WO2013010296A1 - 盐酸头孢甲肟化合物的新制法 - Google Patents

盐酸头孢甲肟化合物的新制法 Download PDF

Info

Publication number
WO2013010296A1
WO2013010296A1 PCT/CN2011/001331 CN2011001331W WO2013010296A1 WO 2013010296 A1 WO2013010296 A1 WO 2013010296A1 CN 2011001331 W CN2011001331 W CN 2011001331W WO 2013010296 A1 WO2013010296 A1 WO 2013010296A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrochloride
temperature
cefmenoxime hydrochloride
cefmenoxime
hours
Prior art date
Application number
PCT/CN2011/001331
Other languages
English (en)
French (fr)
Inventor
陶灵刚
Original Assignee
海南灵康制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南灵康制药有限公司 filed Critical 海南灵康制药有限公司
Priority to US14/008,542 priority Critical patent/US8895728B2/en
Publication of WO2013010296A1 publication Critical patent/WO2013010296A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D501/14Compounds having a nitrogen atom directly attached in position 7
    • C07D501/16Compounds having a nitrogen atom directly attached in position 7 with a double bond between positions 2 and 3
    • C07D501/207-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids
    • C07D501/577-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids with a further substituent in position 7, e.g. cephamycines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring

Definitions

  • the invention relates to a new preparation method for purifying cefmenoxime hydrochloride, belonging to the technical field of medicine. Background technique
  • Cefmenoxime hydrochloride chemical name is (6R,7)-7-[(Z)-2-(2-amino-4-thiazolyl)-2-oximeoxyiminoacetamido]-3-[[ (1-indolyl-1H-tetrazol-5-yl)-thio]indolyl]-8-oxo-5-thia- 1 -azabicyclo[4.2.0]oct-2-ene-2 - formate hydrochloride (2: 1), a large number of Chinese aliases, such as bestek; thiazolone cephalosporin; cefataxime; thiazolidine cephalosporin and cefotaxime.
  • the molecular formula is (C 16 H 17 N 9 0 5 S 3 ) 2 HC1, the molecular weight is 1059.58, and the structural formula is:
  • cephalosporin antibiotic belongs to the ⁇ -lactam antibiotic. It is the most rapid and new type of antibiotic developed at home and abroad in recent years. It is a highly effective and low-toxic antibiotic.
  • Cefmenoxime hydrochloride is a third-generation semi-synthetic cephalosporin broad-spectrum antibiotic developed by Japan Takeda Pharmaceutical Co., Ltd., which was launched in Japan in 1983 and entered the latest version of the Pharmacopoeia in Europe and the United States. China's listing.
  • the chemical structure of cefoidin hydrochloride is mainly characterized by acylation at the amino side chain of C7 and introduction of methoxy group at position 7a, which makes the cephalosporin hydrochloride broadly antibacterial.
  • Hainan Tianhuang Pharmaceutical Co., Ltd. discloses a preparation method of cefmenoxime hydrochloride in CN101555251 A, which uses 7-ATCA as a starting material to carry out condensation reaction with active ester (AE) to form 7-[ ⁇ -(2 -aminothiazole-4-yl)-indole-2-oximeiminoacetamido]-3-(1-indolyl-1 ⁇ -5-tetrazolyl-thiomethyl)-3-cephem Sodium -4-carboxylate (i.e., cefmenoxime sodium salt), and finally reacted with 10% hydrochloric acid to form cefmenoxime hydrochloride.
  • the yield and purity of the cefmenoxime hydrochloride prepared by the method are not high, and triethylamine and dichloroethane are used in the preparation process, and the residual amount thereof is unfavorable to the human body.
  • Chinese patent CN101348494 reports a method for purifying purified cefmenoxime hydrochloride, which is adsorbed and separated by macroporous resin, and then purified by gel column.
  • the adsorption and elution are incomplete, the yield and purity are not ideal, and it is difficult to separate the raw materials. Intrinsic impurities in the medicine.
  • the present invention provides a method for purifying a cefmenoxime hydrochloride compound.
  • the cephalosporin hydrochloride for the purification method provided by the present invention is a crude cephalosporin hydrochloride prepared by a currently known synthesis method or a commercially available or imported cefmenoxime hydrochloride bulk drug, which is collectively referred to as the present invention.
  • the raw material of cephalosporin hydrochloride is a crude cephalosporin hydrochloride prepared by a currently known synthesis method or a commercially available or imported cefmenoxime hydrochloride bulk drug, which is collectively referred to as the present invention.
  • the raw material of cephalosporin hydrochloride is a crude cephalosporin hydrochloride prepared by a currently known synthesis method or a commercially available or imported cefmenoxime hydrochloride bulk drug, which is collectively referred to as the present invention.
  • the raw material of cephalosporin hydrochloride is a crude cephalosporin hydrochloride prepared by a currently known synthesis method or a commercially
  • Step 1) adding cefmenoxime hydrochloride insoluble solvent to the raw material cefmenoxime hydrochloride, controlling the temperature not exceeding 30 ° C, stirring vigorously, and then filtering, using the cefmenoxime hydrochloride insoluble solvent of the filter cake at a temperature not exceeding 20 ° C Wash, vacuum dry or air dry;
  • Step 2) the filter cake is placed in ammonia water, gently stirred, the pH is controlled to not exceed 9, the aqueous solution of cefmenoxime acid is obtained, and then the precipitate is filtered off;
  • Step 3 to the cephalosporin
  • Slowly add hydrochloric acid with a concentration of 0.5-4mol/L in ammonia solution the temperature is controlled at 30-60 °C, the final pH is controlled at 0.5-3.0, hold for 30 minutes to 5 hours, crystals slowly precipitate, and then gradually reduce the temperature.
  • To a minimum of 10 ° C static crystallization, suction filtration, vacuum drying, to obtain cefotaxime hydrochloride.
  • Step 1) adding a cefotaxime insoluble solvent to the raw material cefosin hydrochloride, controlling the temperature not to exceed 30 ° C, stirring vigorously, and then filtering, using a cefmenoxime insoluble solvent having a temperature not exceeding 20 ° C for the filter cake Wash, vacuum dry or air dry.
  • the purified raw material of the present invention cefmenoxime hydrochloride
  • cefmenoxime hydrochloride also contains an organic solvent, various raw materials and intermediate products introduced during the preparation, such as the dichlorosilane solvent used in the prior art, 7-ATCA.
  • hetero-shield substances are the main cause of the low purity of the raw material cefotaxime hydrochloride, which not only lowers the content of the active ingredient of the drug, but also causes the color of the product to be deepened. These impurities are still intermingled with the raw material, cefmenoxime, because no targeted purification treatment has been taken.
  • these organic hybrid shields are more soluble in organic solvents, while cefotaxime hydrochloride is almost insoluble in ethanol, acetone or ethyl acetate. According to the present invention, these impurities can be removed from the cephalosporin hydrochloride by the treatment of the step 1). Separate and remove.
  • a cefmenoxime hydrochloride insoluble solvent is added to the raw material cefmenoxime hydrochloride, preferably ethanol, acetone or ethyl acetate is added, more preferably ethanol or ethyl acetate is added, and most preferably ethyl acetate is added.
  • the controlled temperature does not exceed 30 ° C, preferably does not exceed 25 ° C, more preferably does not exceed 20 ° C, and is vigorously stirred during this process.
  • the solvent in which the impurities are dissolved is filtered off, and the filter cake is used in an insoluble solvent such as ethanol or acetone which does not exceed 20 ° C, preferably does not exceed 15 ° C, more preferably does not exceed 12 ° C. Or ethyl acetate for washing.
