WO2013008896A1 - 積層膜付きガラス基板の製造方法 - Google Patents

積層膜付きガラス基板の製造方法 Download PDF

Info

Publication number
WO2013008896A1
WO2013008896A1 PCT/JP2012/067867 JP2012067867W WO2013008896A1 WO 2013008896 A1 WO2013008896 A1 WO 2013008896A1 JP 2012067867 W JP2012067867 W JP 2012067867W WO 2013008896 A1 WO2013008896 A1 WO 2013008896A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass ribbon
injector
glass
temperature
laminated film
Prior art date
Application number
PCT/JP2012/067867
Other languages
English (en)
French (fr)
Inventor
邦明 廣松
正信 白井
純一 宮下
友広 米道
健朗 遠藤
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201280034332.0A priority Critical patent/CN103649000A/zh
Priority to EP12810838.8A priority patent/EP2733125A4/en
Publication of WO2013008896A1 publication Critical patent/WO2013008896A1/ja
Priority to US14/152,068 priority patent/US20140123707A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2456Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/06Annealing glass products in a continuous way with horizontal displacement of the glass products
    • C03B25/08Annealing glass products in a continuous way with horizontal displacement of the glass products of glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • C03C2218/1525Deposition methods from the vapour phase by cvd by atmospheric CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for producing a glass substrate with a laminated film, and more particularly to a method for producing a glass substrate with a laminated film, wherein a laminated film is formed on a glass ribbon in a slow cooling furnace by an on-line CVD (Chemical Vapor Deposition) method.
  • CVD Chemical Vapor Deposition
  • Patent Document 1 discloses that an oxide containing silicon and oxygen is formed on a glass ribbon in a float bath by a CVD method. In this case, it is disclosed that an unsaturated hydrocarbon compound and carbon dioxide are used as an oxygen source in order to prevent oxidation of molten metal in the float bath by oxygen gas.
  • Patent Document 2 discloses a method of sequentially forming a silicon dioxide film and a tin oxide film on a glass ribbon at a coating station (injector) disposed in a float bath and a coating station disposed in a slow cooling furnace.
  • Patent Document 3 discloses a method of forming a film on a glass ribbon by providing a nozzle (injector) in a region between the float bath outlet and the annealing furnace inlet.
  • Patent Document 1 discloses that an unsaturated hydrocarbon compound and carbon dioxide are used as an oxygen gas source for preventing oxidation of molten metal in a float bath. This is because oxygen gas cannot be used when forming an oxide film in a non-oxidizing atmosphere, and a reaction gas containing oxygen molecules needs to be used.
  • Patent Document 2 when a coating station is provided in a slow cooling furnace, a problem arises because the temperature conditions for film formation are different from the temperature conditions for slow cooling of the glass ribbon, and a multilayer coating is formed. Points out that the problem is more complicated. For this reason, Patent Document 2 recommends that the premixed oxygen and the coating precursor are brought into contact with the glass ribbon in the float bath. However, this method requires a seal to seal the oxygen gas and complicates the apparatus. Also, when a coating station is provided in the slow cooling furnace and a metal oxide film is to be formed on the glass ribbon, the heat exchange between the glass ribbon and the injector causes a rapid heat removal from the glass ribbon compared to the case without the coating station.
  • the glass ribbon may be deformed or scratches and cracks may occur.
  • the greater the number of coating stations the greater the risk that scratches and cracks will occur, and the warped glass ribbon may come into contact with the coating stations and cause scratches and cracks with the glass.
  • Patent Document 2 discloses that when one or more coating stations are provided in a slow cooling furnace when forming a multilayer coating, there is a problem that different temperature control must be established. On the other hand, there is no specific disclosure of an appropriate temperature management method in the case where a plurality of coating stations are arranged in a slow cooling furnace.
  • Patent Document 3 discloses that a nozzle (injector) is provided in an area between the float bath outlet and the annealing furnace inlet so as to cover the entire width of the glass.
  • a nozzle injector
  • the temperature of the glass ribbon is not controlled in the space between the float bath and the slow cooling furnace, and if a film is formed in the space between the float bath and the slow cooling furnace, the glass ribbon is rapidly changed due to heat exchange between the nozzle and the glass ribbon. There is a problem of heat removal.
  • the present invention has been made paying attention to the above problems, and in the on-line CVD method, the glass ribbon is appropriately temperature-controlled, and onto the glass ribbon using a plurality of injectors provided in the slow cooling furnace.
  • a method for producing a glass substrate with a laminated film for forming a laminated film is provided.
  • the present invention provides the following aspects. (1) Using a glass manufacturing apparatus comprising a melting furnace for melting glass raw materials, a float bath for floating glass on a molten metal to form a glass ribbon, and a slow cooling furnace for gradually cooling the glass ribbon.
  • a method for producing a glass substrate with a laminated film by forming a laminated film on the glass ribbon with a plurality of injectors provided above the glass ribbon in the slow cooling furnace by a CVD method, and cutting the glass ribbon; When the glass transition temperature is Tg, the laminated film is formed at Tg + 50 ° C.
  • the slow cooling furnace is provided with a heater that makes a pair with each injector on the opposite side to each injector across the glass ribbon,
  • the amount of heat exchanged between the injector and the glass ribbon is Q1 (kW)
  • the amount of heat exchanged between the heater and the glass ribbon paired with the injector is Q2 (kW)
  • the flow rate of the glass is P (ton / day).
  • the glass ribbon is appropriately temperature-controlled, and the laminated film is formed on the glass ribbon using a plurality of injectors provided in the slow cooling furnace.
  • the manufacturing method of the glass substrate with a laminated film to form was realized.
  • a glass manufacturing apparatus 50 includes a melting furnace 51 that melts a glass raw material, a float bath 52 that floats the molten glass on molten tin to form a flat glass ribbon, a lift-out After the glass ribbon is pulled out from the float bath 52 by the roll 53, the slow cooling furnace 54 that gradually cools the glass ribbon by gradually lowering the temperature of the glass ribbon is provided.
  • the slow cooling furnace 54 supplies, for example, the amount of heat whose output is controlled by a combustion gas or an electric heater to a required position in the furnace, and slowly cools the glass ribbon conveyed by the conveyance roller 55 to a temperature range close to room temperature.
  • a plurality of injectors 60 are provided in the slow cooling furnace 54, and a laminated film is formed on the glass ribbon by a CVD method.
  • the temperature of the glass ribbon when entering the slow cooling furnace 54 is often around 610 ° C. (Tg + 50 ° C.) in the case of soda lime silicate glass.
  • the injector 60 is composed of six injectors 60a to 60f, and forms a laminated film on the glass ribbon to be conveyed.
  • an electric heater 56 that is paired with each of the injectors 60a to 60f is provided.
  • the number of injectors 60 is not limited to this, and is preferably in the range of 2 to 9, and the electric heater can be increased or decreased as necessary. These electric heaters prevent the temperature of the glass ribbon from excessively decreasing from the inlet to the outlet in the slow cooling furnace.
  • the injector 60 (60a to 60f) is disposed above the glass ribbon 70 on the opposite side of the conveying roller 55 with the glass ribbon 70 interposed therebetween.
  • Each injector is provided with a slit-like air outlet 61 that is elongated in a direction perpendicular to the glass ribbon conveyance direction at a substantially central portion of the lower surface 65, and exhaust that extends in parallel with the air outlet 61 on both sides in the front-rear direction of the air outlet 61.
  • a mouth 62 is provided.
  • the first orifice 61a located in the center and the first orifice 61a are positioned in the front-rear direction so as to incline the flow path from the source gas supply source toward the first orifice 61a.
  • the configured second and third orifices 61b and 61c are opened.
  • the widths of the air outlet 61 and the air outlet 62 are set to be equal to or larger than the width of the glass ribbon 70.
  • Reference numerals 66a and 66b denote cooling ducts, which circulate a cooling medium such as cooling gas or oil, and maintain the injector 60 at an optimum temperature, for example, 100 to 220 ° C. (measured on the lower surface of the injector).
  • the lower surface of the injector 60 is a surface in contact with the raw material gas. If the temperature is too high, the raw material gas in contact with the lower surface of the injector 60 reacts with heat and adheres to form an unnecessary film. For this reason, the upper limit is preferably 250 ° C. or less. On the other hand, if the temperature is too low, the amount of heat exchange with the glass ribbon increases, causing a rapid temperature drop of the glass ribbon. For this reason, the lower limit is desirably 100 ° C. or higher.
  • the injector 60 is disposed above the glass ribbon 70 with an interval of 3 mm to 30 mm. Therefore, the lower surface 65 of the injector 60 is disposed to face the glass ribbon 70 conveyed into the slow cooling furnace 54 with a gap of 3 mm to 30 mm.
  • the smaller the gap the more advantageous the film thickness, film quality, and film formation speed during film formation.
  • the gap fluctuates due to warping or vibration of the glass ribbon, the influence on the film thickness and film quality increases.
  • the gap is large, the efficiency of the raw material during film formation is reduced.
  • the gap is preferably 4 to 12 mm, more preferably 5 to 10 mm.
  • a gas containing the main raw material of the compound that forms the oxide film is blown out. Further, a reactive gas (a gas that becomes an oxygen source) for forming the oxide film is blown out from the second and third orifices 61b and 61c.
  • the exhaust port 62 exhausts excess gas after the CVD reaction.
