983-04-15 1984-11-01 Mitsubishi Electric Corp 電子機器
JP2640618B2 (ja) 1993-10-14 1997-08-13 東京都 防災方法
JP3234145B2 (ja) * 1996-02-05 2001-12-04 本田技研工業株式会社 動力伝達装置の冷却構造
FR2805937B1 (fr) * 2000-03-03 2002-12-06 Daniel Drecq Dispositif de freinage a courants de foucault et echangeur de chaleur pour dispositif de freinage a courants de foucault
JP3975162B2 (ja) 2002-12-20 2007-09-12 トヨタ自動車株式会社 インバータ装置およびそれを用いた電動機一体インバータ装置
JP2006271149A (ja) * 2005-03-25 2006-10-05 Suzuki Motor Corp モータの冷却装置
US7374027B2 (en) * 2005-10-31 2008-05-20 Warner Electric Technology Llc Balanced flow cooling water jacket
US8080909B2 (en) * 2009-05-19 2011-12-20 Ford Global Technologies, Llc Cooling system and method for an electric motor
CN101656445B (zh) * 2009-09-14 2012-05-23 精进电动科技(北京)有限公司 一种对电机进行冷却的系统和方法
JP5723524B2 (ja) * 2009-11-06 2015-05-27 日立オートモティブシステムズ株式会社 回転電機及び電気自動車

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897337A (ja) * 1994-09-29 1996-04-12 Asahi Tec Corp 電気部品用冷却盤
JPH08241943A (ja) * 1995-03-07 1996-09-17 Fuji Electric Co Ltd パワー半導体素子用の液冷式冷却体
JP2001177031A (ja) * 1999-12-15 2001-06-29 Hitachi Ltd 冷却装置を備えた光送受信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103607871A (zh) * 2013-11-29 2014-02-26 北京经纬恒润科技有限公司 一种用于电源控制器的冷却水路及控制器壳体

Also Published As

Publication number Publication date
JP5683704B2 (ja) 2015-03-11
CN103636298A (zh) 2014-03-12
US9647509B2 (en) 2017-05-09
DE112011105452T5 (de) 2014-04-17
US20140125164A1 (en) 2014-05-08
JPWO2013011557A1 (ja) 2015-02-23
CN103636298B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5683704B2 (ja) 冷却器及び電動機一体型電力変換装置
US10850623B2 (en) Stacked electric vehicle inverter cells
TWI653929B (zh) 具有冷板之逆變器功率模組構裝、以及冷卻功率模組的方法
EP1548916B1 (en) Drive device
US20060219396A1 (en) Lamination-type cooler
CN106716044B (zh) 用于冷却电气元件的热交换器
US9279625B2 (en) Heat sink device for power modules of power converter assembly
CN105308742A (zh) 半导体组件用冷却器的制造方法、半导体组件用冷却器、半导体组件和电驱动车辆
KR20160051407A (ko) 전력변환장치용 냉각유로모듈 및 이를 구비한 전력변화장치
JP2005020881A (ja) 駆動装置
WO2015087707A1 (ja) 駆動モジュール
WO2017020406A1 (zh) 可扩展逆变器的冷却系统及其机械总成
JP4479568B2 (ja) 積層型冷却器
WO2020021865A1 (ja) 回転電機ユニット
JP2013254787A (ja) 熱交換器及びその製造方法
WO2020110880A1 (ja) 電駆動モジュール
JP2011233688A (ja) 半導体冷却器
CN112448542B (zh) 电动总成
JP2008221951A (ja) 自動車用電子部品の冷却装置
WO2016151804A1 (ja) 電力変換装置
JP2013165093A (ja) 半導体積層ユニット
WO2020202893A1 (ja) 冷却装置および筐体
JP2012054444A (ja) 接続装置
JP6809096B2 (ja) 電力変換装置
JP2022138516A (ja) 車両駆動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180071898.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524541

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14123838

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011105452

Country of ref document: DE

Ref document number: 1120111054521

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869715

Country of ref document: EP

Kind code of ref document: A1