  • an insoluble solvent such as ethanol or acetone which does not exceed 20 ° C, preferably does not exceed 15 ° C, more preferably does not exceed 12 ° C.
  • ethyl acetate for washing.
  • the solvent for washing is preferably the same as the solvent used to dissolve the crude cephalosporin hydrochloride.
  • Step 2) the filter cake is placed in ammonia water, gently stirred to control the pH value not exceeding 9, to obtain an aqueous solution of cephalosporin acid, and then the cefmenoxime hydrochloride insoluble precipitate is filtered off.
  • step 2) of the present invention is treated with aqueous ammonia for the following reasons:
  • cephalosporin is in the form of cefotaxel or in the form of cefmenoxime hydrochloride depends mainly on the control of pH. When the acidity value is high, hydrochloric acid is used. The cephalosporin form exists; in the form of cephalosporic acid when the acidity value is low.
  • the obtained filter cake contains, in addition to cefmenoxime hydrochloride, an inorganic substance such as a trace amount of a catalyst, various salts and heavy metals introduced during the preparation, and a bacterial endotoxin produced during storage. These materials are generally difficult to dissolve in organic solvents and therefore cannot be removed in step 1).
  • ammonia water having a concentration of 15-25% is added to the filter cake obtained in the step 1), and the treatment time is preferably from 30 minutes to 6 hours, more preferably from 1 to 5 hours, most preferably 2 For 3 hours, until the aqueous solution reaches a weak basicity, preferably the pH does not exceed 9, more preferably does not exceed 8.5, and most preferably does not exceed 8. For thorough mixing, agitation is carried out during the treatment, and the precipitated precipitate is filtered off.
  • the aqueous solution is heated to 30-60 ° C, preferably 35-55 ° C, more preferably 40-50 ° C, on the one hand, the remaining ammonia in the aqueous solution can be removed.
  • the composition also facilitates the subsequent crystallization step.
  • Step 3 slowly add hydrochloric acid with a concentration of 0.5-4 mol/L to the above aqueous solution of cefmenoxime acid, the temperature is controlled at 30-60 ° C, and the final pH is controlled at 0.5-3.0 for 30 minutes to 5 hours. Slowly crystallize out, then gradually reduce the temperature to a minimum of 1 (TC, static crystallization, suction filtration, vacuum drying, and get cefotaxime hydrochloride.
  • cefotaxime hydrochloride is soluble in phthalamide, it is slightly soluble in methanol, but soluble. It is difficult to crystallize well by using these solvents or stirring in other common solvents under reflux. Direct treatment of crude cefmenoxime with benign-poor solvent precipitation method did not achieve the desired purity.
  • the cephalosporin hydrochloride can be crystallized from water by rationally selecting the concentration of hydrochloric acid and controlling the appropriate pH to obtain crystals of extremely high purity.
  • the reason may be that the steps 1) and 2) of the present invention have removed the hetero-shield material which has an adverse effect on the crystallization, and the purity of the crystallization mother liquid is improved, and the cephalosporin hydrochloride formed by the ammonia-treated cephalosporin after the addition of hydrochloric acid is formed. ⁇ is more suitable for direct crystallization from water.
  • the concentration of 0.5-4 mol/L, preferably 0.8-3 mol/L, more preferably 1.0-2 mol/L, is slowly added to the above aqueous solution of cefmenoxime acid.
  • Hydrochloric acid the temperature is controlled at 30-60 ° C, preferably 40-55 ° C, more preferably 45-50 ° C, and the final pH is controlled at 0.5-3.0, preferably 0.8-2.5, more preferably 1.0-2.0, maintaining 30 minutes to 5 In the hour, preferably from 50 minutes to 3 hours, more preferably from 1 hour to 2 hours, crystals are gradually precipitated.
  • the temperature is gradually lowered to a minimum of 10 ° C, preferably at a minimum of 12 ° C, more preferably at a minimum of 15 ° C, and the crystals are allowed to stand for standing, suction filtration, and vacuum drying to obtain cefmenoxime hydrochloride.
  • cefotaxime hydrochloride In general, the lower the temperature is lowered, the more cefotaxime hydrochloride is precipitated, but the inventors have found that below 10 ° C, cefmenoxime hydrochloride is more likely to be precipitated as a powder rather than a crystal, and is easily wrapped. More solvents or impurities.
  • the seed crystal of cefaplatin hydrochloride is optionally added.
  • the cooling process especially when crystallization is about to start, supersaturation is likely to occur.
  • Adding seed crystals can effectively prevent excessive fine nucleation, inhibit primary nucleation, reduce coalescence, and favor crystal growth.
  • an organic solvent such as an alcohol solvent such as methanol, ethanol, isopropanol, acetone or ethyl acetate during crystallization improves not only the crystallization rate but also the product yield.
  • organic solvent such as an alcohol solvent such as methanol, ethanol, isopropanol, acetone or ethyl acetate
  • These solvents can be used alone. Or use a mixture of many of them.
  • These solvents are added in an amount of 10 - 20%, preferably 12 - 18%, most preferably 1 5% by volume of the crystallization mother liquor.
  • the concentration of the aqueous solution of cefmenoxime hydrochloride can be carried out while heating and removing the remaining ammonia component in the aqueous solution in step 2), that is, when the aqueous solution is finally heated in step 2), On the one hand, the remaining ammonia components are removed. On the other hand, it is also advantageous to concentrate the aqueous solution of cefmenoxime hydrochloride, and the crystallization process of step 3) can be directly carried out without cooling. Step 4), optionally returning the crystallized mother liquor after precipitation to step 3).
  • step 3 Since the crystallization mother liquid is cooled in step 3) up to a minimum of 10 ° C, preferably at a minimum of 12 ° C, more preferably at a minimum of 15 ° C, crystals are precipitated or obtained, which contains a certain amount of undecomposed cefmenoxime hydrochloride, which is Returning to step 3), the crystallization is continued, and the yield of cefmenoxime hydrochloride is greatly improved.
  • the cephalosporin hydrochloride purified product obtained by the above embodiment is determined according to high performance liquid chromatography (Chinese Pharmacopoeia 2005 edition two appendix VD), and the purity converted to cefmenoxime hydrochloride is not less than 99.2%, and most of them are not lower than 99.4. %.
  • the content of tetrahydrofuran is less than 0.03%
  • the content of ruthenium, osmium-dimercaptoacetamide is less than 0.05%
  • the content of dichloromethane is less than 0.02%
  • the residue of ignition is less than 0.02%
  • the heavy metal is less than ten parts per million.
  • the content of polymer impurities is mostly less than 0.06%.
  • the amount of insoluble particulates in the injection prepared therefrom is extremely low.
  • cephalosporin hydrochloride purified according to the method of the present invention is completely suitable for preparation.
  • An antibacterial pharmaceutical composition for treating various inflammations caused by bacterial infection the pharmaceutical composition comprising a cefotaxime hydrochloride purified according to the method of the present invention and a pharmaceutically acceptable excipient.
  • the pharmaceutical composition may be a lyophilized powder injection or an injection preparation.