  • the composition of the glass ribbon can be appropriately selected as long as it can be molded by the float process, and examples thereof include soda lime silicate glass, aluminosilicate glass, lithium aluminosilicate glass, borosilicate glass, and alkali-free glass.
  • soda lime silicate glass is preferable because it is colorless and transparent, is inexpensive, and can be easily obtained by specifying specifications such as area, shape, and plate thickness in the market.
  • the thickness of the glass ribbon can be selected as appropriate, and the glass thickness is preferably 0.1 to 6.0 mm.
  • the glass thickness is preferably 0.1 to 6.0 mm.
  • the temperature difference between the front and back is less likely to occur, so there is little warpage on the injector side, but because the glass itself is light, the glass that has warped once on the injector side does not return warp due to its own weight.
  • Thick glass tends to cause a temperature difference between the front and back, but because of its own weight, it works to reduce warpage. For this reason, even if the glass thickness changes between 0.1 and 6.0 mm, the warpage amount itself does not change so much.
  • the type, configuration, and the like of the laminated film to be formed are not particularly limited and can be appropriately selected.
  • an example of forming a transparent conductive film for a solar cell will be described.
  • Examples of uses other than the transparent conductive film for solar cells include an antireflection film and a heat ray reflective film.
  • FIG. 3 is a cross-sectional view of an embodiment of a transparent conductive substrate for a solar cell manufactured by the method for manufacturing a glass substrate with a laminated film of the present invention. It is illustrated so that the incident light side of the transparent conductive substrate for solar cell is located on the lower side of FIG.
  • the transparent conductive substrate 10 for a solar cell includes a titanium oxide layer 14, a silicon oxide layer 16, and a first tin oxide as a laminated film 13 on the base 12 from the base 12 side. It has the layer 18 and the 2nd tin oxide layer 20 in this order.
  • the material of the substrate 12 is not particularly limited, and examples thereof include soda lime silicate glass, aluminosilicate glass, lithium aluminosilicate glass, borosilicate glass, and alkali-free glass.
  • soda lime silicate glass is preferable because it is colorless and transparent, is inexpensive, and can be easily obtained by specifying specifications such as area, shape, and plate thickness in the market.
  • the thickness of the substrate 12 is preferably 0.2 to 6.0 mm. Within the above range, the balance between mechanical strength and translucency is excellent.
  • a titanium oxide layer 14 is formed on the substrate 12.
  • the aspect having the titanium oxide layer 14 between the base 12 and the silicon oxide layer 16 is the base 12 and the tin oxide layer 18 generated by the difference in refractive index between the base 12 and the tin oxide layers 18 and 20. This is one of the preferred embodiments because the reflection at the interface with 20 can be suppressed.
  • titanium oxide is formed on the glass ribbon by the first injector 60a.
  • the layer 14 is formed, the silicon oxide layer 16 is formed by the second injector 60b, the first tin oxide layer 18 is formed by the third injector 60c, and the second is formed by the fourth to sixth injectors 60d to 60f.
  • the tin oxide layer 20 is formed.
  • vaporized tetraisopropoxy titanium is blown from the first orifice 61a, and nitrogen gas is blown from the second and third orifices 61b and 61c.
  • tetraisopropoxy titanium undergoes a thermal decomposition reaction on the glass ribbon, and a titanium oxide layer 14 is formed on the surface of the glass ribbon being conveyed.
  • silane gas is blown from the first orifice 61a, and oxygen gas is blown from the second and third orifices 61b and 61c.
  • silane gas and oxygen gas are mixed and reacted on the titanium oxide 14 layer of the glass ribbon, and the silicon oxide layer 16 is formed on the surface of the titanium oxide layer 14 of the glass ribbon being conveyed.
  • tin tetrachloride is blown from the first orifice 61a, and water vapor is blown from the second and third orifices 61b and 61c.
  • tin tetrachloride and water are mixed and reacted on the silicon oxide layer 16 of the glass ribbon, and the surface of the silicon oxide layer 16 of the glass ribbon being conveyed is not doped with fluorine.
  • a tin oxide layer 18 is formed.
  • tin tetrachloride is blown from the first orifice 61a, and hydrogen fluoride vaporized from water vapor is emitted from the second and third orifices 61b and 61c. Is sprayed. Thereby, tin tetrachloride, water, and hydrogen fluoride are mixed and reacted on the first tin oxide layer 18 of the glass ribbon, and the surface of the first tin oxide layer 18 of the glass ribbon in a state of being conveyed. A second tin oxide layer 20 doped with fluorine is formed.
  • the glass ribbon on which the second tin oxide layer 20 is formed is discharged from the slow cooling furnace 54 while being transported, cooled to near room temperature, cut into a desired size, and carried out as the transparent conductive substrate 10 for solar cells.
  • the temperature control of the glass ribbon during film formation will be described with reference to FIG.
  • the surface temperature Tin of the glass ribbon when passing through the inlet of the slow cooling furnace 54 the surface temperature of the glass ribbon when passing through the outlet of the slow cooling furnace 54 is Tout
  • the glass transition temperature is Tg
  • the glass strain temperature Ts the film is formed.
  • the glass ribbon has a surface temperature of Tg + 50 ° C. or lower and Ts or higher. If the surface temperature of the glass ribbon is higher than Tg + 50 ° C., the glass ribbon is liable to cause “scratch marks” and planar defects. If it is lower than Ts, the reaction of the raw material gas becomes insufficient due to heat.
  • the laminated film 13 composed of the titanium oxide layer 14, the silicon oxide layer 16, the first tin oxide layer 18, and the second tin oxide layer 20 is formed at Tg + 50 ° C. or lower. Preferably, it is formed in a temperature range of Tg + 50 ° C. to Ts, more preferably in a temperature range of Tg + 50 ° C. to Tg (when Tin is lower than Tg + 50 ° C., a temperature range of Tin to Tg).
  • the number of layers formed in the temperature range from Tg to Ts is preferably 3 or less, and more preferably 2 or less.
  • the glass ribbon is soft, and the glass ribbon is not easily warped or cracked when it is formed on the glass ribbon.
  • the injector 60 Since the injector 60 is maintained at a temperature lower than that of the glass ribbon, heat exchange is performed with the injector 60 during film formation to lower the temperature of the glass ribbon.
  • the float bath 52 side of the lower surface 65 of the injector facing the glass ribbon is the inlet Iin of the injector, and the opposite side of the float bath 52 is the outlet of the injector. Iout.
  • the glass ribbon that has entered the inlet Iin of the injector is cooled while being discharged from the outlet Iout of the injector due to a decrease in temperature due to heat exchange with the injector in addition to heat radiation.
  • the temperature drop from Iin to Iout is preferably 0 ° C. or higher and 10 ° C. or lower, more preferably 5 ° C. or higher and 10 ° C. or lower.
  • each of the injectors 60a to 60f includes an injector.
  • the temperature of the glass ribbon cooled from the inlet Iin to the outlet Iout is preferably 5 ° C. or higher. If it is 5 degreeC or more, the cooling of a glass ribbon will become quick, and a slow cooling furnace can be shortened.
  • All laminated films are formed in the slow cooling furnace 54 at Tg + 50 ° C. or lower. That is, since the glass is formed in a hard state, when a sudden temperature change occurs, the glass ribbon may be greatly deformed, and the possibility of contact between the injector and the glass ribbon is increased. Therefore, in order to suppress damage and cracking of the glass ribbon due to contact between the injector and the glass ribbon, the temperature of the glass ribbon cooled from the inlet Iin to the outlet Iout of each injector needs to be 10 ° C. or lower.
  • the temperature of the glass ribbon is the temperature of the upper surface (film formation side) of the glass ribbon.
  • the temperature difference between the upper surface of the glass ribbon and the lower surface of the position during film formation is preferably within 10 ° C.
  • the amount of heat Qg (W of glass deprived before the temperature of the glass ribbon drops by 10 ° C. ) Is obtained by the following equation.
  • heat amount Q of this invention is W (watt) or kW (kilowatt), and can also be called the electric power conversion value which converted the calorie
  • the exchange heat quantity Q1 between the glass ribbon and the lower surface 65 of the injector between the inlet Iin and the outlet Iout of each injector is equal to the radiant heat Q1 between the glass ribbon and the lower surface of the injector, and is calculated from the following radiation equation (5). .
  • T gla S1 ⁇ ⁇ 1 ⁇ F1 ⁇ ⁇ (T gla 4 ⁇ T inj 4 ) (5)
  • S1 is the surface area of the lower surface of the injector (m 2 )
  • ⁇ 1 is the emissivity
  • F1 is the surface-to-face shape factor
  • is Boltzmann's constant (5.67 ⁇ 10 ⁇ 8 (W / m 2 ⁇ K 4 ))
  • T gla Is the measured value T in which the glass ribbon temperature at the inlet of the injector is measured by contacting a K-type thermocouple
  • T out of the glass ribbon temperature at the injector outlet is measured by contacting a K-type thermocouple.
  • the temperature (K) of the glass ribbon represented by (T in + T out ) / 2
  • T inj is the lower surface temperature (K) of the injector.
  • the amount of heat exchanged between the electric heater 56 and the glass ribbon (heat amount from the heater to the glass ribbon) Q2 is equal to the radiant heat Q2 (kW) between the glass ribbon and the surface of the heater paired with each injector, and the following radiation equation: Calculated from (6).
  • T gla S2 ⁇ ⁇ 2 ⁇ F2 ⁇ ⁇ (T gla 4 ⁇ T inj 4 ) (6)
  • S2 is the heater surface area (m 2 )
  • ⁇ 2 is the emissivity
  • F2 is the face-to-face shape factor
  • is the Boltzmann constant (5.67 ⁇ 10 ⁇ 8 (W / m 2 ⁇ K 4 ))
  • Cg 1000 J / (kg ⁇ ° C.) is used here, Cg: 1000 to 1200 J / (kg ⁇ ° C.) may be used.
  • the emissivity ⁇ is 1, but the emissivity ⁇ may be 0.8 to 1.0.
  • the flow rate P of the glass ribbon is preferably 100 to 700 ton / day.
  • K1 the temperature drop per unit length of the glass ribbon in the temperature region where all the laminated films are formed