  • the present invention also provides the use of the above pharmaceutical composition for the preparation of various inflammations caused by the treatment of bacterial infections.
  • the infection comprises pneumonia, bronchitis, biliary tract infection, peritonitis, urinary tract infection.
  • the invention fundamentally changes the current situation of low purity of the raw material of the cefotaxime hydrochloride at home and abroad, and solves the problem faced by the crude cephalosporin hydrochloride and the cephalosporin hydrochloride bulk drug, and improves the impurity component of the insoluble particulate or polymer.
  • a series of clinical adverse reactions have been triggered, which has improved the quality of the preparation products and reduced the side effects.
  • the process of the invention is also characterized by simplicity, ease of control, and industrial production.
  • the invention is further explained or illustrated by the following examples. However, the examples provided are not to be construed as limiting the scope of the invention. 1. Determination of the purity of cefaporin hydrochloride by HPLC:
  • Chromatographic conditions and system suitability test using octadecylsilane bonded silica as a filler; acetonitrile-water-acetic acid (10:50:1) as the mobile phase, detection wavelength 254nm, the number of theoretical plates according to cefmenoxime hydrochloride
  • the peak calculation should be no less than 1000, and the separation degree between the cefmenoxime hydrochloride and the adjacent impurity peak should meet the requirements.
  • Determination method Take the appropriate amount of cefmenoxime hydrochloride, accurately weighed, add phosphate buffer (pH 6.8) to dissolve in appropriate amount, and use mobile phase to make 0.1 mg solution per 1 ml. Take 20 ⁇ l into the liquid chromatograph, record the chromatogram, and take the appropriate amount of the reference substance of cefmenoxime hydrochloride. The content of the cefotaxime in the sample was calculated by the external standard method according to the peak area, and converted into the purity of the cefaporid hydrochloride. The content of high molecular impurities in cefmenoxime hydrochloride was determined by Sephadex G-10 gel chromatography system. Third, the determination of the relevant substance content:
  • the filter cake is placed in a 20% aqueous ammonia solution for a period of 2 hours until the aqueous solution is weakly alkaline, preferably at a pH not exceeding 8.5. Stirring was carried out during the treatment, and the precipitate precipitated was filtered off. The aqueous solution was then heated to 40 ° C to remove the remaining ammonia component in the aqueous solution.
  • the purity of cefaporid was determined by high performance liquid chromatography to be 99.2%.
  • the content of polymer impurities was 0.06%, the content of tetrahydrofuran was 0.03%, the content of N,N-didecylacetamide was 0.05%, and the content of dichlorodecane was determined by gel chromatography. 0.02%; 0.02% ignition residue, not detected by heavy metals.
  • the refined product was added with water to prepare a solution containing about O.lg per lml, and the solution was clear and colorless.
  • Example 2 The crude cefmenoxime hydrochloride used in Example 1 was purified according to the purification method described in Chinese Patent No. CN101348494. The purity of cefmenoxime was determined by high performance liquid chromatography to be 92%, and the content of polymer impurities was determined by gel chromatography. %.
  • Example 2 The crude cefmenoxime hydrochloride used in Example 1 was purified according to the purification method described in Chinese Patent No. CN101348494. The purity of cefmenoxime was determined by high performance liquid chromatography to be 92%, and the content of polymer impurities was determined by gel chromatography. %.
  • Example 2 The crude cefmenoxime hydrochloride used in Example 1 was purified according to the purification method described in Chinese Patent No. CN101348494. The purity of cefmenoxime was determined by high performance liquid chromatography to be 92%, and the content of polymer impurities was determined by gel chromatography. %.
  • Example 2 The crude ce
  • cephalosporin hydrochloride raw material produced by Zhejiang Jianfeng Pharmaceutical Co., Ltd., batch number 20110203
  • the purity of cefmenoxime is 91% by HPLC
  • the content of polymer impurities is 1.5% by gel chromatography.
  • Ethyl acetate was added to the crude cephalosporin hydrochloride, the temperature was controlled to not exceed 25 ° C, vigorously stirred, and then filtered, and the filter cake was washed with ethyl acetate at a temperature not exceeding 16 ° C, and dried under vacuum.
  • the filter cake was placed in a 23% aqueous ammonia solution for a period of 3 hours until the aqueous solution reached a weak basicity, preferably at a pH not exceeding 9. Stirring was carried out during the treatment, and the precipitate precipitated was filtered off. The aqueous solution was then heated to 45 ° C to remove the remaining ammonia component in the aqueous solution.
  • the purity of the cephalosporin was 99.4%, and the gel color grammar was used to determine the polymer hybrid shield content of 0.05%, the tetrahydrofuran content of 0.02%, and the N,N-dimercaptoacetamide content of 0.04%.
  • the alkane content is 0.02%; the ignition residue is 0.02%, and heavy metals are not detected.
  • the solution was added with water to prepare a solution containing about 0.1 g per l ml, and the solution was clear and colorless.
  • Example 3 Take l OOg long-term production of cefmenoxime hydrochloride (Zhejiang Jianfeng Pharmaceutical Co., Ltd., batch number 20080701), high purity liquid chromatography to determine the purity of cefaporidum is 85%, gel chromatography for the determination of polymer The impurity content is 9%. Ethyl acetate was added to the crude cephalosporin hydrochloride, the temperature was controlled to not exceed 25 ° C, vigorously stirred, and then filtered, and the filter cake was washed with ethyl acetate at a temperature not exceeding 15 ° C, and dried under vacuum.
  • the filter cake was placed in a 20% aqueous ammonia solution for a period of 4 hours until the aqueous solution reached a weak alkalinity, preferably at a pH not exceeding 8. Stirring was carried out during the treatment, and the precipitate precipitated was filtered off. The aqueous solution was then heated to 50 ° C to remove the remaining ammonia component in the aqueous solution.
  • the purity of cefmenoxime was determined by high performance liquid chromatography to be 99.3 %.
  • the content of polymer impurities was 0.06%, the content of tetrahydrofuran was 0.02%, the content of hydrazine, hydrazine-dimercaptoacetamide was 0.04%, and the content of dichloromethane was 0.01%. ; burning residue 0.02%.
  • the solution was added with water to prepare a solution containing about 0.1 g per ml of water, and the solution was clear and colorless.
  • the purity of cefmenoxime was 99.2% by high performance liquid chromatography.
  • the content of polymer impurities was 0.06%, the content of tetrahydrofuran was 0.03%, the content of N,N-dimethylacetamide was 0.04%, and the content of dichlorodecane was determined by gel chromatography. 0.02%; burning residue 0.02%.
  • the solution was added with water to prepare a solution containing about 0.1 g per l ml, and the solution was clear and colorless.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Cephalosporin Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种盐酸头孢甲肟的纯化方法,具体包括以下步骤:1)向原料盐酸头孢甲肟中加入盐酸头孢甲肟不溶性溶剂,过滤去除杂质,2)采用氨水进行处理,进一步减少杂质,3)用盐酸调节pH值,低温结晶得到盐酸头孢甲肟精品,4)任选将析出结晶后的结晶母液返回步骤3)。本发明方法提高了盐酸头孢甲肟的纯度,降低杂质含量,提高制剂产品的质量,减少毒副作用。