  • K1 is 0 ° C./m ⁇ K1 ⁇ . It is set to 10 ° C./m, preferably 1 ° C./m ⁇ K 1 ⁇ 5 ° C./m, more preferably 2 ° C./m ⁇ K 1 ⁇ 3 ° C./m. Therefore, when all the layers are formed in the temperature range from Tg + 50 ° C. to Tg, the temperature drop K in the temperature range from Tg + 50 ° C.
  • Tg is set to 0 ° C./m ⁇ K1 ⁇ 10° C./m.
  • the temperature drop K in the temperature range from Tg + 50 ° C. to Ts is set to 0 ° C./m ⁇ K1 ⁇ 10° C./m.
  • the temperature drop K1 is the “temperature difference between the glass ribbon temperature at the inlet of the first injector and the glass ribbon temperature at the outlet of the last injector when forming the laminated film” in the temperature region where the laminated film is formed. Is divided by the difference in the distance between the inlet position of the first injector and the outlet position of the last injector. If the temperature drop K1 is 10 ° C./m or more, scratches and cracks due to deformation of the glass ribbon may occur. If the temperature drop K1 is 0 ° C./m, the glass ribbon is not gradually cooled in the slow cooling furnace 54 during film formation. Thus, the length of the slow cooling furnace 54 becomes long because the film is gradually cooled after film formation. After cooling the glass ribbon as described above, the glass ribbon is cut into a desired size to obtain a substrate with a laminated film.
  • the temperature drop K1 of the glass ribbon in the temperature region where all the laminated films 13 are formed is 0 ° C./m ⁇ K1.
  • the temperature drop K1 of the glass ribbon as a whole should be satisfied by providing an electric heater 56 between the injectors 60 adjacent in the glass ribbon conveyance direction and heating appropriately. Can do.
  • thermocouple manufactured by Anri Keiki Co., Ltd .: 213K-TC1-ASP.
  • Example 1 when producing soda lime glass, as shown in FIG. 2, there are six injectors 60a to 60f in a slow cooling furnace and a pair of electricity on the opposite side of each injector 60a to 60f with a glass ribbon interposed therebetween.
  • the heater 56 is arranged, and the titanium oxide layer 14 is formed on the glass ribbon by the first injector 60a, the silicon oxide layer 16 is formed by the second injector 60b, and the third injector 60c.
  • the first tin oxide layer 18 was formed, the second tin oxide layer 20 was formed by the fourth to sixth injectors 60d to 60f, and then cut to form the substrate with the transparent conductive film 10 for solar cells.
  • the gas blown from the injectors 60a to 60f is as described above.
  • the gap from the lower surface of the injector to the glass ribbon was 7 mm ⁇ 1 mm.
  • Six injectors were arranged at equal intervals of 2 m.
  • the flow rate P of the glass ribbon was 500 ton / day, and the area S of the lower surface of the injector was 1.76 m 2 .
  • Soda lime glass having a glass transition temperature Tg of 560 ° C., a glass strain temperature Ts of 510 ° C., and a plate thickness of 3.2 to 3.9 mm was used.
  • the glass ribbon temperature was determined by measuring the upper surface temperature of the glass ribbon with a contact type K-type thermocouple.
  • the temperature of the glass ribbon was measured before and after the injector. The distance between measurement points was 2 m. The temperature of the glass ribbon on the lower surface of the center of the injector was calculated. Since the decrease in the temperature of the glass ribbon is mainly due to radiation cooling to the injector, the average temperature before and after the injector was taken as the temperature of the glass ribbon on the lower surface of the center of the injector. Table 1 shows the temperature measurement position and the temperature of the glass ribbon at the center of the injector when a transparent conductive film was formed using six injectors.
  • the temperature of the glass ribbon cooled from the inlet to the outlet of the injector was 10 ° C. or less.
  • Table 1 From Table 1, find the temperature difference between the first injector inlet temperature and the last injector outlet temperature, and form the temperature range that forms all the layers divided by the difference of 10.5m in the distance between the first injector inlet position and the last injector outlet position
  • Table 2 shows the temperature drop K1 per unit length.
  • Table 3 shows the values of Q1 when S1 is 1.76 m 2 , emissivity ⁇ is 1, view factor F is 1, the bottom surface temperature of the injector is 150 ° C., and
  • the heater position that forms a pair with the injector was the opposite side of the injector with the glass ribbon in between, and the glass ribbon on the lower surface of the injector was heated obliquely. Since Q2 (kW) was not able to measure the amount of heat exchanged with the glass ribbon, it was a positive value because the glass ribbon was heated from the heater to the lower surface of the injector based on the maximum value of the electric energy input to the heater. Q2 was expressed as a range. Values are shown in Table 3.
  • Q2 could not be obtained accurately, but Q2 was between
  • ⁇ P ⁇ 0.116 is negative, it means that the glass ribbon does not break even when there is no heat exchange of Q2 by the heater (zero), and Q2 is actually negative. Does not mean taking a value.
  • the glass ribbon was cooled and cut into a desired size to obtain a substrate with a transparent conductive film for solar cells.
  • the glass ribbon is not damaged or cracked by the contact between the injector and the glass ribbon, and film formation using six injectors in the slow cooling chamber is performed. I did it.
  • Example 2 Similarly, a soda-lime glass was formed using six injectors while cooling by changing the flow rate of the glass ribbon, the plate thickness, and the heating conditions of the heater in Example 1 in a slow cooling furnace.
  • Tg of soda lime glass was 560 ° C.
  • Ts was 510 ° C.
  • the flow rate P of the glass ribbon was 640 ton / day
  • the plate thickness was 2.2 mm
  • the area S of the lower surface of the injector was 1.76 m 2 .
  • Table 4 shows the temperature measurement position and the temperature of the glass ribbon at the center of the injector when a transparent conductive film was formed using six injectors.
  • the temperature of the glass ribbon cooled from the inlet to the outlet of the injector was 10 ° C. or less.
  • Table 4 finds the temperature difference between the first injector inlet temperature and the last injector outlet temperature, and form the temperature range that forms all the layers divided by the difference of 10.5m in the distance between the first injector inlet position and the last injector outlet position
  • Table 5 shows the temperature drop K1 per unit length.
  • Table 6 shows the values of Q1 when S1 is 1.76 m 2 , emissivity ⁇ is 1, view factor F is 1, the bottom temperature of the injector is 150 ° C., and
  • the heater position that forms a pair with the injector was the opposite side of the injector with the glass ribbon in between, and the glass ribbon on the lower surface of the injector was heated obliquely. Since Q2 (kW) was not able to measure the amount of heat exchanged with the glass ribbon, the positive value was obtained because the glass ribbon was heated from the heater to the lower surface of the injector based on the maximum value of the electric energy input to the heater. Q2 was expressed as a range. Values are shown in Table 6.
  • Q2 could not be obtained accurately, Q2 was between
  • ⁇ P ⁇ 0.116 is negative, it means that the glass ribbon does not break even when there is no heat exchange of Q2 by the heater (zero), and Q2 is actually negative. Does not mean taking a value.
  • the glass ribbon was cut into a desired size to obtain a substrate with a transparent conductive film for solar cells. In the transparent conductive substrate for solar cell thus manufactured, the glass ribbon is not damaged or cracked by the contact between the injector and the glass ribbon, and film formation using six injectors in the slow cooling chamber is possible. I did it.
  • the upper surface temperature of the glass ribbon at the time of forming the transparent conductive film for solar cells also measured the lower surface temperature of the glass ribbon in the position of 590 degreeC, 560 degreeC, and 550 degreeC.
  • the temperature difference in the thickness direction of the glass ribbon was 10 ° C. or less. From this, in the manufacturing method of this invention method, it is anticipated that there is little temperature distribution of the thickness direction of a glass ribbon, and there is little curvature of a glass ribbon.
  • the laminated film is formed at Tg + 50 ° C. or less.
  • the exchange heat amount between the injectors 60a to 60f and the glass ribbon is Q1 (kW)
  • the exchange heat amount between the heater and the glass ribbon paired with each injector 60a to 60f is Q2 (kW)
  • the flow rate of the glass Is P (ton / day)
  • the temperature of the glass ribbon is not excessively lowered by the injectors 60a to 60f so that the relational expression
  • By heating the glass ribbon with a pair of electric heaters 56, the contact between the injector and the glass ribbon can be avoided. It is possible to prevent the scratches and cracks are generated in the glass ribbon.
  • heating is performed so that a relational expression of
  • is satisfied.
  • ⁇ P ⁇ 0.058 take negative values, it means that the glass ribbon does not break even if there is no Q2 heat amount by the heater.
  • the heater that is paired with the injector When the heater that is paired with the injector is directly under the injector with the injector and the glass ribbon in between, the glass ribbon directly above the heater, that is, the glass ribbon directly under the injector is heated.
  • the heater that is paired with the injector when the heater that is paired with the injector is shifted to the left and right with respect to the injector and the glass ribbon, the glass directly under the injector is radiated from the heater to an oblique position.
  • the ribbon is heated.
  • the heater paired with the injector refers to a heater that heats at least the glass ribbon portion immediately below the lower surface of the injector.
  • the present invention is not limited to the embodiment described above, and can be implemented in various forms without departing from the gist of the present invention.
  • an electric heater has been exemplified as the heater, any heating means can be used without being limited thereto.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 CVD法により徐冷炉内に設けられた複数のインジェクターでガラスリボン上に積層膜を形成する積層膜付きガラス基板の製造方法であって、積層膜はTg+50℃以下で形成され、各インジェクターにおいて、該インジェクターとガラスリボンとの交換熱量をQ1(kW)、該インジェクターと対となるヒーターとガラスリボンとの交換熱量をQ2(kW)、ガラスの流量をP(ton/day)とすると、|Q1|-P×0.116≦|Q2|≦|Q1|の関係式が成り立つ。

Description

積層膜付きガラス基板の製造方法
 本発明は、積層膜付きガラス基板の製造方法、特にオンラインCVD(Chemical Vapor Deposition)法により徐冷炉内でガラスリボン上に積層膜を形成する積層膜付きガラス基板の製造方法に関する。
 オンラインCVD法によりガラスリボン上に膜を形成する方法として、例えば特許文献1~3に記載の方法が知られている。
 特許文献1には、フロートバス内のガラスリボン上にケイ素及び酸素を含有する酸化物をCVD法で成膜することが開示されている。この際にフロートバスの溶融金属の酸素ガスによる酸化を防止するために、不飽和炭化水素化合物と二酸化炭素を酸素源として使用することが開示されている。
 特許文献2には、フロートバスに配置した被覆ステーション(インジェクター)と徐冷炉に配置した被覆ステーションでガラスリボン上に二酸化ケイ素被膜、酸化錫被膜を順次形成する方法が開示されている。
 特許文献3には、フロートバスの出口と徐冷炉入口との間の領域にノズル(インジェクター)を設けて、ガラスリボン上に成膜する方法が開示されている。
日本国特開平1-201046号公報 日本国特開平3-33036号公報 日本国特公平4-35558号公報
 フロートバス内では、溶融金属の周りは、溶融金属の酸化を防ぐために非酸化雰囲気とされるのが通常である。また、フロートバス内ではガラスリボンは柔らかい状態であり、フロートバス内の柔らかいガラスリボンにCVD法で成膜する場合は、温度差に起因するガラスリボンの反りや割れは起こりにくい。
 特許文献1には、フロートバスの溶融金属の酸化防止のために不飽和炭化水素化合物と二酸化炭素を酸素ガス源として使用することが開示されている。非酸化雰囲気で酸化物を成膜する場合は酸素ガスを使用することができず、酸素分子を含んだ反応ガスを用いる必要があるためである。しかしこの方法でケイ素及び酸素を含有する酸化物を成膜した場合、酸化物膜に炭化水素や二酸化炭素由来のカーボン(C)が混入される。その結果、膜の吸収が増え、カーボンを含まない膜に比べて透過率が悪化した膜になる。
 このために、フロートバス内ではCVD法で酸化物を成膜する場合には膜質が劣化する問題があり、フロートバス外での成膜が望まれている。
 特許文献2には、徐冷炉内に被覆ステーションを備えた場合に、成膜するための温度条件とガラスリボンを徐冷するための温度条件が異なるために問題が生ずること、多層被覆を形成する場合は更に問題が複雑になることを指摘している。そのため、特許文献2では、予備混合した酸素及び被覆プレカーサーをフロートバス内でガラスリボン上に接触させることを推奨している。しかし、この方法では酸素ガスを密閉するためにシールが必要で装置が複雑になる。また、徐冷炉内に被覆ステーションを備え、ガラスリボン上に金属酸化物被膜を形成しようとすると、ガラスリボンとインジェクターとの熱交換により、被覆ステーションを備えない場合に比べてガラスリボンから急激な脱熱が生じ、ガラスリボンが変形したり、傷及び割れが発生したりするおそれがある。これは特に、被覆ステーションの数が多くなればなるほど傷及び割れが発生するおそれが高くなり、反ったガラスリボンが被覆ステーションに接触することにより、ガラスとの傷及び割れが発生することがある。
 このため、特許文献2は、多層被覆を形成する際に一つ以上の被覆ステーションを徐冷炉内に備えた場合、異なる温度制御を確立しなければならないという問題があることを開示している。一方で、徐冷炉内に複数の被覆ステーションを配置した場合の適切な温度管理方法を具体的には何ら開示していない。
 特許文献3には、フロートバスの出口と徐冷炉入口との間の領域にガラス全体の幅を被覆するようにノズル(インジェクター)を設けることが開示されている。しかし、従来のフロート製造装置をそのまま利用しようとしても、フロートバスと徐冷炉との間にノズルを配置する十分なスペースはない。また、フロートバスと徐冷炉の間の空間では、ガラスリボンの温度制御を行っておらず、フロートバスと徐冷炉の間の空間で成膜すると、ノズルとガラスリボンとの熱交換によりガラスリボンに急激な脱熱が生ずる問題がある。
 本発明は、以上の問題点に着目してなされたものであり、オンラインCVD法において、ガラスリボンを適切な温度管理を行い、徐冷炉内に設けられた複数のインジェクターを用いて、ガラスリボン上へ積層膜を形成する積層膜付きガラス基板の製造方法を提供する。
 本発明は、以下の態様を提供するものである。
(1)ガラスの原料を溶解する溶解炉と、溶融ガラスを溶融金属上に浮かせてガラスリボンを成形するフロートバスと、前記ガラスリボンを徐冷する徐冷炉と、を備えたガラス製造装置を用いて、CVD法により前記徐冷炉内の前記ガラスリボン上方に設けられた複数のインジェクターで前記ガラスリボン上に積層膜を形成し、前記ガラスリボンを切断する積層膜付きガラス基板の製造方法であって、
 ガラス転位温度をTgとした場合に、前記積層膜はTg+50℃以下で形成され、
 前記徐冷炉には、前記ガラスリボンを挟んで各インジェクターと反対側に各インジェクターと対をなすヒーターが設けられ、
 各インジェクターにおいて、該インジェクターと前記ガラスリボンとの交換熱量をQ1(kW)、該インジェクターと対をなすヒーターと前記ガラスリボンとの交換熱量をQ2(kW)、ガラスの流量をP(ton/day)とすると、以下の関係式が成り立つことを特徴とする積層膜付きガラス基板の製造方法。
  |Q1|-P×0.116≦|Q2|≦|Q1|
(2)以下の関係式が成り立つことを特徴とする(1)に記載の積層膜付きガラス基板の製造方法。
  |Q1|-P×0.058≦|Q2|≦|Q1|
(3)前記ガラスリボンの搬送方向に沿って隣り合うインジェクター間であって、前記ガラスリボンに対して前記インジェクター側に、ヒーターが設けられていることを特徴とする(1)又は(2)に記載の積層膜付きガラス基板の製造方法
(4)前記インジェクターの下面とガラスリボンとの距離が、30mm以下であることを特徴する(1)~(3)のいずれかに記載の積層膜付きガラス基板の製造方法。
 本発明の積層膜付きガラス基板の製造方法によれば、オンラインCVD法において、ガラスリボンを適切な温度管理を行い、徐冷炉内に設けられた複数のインジェクターを用いて、ガラスリボン上へ積層膜を形成する積層膜付きガラス基板の製造方法を実現した。
ガラス製造装置の概略図である。 インジェクターの断面図である。 本発明の積層膜付ガラス基板の製造方法で製造される太陽電池用透明導電性基板の一実施形態の断面図である。 徐冷炉内のガラスリボンの温度制御を説明するグラフである。
 先ず、図1を参照して本発明の積層膜付きガラス基板の製造方法に使用されるガラス製造装置の一態様について説明する。なお、以下の説明において、積層膜の少なくとも1つの層を形成することを含めて成膜と呼ぶことがある。
 図1に示すように、ガラス製造装置50は、ガラスの原料を溶解する溶解炉51と、溶解された溶融ガラスを溶融錫上に浮かせて平坦なガラスリボンを成形するフロートバス52と、リフトアウトロール53によってガラスリボンをフロートバス52から引き出した後に、ガラスリボンの温度を徐々に下げることで徐冷する徐冷炉54と、を備えて構成される。
 徐冷炉54は、例えば、燃焼ガス又は電気ヒーターにより、その出力が制御された熱量を炉内の必要位置に供給して搬送ローラー55で搬送されるガラスリボンを常温に近い温度域までゆっくり冷却することで、ガラスリボンに内在する残留応力をなくし、ガラスリボンに反りや割れが発生するのを抑制する作用を有する。徐冷炉54内には、複数のインジェクター60を設けられ、ガラスリボン上にCVD法により積層膜を形成する。なお、徐冷炉54に入る際のガラスリボンの温度は、ソーダライムシリケートガラスの場合610℃(Tg+50℃)前後であることが多い。
 インジェクター60は、6個のインジェクター60a~60fからなり、搬送されるガラスリボン上に積層膜を形成する。ガラスリボンを挟んでインジェクター60と反対側には、各インジェクター60a~60fと対をなす電気ヒーター56が設けられている。なお、インジェクター60の数は、これに限定されず、好ましくは2~9個の範囲内であり、電気ヒーターも必要に応じて増減することができる。これらの電気ヒーターにより、徐冷炉内の入口から出口までにガラスリボンの温度が低下しすぎることを防止する。
 インジェクター60(60a~60f)は、図2に示すように、ガラスリボン70を挟んで搬送ローラー55と反対側であるガラスリボン70の上方に配置される。各インジェクターは、ガラスリボンの搬送方向に対して直角方向に細長いスリット状の吹出口61が下面65の略中央部に設けられ、吹出口61の前後方向両側にそれぞれ吹出口61と平行に延びる排気口62が設けられる。