Description

盐酸头孢甲肟化合物的新制法 技术领域
本发明涉及一种純化盐酸头孢甲肟的新制法, 属于医药技 术领域。 背景技术
盐酸头孢曱 ( cefmenoxime hydrochloride ) 化学名称为 (6R,7 )-7-[(Z)-2-(2-氨基 -4-噻唑基)-2-曱氧亚氨基 乙酰氨 基] -3-[[( 1 -曱基 - 1 H-四唑 -5-基) -硫]曱基] -8-氧代 -5-硫杂 - 1 -氮杂 双环 [4.2.0]辛 -2-烯 -2-甲酸盐酸盐(2 : 1 ), 中文别名众多, 诸如 倍司特克; 噻肟唑头孢菌素; 头孢曱肟; 盐酸氨噻肟唑头孢菌 素和头孢氨噻肟唑等。 分子式为(C16H17N905S3)2 HC1, 分子量 为 1059.58, 结构式为:
Figure imgf000002_0001
头孢菌素类抗生素属于 β-内酰胺抗生素, 是近年来国内外发展 最迅速、 新品种最多的一类抗生素, 是一种高效低毒的抗生素。 盐酸头孢曱肟为第三代半合成的头孢菌素类广谱抗生素, 由日 本武田药品工业株式会社首先研制而成,于 1983年在日本上市, 并进入欧美等国家最新版本药典, 2000年在我国上市。 盐酸头孢曱肟化学结构特点主要在 C7位氨基侧链进行酰 化, 并在 7a位引入甲氧基, 使盐酸头孢曱肟具有广泛抗菌性。 通过抑制细胞壁的生物合成而达到杀菌作用, 对 β-内酰胺酶稳 定, 对细菌感染而引起的各种炎症的治疗, 有显著的疗效 (参 见: 刘妹晶, 陈耀祖. 头孢菌素 C3位功能化及合成中间体的研 究进展 [ J ] . 国外医药抗生素分册, 1999 , 20(6) : 241起; 以 及 Nishimura T, Tabuki K, Hiromatsu K等人, Laboratory and clinical studies of cefmenoxime in the pediatric field [ J ] . Jpn J Antibiot, 1982, 35( 1 1 ):2535 ~ 2544 )。
目前国内合成盐酸头孢曱肟的工艺路线主要有两条: 一、 先修饰 7-ACA的 C3位上的侧链, 然后修饰 C7位氨基侧链; 二、 先修饰 7-ACA的 C7位氨基上的侧链, 再修饰 C3位上的侧链。 这 两种合成路线都是制备好头孢曱肟后先分离出来, 真空干燥后 得到头孢甲肟酸干燥品, 然后重新溶解, 再成盐, 最后得到盐 酸头孢曱肟成品
郑一美在中国抗生素杂志 5月 33卷 5期 ( 2008年) 报道了盐 酸头孢曱肟一锅法合成技术, 以国内很多厂家大量生产的 3-( 1 - 甲基 - 1 H-四 唑 -5-基)甲基 -7-氨基 -头孢烷酸盐酸盐(即 7-ATCA.HC1)为起始原料, 以之为中间体, 与 2-(2-氨基 -4-噻唑 基) -2-曱氧亚胺-乙酰-苯并噻唑硫酯(即 AE活性酯)缩合反应得 头孢甲肟酸, 然后不经分离直接在反应液中进行一锅法成盐、 得到盐酸头孢曱肟。 虽然简化了处理过程, 但反应中间产物和 反应试剂容易带入最终产品中。
海南天煌制药有限公司在 CN101555251 A中公开了一种盐 酸头孢曱肟的制备方法, 是以 7-ATCA为起始原料, 与活性酯 ( AE ) 进行缩合反应, 生成 7-[α-(2-氨基噻唑 -4- 基) -Ζ-2-曱氧 亚氨基乙酰胺基 ]-3-( 1 -曱基 - 1 Η-5-四唑基-硫甲基) -3-头孢烯 -4-羧酸钠盐(即头孢甲肟钠盐), 最后与 10 %盐酸作用生成盐酸 头孢曱肟。但该方法制备的盐酸头孢曱肟的收率和纯度并不高, 而且制备过程中使用三乙胺以及二氯乙烷等, 其残留量对人体 不利。
中国专利 CN101348494报道了一种精制盐酸头孢曱肟的提 纯方法, 采用大孔树脂吸附分离, 然后用凝胶柱进行纯化, 不 过存在吸附洗脱不完全, 收率和纯度不理想, 也难以分离原料 药中的固有杂质。
目前, 盐酸头孢曱肟国内各制剂生产厂家主要是依靠进口 原料药进行分装制得, 中国也有厂家生产本品, 但收率和产品 纯度都不是很高。 因此, 如何提高盐酸头孢甲肟的纯度是目前 亟待解决的问题, 具有重大的社会效益和经济效益。 发明内容
为了克服上述现有技术的缺陷, 特别是克服现有技术制备 的盐酸头孢曱肟纯度低的缺陷, 本发明提供了一种精制盐酸头 孢甲肟化合物的方法。
本发明提供的精制方法所针对的盐酸头孢曱肟是目前已知 的合成方法所制得的盐酸头孢曱肟粗品或者市售的或者进口的 盐酸头孢甲肟原料药, .以下统称为本发明采用的原料盐酸头孢 曱肟。
本发明人经过锐意研究发现, 通过包括如下处理步骤的精 制方法, 能够大幅度提高原料盐酸头孢曱肟的纯度:
步骤 1 ), 向原料盐酸头孢甲肟中加入盐酸头孢甲肟不溶性 溶剂, 控制温度不超过 30 °C, 剧烈搅拌, 然后进行过滤, 滤饼 用温度不超过 20 °C的盐酸头孢甲肟不溶性溶剂进行洗涤, 真空 干燥或空气晾干; 步骤 2 ), 将滤饼放入氨水中, 温和搅拌, 控制 pH值不超过 9 , 获得头孢甲肟酸的氨水溶液, 然后将析出的沉淀物过滤掉; 步骤 3 ) , 向头孢甲肟酸的氨水溶液中緩慢加入浓度为 0.5-4mol/L的盐酸, 温度控制在 30-60°C , 最终 pH控制在 0.5-3.0, 保持 30分钟到 5小时, 慢慢有晶体析出, 然后逐步将温度降低至 最低 10°C , 静置结晶, 抽滤, 真空干燥, 得盐酸头孢曱肟精品。 具体实施方式
以下按精制步骤具体描述根据本发明的纯化盐酸头孢甲肟 的方法。
步骤 1 ), 向原料盐酸头孢曱肟中加入盐酸头孢曱肟不溶性 溶剂, 控制温度不超过 30 °C , 剧烈搅拌, 然后进行过滤, 滤饼 用温度不超过 20°C的盐酸头孢曱肟不溶性溶剂进行洗涤, 真空 干燥或空气晾干。
一般情况下, 本发明要精制纯化的原料盐酸头孢甲肟中还 含有制备过程中引入的有机溶剂、 各种原料和中间产物, 如现 有技术中使用的二氯曱烷溶剂, 7-ATCA.HC1或 7-ATCA和 AE活 性酯的起始原料, 制备过程中获得的头孢曱肟酸或头孢曱肟钠 盐等, 以及在后处理或存放期间生成的聚合物类物质, 这些聚 合物类物质在较高温度下处理或存放时更容易生成。
本发明人注意到 , 这些杂盾性物质是导致原料盐酸头孢曱 肟纯度不高的主要原因, 不但降低药物活性成分含量, 而且导 致产品的色泽加深。 由于未采取针对性纯化处理, 这些杂质一 般仍与原料盐酸头孢曱肟混杂在一起。
本发明人发现,这些有机性杂盾在有机溶剂中溶解性较大, 而盐酸头孢曱肟在乙醇、 丙酮或乙酸乙酯中几乎不溶。 根据本 发明, 经过步骤 1 )的处理, 可以将这些杂质从盐酸头孢曱肟中 分离除去。
根据本发明一种优选的实施方式, 向原料盐酸头孢甲肟中 加入盐酸头孢曱肟不溶性溶剂, 优选加入乙醇、 丙酮或乙酸乙 酯, 更优选加入乙醇或乙酸乙酯, 最优选加入乙酸乙酯。 控制 温度不超过 30°C, 优选不超过 25 °C , 更优选不超过 20 °C , 在此 过程中剧烈搅拌。
我们发现, 在加入盐酸头孢曱肟不溶性溶剂时如果温度过 高,则容易造成目标物因溶解而流失,若更高温度,如高于 80 °C , 盐酸头孢曱肟由于降解和聚合反应会导致药物活性成分含量降 低, 色泽加强, 聚合物杂质含量升高。 而温度越低, 盐酸头孢 曱肟在有机溶剂中越不溶解, 但太低的温度也影响有机性杂质 的溶解除去。
经上述处理后, 将溶有杂质的溶剂过滤掉, 滤饼用温度不 超过 20 °C , 优选不超过 15 °C , 更优选不超过 12°C的盐酸头孢甲 肟不溶性溶剂, 如乙醇、 丙酮或乙酸乙酯进行洗涤。
在本发明优选的实施方式中, 洗涤用的溶剂优选与溶解原 料盐酸头孢曱肟所用的溶剂相同。
在干燥过程中, 为了防止盐酸头孢曱肟分解, 优选采用空 气晾干或常温真空千燥方式进行千燥。 步骤 2 ), 将滤饼放入氨水中, 温和搅拌, 控制 pH值不超过 9, 获得头孢曱肟酸的氨水溶液, 然后将盐酸头孢甲肟不溶性沉 淀物过滤掉。
不受任何原理的束缚, 本发明步骤 2 ) 采用氨水进行处理, 是基于以下原因:
头孢曱肟是以头孢曱肟酸形式存在还是以盐酸头孢甲肟形 式存在, 主要取决于酸碱度的控制。 在酸度值较高时, 以盐酸 头孢曱肟形式存在; 在酸度值较低时以头孢曱肟酸形式存在。 步骤 1 )获得的滤饼中除了盐酸头孢甲肟外, 还含有制备过 程中引入的微量催化剂、 各种盐类和重金属等无机性物质以及 存放过程中产生的细菌内毒素。 这些物质一般难以溶于有机溶 剂中, 因此不能在步骤 1 ) 中去除掉。 通过加入氨水, pH逐渐 升高, 盐酸头孢曱肟转化为头孢甲肟酸, 并溶于碱性水溶液中, 而部分无机性物质能够以碱式盐形式沉淀析出, 过滤除去, 从 而有效减少了杂质。
根据本发明一种优选的实施方式, 向步骤 1 )获得的滤饼中 加入浓度为 15-25%的氨水, 处理时间优选为 30分钟 -6小时, 更 优选 1 -5小时, 最优选 2-3小时, 直至水溶液达到弱碱性, 优选 pH值不超过 9 , 更优选不超过 8.5 , 最优选不超过 8。 为了充分混 合, 在处理过程中进行搅拌, 将析出的沉淀过滤掉。
根据本发明一种优选的实施方式, 在过滤沉淀后, 将水溶 液加热至 30-60°C, 优选 35-55 °C, 更优选 40-50 °C, 一方面可以 除去水溶液中剩余的氨气成分, 另一方面也有利于后续的结晶 步骤。 步骤 3 ), 向上述头孢甲肟酸的氨水溶液中緩慢加入浓度为 0.5-4 mol/L的盐酸,温度控制在 30-60°C ,最终 pH控制在 0.5-3.0 , 保持 30分钟到 5小时, 慢慢有晶体析出, 然后逐步将温度降低至 最低 1 (TC, 静置结晶, 抽滤, 真空干燥, 得盐酸头孢曱肟。
我们研究发现, 酸度值较低, 即 pH较高的碱性环境下, 头 孢曱肟以头孢曱肟酸或头孢曱肟酸碱性盐形式存在, 此时无需 分离和干燥, 只需提高酸度值, 即调节 pH值为酸性, 就会形成 盐酸头孢甲肟。
虽然盐酸头孢曱肟在曱酰胺中易溶, 在甲醇中微溶, 但溶 于这些溶剂或悬浮于其它常用溶剂中回流搅拌, 都难以很好地 结晶。而直接用良性-不良溶剂析出法处理盐酸头孢曱肟粗品也 不能达到预期的纯度。
令人惊讶地发现, 经过本发明上述步骤 1 )和 2 )处理之后, 通过合理选择盐酸浓度并控制合适的 pH , 即可使盐酸头孢曱肟 从水中结晶析出, 获得纯度极高的晶体。 其原因可能是本发明 步骤 1 ) 和 2 ) 已经去除了对结晶有不利影响的杂盾性物质, 提 高了结晶母液的纯度, 而且经氨水处理过的头孢曱肟在加入盐 酸后形成的盐酸头孢曱肟更适合于从水中直接结晶析出。
根据本发明一种优选的实施方式, 向上述头孢甲肟酸的氨 水溶液中緩慢加入浓度为 0.5-4 mol/L , 优选 0.8-3 mol/L , 更优 选 1 .0-2 mol/L的盐酸, 温度控制在 30-60°C , 优选 40-55 °C , 更优 选 45-50°C, 最终 pH控制在 0.5-3.0 , 优选 0.8-2.5 , 更优选 1.0-2.0, 保持 30分钟到 5小时, 优选 50分钟至 3小时, 更优选 1小时至 2小 时, 慢慢有晶体析出。