 吹出口61では、中央に位置する第1のオリフィス61aと、第1のオリフィス61aを挟んで前後方向に位置しそれぞれ第1のオリフィス61aに向かって原料ガス供給源から流路が傾斜するように構成された第2及び第3のオリフィス61b、61cが開口する。これらの吹出口61と排気口62の幅は、ガラスリボン70の幅以上に設定される。また、符号66a、66bは冷却ダクトであり、冷却ガスやオイル等の冷却媒体を循環させて、インジェクター60を最適な温度、例えば100~220℃(インジェクター下面で測定)に保つ。インジェクター60の下面は、原料ガスと接触する面であり、温度が高過ぎるとインジェクター60の下面に接触した原料ガスが熱で反応を起こし付着して不要な膜が成膜される。このために上限は250℃以下が好ましい。また、温度が低すぎるとガラスリボンとの熱交換量が多くなり、ガラスリボンの急激な温度低下を起こす。このために下限は100℃以上が望ましい。
 インジェクター60は、ガラスリボン70上に3mm~30mmの間隔を空けて上方に配置される。従って、インジェクター60の下面65が、徐冷炉54内に搬送されるガラスリボン70と3mm~30mmの隙間を介して対向配置されることとなる。隙間は小さいほど成膜時の膜厚、膜質、成膜速度に有利であるが、ガラスリボンの反りや振動で隙間が変動した場合には、膜厚、膜質への影響が大きくなる。また、隙間が大きい場合には、成膜時の原料の効率の低下が生じる。膜厚、膜質、成膜速度を考慮すると、隙間は好ましくは4~12mm、より好ましくは5~10mmである。
 第1のオリフィス61aからは酸化物膜を形成する化合物の主原料を含むガスを吹き出す。また、第2及び第3のオリフィス61b、61cからは酸化物膜を形成する際の反応ガス(酸素源になるガス)を吹き出す。また、排気口62は、CVD反応後の余分なガスを排気する。
 ガラスリボンの組成はフロート法で成型可能であれば適宜選択可能であり、ソーダライムシリケートガラス、アルミノシリケートガラス、リチウムアルミノシリケートガラス、ホウケイ酸ガラス、無アルカリガラスが挙げられる。中でも、無色透明であり、安価であり、市場で面積、形状、板厚等の仕様を指定して入手することが容易である点で、ソーダライムシリケートガラスが好ましい。
 ガラスリボンの厚さは、適宜選択可能であり、ガラス厚さ0.1~6.0mmであることが好ましい。薄いガラスでは表と裏の温度差が起こりにくいためにインジェクター側への反りの発生は少ないが、ガラス自身が軽いためにインジェクター側に一度反ったガラスは自重で反りが戻らない。また、厚いガラスは表と裏の温度差が起こりやすいが、自重があるために反りを減らす力が働く。このために、ガラスの厚さが0.1~6.0mmの間で変化しても反り量自身はあまり大きく変化しない。
 成膜される積層膜の種類、構成等は特に限定されるものではなく適宜選択することができるが、以下の説明においては、太陽電池用透明導電膜を形成する例を用いて説明する。太陽電池用透明導電膜以外の用途として、例えば反射防止膜、熱線反射膜などが挙げられる。
 図3は、本発明の積層膜付きガラス基板の製造方法で製造される太陽電池用透明導電性基板の一実施形態の断面図である。図3の下側に太陽電池用透明導電性基板の入射光側が位置するように図示してある。
 図3に示されるように、太陽電池用透明導電性基板10は、基体12上に、基体12側から、積層膜13として、酸化チタン層14と、酸化ケイ素層16と、第1の酸化スズ層18と、第2の酸化スズ層20とをこの順に有する。
 基体12の材質は、特に限定されず、例えば、ソーダライムシリケートガラス、アルミノシリケートガラス、リチウムアルミノシリケートガラス、ホウケイ酸ガラス、無アルカリガラスが挙げられる。中でも、無色透明であり、安価であり、市場で面積、形状、板厚等の仕様を指定して入手することが容易である点で、ソーダライムシリケートガラスが好ましい。
 基体12の厚さは、0.2~6.0mmであるのが好ましい。上記範囲であると、機械的強度および透光性のバランスに優れる。
 図3においては、基体12上に、酸化チタン層14が形成されている。本発明において、基体12と酸化ケイ素層16との間に酸化チタン層14を有する態様は、基体12と酸化スズ層18、20との屈折率の差異によって発生する基体12と酸化スズ層18、20との界面での反射を抑制することができるため、好適な態様の一つである。
 この太陽電池用透明導電性基板10の積層膜13を図1に示すガラス製造装置50の徐冷炉54内で、CVD法により形成するためには、例えばガラスリボン上に第1のインジェクター60aで酸化チタン層14を形成し、第2のインジェクター60bで酸化ケイ素層16を形成し、第3のインジェクター60cで第1の酸化スズ層18を形成し、第4~第6のインジェクター60d~60fで第2の酸化スズ層20を形成する。
 この場合、第1のインジェクター60aの吹出口61では、第1のオリフィス61aからは気化したテトライソプロポキシチタンが吹き付けられ、第2及び第3のオリフィス61b、61cからは窒素ガスが吹き付けられる。これにより、テトライソプロポキシチタンがガラスリボン上で熱分解反応をして、搬送されている状態のガラスリボンの表面に酸化チタン層14が形成される。
 第2のインジェクター60bの吹出口61では、第1のオリフィス61aからはシランガスが吹き付けられ、第2及び第3のオリフィス61b、61cからは酸素ガスが吹き付けられる。これにより、シランガスと酸素ガスとがガラスリボンの酸化チタン14層上で混合され反応して、搬送されている状態のガラスリボンの酸化チタン層14の表面に酸化ケイ素層16が形成される。
 第3のインジェクター60cの吹出口61では、第1のオリフィス61aからは四塩化スズが吹き付けられ、第2及び第3のオリフィス61b、61cからは水蒸気が吹き付けられる。これにより、四塩化スズと水とがガラスリボンの酸化ケイ素層16上で混合され反応して、搬送されている状態のガラスリボンの酸化ケイ素層16の表面にフッ素がドープされてない第1の酸化スズ層18が形成される。
 第4~第6のインジェクター60d~60fの吹出口61では、第1のオリフィス61aからは四塩化スズが吹き付けられ、第2及び第3のオリフィス61b、61cからは水蒸気と気化させたフッ化水素が吹き付けられる。これにより、四塩化スズと水とフッ化水素とがガラスリボンの第1の酸化スズ層18上で混合され反応して、搬送されている状態のガラスリボンの第1の酸化スズ層18の表面にフッ素がドープされている第2の酸化スズ層20が形成される。
 第2の酸化スズ層20が形成されたガラスリボンは、搬送されながら徐冷炉54から排出され室温付近まで冷却され、所望の大きさに切断され、太陽電池用透明導電性基板10となって搬出される。
 このように、酸化チタン、酸化ケイ素、酸化スズのような酸化物材料を成膜することが、徐冷炉内の成膜において好ましい。徐冷炉内の雰囲気は空気であり、酸化物を作る際の酸素ガスなどの酸素分子を供給しやすいためである。
 ここで、図4も参照して、成膜時のガラスリボンの温度制御について説明する。
 徐冷炉54の入口を通過する際のガラスリボンの表面温度Tin、徐冷炉54の出口を通過する際のガラスリボンの表面温度をTout、ガラス転位温度をTg、ガラス歪温度Tsとしたときに、成膜されるガラスリボンの表面温度は、Tg+50℃以下でTs以上である。ガラスリボンの表面温度が、Tg+50℃より高いとガラスリボンは「刻印きず」や平面欠陥が起きやすくなる。Tsより低いと、原料ガスは熱で反応が不十分になる。
 上述した酸化チタン層14と、酸化ケイ素層16と、第1の酸化スズ層18と、第2の酸化スズ層20からなる積層膜13は、Tg+50℃以下で形成される。好ましくはTg+50℃からTsの範囲内、より好ましくはTg+50℃からTgの温度領域(TinがTg+50℃より低い場合には、TinからTgの温度領域)で形成される。
 ガラスリボンの温度がTgより下がると、ガラスの粘性変化に伴う収縮によりガラスリボンのばたつきが大きく生じるおそれがあるため、Tg+50℃からTgの温度領域で全ての層が形成されることが好ましい。これによりガラスの粘性に関わらず、ガラスリボンのばたつきを抑制することができる。なお、TgからTsの温度領域でも成膜する場合には、TgからTsの温度領域で成膜される層数は3層以下が好ましく、2層以下であることがより好ましい。
 ところで、Tg+50℃以上の温度ではガラスリボンは柔らかく、ガラスリボンへの成膜ではガラスリボンの反りや割れは起こりにくくなる。
 インジェクター60は、ガラスリボンより低い温度に維持されているため、成膜中にインジェクター60との間で熱交換がなされガラスリボンの温度を低下させる。
 図2を参照して具体的に説明すると、ガラスリボン70の搬送方向に沿って、ガラスリボンに対向するインジェクターの下面65のフロートバス52側がインジェクターの入口Iin、フロートバス52と反対側がインジェクターの出口Ioutである。インジェクターの入口Iinに進入したガラスリボンは、放熱に加えてインジェクターとの熱交換によって温度が低下しインジェクターの出口Ioutから搬出される間に冷却される。IinからIoutまでの温度低下は0℃以上10℃以下が好ましく、より好ましくは5℃以上10℃以下となっている。各インジェクターの入口Iinから出口Ioutまでに冷却されるガラスリボンの温度が10℃より高いと、ガラスリボンの上下面の温度差が大きくなる。このためにガラスリボンが大きく変形し、インジェクターとガラスリボンの接触によるガラスリボンの傷及び割れが発生しやすい。また、徐冷炉54内ではガラスリボンの温度を下げ徐冷することが必要であり、徐冷炉54内で、Ts以下の温度までガラスリボンを冷却することを考慮すれば、各インジェクター60a~60fにおいて、インジェクターの入口Iinから出口Ioutまでに冷却されるガラスリボンの温度は5℃以上であることが好ましい。5℃以上であれば、ガラスリボンの冷却が速くなり、また徐冷炉が短くできる。