然后逐步将温度降低至最低 10°C , 优选最低 12°C, 更优选 最低 15 °C, 静置结晶, 抽滤, 真空干燥, 得盐酸头孢甲肟。
通常而言, 温度降得越低, 就有更多的盐酸头孢曱肟析出, 但本发明人发现, 低于 10°C, 盐酸头孢曱肟更多以粉末而非晶 体析出, 而且容易裹杂更多溶剂或杂质性物质。
在降温过程中任选投入盐酸头孢曱肟晶种。在降温过程中, 尤其是快要开始结晶时, 易造成过饱和度高, 添加晶种可以有 效防止产生过多的细小晶核, 抑制初级成核, 减少聚结, 有利 于晶体生长。
根据本发明优选的实施方式,在结晶过程中添加有机溶剂, 如醇类溶剂, 如甲醇、 乙醇、 异丙醇; 丙酮或乙酸乙酯, 不但 提高了结晶速度, 而且还提高产品收率。 这些溶剂可单独使用, 或使用其中多种的混合物。 这些溶剂的添加量占结晶母液体积 的 10 - 20% , 优选 12 - 18%, 最优选 1 5%。
经放置 2-24小时后, 结晶完全, 然后进行干燥, 可以采用 空气晾干或烘干。
根据本发明一种优选的实施方式, 对盐酸头孢甲肟水溶液 进行浓缩可以在步骤 2 )中加热除去水溶液中剩余的氨气成分的 同时进行, 也就是说, 步骤 2 ) 中最后加热水溶液时, 一方面除 去了剩余的氨气成分。 另一方面也利于对盐酸头孢曱肟水溶液 进行浓缩, 不需降温即可直接进行步骤 3 ) 的结晶过程。 步骤 4 ), 任选将析出结晶后的结晶母液返回步骤 3 )。
由于该结晶母液是在步骤 3 )中降温直至最低 10°C , 优选最 低 12°C, 更优选最低 15 °C时析出晶体或获得的, 其中含有一定 量未析出的盐酸头孢甲肟, 将其返回步骤 3 ) , 继续进行结晶, 大大提高了盐酸头孢曱肟的收率。
上述实施方案所得的盐酸头孢曱肟精制品, 按照高效液相 色谱法 (中国药典 2005版二部附录 V D ) 测定, 换算成盐酸头 孢甲肟的纯度不低于 99.2 % , 大部分不低于 99.4 %。 其中四氢 呋喃含量低于 0.03% , Ν,Ν-二曱基乙酰胺含量低于 0.05%, 二氯 曱烷含量低于 0.02%; 灼烧残渣低于 0.02% , 重金属低于百万分 之十, 高分子杂质含量大部分低于 0.06 %。 由其所制得的注射 剂中不溶性微粒含量极低。
鉴于盐酸头孢曱肟的粉末流动性、 特性溶出速率、 固体稳 定性以及制备可操作性对其活性的发挥以及所配制的制剂的影 响巨大, 而纯度得到大幅提高的盐酸头孢甲肟在溶出速率、 可 配制性以及稳定性方面也相应明显改善。
因此, 根据本发明方法精制的盐酸头孢曱肟完全适合配制 成用于治疗细菌感染而引起的各种炎症的抗菌药物组合物, 所 述药物组合物包括根据本发明方法精制的盐酸头孢曱肟和药学 上可接受的赋形剂。 优选地, 所述药物组合物可以是冻干粉针 剂或注射用制剂。
本发明还提供了上述药物组合物在制备用于治疗细菌感染 而引起的各种炎症的用途。 优选地, 所述感染包括肺炎、 支气 管炎、 胆道感染、 腹膜炎、 尿路感染。
本发明从根本上改变了国内外盐酸头孢曱肟原料纯度较低 的现状, 解决了粗制盐酸头孢曱肟和盐酸头孢曱肟原料药面临 的难题, 改善了由于不溶性微粒或聚合物杂质成分较多引发的 一系列临床不良反应, 提高了制剂产品质量, 减少了毒副作用。 本发明方法还具有简便、 易于控制和工业化生产的特点。 以下通过实施例来进一步解释或说明本发明内容。 但所提 供的实施例不应被理解为对本发明保护范围构成限制。 一、 HPLC测定盐酸头孢曱肟的纯度:
色谱条件和系统适用性试验: 用十八烷基硅烷键合硅胶为 填充剂;以乙腈-水-醋酸( 10: 50 : 1 )为流动相,检测波长 254nm , 理论板数按盐酸头孢甲肟峰计算应不低于 1000 , 盐酸头孢曱肟 与相邻杂质峰的分离度应符合要求。
测定法: 取盐酸头孢曱肟样品适量, 精密称定, 加磷酸盐 緩沖液 (pH6.8 ) 适量溶解, 用流动相制成每 1毫升中含 0.1毫克 的溶液。 取 20微升注入液相色谱仪, 记录色谱图, 另取盐酸头 孢甲肟对照品适量, 同法测定。 按外标法以峰面积计算出样品 中头孢曱肟的含量, 换算成盐酸头孢曱肟的纯度。 采用 Sephadex G- 10凝胶色谱系统检查测定盐酸头孢甲肟 中的高分子杂质含量。 三、 有关物质含量的测定:
按郭嘉食品药品监督管理局发布的标准 YBH09262006中 描述的方法进行测量。 实施例 1
取 100g按照 CN10155525 1 A制得的盐酸头孢甲肟粗品, 高 效液相色谱法测得盐酸头孢曱肟的含量为 89 %, 凝胶色谱系统 测定聚合物含量为 4%。 向原料盐酸头孢曱肟中加入乙醇, 控制 温度不超过 28 °C, 剧烈搅拌, 然后进行过滤, 滤饼用温度不超 过 20 °C的乙醇进行洗涤, 空气晾干。
将滤饼放入浓度为 20%的氨水, 处理时间为 2小时, 直至水 溶液达到弱碱性,优选 pH值不超过 8.5。在处理过程中进行搅拌, 将析出的沉淀过滤掉。 然后将水溶液加热至 40 °C, 除去水溶液 中剩余的氨气成分。
向获得的头孢曱肟酸的氨水溶液中緩慢加入浓度为 2 mol/L的盐酸, 温度控制在 40 °C, 最终 pH控制在 2.0 , 保持 1小时, 慢慢有晶体析出。 然后逐步将温度降低至最低 12 °C, 静置结晶, 抽滤, 真空千燥, 得白色盐酸头孢曱肟 88g。 H NMR数据为 质子 化学
序号 _ . M(H H pgp——m)多重性及 赓子位
^于数 置指定
供试品 文献'
a, 3-70 3.67 2H q.
3.89 3.89 s.
e. 3,94 3.91 3H s.
d. 4.29 4,27 2H Ψ
e. 5.14 5.09 IH a.
f. 5 Π 5,71 IH
I- 1H 5.
h. 8.01 - 2H D0交换消失
D 0交换
i. 9.71 65 1H
未完全消失
)· 13.60 - 1H D0交换消失
*J. Antib s 34(2) P171(1 «l)
如式示
对应结构 ^下式所示 t、所
Figure imgf000012_0001
高效液相色谱测得头孢曱肟的纯度为 99.2%, 凝胶色谱法 测定高分子杂质含量 0.06%, 四氢呋喃含量 0.03%, N,N-二曱基 乙酰胺含量 0.05%, 二氯曱烷含量 0.02%; 灼烧残渣 0.02%, 重 金属检测不到。 取精制品加水制成每 lml中约含 O.lg的溶液, 溶 液澄清无色。
比较实施例 1 按照中国专利 CN101348494中描述的精制方法,对实施例 1 中采用的盐酸头孢曱肟粗品进行纯化, 高效液相色谱测得头孢 甲肟的纯度为 92% , 凝胶色谱法测定高分子杂质含量 2%。 实施例 2
取 100g盐酸头孢曱肟原料药(浙江尖峰药业有限公司生产 , 批号 20110203 ), 高效液相色语法测得头孢甲肟的纯度为 91 %, 凝胶色谱法测定高分子杂质含量 1.5%。 向原料盐酸头孢曱肟中 加入乙酸乙酯, 控制温度不超过 25 °C , 剧烈搅拌, 然后进行过 滤, 滤饼用温度不超过 16°C的乙酸乙酯进行洗涤, 真空干燥。
将滤饼放入浓度为 23%的氨水, 处理时间为 3小时, 直至水 溶液达到弱碱性, 优选 pH值不超过 9。 在处理过程中进行搅拌, 将析出的沉淀过滤掉。 然后将水溶液加热至 45 °C, 除去水溶液 中剩余的氨气成分。
向获得的头孢甲肟酸的氨水溶液中緩慢加入浓度为 3 mol/L的盐酸, 温度控制在 50°C, 最终 pH控制在 2.5, 保持 2小时, 在此过程中添加乙醇, 添加量占结晶母液体积的 15%。 緩慢降 温, 在降温过程中投入盐酸头孢甲肟晶种, 慢慢有晶体析出, 逐步将温度降低至最低 15 °C , 静置结晶, 抽滤, 真空干燥, 得 白色盐酸头孢曱肟 90g。
高效液相色潘测得头孢曱肟的纯度为 99.4% , 凝胶色语法 测定高分子杂盾含量 0.05%, 四氢呋喃含量 0.02%, N,N-二曱基 乙酰胺含量 0.04%, 二氯曱烷含量 0.02%; 灼烧残渣 0.02% , 重 金属检测不到。 取精制品加水制成每 lml中约含 O. l g的溶液, 溶 液澄清无色。 实施例 3 取 l OOg生产日期较长的盐酸头孢甲肟原料药 (浙江尖峰药 业有限公司生产 , 批号 20080701 ), 高效液相色谱法测得头孢曱 肟的纯度为 85%, 凝胶色谱法测定高分子杂质含量 9%。 向原料 盐酸头孢曱肟中加入乙酸乙酯, 控制温度不超过 25 °C , 剧烈搅 拌, 然后进行过滤, 滤饼用温度不超过 15 °C的乙酸乙酯进行洗 涤, 真空干燥。
将滤饼放入浓度为 20%的氨水, 处理时间为 4小时, 直至水 溶液达到弱碱性, 优选 pH值不超过 8。 在处理过程中进行搅拌, 将析出的沉淀过滤掉。 然后将水溶液加热至 50°C , 除去水溶液 中剩余的氨气成分。
向获得的头孢甲肟酸的氨水溶液中緩慢加入浓度为 4 mol/L的盐酸, 温度控制在 45 °C, 最终 pH控制在 1.5, 保持 2小时, 在此过程中添加异丙醇, 添加量占结晶母液体积的 10%。 緩慢 降温, 在降温过程中投入盐酸头孢曱肟晶种, 慢慢有晶体析出, 逐步将温度降低至最低 12°C , 静置结晶, 抽滤, 将结晶母液返 回结晶过程中, 晶体真空干燥, 最终得白色盐酸头孢曱肟 84g。
高效液相色谱测得头孢甲肟的纯度为 99.3 %, 胶色谱法 测定高分子杂质含量 0.06% , 四氢呋喃含量 0.02%, Ν,Ν-二曱基 乙酰胺含量 0.04%, 二氯甲烷含量 0.01 %; 灼烧残渣 0.02%。 取 精制品加水制成每 l ml中约含 O. l g的溶液, 溶液澄清无色。 实施例 4
取 10g过期的盐酸头孢曱肟原料药,高效液相色谱法测得头 孢甲肟的纯度为 82%, 凝胶色谱法测定高分子杂质含量 10%。 向原料盐酸头孢甲肟中加入丙酮, 控制温度不超过 22°C, 剧烈 搅拌, 然后进行过滤, 滤饼用温度不超过 13 °C的丙酮进行洗涤, 将滤饼放入浓度为 18%的氨水, 处理时间为 2小时, 直至水 溶液达到弱碱性,优选 pH值不超过 8.5。在处理过程中进行搅拌, 将析出的沉淀过滤掉。 然后将水溶液加热至 45 °C , 除去水溶液 中剩余的氨气成分。
向获得的头孢曱肟酸的氨水溶液中緩慢加入浓度为 3 mol/L的盐酸, 温度控制在 40°C , 最终 pH控制在 1 .2, 保持 3小时, 在此过程中添加丙酮, 添加量占结晶母液体积的 12%。 緩慢降 温, 在降温过程中投入盐酸头孢曱肟晶种, 慢慢有晶体析出, 逐步将温度降低至最低 14°C, 静置结晶, 抽滤, 将结晶母液返 回结晶过程中, 晶体真空干燥, 最终得白色盐酸头孢曱肟 81 g。
高效液相色谱测得头孢甲肟的纯度为 99.2%, 凝胶色谱法 测定高分子杂质含量 0.06%, 四氢呋喃含量 0.03% , N,N-二甲基 乙酰胺含量 0.04%, 二氯曱烷含量 0.02%; 灼烧残渣 0.02%。 取 精制品加水制成每 lml中约含 O. l g的溶液, 溶液澄清无色。 根据上述的实施例对本发明作了详细描述。 需说明的是, 以上的实施例仅仅为了举例说明本发明而已。 在不偏离本发明 的精神和实质的前提下, 本领域技术人员可以设计出本发明的 多种替换方案和改进方案, 其均应被理解为在本发明的保护范 围之内。