 徐冷炉54内で、Tg+50℃以下で全ての積層膜が成膜される。即ち、ガラスが硬い状態で成膜されるため、急激な温度変化が生じた場合、ガラスリボンが大きく変形するおそれがあり、インジェクターとガラスリボンの接触の可能性が高まる。そのため、インジェクターとガラスリボンの接触によるガラスリボンの傷及び割れを抑制するためには、各インジェクターの入口Iinから出口Ioutまでに冷却されるガラスリボンの温度を10℃以下にする必要がある。
 ガラスリボンの温度は、ガラスリボンの上面(成膜側)の温度である。成膜中におけるガラスリボンの上面とその位置の下面の温度差は10℃以内が好ましい。ガラスリボンの上面とその位置の下面の温度差を10℃以内とすることで、インジェクターの下方でのガラスリボンの反りがさらに抑制され、インジェクターとガラスリボンの接触がより確実に抑制される。
 ここで、ガラスリボンの流量をP(ton/day)、ガラスの比熱をCg(J/(kg・℃))とすると、ガラスリボンの温度が10℃下がるまでに奪われるガラスの熱量Qg(W)は、以下の式で求められる。なお、本発明の熱量Qの単位はW(ワット)又はkW(キロワット)であり、熱量を電力換算した電力換算値ということもできる。
 Qg(W)=P×1000/24/3600×Cg×10
    =0.116×P×Cg
 ここで、ガラスの比熱をCg=1000J/(kg・℃)とすると、
 Qg(kW)=0.116×P     (1)
 となる。
 即ち、インジェクターの入口Iinに進入したガラスリボンがインジェクターの出口Ioutから搬出される間に、Qg=0.116×P(kW)以上脱熱すると、ガラスリボンが割れることとなる。
 なお、より好ましくは、インジェクターの入口Iinに進入したガラスリボンがインジェクターの出口Ioutから搬出される間に冷却される温度が5℃以下であり、5℃以下の場合では、熱量はQ’g=0.058×Pとなる。
 また、ガラスリボンの温度の低下はインジェクターによる脱熱が支配的なので各インジェクターの入口Iinから出口Ioutまでの間のガラスリボンの熱収支について検討すると、ガラスリボンは、ヒーターから熱が加えられるとともにインジェクターへ熱を奪われる。従って、インジェクターの入口Iinから出口Ioutまでの間のガラスリボンとインジェクターの下面65との交換熱量(ガラスリボンからインジェクターへの脱熱量)をQ1(kW)、電気ヒーター56とガラスリボンとの交換熱量(ヒーターからガラスリボンへの加熱量)をQ2(kW)、とすると、各インジェクターの入口Iinから出口Ioutまでの間に奪われるガラスの熱量は、|Q1|-|Q2|(kW)となる。
 従って、ガラスリボンが割れないためには、各インジェクターの入口Iinから出口Ioutまでの間に奪われるガラスの熱量(|Q1|-|Q2|)が、Qg=0.116×P以下であればよい。従って、以下の関係式(2)が成り立つ。
 0≦|Q1|-|Q2|≦0.116×P  (2)
 なお、|Q1|-|Q2|≧0としたのは、徐冷炉54内であるにも関わらず、ガラスリボンの脱熱量が加熱量を下回ると、ガラスリボンの温度が上昇するため、室温付近まで冷却するのに搬送距離が長くなり、装置が大型化してしまうためである。
 上記(2)式を整理すると、電気ヒーター56とガラスリボンとの交換熱量(ヒーターからガラスリボンへの加熱量)Q2(kW)は、以下の(3)式で表される。
  |Q1|-P×0.116≦|Q2|≦|Q1|  (3)
 なお、より好ましい交換熱量は
   |Q1|-Q’g≦|Q2|≦|Q1|、即ち、
   |Q1|-P×0.058≦|Q2|≦|Q1|  (4)
である。
 各インジェクターの入口Iinから出口Ioutまでの間のガラスリボンとインジェクターの下面65との交換熱量Q1は、ガラスリボンとインジェクターの下面との輻射熱Q1に等しく、以下の輻射方程式(5)から算出される。
 Q1=S1×ε1×F1×σ(Tgla -Tinj )  (5)
 S1は、インジェクター下面の表面積(m)、ε1は輻射率、F1は面対面の形態係数、σはボルツマン定数(5.67×10-8(W/m・K))、Tglaはインジェクター入口のガラスリボン温度をK型熱電対を接触させて測定した測定値Tinと、インジェクター出口のガラスリボン温度をK型熱電対を接触させて測定した測定値Toutを用いてK=(Tin+Tout)/2で表わされるガラスリボンの温度(K)、Tinjはインジェクターの下面温度(K)である。
 また、電気ヒーター56とガラスリボンとの交換熱量(ヒーターからガラスリボンへの加熱量)Q2は、ガラスリボンと各インジェクターと対となるヒーター表面との輻射熱Q2(kW)に等しく、以下の輻射方程式(6)から算出される。
 Q2=S2×ε2×F2×σ(Tgla -Tinj )  (6)
 S2は、ヒーターの表面積(m)、ε2は輻射率、F2は面対面の形態係数、σはボルツマン定数(5.67×10-8(W/m・K))、Tglaはインジェクター入口のガラスリボン温度をK型熱電対を接触させて測定した測定値Tinと、インジェクター出口のガラスリボン温度をK型熱電対を接触させて測定した測定値Toutを用いてK=(Tin+Tout)/2で表わされるガラスリボンの温度(K)、Tinjはインジェクターの下面温度(K)である。
 なお、ここではCg=1000J/(kg・℃)を用いたが、Cg:1000~1200J/(kg・℃)であってもよい。輻射率εは1を用いたが、輻射率ε:0.8~1.0でもよい。またガラスリボンの流量Pは、100~700ton/dayであることが好ましい。
 また、「全ての積層膜を形成する温度領域におけるガラスリボンの単位長さ当たりの降下温度」をK1(以下、単に降下温度K1とも呼ぶ。)と呼ぶと、K1を0℃/m<K1<10℃/m、好ましくは1℃/m≦K1≦5℃/m、より好ましくは2℃/m≦K1≦3℃/mに設定している。従って、Tg+50℃からTgの温度領域で全ての層が成膜される場合には、Tg+50℃からTgの温度領域における降下温度Kを0℃/m<K1<10℃/mに設定し、TgからTsの温度領域でも成膜する場合には、Tg+50℃からTsの温度領域における降下温度Kを0℃/m<K1<10℃/mに設定する。
 なお、降下温度K1は、積層膜を形成する温度領域における「積層膜を形成する際の最初のインジェクターの入口のガラスリボン温度と最後のインジェクターの出口のガラスリボン温度の温度差」を「積層膜を形成する最初のインジェクターの入口位置をと最後のインジェクターの出口位置の距離の差」で割ったものである。降下温度K1が10℃/m以上だとガラスリボンの変形による傷及び割れが発生するおそれがあり、降下温度K1が0℃/mだと成膜時に徐冷炉54内でガラスリボンが徐冷されないこととなり、成膜後に徐冷することになるため徐冷炉54の長さが長くなってしまう。
 ガラスリボンは上記のように冷却後、所望の大きさに切断され、積層膜付き基板を得られる。
 各インジェクターの入口Iinから出口Ioutまでに冷却されるガラスリボンの温度が10℃以下であっても、全ての積層膜13を形成する温度領域におけるガラスリボンの降下温度K1を0℃/m<K1<10℃/mを満たさない場合、ガラスリボンの搬送方向に沿って隣り合うインジェクター60間に、電気ヒーター56を設けて適宜加熱することで、全体としてのガラスリボンの降下温度K1も満足することができる。
 以下、本発明の実施例について説明する。
 以下で説明する実施例では、温度測定は接触式のK型熱電対(センサ、安立計器社製:213K-TC1-ASP)で測定した。
<実施例1>
 本実施例では、ソーダライムガラスの製造に際し、図2に示したように、徐冷炉内に6個のインジェクター60a~60fと、ガラスリボンを挟んで各インジェクター60a~60fと反対側に対をなす電気ヒーター56を配置し、図3のように、ガラスリボン上に第1のインジェクター60aで酸化チタン層14を形成し、第2のインジェクター60bで酸化ケイ素層16を形成し、第3のインジェクター60cで第1の酸化スズ層18を形成し、第4~第6のインジェクター60d~60fで第2の酸化スズ層20を形成し、その後切断して太陽電池用透明導電膜10付き基板を形成した。各インジェクター60a~60fから吹き出されるガスは上述した通りである。また、インジェクターの下面からガラスリボンまでの隙間を7mm±1mmとした。6個のインジェクターは2m間隔で等間隔に配置した。ガラスリボンの流量Pは500ton/day、インジェクターの下面の面積Sは1.76mであった。
 ガラス転位温度Tgが560℃、ガラス歪温度Tsが510℃、板厚3.2~3.9mmのソーダライムガラスを用いた。ガラスリボン温度はガラスリボンの上面温度を接触式のK型熱電対で測定した。
 ガラスリボンの温度は、インジェクターの前後で測定した。測定点間は2mであった。インジェクター中心の下面のガラスリボンの温度は計算で求めた。ガラスリボンの温度の低下は、インジェクターへの放射冷却が主要な因子であることから、インジェクター前後の温度の平均をインジェクター中心の下面のガラスリボンの温度とした。6個のインジェクターを用いて透明導電膜成膜を作成した際の温度測定位置及びインジェクター中心のガラスリボンの温度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように各インジェクターにおいて、インジェクターの入口から出口までに冷却されるガラスリボンの温度が10℃以下であった。
 表1より、最初のインジェクター入口温度と最後のインジェクター出口温度の温度差を求め、最初のインジェクター入口位置と最後のインジェクター出口位置の距離の差10.5mで割った全ての層を形成する温度領域の単位長さ当たりの降下温度K1を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、全ての層を形成する温度領域での単位長さ当たりの降下温度K1は、4.8℃/mであった。
 各インジェクターでのガラスリボンからインジェクターへの熱交換量:Q1を上記(5)式、即ち、Q1=S1×ε1×F1×σ(Tgla -Tinj )から計算した。S1を1.76m2、輻射率εを1、形態係数Fを1、インジェクターの下面温度を150℃とした場合のQ1の値、及び、|Q1|-P×0.116の値を表3に示す。
 インジェクターと対をなすヒーター位置は、ガラスリボンを挟んでインジェクターと反対側で、インジェクター下面のガラスリボンを斜めから加熱した。ガラスリボンとの交換熱量をQ2(kW)は実測ができなかったために、ヒーターに投入した電力量の最大値に基づいて、ヒーターからインジェクターの下面のガラスリボン加熱をしていることから正の値を持つものとして、範囲としてQ2を表した。値を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 Q2を正確に求めることができなかったが、Q2は|Q1|-P×0.116とQ1の値の間に入っていた。なお、|Q1|-P×0.116が負である場合は、ヒーターによるQ2の熱交換がない状態(零である)でも、ガラスリボンが割れないことを意味し、実際にQ2が負の値を取ることを意味しない。
 ガラスリボンは冷却後、所望の大きさに切断され、太陽電池用透明導電膜付き基板を得た。このようにして製造した太陽電池用透明導電性基板においては、インジェクターとガラスリボンの接触によりガラスリボンに傷及び割れが発生することはなく、徐冷室で6個のインジェクターを用いた成膜が行えた。
<実施例2>
 同様に、ソーダライムガラスを徐冷炉で実施例1に対してガラスリボンの流量、板厚、ヒーターの加熱条件を変えて冷却しながら、インジェクター6個を用いて成膜を行った。ここで、ソーダライムガラスのTgは560℃、Tsは510℃であった。ガラスリボンの流量Pは640ton/day、板厚2.2mm、インジェクターの下面の面積Sは1.76mであった。
 実施例2同様に、6個のインジェクターを用いて透明導電膜成膜を作成した際の温度測定位置及びインジェクター中心のガラスリボンの温度を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように各インジェクターにおいて、インジェクターの入口から出口までに冷却されるガラスリボンの温度が10℃以下であった。
 表4より、最初のインジェクター入口温度と最後のインジェクター出口温度の温度差を求め、最初のインジェクター入口位置と最後のインジェクター出口位置の距離の差10.5mで割った全ての層を形成する温度領域の単位長さ当たりの降下温度K1を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5より、全ての層を形成する温度領域での単位長さ当たりの降下温度K1は、3.4℃/mであった。
 各インジェクターでのガラスリボンからインジェクターへの熱交換量:Q1を上記(5)式、即ち、Q1=S1×ε1×F1×σ(Tgla -Tinj )から計算した。S1を1.76m、輻射率εを1、形態係数Fを1、インジェクターの下面温度を150℃とした場合のQ1の値、及び、|Q1|-P×0.116の値を表6に示す。
 インジェクターと対をなすヒーター位置は、ガラスリボンを挟んでインジェクターと反対側で、インジェクター下面のガラスリボンを斜めから加熱した。ガラスリボンとの交換熱量をQ2(kW)は実測ができなかったために、ヒーターに投入した電力量を最大値に基づいて、ヒーターからインジェクターの下面のガラスリボン加熱をしていることから正の値を持つとして、範囲としてQ2を表した。値を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 Q2を正確に求めることができなかったが、Q2は|Q1|-P×0.116とQ1の値の間に入っていた。なお、|Q1|-P×0.116が負である場合は、ヒーターによるQ2の熱交換がない状態(零である)でも、ガラスリボンが割れないことを意味し、実際にQ2が負の値を取ることを意味しない。
 ガラスリボンは冷却後、所望の大きさに切断され、太陽電池用透明導電膜付き基板を得た。このようにして製造した太陽電池用透明導電性基板においても、インジェクターとガラスリボンの接触によりガラスリボンに傷及び割れが発生することはなく、徐冷室で6個のインジェクターを用いた成膜が行えた。
<参考例>
 また、本発明の製造方法において、太陽電池用透明導電性膜を成膜した際のガラスリボンの上面温度が590℃、560℃、550℃の位置におけるガラスリボンの下面温度も測定した。
 上面温度590℃の上面温度の位置におけるガラスリボンの下面温度:580℃
 上面温度560℃の上面温度の位置におけるガラスリボンの下面温度:560℃
 上面温度550℃の上面温度の位置におけるガラスリボンの下面温度:550℃
であり、ガラスリボンの厚さ方向での温度差は10℃以下であった。
 これより、本発明方法の製造方法では、ガラスリボンの厚さ方向の温度分布が少なく、ガラスリボンの反りが少ないことが予想される。
 以上説明したように、本実施形態のガラス基板の製造方法によれば、オンラインCVD法により徐冷炉内でガラスリボン上に積層膜を形成するに際し、積層膜は、Tg+50℃以下で成膜され、各インジェクター60a~60fにおいて、各インジェクター60a~60fとガラスリボンとの交換熱量をQ1(kW)、各インジェクター60a~60fと対となるヒーターとガラスリボンとの交換熱量をQ2(kW)、ガラスの流量をP(ton/day)とすると、|Q1|-P×0.116≦|Q2|≦|Q1|の関係式が成り立つように、各インジェクター60a~60fによりガラスリボンの温度が低下しすぎないように対となる電気ヒーター56でガラスリボンを加熱することで、インジェクターとガラスリボンの接触を回避して、ガラスリボンに傷及び割れが発生するのを抑制することができる。より好ましくは|Q1|-P×0.058≦|Q2|≦|Q1|の関係式が成り立つように、加熱することである。
 なお、|Q1|-P×0.116、|Q1|-P×0.058が負の値を取る場合は、ヒーターによるQ2の熱量がなくてもガラスリボンが割れないことを意味する。
 インジェクターとガラスリボンを挟んで、インジェクターと対となるヒーターがインジェクターの真下にある場合には、ヒーターの真上のガラスリボン、すなわちインジェクターの真下のガラスリボンが加熱される。また、インジェクターとガラスリボンを挟んで、インジェクターと対となるヒーターが、インジェクターの真下に対して左右にずれた位置にある場合には、ヒーターから斜めの位置への放射加熱により、インジェクター直下のガラスリボンが加熱される。この際インジェクター直下のガラスリボンを加熱するヒーターが複数個あれば、1つのインジェクターに対して対をなすヒーターは複数個あることを意味する。インジェクターと対となるヒーターとは、インジェクター下面直下のガラスリボン部分を、少なくとも加熱するヒーターを言う。
 なお、本発明は上述した実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲において種々の形態で実施し得るものである。
 例えば、ヒーターとして電気ヒーターを例示したが、これに限らず任意の加熱手段を使用することができる。
 本出願は、2011年7月12日出願の日本特許出願2011-154315に基づくものであり、その内容はここに参照として取り込まれる。
10 太陽電池用透明導電性基板
13 積層膜
50 ガラス製造装置
51 溶解炉
52 フロートバス
54 徐冷炉
56 電気ヒーター(ヒーター)
60 インジェクター
70 ガラスリボン