Claims

权 利 要 求 书
1、 一种纯化如下所示的盐酸头孢甲肟化合物的新制法, 其 特征在于该方法包括以下步骤:
Figure imgf000016_0001
步骤 1 ),向原料盐酸头孢曱肟中加入盐酸头孢甲肟不溶性 溶剂, 控制温度不超过 30 °C , 剧烈搅拌, 然后进行过滤, 滤饼 用温度不超过 20 °C的盐酸头孢曱肟不溶性溶剂进行洗涤, 真空 干燥或空气晾干;
步驟 2 ) , 将滤饼放入氨水中, 温和搅拌, 控制 pH值不超 过 9,获得头孢曱肟酸的氨水溶液,然后将析出的沉淀物过滤掉; 步骤 3 ) , 向头孢曱肟酸的氨水溶液中緩慢加入浓度为 0.5-4mol/L的盐酸, 温度控制在 30-60 °C , 最终 pH控制在 0.5-3.0, 保持 30分钟到 5小时, 慢慢有晶体析出, 然后逐步将温度降低至 最低 10°C, 静置结晶, 抽滤, 真空干燥, 得盐酸头孢甲肟精品; 步驟 4 ), 任选将析出结晶后的结晶母液返回步驟 3 )。
2、 根据权利要求 1的盐酸头孢曱肟的制法, 其特征在于, 步骤 1 ) 中, 所述盐酸头孢曱肟不溶性溶剂为乙醇、 丙酮或乙酸 乙酯, 更优选乙醇或乙酸乙酯, 最优选乙酸乙酯; 控制温度不 超过 30°C, 优选不超过 25 °C, 更优选不超过 20°C, 在此过程中 剧烈搅拌。
3、 根据权利要求 1或 2的盐酸头孢甲肟的制法, 其特征在 于, 步骤 1 ) 中, 将获得的滤饼用温度不超过 20°C , 优选不超 过 15°C, 更优选不超过 12°C的盐酸头孢曱肟不溶性溶剂, 如乙 醇、 丙酮或乙酸乙酯进行洗涤, 优选洗涤用的溶剂优选与溶解 原料盐酸头孢曱肟所用的溶剂相同; 在干燥过程中, 采用空气 晾干或常温真空干燥方式进行千燥。
4、 根据权利要求 1至 3之一的盐酸头孢曱肟的制法, 其特 征在于, 在步骤 2 ) 中, 向步骤 1 ) 获得的滤饼中加入浓度为 15 - 25 %的氨水,处理时间优选为 30分钟 - 6小时,更优选 1 - 5小时, 最优选 2-3小时, 直至水溶液达到弱碱性, 优选 pH值不超过 9, 更优选不超过 8.5, 最优选不超过 8, 在处理过程中进行搅拌。
5、 根据权利要求 1至 4之一的盐酸头孢曱肟的制法, 其特 征在于, 步骤 2) 中, 在过滤沉淀后, 将水溶液加热至 30-60°C, 优选 35-55°C, 更优选 40-50°C。
6、 根据权利要求 1至 5之一的盐酸头孢曱肟的制法, 其特 征在于, 在步骤 3) 中, 向步骤 2) 获得的氨水溶液中緩慢加入 浓度为 0.5-4 mol/L, 优选 0.8-3 mol/L, 更优选 1.0-2 mol/L的盐 酸, 温度控制在 30-60°C, 优选 40-55°C, 更优选 45-50°C, 最终 pH控制在 0.5-3.0, 优选 0.8-2.5, 更优选 1.0-2.0, 保持 30分钟到 5 小时, 优选 50分钟至 3小时, 更优选 1小时至 2小时; 然后逐步将 温度降低至最低 10°C, 优选最低 12°C, 更优选最低 15°C, 静置 结晶, 抽滤, 真空干燥, 得盐酸头孢曱肟。
7、 根据权利要求 1至 6之一的盐酸头孢曱肟的制法, 其特 征在于, 步骤 3) 中, 在降温过程中任选投入盐酸头孢甲肟晶 种
8、 根据权利要求 1至 7之一的盐酸头孢曱肟的制法, 其特 征在于, 步骤 3) 中, 在结晶过程中添加有机溶剂, 如醇类溶 剂, 如曱醇、 乙醇、 异丙醇; 丙酮或乙酸乙酯, 这些溶剂的添 加量占结晶母液体积的 10- 20%, 优选 12- 18%, 最优选 15%。
9、 根据权利要求 1至 8之一的盐酸头孢曱肟的制法, 其特 征在于, 在步骤 4) 中, 将在步骤 3 ) 中降温直至最低 10°C, 优 选最低 12°C, 更优选最低 15 °C时析出晶体后获得的母液返回步 骤 3)。
PCT/CN2011/001331 2011-07-15 2011-08-11 盐酸头孢甲肟化合物的新制法 WO2013010296A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/008,542 US8895728B2 (en) 2011-07-15 2011-08-11 Method for preparing cefmenoxime hydrochloride compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110197613.5 2011-07-15
CN 201110197613 CN102329329B (zh) 2011-07-15 2011-07-15 盐酸头孢甲肟化合物的制法

Publications (1)

Publication Number Publication Date
WO2013010296A1 true WO2013010296A1 (zh) 2013-01-24

Family

ID=45481315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001331 WO2013010296A1 (zh) 2011-07-15 2011-08-11 盐酸头孢甲肟化合物的新制法

Country Status (3)

Country Link
US (1) US8895728B2 (zh)
CN (1) CN102329329B (zh)
WO (1) WO2013010296A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145735B (zh) * 2013-03-21 2014-02-26 四川省惠达药业有限公司 一种注射用盐酸头孢甲肟化合物及其药物组合物
CN104910189B (zh) * 2015-06-16 2016-01-20 海南灵康制药有限公司 一种盐酸头孢甲肟的工业结晶方法
CN110526928B (zh) * 2019-09-17 2021-05-04 河北科技大学 一种7-氨基去乙酰氧基头孢烷酸的精制方法
CN111024847B (zh) * 2019-12-24 2022-03-01 河北合佳医药科技集团股份有限公司 一种柱前衍生化法测定ae-活性酯纯度的方法
CN112661776A (zh) * 2020-12-29 2021-04-16 苏州盛达药业有限公司 一种盐酸头孢甲肟的制备方法
CN114113359B (zh) * 2021-05-07 2024-02-20 佛山市南海北沙制药有限公司 一种7-aca衍生物的中控检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550150A (zh) * 2009-05-07 2009-10-07 张锡芬 一种头孢甲肟化合物及其合成方法
CN101798314A (zh) * 2010-03-24 2010-08-11 海南数尔药物研究有限公司 一种高纯度的盐酸头孢甲肟化合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101569628B (zh) * 2009-06-19 2011-05-18 山东罗欣药业股份有限公司 一种盐酸头孢甲肟组合物粉针及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550150A (zh) * 2009-05-07 2009-10-07 张锡芬 一种头孢甲肟化合物及其合成方法
CN101798314A (zh) * 2010-03-24 2010-08-11 海南数尔药物研究有限公司 一种高纯度的盐酸头孢甲肟化合物

Also Published As

Publication number Publication date
US20140121370A1 (en) 2014-05-01
CN102329329A (zh) 2012-01-25
CN102329329B (zh) 2012-09-05
US8895728B2 (en) 2014-11-25

Similar Documents

Publication Publication Date Title
US9090631B2 (en) Process for purifying cefotiam hydrochloride
WO2013010296A1 (zh) 盐酸头孢甲肟化合物的新制法
CN102268019B (zh) 一种头孢羟氨苄化合物及其制法
US8859761B2 (en) Refining process of Cefamandole sodium
US8853389B2 (en) Process for refining cefmetazole sodium
US8927707B2 (en) Purification method of aztreonam
US7045618B2 (en) Cefpodixime proxetil
US8871927B2 (en) Method for purifying Ceftizoxime sodium
CN104277053A (zh) 一种高纯度头孢地嗪及其中间体头孢地嗪酸的制备方法
CN108033971B (zh) 一种盐酸头孢卡品酯的合成方法
CN102796116B (zh) 一种高纯度头孢唑肟钠的制备方法
WO2008132574A1 (en) Purification of cefuroxime acid
AU2014345507B2 (en) Crystalline beta-lactamase inhibitor
CN110343120B (zh) 一种3-甲基头孢地尼的制备方法
CN102898443A (zh) 高收率超净高纯化头孢地嗪钠的精制方法
CN117088896A (zh) 一种盐酸头孢噻呋的精制方法
CN1295234C (zh) 一种头孢呋辛酯非对映异构体的分离方法
CN106749410B (zh) 一种高收率头孢洛林酯的制备方法
CN111057076A (zh) 一种头孢吡肟杂质的制备方法及用途
CN112321607A (zh) 一种一锅法合成头孢唑肟酸的方法
WO2008056221A2 (en) Crystalline sulfate salt of cephalosporin antibiotic
CN104557977A (zh) 盐酸头孢卡品酯的精制方法
WO2006134431A1 (en) Formate salt of gemifloxacin
CN103012433A (zh) 头孢地尼晶型b的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14008542

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869607

Country of ref document: EP

Kind code of ref document: A1