Claims (4)

  1.  ガラスの原料を溶解する溶解炉と、溶融ガラスを溶融金属上に浮かせてガラスリボンを成形するフロートバスと、前記ガラスリボンを徐冷する徐冷炉と、を備えたガラス製造装置を用いて、CVD法により前記徐冷炉内の前記ガラスリボン上方に設けられた複数のインジェクターで前記ガラスリボン上に積層膜を形成し、前記ガラスリボンを切断する積層膜付きガラス基板の製造方法であって、
     ガラス転位温度をTgとした場合に、前記積層膜はTg+50℃以下で形成され、
     前記徐冷炉には、前記ガラスリボンを挟んで各インジェクターと反対側に各インジェクターと対をなすヒーターが設けられ、
     各インジェクターにおいて、該インジェクターと前記ガラスリボンとの交換熱量をQ1(kW)、該インジェクターと対をなすヒーターと前記ガラスリボンとの交換熱量をQ2(kW)、ガラスの流量をP(ton/day)とすると、以下の関係式が成り立つことを特徴とする積層膜付きガラス基板の製造方法。
      |Q1|-P×0.116≦|Q2|≦|Q1|
  2.  以下の関係式が成り立つことを特徴とする請求項1に記載の積層膜付きガラス基板の製造方法。
      |Q1|-P×0.058≦|Q2|≦|Q1|
  3.  前記ガラスリボンの搬送方向に沿って隣り合うインジェクター間であって、前記ガラスリボンに対して前記インジェクター側に、ヒーターが設けられていることを特徴とする請求項1又は2に記載の積層膜付きガラス基板の製造方法
  4.  前記インジェクターの下面とガラスリボンとの距離が、30mm以下であることを特徴する請求項1~3のいずれか1項に記載の積層膜付きガラス基板の製造方法。
     
PCT/JP2012/067867 2011-07-12 2012-07-12 積層膜付きガラス基板の製造方法 WO2013008896A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280034332.0A CN103649000A (zh) 2011-07-12 2012-07-12 带层叠膜的玻璃基板的制造方法
EP12810838.8A EP2733125A4 (en) 2011-07-12 2012-07-12 METHOD FOR MANUFACTURING A GLASS SUBSTRATE CARRYING A LAYERED FILM
US14/152,068 US20140123707A1 (en) 2011-07-12 2014-01-10 Method for manufacturing layered-film-bearing glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011154315 2011-07-12
JP2011-154315 2011-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/152,068 Continuation US20140123707A1 (en) 2011-07-12 2014-01-10 Method for manufacturing layered-film-bearing glass substrate

Publications (1)

Publication Number Publication Date
WO2013008896A1 true WO2013008896A1 (ja) 2013-01-17

Family

ID=47506175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067867 WO2013008896A1 (ja) 2011-07-12 2012-07-12 積層膜付きガラス基板の製造方法

Country Status (6)

Country Link
US (1) US20140123707A1 (ja)
EP (1) EP2733125A4 (ja)
JP (1) JPWO2013008896A1 (ja)
CN (1) CN103649000A (ja)
TW (1) TW201307234A (ja)
WO (1) WO2013008896A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112415A1 (ja) * 2013-01-16 2014-07-24 旭硝子株式会社 積層膜付きガラス基板の製造方法
DE102014205658A1 (de) * 2014-03-26 2015-10-01 Schott Ag Floatverfahren zur Herstellung einer Floatglasscheibe und Floatglasscheibe
WO2018016366A1 (ja) * 2016-07-21 2018-01-25 パナソニックIpマネジメント株式会社 ガラスパネルユニット用のガラスパネルの製造方法および製造装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520201A (ja) * 2011-03-23 2014-08-21 ピルキントン グループ リミテッド 薄膜コーティングを被覆するための装置およびこのような装置を用いた被覆方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124427A (en) * 1976-04-13 1977-10-19 Bfg Glassgroup Method of forming metal or metal compound coat on surface of glass substrate and device suitable for forming such coat
JPS6140844A (ja) * 1984-07-30 1986-02-27 ピーピージー・インダストリーズ・インコーポレーテツド ガラス基材の被覆方法,その装置および高反射率低輻射率の被覆ガラス製品の製造法
JPH0333036A (ja) * 1989-06-19 1991-02-13 Glaverbel Sa 熱ガラス基体上に酸化物被覆を熱分解的に形成する方法及び装置
JP2001192234A (ja) * 2000-01-07 2001-07-17 Nippon Sheet Glass Co Ltd ガラスの表面改質方法及び表面改質ガラス
WO2010067850A1 (ja) * 2008-12-12 2010-06-17 旭硝子株式会社 酸化ケイ素膜付ガラス基板の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022601A (en) * 1975-06-02 1977-05-10 Ppg Industries, Inc. Method and apparatus for coating a glass substrate
GB9616983D0 (en) * 1996-08-13 1996-09-25 Pilkington Plc Method for depositing tin oxide and titanium oxide coatings on flat glass and the resulting coated glass
US20020155299A1 (en) * 1997-03-14 2002-10-24 Harris Caroline S. Photo-induced hydrophilic article and method of making same
JPH1179788A (ja) * 1997-08-29 1999-03-23 Central Glass Co Ltd 被膜形成ガラスおよびその製法
JP2001080939A (ja) * 1999-09-08 2001-03-27 Nippon Sheet Glass Co Ltd 光触媒ガラスの製造装置及び製造方法
WO2003065386A1 (fr) * 2002-01-28 2003-08-07 Nippon Sheet Glass Company, Limited Procede permettant de former un film conducteur transparent, ledit film conducteur transparent, substrat de verre comportant ledit film conducteur transparent et unite de transduction photoelectrique comprenant ledit substrat de verre
FR2934588B1 (fr) * 2008-07-30 2011-07-22 Fives Stein Procede et dispositif de realisation d'une structure sur l'une des faces d'un ruban de verre
CN101439925B (zh) * 2008-12-25 2010-06-09 杭州蓝星新材料技术有限公司 浮法玻璃生产线退火窑a0区在线镀膜环境成套调节装置
DE102009050987B3 (de) * 2009-05-12 2010-10-07 Schott Ag Dünnschichtsolarzelle und Verfahren zur Herstellung einer Dünnschichtsolarzelle
CN101618952B (zh) * 2009-07-30 2011-08-17 杭州蓝星新材料技术有限公司 浮法在线生产透明导电膜玻璃的方法
TW201249766A (en) * 2011-04-15 2012-12-16 Asahi Glass Co Ltd Method for producing surface-treated glass substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124427A (en) * 1976-04-13 1977-10-19 Bfg Glassgroup Method of forming metal or metal compound coat on surface of glass substrate and device suitable for forming such coat
JPS6140844A (ja) * 1984-07-30 1986-02-27 ピーピージー・インダストリーズ・インコーポレーテツド ガラス基材の被覆方法,その装置および高反射率低輻射率の被覆ガラス製品の製造法
JPH0333036A (ja) * 1989-06-19 1991-02-13 Glaverbel Sa 熱ガラス基体上に酸化物被覆を熱分解的に形成する方法及び装置
JP2001192234A (ja) * 2000-01-07 2001-07-17 Nippon Sheet Glass Co Ltd ガラスの表面改質方法及び表面改質ガラス
WO2010067850A1 (ja) * 2008-12-12 2010-06-17 旭硝子株式会社 酸化ケイ素膜付ガラス基板の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112415A1 (ja) * 2013-01-16 2014-07-24 旭硝子株式会社 積層膜付きガラス基板の製造方法
DE102014205658A1 (de) * 2014-03-26 2015-10-01 Schott Ag Floatverfahren zur Herstellung einer Floatglasscheibe und Floatglasscheibe
DE102014205658B4 (de) * 2014-03-26 2020-11-12 Schott Ag Floatverfahren zur Herstellung einer Floatglasscheibe und Floatglasscheibe
WO2018016366A1 (ja) * 2016-07-21 2018-01-25 パナソニックIpマネジメント株式会社 ガラスパネルユニット用のガラスパネルの製造方法および製造装置
JPWO2018016366A1 (ja) * 2016-07-21 2019-05-16 パナソニックIpマネジメント株式会社 ガラスパネルユニット用のガラスパネルの製造方法および製造装置
US11236004B2 (en) 2016-07-21 2022-02-01 Panasonic Intellectual Property Management Co., Ltd. Manufacturing method and manufacturing apparatus of glass panel for glass panel unit

Also Published As

Publication number Publication date
EP2733125A1 (en) 2014-05-21
US20140123707A1 (en) 2014-05-08
EP2733125A4 (en) 2015-09-09
CN103649000A (zh) 2014-03-19
JPWO2013008896A1 (ja) 2015-02-23
TW201307234A (zh) 2013-02-16

Similar Documents

Publication Publication Date Title
US9139463B2 (en) Unit and process for treating the surface of flat glass with thermal conditioning of the glass
JP5752787B2 (ja) ガラス基板の製造方法及び成形装置
US7968201B2 (en) Light transmittance optimizing coated glass article for solar cell and method for making
WO2013008896A1 (ja) 積層膜付きガラス基板の製造方法
WO2013008894A1 (ja) 積層膜付きガラス基板の製造方法
WO2014112415A1 (ja) 積層膜付きガラス基板の製造方法
WO2013008895A1 (ja) 積層膜付きガラス基板の製造方法
US9776914B2 (en) Chemical vapor deposition process for depositing zinc oxide coatings, method for forming a conductive glass article and the coated glass articles produced thereby
WO2014112482A1 (ja) 積層膜付きガラス基板及びその製造方法
JP5967088B2 (ja) 積層膜付きガラス基板の製造方法
EP2391743B1 (en) Method of depositing an electrically conductive titanium oxide coating on a substrate
JP2018526314A (ja) 強化ガラス並びに関連システムおよび方法
JP6749997B2 (ja) 熱強化された消費家電用ガラスおよびその関連するシステムと方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012810838

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012810838

Country of ref document: EP